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Introduction | probabilistic map-based localization
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 Map-based localization
 The robot estimates its position using perceived information and a map
 The map 
 might be known (localization) 
 Might be built in parallel (simultaneous localization and mapping – SLAM)

 Challenges
 Measurements and the map are inherently error prone
 Thus the robot has to deal with uncertain information
→ Probabilistic map-base localization

 Approach
 The robot estimates the belief state about its position 

through an ACT and SEE cycle

Localization | Introduction to Map-Based Localization 3

Localization | definition, challenges and approach

Where am I?



Robot Localization: Historical Context

• Initially, roboticists thought the world could be modeled exactly

• Path planning and control assumed perfect, exact, deterministic world

• Reactive robotics (behavior based, ala bug algorithms) were developed 
due to imperfect world models

• But Reactive robotics assumes accurate control and sensing to react –
also not realistic

• Reality: imperfect world models, imperfect control, imperfect sensing

• Solution: Probabilistic approach, incorporating model, sensor and 
control uncertainties into localization and planning

• Reality: these methods work empirically!
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 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar

 Belief updates (information fusion)

Localization | Introduction to Map-Based Localization 4

Concept | SEE and ACT to improve belief state



|
Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart 

ASL
Autonomous Systems Lab

 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar

 Belief updates (information fusion)

Localization | Introduction to Map-Based Localization 5

Concept | SEE and ACT to improve belief state

SEE



|
Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart 

ASL
Autonomous Systems Lab

 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→ finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar

 Belief updates (information fusion)

Localization | Introduction to Map-Based Localization 6

Concept | SEE and ACT to improve belief state

SEE



|
Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart 

ASL
Autonomous Systems Lab

 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→ finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar

 Belief updates (information fusion)

Localization | Introduction to Map-Based Localization 7

Concept | SEE and ACT to improve belief state

ACT



|
Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart 

ASL
Autonomous Systems Lab

 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→ finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar

 Belief updates (information fusion)

Localization | Introduction to Map-Based Localization 8

Concept | SEE and ACT to improve belief state

ACT



|
Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart 

ASL
Autonomous Systems Lab

 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar 

 Belief updates (information fusion)

Localization | Introduction to Map-Based Localization 9

Concept | SEE and ACT to improve belief state

SEE



|
Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart 

ASL
Autonomous Systems Lab

 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→ finds itself next to a pillar

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar

 Belief update (information fusion)

Localization | Introduction to Map-Based Localization 10

Concept | SEE and ACT to improve belief state
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 The robot moves and estimates its position through its proprioceptive sensors
 Wheel Encoder (Odometry)

 During this step, the robot’s state uncertainty grows

Localization | Introduction to Map-Based Localization 11

ACT | using motion model and its uncertainties
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 The robot makes an observation using its exteroceptive sensors
 This results in a second estimation of the current position

Localization | Introduction to Map-Based Localization 12

SEE | estimation of position based on perception and map

′

SEESEE

Probability of 
making this 
observation

Robot’s belief before 
the observation
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 The robot corrects its position by combining its belief before the observation 
with the probability of making exactly that observation

 During this step, the robot’s state uncertainty shrinks

Localization | Introduction to Map-Based Localization 13

Belief update | fusion of prior belief with observation

′′′
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 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors 
again →  finds itself next to a pillar 

 Belief update (information fusion)
Localization | Introduction to Map-Based Localization 16

Take home message | 
ACT - SEE Cycle for Localization
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a) Continuous map with 
single hypothesis probability distribution 

b) Continuous map with 
multiple hypotheses probability distribution 

c) Discretized metric map (grid ) with 
probability distribution 

d) Discretized topological map (nodes ) with 
probability distribution 

Localization | Introduction to Map-Based Localization 15

Probabilistic localization | belief representation

A B C D E F G

Kalman Filter
Localization

Markov Localization
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 Information (measurements)
is error prone (uncertain)
 Odometry
 Exteroceptive sensors (camera, laser, …)
 Map

→ Probabilistic map-based localization

Localization | the Markov Approach 2

Markov localization | applying probability theory to localization
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 Probability theory is widely and very successfully used for mobile robot 
localization

 In the following lecture segments, its application to localization will be 
illustration
 Markov localization
 Discretized pose representation 

 Kalman filter
 Continuous pose representation and Gaussian error model

 Further reading:
 “Probabilistic Robotics,” Thrun, Fox, Burgard, MIT Press, 2005.
 “Introduction to Autonomous Mobile Robots”, Siegwart, Nourbakhsh, Scaramuzza, MIT Press 2011

Localization | Refresher on Probability Theory

Usage | application of probability theory to robot localization

7
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 Mobile robot localization has to deal with error prone information
 Mathematically, error prone information (uncertainties) is best represented by 

random variables and probability theory

 :	probability that the random variable has value	 ( 	is true).
 : random variable
 :a specific value that	  might assume.
 The Probability Density Functions (PDF) describes 

the relative likelihood for a random variable to take on 
a given value

 PDF example: The Gaussian distribution:

Localization | Refresher on Probability Theory

Probability theory | how to deal with uncertainty

1
2

2



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Markov Localization

• Key idea:  compute a probability distribution over all possible positions 
in the environment.  
� This probability distribution represents the likelihood that the robot is in a 

particular location.

P(Robot Location)

X

Y

State space = 2D, infinite #states

Slide adapted from Dellaert presentation “19-Particles.ppt”
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 Discretized pose representation →  grid map

 Markov localization tracks the robot’s belief state using an arbitrary 
probability density function to represent the robot’s position

 Markov assumption: Formally, this means that the output of the estimation 
process is a function only of the robot’s previous state 	and its most 
recent actions (odometry) and perception .

 Markov localization addresses the global localization problem, the position 
tracking problem, and the kidnapped robot problem.

Localization | the Markov Approach 3

Markov localization | basics and assumption

, ⋯ , ⋯ , ,
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 The theorem of total probability (convolution) originates from the axioms of 
probability theory and is written as:

for discrete probabilities

for continuous probabilities

 This theorem is used by both Markov and Kalman-filter localization algorithms 
during the prediction update.

Localization | Refresher on Probability Theory

Basic concepts of probability theory | theorem of total probability

5
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 ACT | probabilistic estimation of the robot’s new belief state 	 based on 
the previous location and the probabilistic motion model 

, 	with action (control input). 

→ application of theorem of total probability / convolution

for continuous probabilities

for discrete probabilities

Localization | the Markov Approach 5
4

Markov localization | applying probability theory to localization 

,
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 SEE | probabilistic estimation of the robot’s new belief state as a 
function of its measurement data and its former belief state 	 :

→ application of Bayes rule

where , is the probabilistic measurement model (SEE), that is, the 
probability of observing the measurement data given the knowledge of the map 

and the robot’s position . Thereby  is the normalization factor so 
that ∑ 1 .

Localization | the Markov Approach 5
5

Markov localization | applying probability theory to localization 

 ,



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Markov Localization makes use of Bayes Rule

• P(A): Probability that A is true.
� e.g. p(rt = l):  probability that the robot r is at position l at time t

• We wish to compute the probability of each individual robot position 
given actions and sensor measures.

• P(A|B): Conditional probability of A given that we know B.
� e.g. p(rt = l | it): probability that the robot is at position l given the 

sensors input it.

• Product rule:

• Bayes rule:

5.6.2



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

The “See” update step
• Bayes rule:

� “See” operation:  Maps from a belief state and a sensor input to a refined 
belief state:

(5.21)

� p(l): belief state before perceptual update process
� p(i |l):  probability we get measurement i when being at position l

o To obtain this info:  consult robot’s map and identify the probability of a certain sensor 
reading if the robot were at position l

� p(i): normalization factor so that sum over all l equals 1. 

• We apply this operation to all possible robot positions, l

5.6.2

( , )t t ts See i s′=
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 The Bayes rule relates the conditional probability to its inverse .
 Under the condition that 0, the Bayes rule is written as:

 normalization factor ( 1

 This theorem is used by both Markov and Kalman-filter localization algorithms 
during the measurement update.

Localization | Refresher on Probability Theory

Basic concepts of probability theory | the Bayes rule
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 Markov assumption: Formally, this means that the output is a function only 
of the robot’s previous state 	and its most recent actions (odometry) and 
perception .

Localization | the Markov Approach 5
6

Markov localization | the basic algorithms for Markov localization

For all do

∑ , (prediction update) 

 , (measurement update)

endfor

Return  
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Localization | the Markov Approach 7

ACT | using motion model and its uncertainties
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ACT | using motion model and its uncertainties
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SEE

Localization | the Markov Approach 9

SEE | estimation of position based on perception and map

prediction update
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Figure 5.23 Markov localization using a grid-map.
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Zürich

Markov localization

 Let us discretize the configuration space into 10 cells

 Suppose that the robot’s initial belief is a uniform distribution from 0 to 3. Observe that all the 
elements were normalized so that their sum is 1.

Localization II

24



Zürich

Markov localization

 Initial belief distribution

 Action phase: 
Let us assume that the robot moves forward with the following statistical model

 This means that we have 50% probability that the robot moved 2 or 3 cells forward.
 Considering what the probability was before moving, what will the probability be after the motion?

Localization II

25



Zürich

Markov localization
Action update

 The solution is given by the convolution (cross correlation) of the two distributions

Localization II

          *

26
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Zürich

Markov localization
Perception update

 Let us now assume that the robot uses its onboard range finder and measures the distance 
from the origin. Assume that the statistical error model of the sensors is:

This plot tells us that the distance of the robot from the origin can be equally 5 or 6 units.
 What will the final robot belief be after this measurement? 

The answer is again given by the Bayes rule:

Localization II

          

28
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Markov Localization Example, p. 313 Siegwart

1 INITIAL BELIEF:  Bel(X) at time t 0.25 0.25 0.25 0.25 0 0 0 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

2 Now move the robot with probabilities below:

3 MOTION PROBABILITY: U(t) -robot moves 2 or 3 units 0 0 0.5 0.5 0 0 0 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

4 Now CONVOLVE Bel(X) with U(t)

5 UPDATED BELIEF:  Bel(X) 0 0 0.125 0.25 0.25 0.25 0.125 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

6 Now use sensor to update your Bel(X)

7 SENSOR  Probabilities:  Z(t) - origin is 5 or 6 units away 0 0 0 0 0 0.5 0.5 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

8 Apply sensor measurement to current Bel(X)

9 UNNORMALIZED SENSOR UPDATE 0 0 0 0 0 0.125 0.0625 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

10 NORMALIZATION = .0625 + 0.125= 0.1875 0.125 / 0.1875 = .667 , 0.0625/ 0.1875 = .33

11 NORMALIZED SENSOR UPDATE: Bel(X) at  t+1 0 0 0 0 0 0.6667 0.3333 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9
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 The real world for mobile robot is at least 2D (moving in the plane)
→ discretized pose state space (grid) consists of , ,
→ Markov Localization scales badly with the size of the environment

 Space: 10 m x 10 m with a grid size of 0.1 m 
and an angular resolution of 1°
→ 100 ∙ 100 ∙ 360 3.6	10 grid points (states)
→ prediction step requires in worst case

3.6	10 	multiplications and summations
 Fine fixed decomposition grids result in a huge state space
 Very important processing power needed
 Large memory requirement

Localization | the Markov Approach 10

Markov localization | extension to 2D
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 Adaptive cell decomposition
 Motion model (Odomety) limited to a small 

number of grid points 
 Randomized sampling
 Approximation of belief state by a representative subset 

of possible locations
 weighting the sampling process with the probability 

values
 Injection of some randomized (not weighted) samples

 randomized sampling methods are also known as 
particle filter algorithms, condensation algorithms, and 
Monte Carlo algorithms.

Localization | the Markov Approach 11

Markov localization | reducing computational complexity
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 Continuous pose representation 
 Kalman Filter Assumptions: 
 Error approximation with normal distribution: 

, 	(Gaussian model) 
 Output distribution is a linear (or  linearized) 

function of the input distribution: 
 Kalman filter localization tracks the robot’s 

belief state typically as a single 
hypothesis with normal distribution.

 Kalman localization thus addresses the 
position tracking problem, but not the 
global localization or the kidnapped robot 
problem.

Localization | the Kalman Filter Approach

Kalman Filter Localization | Basics and assumption

3
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Localization | the Kalman Filter Approach 11

Kalman Filter Localization | in summery

Observation:
Probability of 

making this 
observation

Prediction:
Robot’s belief 
before the 
observation

Estimation:
Robot’s belief 

update

1. Prediction (ACT) based on previous estimate and odometry
2. Observation (SEE) with on-board sensors
3. Measurement prediction based on prediction and map
4. Matching of observation and map
5. Estimation → position update (posteriori position)



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Two general approaches:
Markov and Kalman Filter Localization

• Markov localization
� Maintains multiple estimatesof 

robot position
� Localization can start from any 

unknown position 
� Can recover from ambiguous 

situations 
� However, to update the probability 

of all positions within the state 
space requires a discrete 
representation of the space (grid); 
if a fine grid is used (or many 
estimates are maintained), the 
computational and memory 
requirements can be large.

• Kalman filter localization 
� Single estimateof robot position

� Requires known starting position
of robot

� Tracks the robot and can be very 
precise and efficient

� However, if the uncertainty of the 
robot becomes too large (e.g. due 
collision with an object) the 
Kalman filter will fail and the 
robot becomes “lost”. 

5.6.1




