
Chapter 2
Homogenous Transformation Matrices

2.1 Translational Transformation

As stated previously robots have either translational or rotational joints. To describe
the degree of displacement in a joint we need a unified mathematical description of
translational and rotational displacements. The translational displacement d, given
by the vector

d = ai + bj + ck, (2.1)

can be described also by the following homogenous transformation matrix H

H = Trans(a, b, c) =

⎡
⎢⎢⎣
1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦ . (2.2)

When using homogenous transformation matrices an arbitrary vector has the follow-
ing 4 × 1 form

q =

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦ = [

x y z 1
]T

. (2.3)

A translational displacement of vectorq for a distanced is obtained bymultiplying
the vector q with the matrix H

v =

⎡
⎢⎢⎣
1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x + a
y + b
z + c
1

⎤
⎥⎥⎦ . (2.4)
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12 2 Homogenous transformation matrices

The translation, which is presented by multiplication with a homogenous matrix, is
equivalent to the sum of vectors q and d

v = q + d = (xi + yj + zk) + (ai + bj + ck) = (x + a)i + (y + b)j + (z + c)k.

(2.5)
In a simple example, the vector 1i + 2j + 3k is translationally displaced for the

distance 2i − 5j + 4k

v =

⎡
⎢⎢⎣
1 0 0 2
0 1 0 −5
0 0 1 4
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
2
3
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
−3
7
1

⎤
⎥⎥⎦ .

The same result is obtained by adding the two vectors.

2.2 Rotational Transformation

Rotational displacements will be described in a right-handed rectangular coordinate
frame, where the rotations around the three axes, as shown in Fig. 2.1, are considered
as positive. Positive rotations around the selected axis are counter-clockwise when
looking from the positive end of the axis towards the origin O of the frame x–y–z.
The positive rotation can be described also by the so called right hand rule, where the
thumb is directed along the axis towards its positive end, while the fingers show the

Fig. 2.1 Right-hand rectangular frame with positive rotations
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Fig. 2.2 Rotation around x axis

positive direction of the rotational displacement. The direction of running of athletes
in a stadium is also an example of a positive rotation.

Let us first take a closer look at the rotation around the x axis. The coordinate
frame x′–y′–z′ shown in Fig. 2.2 was obtained by rotating the reference frame x–y–z
in the positive direction around the x axis for the angle α. The axes x and x′ are
collinear.

The rotational displacement is also described by a homogenous transformation
matrix. The first three rows of the transformation matrix correspond to the x, y, and
z axes of the reference frame, while the first three columns refer to the x′, y′, and z′
axes of the rotated frame. The upper left nine elements of the matrixH represent the
3 × 3 rotation matrix. The elements of the rotation matrix are cosines of the angles
between the axes given by the corresponding column and row

Rot(x, α) =

x′ y′ z′⎡
⎢⎢⎣

cos 0◦ cos 90◦ cos 90◦ 0
cos 90◦ cosα cos(90◦ + α) 0
cos 90◦ cos(90◦ − α) cosα 0

0 0 0 1

⎤
⎥⎥⎦

x
y
z

=
⎡
⎢⎢⎣
1 0 0 0
0 cosα − sin α 0
0 sin α cosα 0
0 0 0 1

⎤
⎥⎥⎦

.

(2.6)

The angle between the x′ and the x axes is 0◦, therefore we have cos 0◦ in the
intersection of the x′ column and the x row. The angle between the x′ and the y axes
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Fig. 2.3 Rotation around y axis

is 90◦, we put cos 90◦ in the corresponding intersection. The angle between the y′
and the y axes is α, the corresponding matrix element is cosα.

To become more familiar with rotation matrices, we shall derive the matrix
describing a rotation around the y axis by using Fig. 2.3. The collinear axes are
y and y′

y = y′. (2.7)

By considering the similarity of triangles in Fig. 2.3, it is not difficult to derive the
following two equations

x = x′ cosβ + z′ sin β

z = −x′ sin β + z′ cosβ. (2.8)

All three Eqs. (2.7) and (2.8) can be rewritten in the matrix form
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Rot(y, β) =

x′ y′ z′⎡
⎢⎢⎣

cosβ 0 sin β 0
0 1 0 0

− sin β 0 cosβ 0
0 0 0 1

⎤
⎥⎥⎦

x
y
z

. (2.9)

The rotation around the z axis is described by the following homogenous trans-
formation matrix

Rot(z, γ ) =

⎡
⎢⎢⎣
cos γ − sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (2.10)

In a simple numerical example we wish to determine the vector w, which is
obtained by rotating the vector u = 14i + 6j + 0k for 90◦ in the counter clockwise
(i.e., positive) direction around the z axis. As cos 90◦ = 0 and sin 90◦ = 1, it is not
difficult to determine the matrix describing Rot(z, 90◦) and multiplying it by the
vector u

w =

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
14
6
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−6
14
0
1

⎤
⎥⎥⎦ .

The graphical presentation of rotating the vector u around the z axis is shown in
Fig. 2.4.

Fig. 2.4 Example of rotational transformation
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2.3 Pose and Displacement

In the previous section we have learned how a point is translated or rotated around
the axes of the cartesian frame. In continuation we shall be interested in displace-
ments of objects. We can always attach a coordinate frame to a rigid object under
consideration. In this section we shall deal with the pose and the displacement of
rectangular frames. Here we see that a homogenous transformation matrix describes
either the pose of a frame with respect to a reference frame, or it represents the dis-
placement of a frame into a new pose. In the first case the upper left 3 × 3 matrix
represents the orientation of the object, while the right-hand 3 × 1 column describes
its position (e.g., the position of its center of mass). The last row of the homogenous
transformation matrix will be always represented by [0 0 0 1]. In the case of object
displacement, the upper left matrix corresponds to rotation and the right-hand col-
umn corresponds to translation of the object. We shall examine both cases through
simple examples. Let us first clear up themeaning of the homogenous transformation
matrix describing the pose of an arbitrary frame with respect to the reference frame.
Let us consider the following product of homogenous matrices which gives a new
homogenous transformation matrix H

H = Trans(8,−6, 14)Rot(y, 90◦)Rot(z, 90◦)

=

⎡
⎢⎢⎣
1 0 0 8
0 1 0 −6
0 0 1 14
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
0 0 1 8
1 0 0 −6
0 1 0 14
0 0 0 1

⎤
⎥⎥⎦ .

(2.11)

When defining the homogenous matrix representing rotation, we learned that the first
three columns describe the rotation of the frame x′–y′–z′ with respect to the reference
frame x–y–z

x′ y′ z′
⎡
⎢⎢⎣

�0� �0� �1� 8
1 0 0 −6

�0� �1� �0� 14
0 0 0 1

⎤
⎥⎥⎦
x
y
z

.
(2.12)

The fourth column represents the position of the origin of the frame x′–y′–z′
with respect to the reference frame x–y–z. With this knowledge we can represent
graphically the frame x′–y′–z′ described by the homogenous transformation matrix
(2.11), relative to the reference frame x–y–z (Fig. 2.5). The x′ axis points in the
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Fig. 2.5 The pose of an arbitrary frame x′–y′–z′ with respect to the reference frame x–y–z

Fig. 2.6 Displacement of the reference frame into a new pose (from right to left). The origins O1,
O2 and O′ are in the same point

direction of y axis of the reference frame, the y′ axis is in the direction of the z axis,
and the z′ axis is in the x direction.

To convince ourselves of the correctness of the frame drawn in Fig. 2.6, we shall
check the displacements included in Eq. (2.11). The reference frame is first translated
into the point (8,−6, 14), afterwards it is rotated for 90◦ around the new y axis and
finally it is rotated for 90◦ around the newest z axis (Fig. 2.6). The three displacements
of the reference frame result in the same final pose as shown in Fig. 2.5.

In continuation of this chapter we wish to elucidate the second meaning of the
homogenous transformation matrix, i.e., a displacement of an object or coordinate
frame into a new pose (Fig. 2.7). First, we wish to rotate the coordinate frame x–y–z
for 90◦ in the counter-clockwise direction around the z axis. This can be achieved by
the following post-multiplication of the matrix H describing the initial pose of the
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coordinate frame x–y–z
H1 = H · Rot(z, 90◦). (2.13)

The displacement resulted in a new pose of the object and new frame x′–y′–z′ shown
in Fig. 2.7. We shall displace this new frame for −1 along the x′ axis, 3 units along
y′ axis and −3 along z′ axis

H2 = H1 · Trans(−1, 3,−3). (2.14)

After translation a new pose of the object is obtained together with a new frame
x′′–y′′–z′′. This frame will be finally rotated for 90◦ around the y′′ axis in the positive
direction

H3 = H2 · Rot(y′′, 90◦). (2.15)

The Eqs. (2.13), (2.14), and (2.15) can be successively inserted one into another

H3 = H · Rot(z, 90◦) · Trans(−1, 3,−3) · Rot(y′′, 90◦) = H · D. (2.16)

In Eq. (2.16), the matrix H represents the initial pose of the frame, H3 is the final
pose, while D represents the displacement

D = Rot(z, 90◦) · Trans(−1, 3,−3) · Rot(y′′, 90◦)

=

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 −1
0 1 0 3
0 0 1 −3
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 −1 0 −3
0 0 1 −1

−1 0 0 −3
0 0 0 1

⎤
⎥⎥⎦ .

(2.17)

Finally, we shall perform the post-multiplication describing the new relative pose of
the object
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Fig. 2.7 Displacement of the object into a new pose

H3 = H · D =

⎡
⎢⎢⎣
1 0 0 2
0 0 −1 −1
0 1 0 2
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 −1 0 −3
0 0 1 −1

−1 0 0 −3
0 0 0 1

⎤
⎥⎥⎦

=

x′′′ y′′′ z′′′⎡
⎢⎢⎣
0 −1 0 −1
1 0 0 2
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

x0
y0
z0

.

(2.18)

As in the previous example we shall graphically verify the correctness of the
matrix (2.18). The three displacements of the frame x–y–z: rotation for 90◦ in counter-
clockwise direction around the z axis, translation for −1 along the x′ axis, 3 units
along y′ axis and −3 along z′ axis, and rotation for 90◦ around y′′ axis in the positive
direction are shown in Fig. 2.7. The result is the final pose of the object x′′′, y′′′, z′′′.
The x′′′ axis points in the positive direction of the y0 axis, y′′′ points in the negative
direction of x0 axis and z′′′ points in the positive direction of z0 axis of the reference
frame. The directions of the axes of the final frame correspond to the first three
columns of the matrixH3. There is also agreement between the position of the origin
of the final frame in Fig. 2.7 and the fourth column of the matrix H3.

2.4 Geometrical Robot Model

Our final goal is the geometrical model of a robot manipulator. A geometrical robot
model is given by the description of the pose of the last segment of the robot (end-
effector) expressed in the reference (base) frame. The knowledge how to describe the
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Fig. 2.8 Mechanical assembly

pose of an object using homogenous transformation matrices will be first applied to
the process of assembly. For this purpose, a mechanical assembly consisting of four
blocks, such as presented in Fig. 2.8,will be considered.Aplatewith dimensions (5 ×
15 × 1) is placed over a block (5 × 4 × 10). Another plate (8 × 4 × 1) is positioned
perpendicularly to the first one, holding another small block (1 × 1 × 5).

A frame is attached to each of the four blocks as shown in Fig. 2.8. Our task will be
to calculate the pose of the frame x3–y3–z3 with respect to the reference frame x0–y0–
z0. In the last chapter we learned that the pose of a displaced frame can be expressed
with respect to the reference frame using the homogenous transformation matrix H.
The pose of the frame x1–y1–z1 with respect to the frame x0–y0–z0 will be denoted
by 0H1. In the same way 1H2 represents the pose of frame x2–y2–z2 with respect to
x1–y1–z1 and 2H3 the pose of x3–y3–z3 with regard to frame x2–y2–z2. We learned
also that the successive displacements are expressed by post-multiplications (suc-
cessive multiplications from left to right) of homogenous transformation matrices.
The assembly process can be described by post-multiplication of the corresponding
matrices. The pose of the fourth block can be written with respect to the first one by
the following matrix

0H3 = 0H1
1H2

2H3. (2.19)

The blocks were positioned perpendicularly one to another. In this way it is not
necessary to calculate the sines and cosines of the rotation angles. The matrices can
be determined directly from Fig. 2.8. The x axis of frame x1–y1–z1 points in negative
direction of the y axis in the frame x0–y0–z0. The y axis of frame x1–y1–z1 points in
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negative direction of the z axis in the frame x0–y0–z0. The z axis of the frame x1–y1–
z1 has the same direction as x axis of the frame x0–y0–z0. The described geometrical
properties of the assembly structure are written into the first three columns of the
homogenous matrix. The position of the origin of the frame x1–y1–z1 with respect
to the frame x0–y0–z0 is written into the fourth column

O1

︷ ︸︸ ︷
x y z

0H1 =

⎡
⎢⎢⎣

0 0 1 0
−1 0 0 6
0 −1 0 11
0 0 0 1

⎤
⎥⎥⎦

x
y
z

⎫⎬
⎭O0

.

(2.20)

In the same way the other two matrices are determined

1H2 =

⎡
⎢⎢⎣
1 0 0 11
0 0 1 −1
0 −1 0 8
0 0 0 1

⎤
⎥⎥⎦ (2.21)

2H3 =

⎡
⎢⎢⎣
1 0 0 3
0 −1 0 1
0 0 −1 6
0 0 0 1

⎤
⎥⎥⎦ . (2.22)

The position and orientation of the fourth block with respect to the first one is given
by the 0H3 matrix which is obtained by successive multiplication of the matrices
(2.20), (2.21) and (2.22)

0H3 =

⎡
⎢⎢⎣

0 1 0 7
−1 0 0 −8
0 0 1 6
0 0 0 1

⎤
⎥⎥⎦ . (2.23)

The fourth column of the matrix 0H3 [7,−8, 6, 1]T represents the position of the
origin of the frame x3–y3–z3 with respect to the reference frame x0–y0–z0. The
accuracy of the fourth column can be checked from Fig. 2.8. The rotational part of
the matrix 0H3 represents the orientation of the frame x3–y3–z3 with respect to the
reference frame x0–y0–z0.

Now let us imagine that the first horizontal plate rotates with respect to the first
vertical block around axis 1 for angle ϑ1. The second plate also rotates around the
vertical axis 2 for angle ϑ2. The last block is elongated for distance d3 along the third
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Fig. 2.9 Displacements of the mechanical assembly

Fig. 2.10 SCARA robot manipulator in an arbitrary pose

axis. In this way we obtained a robot manipulator, of the SCARA type as mentioned
in the introductory chapter.

Our goal is to develop a geometricalmodel of the SCARA robot. Blocks and plates
from Fig. 2.9 will be replaced by symbols for rotational and translational joints that
we know from the introduction (Fig. 2.10).

The first vertical segment with the length l1 starts from the base (where the robot
is attached to the ground) and is terminated by the first rotational joint. The second
segment with length l2 is horizontal and rotates around the first segment. The rotation
in the first joint is denoted by the angle ϑ1. The third segment with the length l3 is also
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Fig. 2.11 The SCARA robot manipulator in the initial pose

horizontal and rotates around the vertical axis at the end of the second segment. The
angle is denoted as ϑ2. There is a translational joint at the end of the third segment.
It enables the robot end-effector to approach the working plane where the robot task
takes place. The translational joint is displaced from zero initial length to the length
described by the variable d3.

The robot mechanism is first brought to the initial pose which is also called “home
position”. In the initial pose two neighboring segments must be either parallel or
perpendicular. The translational joints are in their initial position di = 0. The initial
pose of the SCARA manipulator is shown in Fig. 2.11.

First, the coordinate frames must be drawn into the SCARA robot presented in
Fig. 2.11. The first (reference) coordinate frame x0–y0–z0 is placed onto the base
of the robot. In the last chapter we shall learn that robot standards require the z0
axis to point perpendicularly out from the base. In this case it is aligned with the
first segment. The other two axes are selected in such a way that robot segments are
parallel to one of the axes of the reference coordinate frame, when the robot is in its
initial home position. In this case we align the y0 axis with the segments l2 and l3.
The coordinate frame must be right handed. The rest of the frames are placed into
the robot joints. The origins of the frames are drawn in the center of each joint. One
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of the frame axes must be aligned with the joint axis. The simplest way to calculate
the geometrical model of a robot is to make all the frames in the robot joints parallel
to the reference frame (Fig. 2.11).

The geometrical model of a robot describes the pose of the frame attached to the
end-effector with respect to the reference frame on the robot base. Similarly, as in the
case of themechanical assembly,we shall obtain the geometricalmodel by successive
multiplication (post-multiplication) of homogenous transformation matrices. The
main difference between the mechanical assembly and the robot manipulator is the
displacements of the robot joints. For this purpose, each matrix i−1Hi describing the
pose of a segment will be followed by a matrix Di representing the displacement of
either the translational or the rotational joint. Our SCARA robot has three joints. The
pose of the end frame x3–y3–z3 with respect to the base frame x0–y0–z0 is expressed
by the following postmultiplication of three pairs of homogenous transformation
matrices

0H3 = (0H1D1) · (1H2D2) · (2H3D3). (2.24)

In Eq. (2.24), the matrices 0H1, 1H2, and 2H3 describe the pose of each joint frame
with respect to the preceding frame in the same way as in the case of assembly of
the blocs. From Fig. 2.11 it is evident that the D1 matrix represents a rotation around
the positive z1 axis. The following product of two matrices describes the pose and
the displacement in the first joint

0H1D1 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 l1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
c1 −s1 0 0
s1 c1 0 0
0 0 1 l1
0 0 0 1

⎤
⎥⎥⎦ .

In the above matrices the following shorter notation was used sin ϑ1 = s1 and
cosϑ1 = c1.

In the second joint there is a rotation around the z2 axis

1H2D2 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 l2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
c2 −s2 0 0
s2 c2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
c2 −s2 0 0
s2 c2 0 l2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

In the last joint there is translation along the z3 axis

2H3D3 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 l3
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 −d3
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 l3
0 0 1 −d3
0 0 0 1

⎤
⎥⎥⎦ .
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The geometrical model of the SCARA robot manipulator is obtained by post-
multiplication of the three matrices derived above

0H3 =

⎡
⎢⎢⎣
c12 −s12 0 −l3s12 − l2s1
s12 c12 0 l3c12 + l2c1
0 0 1 l1 − d3
0 0 0 1

⎤
⎥⎥⎦ .

When multiplying the three matrices the following abbreviation was introduced
c12 = cos(ϑ1 + ϑ2) = c1c2 − s1s2 and s12 = sin(ϑ1 + ϑ2) = s1c2 + c1s2.
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