
Computer Vision for Robotics 
 

Thanks to Brad Nelson 
For use of the slides 



28

Image Processing Algorithm 
Acquisition

Prefiltering

Recursive/ 
Adaptive 
Filtering

Image 
Segmentation

Geometric 
Operations

Feature 
Extraction

Image 
Classification

Image 
Evaluation

Special Purpose Image 
Processing Hardware

General Purpose CPU



© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Image Intensities & Data reduction

Monochrome image  matrix of intensity values

 Typical sizes:

 320  x  240  (QVGA)

 640  x  480  (VGA)

 1280  x  720  (HD)

 Intensities sampled to 256 grey levels  8 bits

 Images capture a lot of information

Reduce the amount of input data: 
preserving useful info & discarding redundant info

Lec. 6
2

Lecture 6 - Perception - Vision

Useful 
cues

Heavy 
Processing

allen
Typewritten Text
Color Images: 3 channels (e.g. RGB)8 bits per channel = 24 bits total
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Commonly Used Algorithms

• Statistical 

Operations

• Segmentation and 

Edge Detection

• Finding Shapes

• Frequency Domain 

Techniques 

• Spatial Operations 

and 

Transformations

• Morphological 

Operations

• Pattern 

Recognition

• Labeling
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Spatial filters

 Sxy : neighborhood of pixels around the point (x,y) in an image I

 Spatial filtering operates on Sxy to generate a new value for the corresponding pixel at 

output image J

 For example, an averaging filter is:

Lecture 6 - Perception - Vision
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Constructing Filter from a Continuous Fn 

 Common practice for image smoothing: use a Gaussian

 Near-by pixels have a bigger influence on the averaged value rather than 
more distant ones

Lecture 6 - Perception - Vision
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Figure 1: Gaussian filter. Left: 1-D Gaussian with mean=0 andσ = 1. Middle: 2-D Gaussian with
mean=0 andσ = 1. Right: 5x5 convolution mask for Gaussian smoothing with mean=0 andσ = 1

• Mean Averaging Filter: This filter just averages the pixel values in a neighborhood around a

pixel. Neighborhood sizes are variable, depending upon the spatial extent of the filter needed.

Common sizes are 3x3, 5x5, 7x7 etc. A 3x3 mean filter uses the following set of local weights:
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• Gaussian Smoothing Filter: Another smoothing filter is the Gaussian filter, which uses a neigh-
borhood that approximates the fall-off of a Gaussian centered on the pixel of interest. This filter
has larger weights for the central pixels and nearest neighbors rather than the mean filter which
treats all pixels in the neighborhood with equal weights. See figure 1 above.

Figure 2: Median filter. Noisy pixel in center (150) is removed bymedian of its neighborhood.

• Median Filter: This filter is used to remove outlier noise values in a region. It is based upon
order statistics, and is a non-linear filter. In this filter, pixels in a neighborhood are sorted by
value, and themedian value of the pixel’s in the neighborhood is taken to be the filter’s response.
If the pixel being processed is an outlier, it will be replaced by the median value. This filter is
useful for “shot” or “salt-and-pepper” noise. See figure 2.
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3.2 Enhancement

Often, most of the image values will be centered within a limited range of the full 256 gray levels of
an image.Contrast stretching performs a linear remapping from the gray level range(Ilow, Ihigh) to
(0, 255), effectively “stretching” the contrast in the image. See figure 3. Before the stretching can be
performed it is necessary to specify the upper and lower pixel value limits over which the image is to
be normalized. Often these limits will just be the minimum and maximum pixel values in the image.
For example for 8-bit graylevel images the lower and upper limits might be 0 and 255. Call the lower
and the upper limits a and b respectively.

The simplest sort of normalization then scans the image to find the lowest and highest pixel values
currently present in the image. Call these c and d. Then each pixel P is scaled using the following
function:Pout = (Pin − c)( b−a

d−c
) + a

Figure 3: Contrast stretching. Original image and histogram and stretched image and histogram.

Histogram equalization is used to change the response over the entire range of gray values. Of-
ten, it is used to create auniform histogram that has all gray values used at the same frequency. This
may or may not be useful: large homogeneous regions can get remapped into many gray levels, in-
troducing texture(see figure 4). If an image hasR rows andC columns, and there areN gray levels
z1, z2, z3, . . . , zn total (e.g. 256) then uniform histogram equalization requireseach gray value to occur
q = R×C

N
times. Using the original histogram, we defineHin[i] as the number of pixels in the original

image having gray levelzi. The first gray level thresholdt1 is found by advancingi in the input image
histogram untilq pixels are used. All input image pixels with gray level< t1 will be mapped to gray
level z1 in the output image:

t1−1
∑

i=1

Hin[i] ≤ q <
t1

∑

i=1

Hin[i]

This means thatt1 is the smallest gray level such that the original histogram contains no more
thatnq pixels with lower gray values. Thekth thresholdtk is defined by continuing the iteration:

tk−1
∑

i=1

Hin[i] ≤ k · q <
tk

∑

i=1

Hin[i]
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Figure 4: Histogram Equalization. Original image and histogram and equalized image and histogram.
See http://www.dai.ed.ac.uk/HIPR2/histeq.htm.

3.3 Edge Detection

Find the gradients at each pixel in the image using a gradient operator. Common edge detection masks
look for a derivative of the image intensity values in a certain direction. Derivatives are found by
differencing the intensity values. The simplest edge detector masks are:

V ericalOrientedEdge :
[

−1 1
]

HorizontalOrientedEdge :

[

−1
1

]

Each edge detector esentially generates a gradient in theX andY directions,Gx, Gy. We can
calculate the gradient magnitude of the filter’s response as:

‖G‖ =
√

G2
x + G2

y or ‖|G‖| = |Gx| + |Gy|

and the edge’s orientation (direction) will beθ = atan2(Gy, Gx).

More sophisticated masks include the Sobel Operators:

V ertical :







−1 0 1
−2 0 2
−1 0 1





 Horizontal :







−1 −2 −1
0 0 0
1 2 1
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Edge = intensity discontinuity in one direction

 Edges correspond to sharp changes of intensity 

 Change is measured by 1st order derivative in 1D

 Big intensity change  magnitude of derivative is large

 Or 2nd order derivative is zero.

Lecture 6 - Perception - Vision
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Edge Detection

 Ultimate goal of edge detection: an idealized line drawing. 

 Edge contours in the image correspond to important scene contours.

Lecture 6 - Perception - Vision
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What is USEFUL, What is REDUNDANT ?
Lec. 6

3
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Image from http://www.flickr.com/photos/mukluk/241256203/
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What is USEFUL, What is REDUNDANT ?
Lec. 6

4
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208 208 208 208 208 208 208 208 208 208 208
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0     0    0     0    0     0     0    0    0     0    0
0     0    0     0    0     0     0    0    0     0    0
0     0    0     0    0     0     0    0    0     0    0
0     0    0     0    0     0     0    0    0     0    0
0     0    0     0    0     0     0    0    0     0    0

Image from http://www.flickr.com/photos/mukluk/241256203/
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What is USEFUL, What is REDUNDANT ?
Lec. 6
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5  17   31    7     1    0  229 229 229 229 229
0    0    1    0     0    0  229 229 229 229 229
0    0    0    0     0    0  229 229 229 229 229
0    0    0    0     1    4  229 229 229 229 229
0    0    0    0     0   11 229 229 229 229 229
0    0    0    0     0    5  229 229 229 229 229

Image from http://www.flickr.com/photos/mukluk/241256203/
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Edge Detection

• Sobel

• Roberts

• Prewitt

• Laplacian of Gaussian (LOG)

-1  -2  -1
0    0   0
1    2   1

-1  -1  -1
0    0   0
1    1   1

-1    0   1
-2    0   2
-1    0   1

-1    0   1
-1    0   1
-1    0   1

0  1
-1  0

1   0
0  -1

x           y
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Edge Detection

• 1-D edge detection

f g f*g

edge operator intensity edge edge



© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Taking derivatives with Correlation

 Derivative of an image: quantifies how quickly intensities change 
(along the direction of the derivative)

 Approximate a derivative operator:

Lecture 6 - Perception - Vision
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1D Edge detection

 Image intensity shows an obvious change

 Where is the edge?  image noise cannot be ignored

Lecture 6 - Perception - Vision
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 Where is the edge?  

Lecture 6 - Perception - Vision
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Solution:  smooth first

At the extrema of )(xs



© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Derivative theorem of convolution

 .

 This saves us one operation:

Lecture 6 - Perception - Vision
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Edges occur at maxima/minima of )(xs
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Zero-crossings

 Locations of Maxima/minima in         are equivalent to zero-
crossings in

Lecture 6 - Perception - Vision
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2D Edge detection

 Find gradient of smoothed image in both directions

 Discard pixels with       below a certain below a certain threshold

 Non-maximal suppression: identify local maxima of        along 
the directions

Lecture 6 - Perception - Vision
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2D Edge detection: Example

: original image (Lena image)

Lecture 6 - Perception - Vision
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Lecture 6 - Perception - Vision
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36 2D Edge detection: Example

: Edge strengthS

 IGS  
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2D Edge detection: Example

Lecture 6 - Perception - Vision
Lec. 6
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2D Edge detection: Example

Thinning: non-maximal suppression

Lecture 6 - Perception - Vision
Lec. 6
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Labeling

• Labeling parts and regions
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Segmentation: Morphological Operations

• Erosion - Shrinking

• Dilation - Growing



Figure 5: Edge Detection on image. Edge color signifies edge magnitude (brighter == larger magni-
tude.

Middle Level Vision

Middle level vision tries to move beyond the pixel level to larger abstractions including shape and
geometry.

Region Labeling: Recursive Region Growing

Recursive region growing is a simple method. Starting from a binary image, it scans the image for
any foreground pixels (not black). For each foreground pixel, it labels that pixel with a unique la-
bel, “grows” the pixel by coloring any of its non-black 4-neighbors with this unique color label, and
pushing these pixels on a queue. The queue is then processed until empty. All 4-connected pixels in
the region will be labeled consistently. Recursive method can be slow however, and may need large
memory for recursive calls.

6



# Recursive Region Grower

# Do the following for every univisited SEED pixel…..

Input: Binary image – White(255) = foreground,  Black(0) = background. Output: labeled regions

Choose a foreground SEED pixel ( pixel whose value =  White),  I(c,r)

Enqueue(c,r), and mark (c,r) as Visited

Label = K   # random color

While Queue !Empty do

(c,r) = Dequeue

Out_image(c,r) = K

if I(c-1,r) !Visited && I(c-1,r) == White # WEST neighbor pixel, hasn’t been Visited and is foreground pixel

enqueuer(c-1,r), mark (c-1,r) as Visited

if I(c+1,r) !Visited && I(c+1,r) == White # EAST neighbor pixel, hasn’t been Visited and is foreground pixel

enqueuer(c+1,r), mark (c+1,r) as Visited

if I(c,r-1) !Visited && I(c,r-1) == White # NORTH neighbor pixel, hasn’t been Visited and is foreground pixel

enqueuer(c,r-1), mark (c,r-1) as Visited

if I(c,r+1) !Visited && I(c,r+1) == White # SOUTH neighbor pixel, hasn’t been Visited and is foreground pixel

enqueuer(c,r+1), mark (c,r+1) as Visited
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Recursive Region Grower  - Seed Pixel is (2,2)



4.2 Region Labeling: Blob Coloring

This algorithm uses 2 passes. The first pass labels each pixel and the second pass merges the labels
into a consistent labeling.

Let the initial color,k = initcolor, and choose a colorincrement to change the color each time
a new blob is found. Scan the image from left to right and top to bottom. Assign colors to each
non-zero pixel in pass 1. In pass2, we merge the regions whose colors are equivalent. To maintain the
equivalence table between merged colors, we can use a standard disjoint set Union-Find data structure.

If I(xC) = 0 then continue
else begin

ifI(xU) = 1 andI(xL) = 0
then color(xC): = color (xU)

ifI(xL) = 1 andI(xU) = 0
then color(xC): = color (xL)

ifI(xL) = 1 andI(xU) = 1
then begin /* two colors are equivalent. */

color (xC): = color (xL)
color (xL) is equivalent to color(xU)
end

ifI(xL) = 0 andI(xU) = 0 /* new color */
then color(xC): = k; k: = k + color increment

end

X

X

X
L C

U

Figure 6: Image topology ofxu, xc, xl for region growing
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Figure 7: Blob coloring. Left: original binary image. Middle: blob color assignment after first pass.
Right: Blob color assignment after merging colors.

Below are 3 ascii images, showing the original test pattern in figure 6, the first pass results, and
the final image after region labels are merged. The initial color=80 and the color increment is 50.

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0
0 80 0 0 130 130 130 130 0
0 80 0 0 0 0 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 180 180 0 130 0
0 80 0 0 0 0 0 130 0
0 80 80 80 80 80 80 80 0

0 0 0 0 0 0 0 0 0
0 130 0 0 130 130 130 130 0
0 130 0 0 0 0 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 230 230 0 130 0
0 130 0 0 0 0 0 130 0
0 130 130 130 130 130 130 130 0

5 Simple Shape Matching

• Template Matching: Simple matching of masks (templates) that contain object’s image structure

• Object is represented as a region of pixels. Region is compared against all other positions in the
image.

• Measure is absolute value of difference between template pixels and image pixels - zero means
exact match. Find minimum response for template operator and this is best match

• Problems: Translation, Rotation, Scaling, Lighting changes between image and template

• Translation is handled by applying template everywhere in image

• Rotation handled by using a set of templates oriented every few degrees. Increases cost

8
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Object Classification

• Object measures

– area
– perimeter
– length
– width
– shape analysis

• rectangularity
• circularity
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Pattern Recognition

• Optical Character Recognition

P



Figure 7: Blob coloring. Left: original binary image. Middle: blob color assignment after first pass.
Right: Blob color assignment after merging colors.

Below are 3 ascii images, showing the original test pattern in figure 6, the first pass results, and
the final image after region labels are merged. The initial color=80 and the color increment is 50.

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0
0 80 0 0 130 130 130 130 0
0 80 0 0 0 0 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 180 180 0 130 0
0 80 0 0 0 0 0 130 0
0 80 80 80 80 80 80 80 0

0 0 0 0 0 0 0 0 0
0 130 0 0 130 130 130 130 0
0 130 0 0 0 0 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 230 230 0 130 0
0 130 0 0 0 0 0 130 0
0 130 130 130 130 130 130 130 0

Simple Shape Matching

• Template Matching: Simple matching of masks (templates) that contain object’s image structure

• Object is represented as a region of pixels. Region is compared against all other positions in the
image.

• Measure is absolute value of difference between template pixels and image pixels - zero means
exact match. Find minimum response for template operator and this is best match

• Problems: Translation, Rotation, Scaling, Lighting changes between image and template

• Translation is handled by applying template everywhere in image

• Rotation handled by using a set of templates oriented every few degrees. Increases cost

8
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Matching using Correlation

 Find locations in an image that are similar to a template

 Filter = template                                test it against all image locations

 Similarity measure: Sum of Squared Differences (SSD)
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• Scaling is more difficult. Can scale templates but not easily. Not clear how many scales to use.

• Lighting changes can be alleviated by using normalized correlation. Use correlation operator
and scale template responses by average intensities of image and template.

• Method of Moments: Use statistical properties of object to match.

Continuous : Mij =
∫ ∫

xi yj f(x, y)dxdy ; Discrete : Mij =
∑ ∑

xi yj f(x, y)

• If we assumef(x, y) is a mass function that calculates object mass at each point of the object
x, y, then these are the moments of inertia from physics.

• If we further assumef(x, y) is binary valued (1= object present in image, 0= no object atx, y)
then we can use these moments as shape descriptors

• M00 is simply the area of the object in the image. Counts the pixels that contain the object.

• We can calculate thecentroid of the object. This is equivalent to the point where an object of
uniform mass balances. The mass is equally distributed in all directions.

Xc =
M10

M00
. Yc =

M01

M00

• By translating the object coordinates byXc, Yc, we can move the object to a known coordinate
system. These arecentral moments. Creates translational invariance in moment computation.

• Rotational Invariance can be achieved by finding princiapl axis of object. This is the axis of the
moment of least inertia. We can always align an object’s principal axis withX Y or Z axis.

• Scaling invariance is posible usingnormalized moments which scales by an area measure.

• Higher order moments can be used as unique shape descriptors for an object. Problem: simple
scalar measures like this are not robust.

5.1 Finding the Principal Axis

Assume a point set centered on the origin:(x − xc, y − yc), where the centroid of the points is(xc, yc). To find
the principal axis we want to find the rotation angle that will align the axis of minimum intertia with the X axis:

We rotate the points by−θ to align the dataset with thex axis:

ROT (Z,−θ)

[

cosθ sinθ

−sinθ cosθ

]

; ⇒

[

cosθ sinθ

−sinθ cosθ

] [

x

y

]

=

[

xcosθ − ysinθ

−xsinθ + ycosθ

]

9
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Figure 8: Left: Principal Axis of a 2D object whose centriod is at the origin. Right: rotated object so
principal axis is aligned with X axis.

So we can calculate the moments of order 2 for a rotated point set by:
∑ ∑

(−xsinθ + ycosθ)2

These are the moments of order 2 about the X axis for the rotated point set. The term(−xsinθ + ycosθ) is
the vertical distance from the X axis (i.e. the Y coordinate value) of the transformed point set.

Now, find the value ofθ that minimizes that measure. We do this by differentiating with respect toθ, and
setting the resulting measure equal to zero:

∑ ∑

2(−xsinθ + ycosθ)(−xcosθ − ysinθ) = 0

2
∑ ∑

(x2sinθcosθ + xysin2θ − xycos2θ − y2sinθcosθ) = 0

2sinθcosθ
∑ ∑

x2 + 2(sin2θ − cos2θ)
∑ ∑

xy − 2cosθsinθ
∑ ∑

y2 = 0

Using the definition of discrete momentsMij :

2sinθcosθM20 + 2(sin2θ − cos2θ)M11 − 2cosθsinθM02 = 0

whereMij refers toCentral Moments, moments where the centroid is translated to the origin.

Sincesin2θ = 2sinθcosθ andcos2θ = cos2θ − sin2θ, we can substitute to get:

sin2θM20 − 2cos2θM11 − sin2θM02 = 0

and
sin2θ

cos2θ
=

2M11

M20 − M02

The principal angle is:2θ = atan2(2M11,M20 − M02)
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5.2 Example: Moments

Figure 9: Left: Image used in example below. Right: Idea of Principal angle computation: rotate blob
by −β so its coincident with X axis

From the image above, we have a region R denoted by values = 1. We can calculate the discrete moments
for the region as:

Mij =
∑ ∑

xi yj f(x, y)

and m00 = 9, m01 = 45, m10 = 36, m11 = 192, m02 = 255, m20 = 150.

We can createcentral moments by finding the centroid and translating the region so that the origin is the
centroid,(xc, yc) :

Area = m00 = 9 ; xc =
m10

m00
= 4 ; yc =

m01

m00
= 5

Finally, the principal angle for the image on the left is computed asβ = atan2(2M11 ,M20−M02

2 :

β =
atan2(24,−24)

2
=

135

2
= 67.5◦
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Color Tracking



A Quick Overview

● Color Representations
● Choosing a Color to Track
● How to Find the Target



RGB vs HSV

● RGB is very sensitive to brightness
● HSV (Hue, Saturation, Value) is less 

sensitive
● Color Space Visualizer:  http://colorizer.org/

http://colorizer.org/


HSV Color Space
● Hue: expressed as a number from 0 to 179 when using OpenCV image operations

● Saturation: How "pure" the color is. The closer to 0, the more grey the color looks. Range 0-255

● Value: (or Brightness) works in conjunction with saturation and describes the brightness or intensity 

of the color from 0 to 255.

● Color conversion: cv2.cvtColor(input_image, flag)

Where flag determines the type of conversion.
For BGR→Gray, flag is cv2.COLOR_BGR2GRAY
For BGR→HSV, flag is cv2.COLOR_BGR2HSV
Note:
For HSV, Hue range is [0,179], Saturation range is [0,255] and
Value range is [0,255]. You will have to experiment to find the right 
settings for your lab.



Convert to HSV, Find HSV values
import cv2
import numpy as np

cap = cv2.VideoCapture(0)
while (1):

# Take each frame
_, frame = cap.read()

# Convert BGR to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

--------------------------------------------------------------------------------------------
#print out the HSV values for color green

green = np.uint8([[[0,255,0 ]]])
hsv_green = cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
print  hsv_green
[[[ 60 255 255]]]



Use Morphology to “clean up” image

erode:
The value of the output pixel is the minimum value of all the pixels in the input 
pixel's neighborhood
dilate:
The value of the output pixel is the 
maximum value of all the pixels in the 
input pixel's neighborhood

Tutorial:  https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html


Connected-Component Labeling 

(a.k.a. Blob Extraction)



Finding the Target-Pseudocode

def get_target(hsv_image):

#get pixels within threshold of target patch 
masked_image = mask_image(hsv_image, h_thresh, s_thresh, v_thresh)

#morphologically erode and dilate the image
eroded_image = erosion_filter(masked_image)
cleaned_image = dilate_filter(erodeed_image)

#find the largest connected component (largest blob)
big_blob = get_largest_blob(cleaned_image)

# Compute centroid and area of big_blob to move the robot forward, back, left,, right

centroid = get_centroid(big_blob)
area = get_area(big_blob)

return centroid, area



Example

● www.cs.columbia.edu/~allen/F19/NOTES/tracker_with_video_output_clean.py
● www.cs.columbia.edu/~allen/F19/NOTES/green_tracker_output.avi (video)

http://www.cs.columbia.edu/~allen/F18/NOTES/tracker_with_video_output_clean.py
http://www.cs.columbia.edu/~allen/F19/NOTES/tracker_with_video_output_clean.py
http://www.cs.columbia.edu/~allen/F19/NOTES/green_tracker_output.avi
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