

Mobile Robot Control Scheme

ElHzürich (Mi) Univesity of
Zomputer vision | definition

- Automatic extraction of "meaningful" information from images and videos

Semantic information

Geometric information
태Hzürich Cil Univesity of
Computer vision | applications

- 3D reconstruction and modeling
- Recognition
- Motion capture
- Augmented reality:
- Video games and tele-operation

Google Earth, Microsoft's Bing Maps

- Robot navigation and automotive
- Medical imaging

Mars rover Spirit used cameras for visual odometry

The camera

Sony Cybershot WX1

The camera | image formation

- If we place a piece of film in front of an object, do we get a reasonable image?

The camera | image formation

- If we place a piece of film in front of an object, do we get a reasonable image?
- Add a barrier to block off most of the rays
- This reduces blurring
- The opening is known as the aperture

GROUP
The camera | camera obscura (pinhole camera)

- Pinhole model:
- Captures beam of rays - all rays through a single point
- The point is called Center of Projection or Optical Center
- An "inverted" image is formed on the Image Plane
- We will use the pinhole camera model to describe how the image is formed

Gemma-Frisius (1508-1555)

What can we do to reduce the blur?

Shrinking the aperture

2 mm

1 mm

0.6 mm

0.35 mm

Why not make the aperture as small as possible?

Shrinking the aperture

2 mm

0.6 mm

0.35 mm

Why not make the aperture as small as possible?

- Less light gets through (must increase the exposure)
- Diffraction effects...

The camera | why use a lens?

- The ideal pinhole: only one ray of light reaches each point on the film - \Rightarrow image can be very dim; gives rise to diffraction effects
- Making the pinhole bigger (i.e. aperture) makes the image blurry

The camera | why use a lens?

- A lens focuses light onto the film
- Rays passing through the optical center are not deviated

The camera | why use a lens?

- A lens focuses light onto the film
- Rays passing through the optical center are not deviated
- All rays parallel to the optical axis converge at the focal point

Perspective effects

- Far away objects appear smaller

Perspective effects

जHizuirich (M) Univecitiv of
 Projective Geometry

What is lost?

- Length
- Angles

EHHzürich (M) Univegitiv of
 Projective Geometry

What is preserved?

- Straight lines are still straight

Elizürich (M) Univasity of
Vanishing points and lines
- Parallel lines in the world intersect in the image at a "vanishing point"

캐Hürich (M) Unvesity of
Vanishing points and lines

GHzürich University of
 Perspective and art

- Use of correct perspective projection indicated in $1^{\text {st }}$ century B.C. frescoes
- Skill resurfaces in Renaissance: artists develop systematic methods to determine perspective projection (around 1480-1515)

Raphael

Durer, 1525

Playing with Perspective

- Perspective gives us very strong depth cues
\Rightarrow hence we can perceive a 3D scene by viewing its 2D representation (i.e. image)
- An example where perception of 3D scenes is misleading:

"Ames room"
A clip from "The computer that ate Hollywood" documentary. Dr. Vilayanur S. Ramachandran.

Outline of this lecture

- Perspective camera model
- Lens distortion
- Camera calibration
- DLT algorithm

Perspective Projection

Figure 1: Perspective imaging geometry showing relationship between 3D points and image plane points.

1 Camera Model and Perspective Transform

We typically use a pinhole camera model that maps points in a 3-D camera frame to a 2-D projected image frame. In figure 1, we have a 3D camera coordinate frame X_{c}, Y_{c}, Z_{c} with origin O_{c}, and an image coordinate frame X_{i}, Y_{i}, Z_{i} with origin O_{i}. The focal length is f. Using similar triangles, we can relate image plane and world space coordinates. We have a 3D point $P=(X, Y, Z)$ which projects onto the image plane at $P^{\prime}=(x, y, f) . O_{c}$ is the origin of the camera coordinate system, known as the center of projection (COP) of the camera.

Using similar triangles, we can write down the folowing relationships:

$$
\frac{X}{x}=\frac{Z}{f} ; \quad \frac{Y}{y}=\frac{Z}{f} ; \quad x=f \cdot \frac{X}{Z} \quad ; \quad y=f \cdot \frac{Y}{Z}
$$

If $f=1$, note that perspective projection is just scaling a world coordinate by its Z value. Also note that all 3D points along a line from the COP through a designated position (x, y) on the image plane will have the same image plane coordinates.

We can also describe perspective projection by the matrix equation:

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \triangleq\left[\begin{array}{c}
s \cdot x \\
s \cdot y \\
s
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

where s is a scaling factor and $[x, y, 1]^{T}$ are the projected coordinates in the image plane.
We can generate image space coordinates from the projected camera space coordinates. These are the actual pixels values that you use in image processing. Pixels values (u, v) are derived by scaling the camera image plane coordinates in the x and y directions (for example, converting mm to pixels), and adding a translation to the origin of the image space plane. We can call these scale factors D_{x} and D_{y}, and the translation to the origin of the image plane as $\left(u_{0}, v_{0}\right)$.

If the pixel coordinates of a projected point (x, y) are (u, v) then we can write:

$$
\begin{aligned}
& \frac{x}{D_{x}}=u-u_{0} ; \frac{y}{D_{y}}=v-v_{0} ; \\
& u=u_{0}+\frac{x}{D_{x}} ; \quad v=v_{0}+\frac{y}{D_{y}}
\end{aligned}
$$

where D_{x}, D_{y} are the physical dimensions of a pixel and $\left(u_{0}, v_{0}\right)$ is the origin of the pixel coordinate system. $\frac{x}{D_{x}}$ and $\frac{y}{D_{y}}$ are simply the number of pixels, and we center them at the pixel coordinate origin. We can also put this into matrix form as:

$$
\begin{gathered}
{\left[\begin{array}{c}
s \cdot u \\
s \cdot v \\
s
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{D_{x}} & 0 & u_{0} \\
0 & \frac{1}{D_{y}} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
s \cdot x \\
s \cdot y \\
s
\end{array}\right]} \\
{\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \triangleq\left[\begin{array}{c}
s \cdot u \\
s \cdot v \\
s
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{D_{x}} & 0 & u_{0} \\
0 & \frac{1}{D_{y}} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
{ }^{\text {image }} P={ }^{\text {image }} T_{\text {persp }}{ }^{\text {persp }} T_{\text {camera }}{ }^{\text {camera }} P
\end{gathered}
$$

In the above, we assumed that the point to be imaged was in the camera coordinate system. If the point is in a previously defined world coordinate system, then we also have to add in a standard $4 x 4$ transform to express the world coordinate point in camera coordinates:

$$
\begin{gathered}
{\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
s \cdot u \\
s \cdot v \\
s
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{D_{x}} & 0 & u_{0} \\
0 & \frac{1}{D_{y}} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
{ }^{w} X \\
{ }^{w} Y \\
{ }^{w} Z \\
1
\end{array}\right]} \\
{ }^{\text {image }} P={ }^{\text {image }} T_{\text {persp }}{ }^{\text {persp }} T_{\text {camera }}{ }^{\text {camera }} T_{\text {world }}{ }^{\text {world }} P
\end{gathered}
$$

Summing all this up, we can see that we need to find the following information to transform an arbitrary 3D world point to a designated pixel in a computer image:

- 6 parameters that relate the 3D world point to the 3D camera coordinate system (standard 3 translation and 3 rotation): (R, T)
- Focal Length of the camera: f
- Scaling factors in the x and y direcitons on the image plane: $\left(D_{x}, D_{y}\right)$
- Translation to the origin of the image plane: $\left(u_{0}, v_{0}\right)$.

This is 11 parameters in all. We can break these parameters down into Extrinsic parameters which are the 6-DOF transform between the camera coordinate system and the world coordinate system, and the Intrinsic parameters which are unique to the actual camera being used, and include the focal length, scaling factors, and location of the origin of the pixel coordinate system.

2 Camera Calibration

Camera calibration is used to find the mapping from 3D to 2D image space coordinates. There are 2 approaches:

- Method I: Find both extrinsic and intrinsic parameters of the camera system. However, this can be difficult to do. The instinsic parameters of the camera may be unknown (i.e. focal length, pixel dimension) and the 6-DOF transform also may be difficult to calculate directly.
- Method 2: An easier method is the "Lumped" or Direct Linear Transform (DLT) method. Rather than finding individual parameters, we find a composite matrix that relates 3D to 2D. Given the equation below:

$$
{ }^{\text {image }} P={ }^{\text {image }} T_{\text {persp }}{ }^{\text {persp }} T_{\text {camera }}{ }^{\text {camera }} T_{\text {world }}{ }^{\text {world }} P
$$

we can lump the $3 T$ matrices into a 3×4 calibration matrix C :

$$
\begin{gathered}
{ }^{\text {image }} P=C^{\text {world }} P \\
C={ }^{\text {image }} T_{\text {persp }}{ }^{\text {persp }} T_{\text {camera }}{ }^{\text {camera }} T_{\text {world }}
\end{gathered}
$$

- C is a single 3×4 transform that we can calculate empirically.

$$
\overbrace{[C]}^{3 \times 4} \overbrace{\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]}^{4 \times 1}=\underbrace{\overbrace{\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]}^{3 \times 1}}_{\text {3-D homo. vec }} \triangleq \underbrace{\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]}_{\text {2-D homo. vec }} \begin{aligned}
& \text { where } \\
& u^{\prime}=\frac{u}{w} \\
& v^{\prime}=\frac{v}{w}
\end{aligned}
$$

- Multiplying out the equations, we get:

$$
\begin{aligned}
& c_{11} x+c_{12} y+c_{13} z+c_{14}=u \\
& c_{21} x+c_{22} y+c_{23} z+c_{24}=v \\
& c_{31} x+c_{32} y+c_{33} z+c_{34}=w
\end{aligned}
$$

- Substituting $u=u^{\prime} w$ and $v=v^{\prime} w$, we get:

1. $c_{11} x+c_{12} y+c_{13} z+c_{14}=u^{\prime}\left(c_{31} x+c_{32} y+c_{33} z+c_{34}\right)$
2. $c_{21} x+c_{22} y+c_{23} z+c_{24}=v^{\prime}\left(c_{31} x+c_{32} y+c_{33} z+c_{34}\right)$

- How to interpret $\underline{1}$ and $\underline{2}$:

1. If we know all the $c_{i j}$ and x, y, z, we can find u^{\prime}, v^{\prime}. This means that if we know calibration matrix C and a 3-D point, we can predict its image space coordinates.
2. If we know $x, y, z, u^{\prime}, v^{\prime}$, we can find $c_{i j}$. Each 5-tuple gives 2 equations in $c_{i j}$. This is the basis for empirically finding the calibration matrix C (more on this later).
3. If we know $c_{i j}, u^{\prime}, v^{\prime}$, we have 2 equations in x, y, z. They are the equations of 2 planes in 3-D. 2 planes form an intersecton which is a line. These are the equations of the line emanating from the center of projection of the camera, through the image pixel location u^{\prime}, v^{\prime} and which contains point x, y, z.

- We can set up a linear system to solve for $c_{i j}: A C=B$
$\left[\begin{array}{ccccccccccc}x_{1} & y_{1} & z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1}^{\prime} x & -u_{1}^{\prime} y & -u_{1}^{\prime} z \\ 0 & 0 & 0 & 0 & x_{1} & y_{1} & z_{1} & 1 & -v_{1}^{\prime} x & -v_{1}^{\prime} y & -v_{1}^{\prime} z \\ x_{2} & y_{2} & z_{2} & 1 & 0 & 0 & 0 & 0 & -u_{2}^{\prime} x & -u_{2}^{\prime} y & -u_{2}^{\prime} z \\ 0 & 0 & 0 & 0 & x_{2} & y_{2} & z_{2} & 1 & -v_{2}^{\prime} x & -v_{2}^{\prime} y & -v_{2}^{\prime} z \\ \cdot & & & & & & & & \\ \cdot & & & & \\ \cdot & & \\ \cdot & \\ \cdot & \\ \cdot\left[\begin{array}{c}c_{11} \\ c_{12} \\ c_{13} \\ c_{14} \\ c_{21} \\ c_{22} \\ c_{23} \\ c_{24} \\ c_{31} \\ c_{32} \\ c_{33}\end{array}\right]\end{array}\right]=\left[\begin{array}{c}u_{1}^{\prime} \\ v_{1}^{\prime} \\ u_{2}^{\prime} \\ v_{2}^{\prime} \\ u_{3}^{\prime} \\ v_{3}^{\prime} \\ \cdot \\ \cdot \\ \cdot \\ u_{N}^{\prime} \\ v_{N}^{\prime}\end{array}\right]$
- Each set of points $x, y, z, u^{\prime}, v^{\prime}$ yields 2 equations in $\underline{11}$ unknowns (the $c_{i j}$'s).
- To solve for C, A needs to be invertible (square). We can overdetermine A and find a LeastSquares fit for C by using a pseudo-inverse solution.
If A is $N \times 11$, where $N>11$,

$$
\begin{gathered}
A C=B \\
C=\underbrace{A^{T} A C=A^{T} B}_{\text {pseudo inverse }} \\
\underbrace{\left(A^{T} A\right)^{-1}} A^{T} B
\end{gathered}
$$

The camera | perspective camera

- For convenience, the image plane is usually represented in front of C such that the image preserves the same orientation (i.e. not flipped)
- A camera does not measure distances but angles!

Perspective projection| from scene points to pixels

- The Camera point $\mathbf{P}_{\mathbf{C}}=\left(X_{C}, 0, Z_{C}\right)^{\mathrm{T}}$ projects to $\mathbf{p}=(x, y)$ onto the image plane
- From similar triangles:

$$
\frac{x}{f}=\frac{X_{c}}{Z_{c}} \Rightarrow x=\frac{f X_{c}}{Z_{c}}
$$

- Similarly, in the general case:

$$
\frac{y}{f}=\frac{Y_{c}}{Z_{c}} \Rightarrow y=\frac{f Y_{c}}{Z_{c}}
$$

Perspective projection| from scene points to pixels

- To convert \mathbf{p}, from the local image plane coordinates (x, y) to the pixel coordinates (u, v), we need to account for:
- The pixel coordinates of the camera optical center $O=\left(u_{0}, v_{0}\right)$
- Scale factor k for the pixel-size

$$
\begin{aligned}
& u=u_{0}+k x \Rightarrow u_{0}+k \frac{f x_{C}}{z_{C}} \\
& v=v_{0}+k y \Rightarrow v_{0}+k \frac{f Y_{C}}{z_{C}}
\end{aligned}
$$

- Use Homogeneous Coordinates for linear mapping from 3D to 2D, by introducing an extra element (scale):

$$
p=\binom{u}{v} \quad \tilde{p}=\left[\begin{array}{l}
\tilde{u} \\
\tilde{v} \\
\tilde{w}
\end{array}\right]=\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Perspective projection| from scene points to pixels

$$
\begin{aligned}
& u=u_{0}+k x \Rightarrow u_{0}+k \frac{f X_{C}}{z_{C}} \\
& v=v_{0}+k y \Rightarrow v_{0}+k \frac{f Y_{C}}{z_{C}}
\end{aligned}
$$

- Expressed in matrix form and homogeneous coordinates:

$$
\left[\begin{array}{c}
\lambda u \\
\lambda v \\
\lambda
\end{array}\right]=\left[\begin{array}{ccc}
k f & 0 & u_{0} \\
0 & k f & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]
$$

- Or alternatively

Perspective projection| from scene points to pixels

Outline of this lecture

- Perspective camera model
- Lens distortion
- Camera calibration
- DLT algorithm
- Stereo vision

- ${ }^{\text {HIHzürich }}$ University of
 Perspective projection| radial distortion

Perspective projection| radial distortion

- The standard model of radial distortion is a transformation from the ideal coordinates (u, v) (i.e., undistorted) to the real observable coordinates (distorted) $\left(u_{d}, v_{d}\right)$
- The amount of distortion of the coordinates of the observed image is a nonlinear function of their radial distance. For most lenses, a simple quadratic model of distortion produces good results
where

$$
\begin{gathered}
{\left[\begin{array}{l}
u_{d} \\
v_{d}
\end{array}\right]=\left(1+k_{1} r^{2}\right)\left[\begin{array}{l}
u-u_{0} \\
v-v_{0}
\end{array}\right]+\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right]} \\
r^{2}=\left(u-u_{0}\right)^{2}+\left(v-v_{0}\right)^{2}
\end{gathered}
$$

Summary: Perspective projection equations

- To recap, a 3D world point $P=\left(X_{w}, Y_{w}, Z_{w}\right)$ projects into the image point $p=(u, v)$

$$
\lambda p=\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=K[R \mid T] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \quad \text { where } \quad K=\left[\begin{array}{ccc}
\alpha & 0 & u_{0} \\
0 & \alpha & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

and λ is the depth $\left(\lambda=Z_{w}\right)$ of the scene point

- If we want to take into account for the radial distortion, then the distorted coordinates (u_{d}, v_{d}) (in pixels) can be obtained as

$$
\begin{aligned}
& {\left[\begin{array}{l}
u_{d} \\
v_{d}
\end{array}\right]=\left(1+k_{1} r^{2}\right)\left[\begin{array}{l}
u-u_{0} \\
v-v_{0}
\end{array}\right]+\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right]} \\
& \text { where } r^{2}=\left(u-u_{0}\right)^{2}+\left(v-v_{0}\right)^{2}
\end{aligned}
$$

Outline of this lecture

- Perspective camera model
- Lens distortion
- Camera calibration
- DLT algorithm
- Stereo vision

Camera Calibration

- Procedure to determine the intrinsic parameters of a camera

FHzzürich (MI) University of

Camera Calibration

- Use camera model to interpret the projection from world to image plane
- Using known correspondences of $\boldsymbol{p} \Leftrightarrow \boldsymbol{P}$, we can compute the unknown parameters $\boldsymbol{K}, \boldsymbol{R}, \boldsymbol{T}$ by applying the perspective projection equation
- ... so associate known, physical distances in the world to pixel-distances in image

Camera Calibration (Direct Linear Transform (DLT) algorithm)

- We know that : $\lambda\left[\begin{array}{c}u \\ v \\ 1\end{array}\right]=K[R \mid T]\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right]$
- So there are 11 values to estimate:
(the overall scale doesn't matter, so e.g. m_{34} could be set to 1)

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

- Each observed point gives us a pair of equations:

$$
\begin{aligned}
& u_{i}=\frac{\lambda u_{i}}{\lambda}=\frac{m_{11} X_{i}+m_{12} Y_{i}+m_{13} Z_{i}+m_{14}}{m_{31}+m_{32}+m_{33}+m_{34}} \\
& v_{i}=\frac{\lambda v_{i}}{\lambda}=\frac{m_{21} X_{i}+m_{22} Y_{i}+m_{23} Z_{i}+m_{24}}{m_{31}+m_{32}+m_{33}+m_{34}}
\end{aligned}
$$

- To estimate 11 unknowns, we need at least ${ }^{\text {? }}$; points to calibrate the camera \Rightarrow solved using linear least squares

Camera Calibration (Direct Linear Transform (DLT) algorithm)

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]=K[R \mid T]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

- what we obtained: the 3×4 projection matrix, what we need: its decomposition into the camera calibration matrix K, and the rotation \boldsymbol{R} and position \boldsymbol{T} of the camera.
- Use QR factorization to decompose the 3×3 submatrix ($m_{11: 33}$) into the product of an upper triangular matrix \boldsymbol{K} and a rotation matrix \boldsymbol{R} (orthogonal matrix)
- The translation \boldsymbol{T} can subsequently be obtained by:

$$
T=K^{-1}\left[\begin{array}{l}
m_{14} \\
m_{24} \\
m_{34}
\end{array}\right]
$$

Outline of this lecture

- Perspective camera model
- Lens distortion
- Camera calibration
- DLT algorithm
- Stereo vision

ㅂHzürich (M) Univecitivo
 Depth from Stereo

- From a single camera, we can only deduct the ray on which each image point lies
- With a stereo camera (binocular), we can solve for the intersection of the rays and recover the 3D structure

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

```
#\Hzürich University of
```


The "human" binocular system

- Stereopsys: the brain allows us to see the left and right retinal images as a single 3D image
- The images project on our retina up-side-down but our brains lets us perceive them as «straight». Radial disotion is also removed. This process is called «rectification»


```
- Hzürich University of Zurich \({ }^{\text {wit }}\)
```


The "human" binocular system

- Stereopsys: the brain allows us to see the left and right retinal images as a single 3D image
- The images project on our retina up-side-down but our brains lets us perceive them as «straight». Radial disotion is also removed. This process is called «rectification»

Make a simple test:

1. Fix an object
2. Open and close alternatively the left and right eyes.

- The horizontal displacement is called disparity
- The smaller the disparity, the farther the object

The "human" binocular system

- Stereopsys: the brain allows us to see the left and right retinal images as a single 3D image
- The images project on our retina up-side-down but our brains lets us perceive them as «straight». Radial disotion is also removed. This process is called «rectification»

Make a simple test:

1. Fix an object
2. Open and close alternatively the left and right eyes.

- The horizontal displacement is called disparity
- The smaller the disparity, the farther the object

Stereo Vision - The simplified case

- The simplified case is an ideal case. It assumes that both cameras are identical and are aligned on a horizontal axis

Baseline
distance between the optical centers of the two cameras

From Similar Triangles:

$$
\begin{aligned}
& \frac{f}{Z_{P}}=\frac{u_{l}}{X_{P}} \\
& \frac{f}{Z_{P}}=\frac{u\| \| \|}{b-X_{P}}
\end{aligned} Z_{P}=\frac{b f}{u_{l}-u_{r}}
$$

Disparity
difference in image location of the projection of a 3D point in two image planes

Stereo Vision facts

$$
Z_{P}=\frac{b f}{u_{l}-u_{r}}
$$

1. Depth is inversely proportional to disparity $\left(u_{l}-u_{r}\right)$

- Foreground objects have bigger disparity than background objects

2. Disparity is proportional to stereo-baseline \boldsymbol{b}

- The smaller the baseline \boldsymbol{b} the more uncertain our estimate of depth
- However, as \boldsymbol{b} is increased, some objects may appear in one camera, but not in the other (remember both cameras have parallel optical axes)

3. The projections of a single 3D point onto the left and the right stereo images are called 'correspondence pair' or a 'stereo pair'

Choosing the Baseline

- What's the optimal baseline?
- Too small:
- Large depth error
- Can you quantify the error as a function of the disparity?
- Too large:
- Minimum measurable distance increases
- Difficult search problem for close objects

Large Baseline

Small Baseline

Stereo Vision | general case

- Two identical cameras do not exist in nature!
- Aligning both cameras on a horizontal axis is very difficult
- In order to use a stereo camera, we need to know the intrinsic extrinsic parameters of each camera, that is, the relative pose between the cameras (rotation, translation) \Rightarrow We can solve for this through camera calibration

(R, t)
Auto
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

Stereo Vision | general case

- To estimate the 3D position of P_{W} we can construct the system of equations of the left and right camera
- Triangulation is the problem of determining the 3D position of a point given a set of corresponding image locations and known camera poses.

(R, t)

Correspondence Search | the problem

- Goal: identify corresponding points in the left and right images, which are the reprojection of the same 3D scene point
- Typical similarity measures: Normalized Cross-Correlation (NCC) , Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD), Census Transform
- Exhaustive image search can be computationally very expensive! Can we make the correspondence search in 1D?

Similarity measures

- Sum of Squared Differences (SSD)

$$
S S D=\sum_{u=-k v=-k}^{k} \sum^{k}(H(u, v)-F(u, v))^{2}
$$

- Sum of Absolute Differences (SAD)

$$
S A D=\sum_{u=-k v=-k}^{k} \sum^{k}|H(u, v)-F(u, v)|
$$

Similarity measures

- For slight invariance to intensity changes, the Zero-mean Normalized Cross Correlation (ZNCC) is widely used

$$
Z N C C=\frac{\sum_{u=-k v=-k}^{k} \sum^{k}\left(H(u, v)-\mu_{H}\right)\left(F(u, v)-\mu_{F}\right)}{\sqrt{\sum_{u=-k v=-k}^{k} \sum^{k}\left(H(u, v)-\mu_{H}\right)^{2}} \sqrt{\sum_{u=-k v=-k}^{k} \sum_{v}^{k}\left(F(u, v)-\mu_{F}\right)^{2}}}\left\{\begin{array}{l}
\mu_{H}=\frac{\sum_{u=-k v=-k}^{k} \sum_{(u, v)}^{k} H(u N+1)^{2}}{(2 N+1)^{2}}
\end{array}\right.
$$

Correlation-based window matching

Correspondence Problem

- Exhaustive image search can be computationally very expensive!
- Can we make the correspondence search in 1D?
- Potential matches for \boldsymbol{p} have to lie on the corresponding epipolar line \boldsymbol{l} '
- The epipolar line is the projection of the infinite ray $\pi^{-1}(p)$ corresponding to \boldsymbol{p} in the other camera image
- The epipole \boldsymbol{e}^{\prime} is the projection of the optical center in in the other camera image

Correspondence Search | the epipolar constraint

- The epipolar plane is defined by the image point \mathbf{p} and the optical centers
- Impose the epipolar constraint to aid matching: search for a correspondence along the epipolar line

Correspondence Search | the epipolar constraint

- Thanks to the epipolar constraint, corresponding points can be searched for, along epipolar lines \Rightarrow computational cost reduced to 1 dimension!

antzürich (M) Univechity of
 Correspondence problem

- Now that the left and right images are rectified, the correspondence search can be done along the same scanlines

Correspondence Problems:

 Textureless regions (the aperture problem)

ㅂHzürich (M) Univesityof Zurich"
 How can we improve window-based matching?

GROUP

- Beyond the epipolar constraint, there are "soft" constraints to help identify corresponding points
- Uniqueness
- Only one match in right image for every point in left image
- Ordering
- Points on same surface will be in same order in both views
- Disparity gradient
- Disparity changes smoothly between points on the same surface

- ННzürich University of Zurich ${ }^{\text {sum }}$

Stereo Vision | disparity map

- The disparity map holds the disparity value at every pixel:
- Identify correspondent points of all image pixels in the original images
- Compute the disparity $\left(u_{l}-u_{r}\right)$ for each pair of correspondences
- Usually visualized in gray-scale images
- Close objects experience bigger disparity; thus, they appear brighter in disparity map

Disparity Map

- ${ }^{\text {Hzürich University of }}$

Stereo Vision | disparity map

- The disparity map holds the disparity value at every pixel:
- Identify correspondent points of all image pixels in the original images
- Compute the disparity $\left(u_{l}-u_{r}\right)$ for each pair of correspondences

- Usually visualized in gray-scale images
- Close objects experience bigger disparity; thus, they appear brighter in disparity map
- From the disparity, we can compute the depth Z as:

$$
Z=\frac{b f}{u_{l}-u_{r}}
$$

Stereo Vision - summary

1. Stereo camera calibration \Rightarrow compute camera relative pose
2. Epipolar rectification \Rightarrow align images \& epipolar lines
3. Search for correspondences
4. Output: compute stereo triangulation or disparity map
5. Consider how baseline \& image resolution affect accuracy of depth estimates

SFM: Structure From Motion (watch video segment)

- Given image point correspondences, $\mathrm{x}_{\mathrm{i}} \leftrightarrow \mathrm{x}_{\mathrm{i}}{ }^{\prime}$, determine \boldsymbol{R} and \boldsymbol{T}
- Keep track of point trajectories over multiple views to reconstruct scene structure and motion

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland STegwant

