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Abstract

Computer vision is a broad and significant ongoing re-
search challenge, even when performed on an individ-
ual image or on streaming video from a high-quality sta-
tionary camera with abundant computational resources.
When faced with streaming video from a lower-quality,
rapidly, jerkily-moving camera and limited computational
resources, the challenge only increases. In this paper we
present our implementation of a real-time vision system on

s

a mobile robot platform that uses a camera image as the

primary sensory input. The constraints imposed on the - ‘_

problem as a result of having to perform all processing, in-

cluding segmentation and object detection, in real-time on Figure 1: An Image of the Aibo and the field. The robot has a
board the robot eliminate the possibility of using someestat  limited field-of-view of56.9% (hor) and45.2 (ver).

of-the-art methods that otherwise might apply. We present,:igure 1).

the methods that we developed to achieve a practical vi-
sion system within these constraints. Our approach is fully th
implemented and tested on a team of Sony AIBO robots, en
abling them to place among the top finishers at an annual
international robot soccer competition.

Like in real soccer, the robots’ goal is to direct a ball into
e opponents’ goal while preventing the ball from enter-
ing their own goal. The robot’s primary sensor is a CMOS
camera located in the robot’s nose with a field-of-view of
56.9° (hor) and45.2° (ver), providing the robot with a lim-
. . ited view of its environment from which it has to extract
1. Motivation the information needed for decision-making. The images
o i . _are captured in th& CbCr format at a frame rate F0H z
Computer vision is a major area of research with applica- 5 image resolution af08 x 160 pixels. The robot has
Fions in robotics and atrtificial intelligence. Though_ eigni 20 degrees-of-freedom (dof), three in each of its four legs,
icant advances have been made in the use of vision sySyyree in its head, and a total of five in its tail, mouth, and
tems on robots (and Al in general), one of the major draw- g4r5 |t also has noisy touch sensors, IR sensors, and a
backs has been the minimal use of these algorithms foryy;rejess LAN card for inter-robot communication. All pro-
solving practical tasks. Most vision approaches have un-cessing, for vision, localization, locomotion, and demisi
derlying assumptions (such as large memory, high compu-making (action-selection), is performed on board the repot
tation power and off-line processing) that prevent the& us using a 576MHz processor, and any lag in frame rate places
in tasks with significant computational constraints. Our fo  ha robot at a severe disadvantage in terms of reaction time,
cus is on developing efficient algorithms for solving prob- e currently, games are played under constant and reason-

lems, in task-oriented scenarios. One such scenario is theny uniform lighting conditions, but the goal is to enable
RoboCup Robot Soccer Legged _Leabuewmch teams of e rohots to play under varying illumination conditichs.
fully autonomous robotic dogs (Aibos [2]) manufactured by

SONY play a game of soccer orma3m x 4.5m field (see 2The stated ultimate goal of the RoboCup initiative is to tzeateam
of humanoid robots that can beat the human soccer champyathe lyear
Ihttp:/iwww.tzi.de/4legged 2050 on a real, outdoor soccer field [15].



The vision problem that concerns us can be characterizedve provide numerical results that justify the trade-offs we
by the following set of inputs and outputs: made to satisfy our constraints.

1. Inputs: o 2. Approach
e A 30Hz stream 0of208 x 160 limited-field-of-

view images in the YCbCr color space. The im- In this section, we present a step-by-step descriptioneof th
age stream reflects rapid and non-linear changesvision system that we developed for our legged robot plat-
in the camera position due to the robots’ legged form.

(as opposed to wheeled) locomotion modality Figure 2 shows four representative images from the robot
and includes many defects such as noise and dis-soccer environment including shots of both goals, the ball,
tortion. The images include many objects of in- and two of the four beacons. For the purposes of visualiza-
terest, but also many unpredictable elements. tion, we have converted them from their native YCbCr color
space to RGB. Throughout the paper we use these same im-
ages to illustrate the results of each stage of our vision sys
tem (Figures 3—6J.

e The robots’ joint angles over time, particularly
the tilt, pan, roll of the camera.

e The sensor inputs, especially the accelerometer
values that can be used to determine the body ti
and roll.

2. Outputs:
e Distances and angles (with associated probabilit
measures) to a fixed set (8 in our case) of color

coded objects with known locations that can b

used tdocalizethe robot on the field.

e Distance, angles and probability measures of a
varying set of mobile objects.
Our goal is to generate a reliable mapping from these inpu
to outputs with all processing performed on-board the robo
ideally at frame rate, while leaving as much time as poss
ble for localization, locomotion, and decision-making.-An
other constraint is the memory available on board the robg
In order to proceed at frame rate, each complete cycle {
operation can take a maximum &msec. Throughout the
paper, we provide timing data for our presented algorithms. (©) (d)
Though motivated by the robot soccer domain, this prob-
lem formulation is applicable to general vision-based mo-
bile robots. This paper therefore also serves as a case study
demonstrating the practical steps in the process of develop
ing an effective real-time vision system for a mobile robot.
A primary distinguishing feature of our task is that the cam-
(ral:gblilmear%?)é?sﬂ\:\?hg:len:ﬁ;yfssgss?sr{r:ga llj)t/ ounnllg(see:?sa:)nnya?tsheenr-our approach to variable lighting conditions (Section 2.5)
; Sample videos showing the robot’s view as it attempts
sors [10]. The camera jerks around a lot due to the legged

s onposed to wheeled) locomotion modalitv. and ima eSto score on the yellow goal, both as raw footage and after
( PP . ) : Y, 9€Seach stage of processing, are available on-firfithe videos
have a relatively low resolution and possess common de-

foct h : d distorti show that the camera moves readily and jerkily as the robot
€cts such asnoise and distortion. S . performs its task and that many irrelevant objects and solor
Our vision processing algorithm detailed in Section 2

. : ) appear in the field of view.
proceeds in a series of stages — color segmentation, blob
formation, and object recognition — which, overall, con- S .
vert the sensory inputs into the desired outputs identified 21 _C0| or . mentatlo_n_ .
above. Several popular techniques have been developed ifhe first step in our robot vision system is color segmenta-
vision research for these (or similar) tasks. But given our tion. During the first pass over the image, the robot maps
constraints we had to develop new algorithms or modify €X- ~ 3The images appear in color in the electronic version of tipepa
isting techniques to achieve the desired results. Throuigho 4http://www.cppreference.com/cvpr05-aibovision.html

Figure 2: Sample Images in the RGB color space.

The vision module consists of four stages: Color cube
generation, described in Section 2.1, Blob formation (Sec-
tion 2.2), Marker detection (Section 2.3) and Line detettio

(Section 2.4). We conclude this section with an extension of




each pixel in the raw YCbCr input image into a color class of LAB’s properties without incurring the overhead of on-
label (m;). In our target domain, the robot needs to recog- line conversion, we modified our color cube generation al-
nize ten different colorsi(e [0,9]). A complete mapping  gorithm as follows.

identifies a label for each possible pointin YCbCr space: 1. The initial painting is done in the LAB color space dur-

Vp,q,r € [0,255] 1) ing the off-board training phase. That is, each painted
{Yy, Cbg, Crr} = myico,0] pixel in the training image maps to a cell in the LAB
color cube

Segmentation is a well-researched field in computer
vision with several good algorithms, for example mean-
shift [6, 22]. But these involve more computation than
is feasible to perform on the robots given our constraints 3. Each cell in the output YCbCr color cube is labeled

(as described in Section 1). A variety of previous ap- based on the value in the corresponding cell in the LAB
proaches have been implemented on the Aibo robots for color cube as determined by static (off-line) conver-

use in the RoboCup domain including the use of decision sion.
trees [23] the creation of axis-parallel rectangles in thlerc
space [24]. Our baseline approach is motivated by the de

sire to create fully general mappings from the YCbCr values | i )
(ranging fromd — 255 in each dimension) to the color labels 'S possible to tune the color cube in the YCbCr color space
(0 — 9) [26]. such that the segmentation is almost the same as it is with

the cube in the LAB color space, we found that that us-
ated via an off-board training process. A set of images ing LAB as the underlying color space helped reduce the

are captured using the robot's camera. These images ar@m_ount of migclassifi(_:ation with _n_1in0r changes in illumi-

then hand-labeledpinted such that the robot learns the nat|0n,_espeC|aIIy durlng competltlons_ when there are sev-
range of{Y, C'b, C'r} values that map to each desired color. eral objects around '.che field (e.g. clothing worn by the spec-
Each pixel that is painted in the training images representstators) that are similar to the colors the robots have been

o ; : trained to recognize.
an individual instance of the mappi ,Cb,,Cr,.} — . . .
milicio.q) and is taken as groun%ptrr{l?t/ﬁ. I—‘iowe\rl}ér, after  Figure 3 shows the the result of segmentation, using the

painting 20 images, only abous% of the color space is new approach in the LAB color space, on the sample set of

labeled. Thus, in order to generalize from this hand-labele Mages (as in Figure 2).
data, the color label assigned to each cell in the color cuk~
is modified to be the weighted average of the cells a certal’
Manhattan distancaway from the cell (a form oNearest
Neighbor-NNJ. This operation helps remove thelesand
smooths out the edge effects in the color cube. In the en
we find significant overlap among the labelings of some
colors, such as yellow and orange, that could not be rej;
resented with axis-parallel labeling.
The painting and NNr computation are both done dur=
ing an off-board training phase. To reduce memory require-.__
ments, we subsample the color space to have values rangi
from 0-127 in each dimension. The resulting color cub
taking~ 2 Mbytes of memory, is then loaded on the robott#=
for use in segmenting its input images into the colors it ha
been trained to recognize. The segmented image is the ol
put of this first stage of the vision processing system. i R e
Though the YCbCr color space has been used for mo“
previous work in this domain, we noticed that the segmer——m———
tation was often sensitive to small changes in illumination (©) (d)
for example leading to yellow being misclassified as orange Figure 3: Sample Segmented Images.
due to shadows. Previous research in rescue robotics has
suggested that a spherically distributed color space known From a computational perspective, the on-line pixel-
as LAB inherently provides some robustness/invariance tolevel segmentation process is reduced to that of a table
ilumination change [13, 18]. In order to take advantage lookup and takes: 0.120msec per image.

2. Similarly, the NNr operation is computed in the LAB
color space.

As such, on-line segmentation incurs no extra overhead over
the baseline approach. Whereas for a given illumination, it

We represent this mapping asalor cubewhich is cre-




2.2. Blob Formation

Once the input images have been successfully segmentds
the next step is to find contiguolobs of constant col-
ors. That is, we need to extract useful information from thq
color coded image bglusteringpixels of the same color §
into meaningful groups. This again is a well-researche
area in computer vision [11, 14]. However making this pro
cess happen both efficiently and accurately is particularl
challenging due to the fact that the reasoning is still at the
pixel-level. Computationally, this process is by far thesino |
expensive component of the vision system that the robot e
ecutes. .
Our approach to blob formation is modeled closely afte
previous approaches on the Aibo [26], though we add fed
tures to optimize the process. As the pixels in the image ag
being segmented (during the first pass over the image) th
are organized into run-lengths represented as the stant pol
and length in pixels of a contiguous color stfipthus, af-
ter this process, we need to consider only a few run-lengtigis
instead of having to deal with the images at the pixel-leve [l
As an optimization, we only encode the run-lengths corj
responding to colors that identify objects of interest ia th
domain. In the robot soccer case, we also omit the colors {
the field (green) and the borders (white). Though these cd
ors are extremely useful in detecting the field borders a
lines, we achieve that by incorporating a separate and e . . _ 3
cient line-detection algorithm (Section 2.4). (e) ()
To determine merged blobs from these run-lengths, we
utilize a procedure that is a variation of the Union-Find al-
gorithm [7]. We merge each run-length with another of the

same color as long as they are within a threshold distanceyt jncorporating a fast-region growing algorithm while at
from each other. This region-merging operation results in {he same time ensuring that the performance is not compro-
a set of blobs, each of constant color. During the procesSpyised. An alternative to this procedure would be to pose
of region-merging, we also progressively bubdunding s as a pattern recognition problem and extract features
boxesaround the merged run-lengths. That s, we develop i, gifferent feature spaces) corresponding to the desired
a rectangular boundary around the regions. This abstracypiects. The objects in the test images would then be de-
tion enables the categorization of each region on the basigected hased on matching the same set of features extracted
of the four vertices of the bounding rectangle. At the end of ¢,om the test image. Though this process does provide good

this stage, we end up with a set of bounding boxes, one forperformance, it involves computation that is not feasibsie o
each blob in the current image. In addition to the bound- ; r ropots.

ing boxes, we also store a set of properties corresponding o, s0, blob formation is the most expensive phase of
to each candidate blob, such as the number of pixels (of theOur visual processing system, which along with segmenta-
blob color) and run-lengths it envelopes. These propertiestion takes~ 20msec per image.
are used in the object recognition phase (see Section 2.3).

Errors in the segmentation phase due to noise and/or ir-

relevant objects in the image can lead to the formation of 2-3. Object Recognition
spurious blobs and make object recognition very challeng-once we have candidate blobs, the next step is to recog-

ing. In Figure 4 we show the results of blob formation on pjze the relevant objects in the image. Object recognition
the sample set of images and a couple of additional imagess 5 well-researched area in computer vision and numerous

Figure4: Sample Blobs.

that lead to spurious blobs. ~ algorithms have been developed to recognize objects in an
Our blob formation algorithm serves the dual objectives jnage, depending on the application domain [4, 21, 25].
S5Further information on run-length encoding can be founddpysar MQSt of the_se approaches either involve extensive com-

image processing textbooks [12]. putation of object features or large amounts of storage in



the form object templates corresponding to different views
Further they are not very effective for rapidly changing
camera positions. Constraints on the computational rg
sources and memory render several of these approaches
feasible in our problem domain. We decided to determin
the objects of interest in the image from the blobs using
domain knowledge rather than trying to extract additiona
features from the image. This saved a lot of additional co
putation (and memory).

The objects of interest include the fixed markers whic
the robot uses to localize itself and the moving objects th
the robot has to track. All the objects in the robot’s en
vironment are color-coded and thus we can use the blo
determined previously to recognize the objects. Even s
the task is non-trivial as there are generally several d¢bje
in and around the field that could be segmented as the sa
color as the objects of interest — note for example, the peo-
ple, chairs, walls, and computers in our sample images. © (@)

Figure 5: Sample Object Recognition.

To recognize objects we first eliminate blobs that do not
correspond to strict constraints of size, density and jpwsit
in the image, based on the knowledge of the environment.2 4, Line/Line | nter section Detection
Thus, we filter the blobs through a set of heuristics designed - ) N
to detect blobs that are too small to correspond to objects,!n @ddition to the objects that can be represented as fitting
or that are notlenseenough (measured as the ratio of ap- N recta_ngular bounding box_es, Imes_ with known locations
propriately colored pixels within the bounding box). For €an be w_nportant sources oflnformatlonfor the robots. qu-
example, all objects of interest to the robots are either onticularly in the robot_soccer domain, Whe_n the rob_ots are in
the ground or a certain distance above the ground. Also, theN€ process of playing a game, the main focus is the ball
ball is mostly enveloped in a square bounding rectangle ex-a2nd other robots may occlude the beacons and goals. As a
ceptwhen itis partly occluded. All objects — ball, beacons result, lines on the field become crucial for localization.
and goals — have bounding boxes with high densities. Due  Detecting lines/edges is a very heavily-researched field
to space constraints, we omit the details of these heugistic in computer vision, with methods such as Hough Trans-
Full details are available in our team technical report [1]. forms and edge detectors such as Canny, Sobel [12]. Most
These heuristics are easy to apply since the required proppopular methods determine the edge pixels by convolving
erties were stored in the blob formation stage (Section 2.2) @ suitable mask across the image, an operation that is too
Also note that the same properties, such as density and sizeime-consuming for our purposes.
are used to determine the probability of occurrence of each  Our line-detection method is motivated by a previous
object, once it is recognized. approach in the RoboCup environment [19]. To find the
) ) ~candidate edge pixels, we utilize environmental knowledge
Figure 5 shows the blobs detected as objects superim-gqges of interest on the Robot Soccer field involve a white-
posed on the original (RGB) images. green or green-white-green transition correspondingéo th
As can be seen in the images, we have eliminated thet_)orders and the field lines rgspectively. Givgn that inferma
spurious blobs. This process enSl'Jres that we recognize al"on’ we could have_ determined the bour_1d|ng boxes corre-
the objects in an image while at the same time making thespon_d|_ng to the wh|_te blobs and green field and then used
. . . . ; heuristics to determine the actual lines/edges. But, as men
object recognition phase highly efficient and computation-

. . - . tioned in the section on blob formation (Section 2.2) we
ally inexpensive. The vision module, up to the object recog-
L . do not even calculate the run-lengths much less store the
nition phase takes 28msec per frame, enabling us to pro- L . T
. statistics corresponding to these two colors primarilynn a
cess images at frame rate.

attempt to reduce the computation involved. Our approach
This object recognition algorithm does not let us recog- is still able to efficiently detect the edge pixels and thgreb
nize the lines in the environment which are a great sourcethe lines of interest in the image.
of information. In the next section we shall describe the In our line-detection algorithm, we begin, as in [19], by
algorithm that we use to detect the lines. performing a series of vertical scans on the segmented im-



age with the scan lines spacéd- 5 pixels apart. In addi- lines which are red.
tion to making the scan faster, this ensures that we incorpo-
rate noise filtering into the process and eventually comsid
only the lines that extend beyond a few pixels—noisy line
that extend only a few pixels across are automatically eli
inated. When processing a scan line, the robot checks f
the occurrence of candidate edges pixels by looking for t
green-white and white-green transitions. Over this baseli
approach, we add features to suit our purposes. To bias {|
scan procedure towards detecting edge pixels that arerclo
to the robots, our scan lines proceed from the bottom of
the image to the top, i.e. the border edge pixels now co
respond to green-white transitions. Once an edge pixel
detected along a scan line, we do not process the remain
of the scan line and proceed directly to the next scan lin
Though this excludes the possibility of detecting, for exam
ple, a border line above a field line, the procedure is bas
on the assumption that the observation of lines closer to t
robot provides more reliable information. Candidate edg
pixels in the image plane are acceptfdthey also have a (©) (d)
significant amount of green below the them.

Once we have a set of candidate edge pixels, we incor-
porate a set of heuristic filters whose parameters were-deter In f iced anifi diff : |
mined experimentally. For example, we reject pixels that do n ‘T"Ct’ we noticed a signt icant difference In our fo-
not project to a point (on the ground plane) within a thresh- calization accuracy once we incorporated the information

old distance in front of the robot [1]. Then, instead of us- regarding the lines/line i.ntersections as inputs. Alse, th
ing these pixels directly as localization inputs, as in [19] process is not computa}tlonally expensive and we are able
to perform the entire visual processingan 31msec per

we find the lines that these edge pixels represent. Given % hat the robot is abl ‘ ith
set of candidate edge pixels, whisterthem into lines in rame so that the robot s able to operate at rame-rate wit
& 2msec per frame to spare for other computations.

the image plane using the Least Square Estimation proce
dure [16]. This is an efficient line-fitting method that can o )
be performed incrementally, i.e. lines can be fit to the can- 2.5. [llumination I nvariance

didate e(_jge pixels as they are found and new edge pixelSrg yhig point, the approach we have described has assumed
can be either merged with existing lines or they can be usedthat the environmental lighting conditions are relatively

to generate new lines. We introduce filters for suppressingconstant’ particularly in the segmentation stage. Though
noise and false positives — at the line detection level we using the LAB color space enables robustness to small
remove outliers (candidate edge pixels_ that_are not close tochanges, our eventual goal is to enable the robots to operate
any of the known edges) and also consider I||ffe.Ehey can in a broad range of, and changing, lighting conditions. In
account for more than a threshold number of pixels. this section we present evidence that our approach can be
Although line pixels (or lines) on the field provide use- adopted for this purpose.
ful information, the intersection of lines are more meaning Color constancy (illumination invariance) is currently a
ful (and less noisy) since they involve much less ambiguity. major research focus in the field of computer vision. It
They are not unique because of the symmetry of the field, represents [5] the ability of a visual system to recognize
but they can be very useful in localizing the robot on the an object's true color across a range of variations in fac-
field — ambiguity can be resolved to some extent based onors extrinsic to the object (such as lighting conditions).
the knowledge of the previous known position. To deter- | the past, color constancy has been studied primarily on
mine the line intersections we just consider a pair of lites a static cameras with relatively loose computational limita
atime. Line intersections are accepted only if the angles be tjgns [9, 8, 20]. Again, our focus is on efficiency. In par-
tween the lines are within heuristic thl’esholds, deterchine ticu|ar’ the overhead required to adjust to dynamic ||®']t|n
experimentally. For more information on how lines are used conditions should not impede performance under constant
in localization, see [1]. lighting. Lenser and Veloso [17] presented a tree-based
Figure 6 shows a set of images with the lines detected:state description/identification technique for this sata¢-p
field lines are drawn in pink and are distinct from the border form. They incorporate a time-series of average screen il-

Figure 6: Sample Line Recognition.



luminance to distinguish between illumination conditions color. Using this measure the robot was able to correctly
using the absolute value distance metric to determine theclassify the test distributions and hence was able to ifienti
similarity between distributions. We explore an altenvmati  and distinguish between the three illumination conditions
similarity measure based on color space distributions. The only restriction we had to impose, based on compu-
In our lab, the intensity on the field varies from tthark tational constraints, was to test for illumination change n
(~ 400lux with all lamps except the fluorescent ceiling more than twice a second.
lamps turned off) to théright (~ 1500 lux with the addi- We then tested the performance of the robot in illumi-
tional lamps turned on). We have stage lighting equipmentnation conditions in between the three illuminations it was
arranged along the edges of the field that allows for grad- explicitly trained for. Experimental results showed that u
ual variation in illumination between these two levels. &ot der these illumination conditions for which the robot had
that given the quality of the camera and image resolution, not been trained before, the robot picked the illumination
it is not feasible for the robot to work well at illuminations condition (among the three it was trained for) that wias-
lower thanx 400lux. estto the test condition (see [3] for full details). This was
The robot was trained to recognize and distinguish be- good enough for the robot to efficiently play a game on
tween three different illumination conditiondark, interm the field. For example, we designeéired-and-walk-to-ball
andbright — theintermillumination being in between the task where the robot starts from the center and has to find
extreme lighting conditions. As mentioned below, we found and walk to the ball, which is placed a certain distance in
that being able to work under these three conditions enabledront of the yellow goal. With a single color cube, when
the robot to function under all conditions in between too. the illumination is drastically changed, it is unable to-per
The initial training phase equipped the robot with a color form the task. Now with the three illumination models, it
cube and a set of training distributions (drawn from sample is able to perform the task even for illuminations that it is
images) for each of the three illumination conditions. not explicitly trained for. During the experiments, the obb
The color cube for each illumination was trained by started off in the brightillumination and a change in illumi
hand-segmenting a set of images captured by the robot unnation was made: 1.5sec into the task. The robot waits for
der each illumination. The training distributions were ob- several test frames before it accepts a change in illumina-
tained by allowing the robot to capture a set £0) of im- tion (a filtering procedure). Thus we would not expect the
ages under each illumination and generating histograms af+obot to perform the task as quickly as in constant lighting.
ter transforming from the YCbCr space to the normalized Figure 7 shows the corresponding results, averaged over ten
RGB (rgb) color space. This is inherently more robust to trials.
minor illumination changes. Also, ast g+b = 1, any two The fact that |
of the three features are a sufficient statistic for the pizél the robot is still
ues, thereby lowering the storage requirements. We there-able to perform the |
fore stored the distributions in thee, g) space, quantized task demonstrates | bet. bright and interm| 12.27+0.5 |
into 64 bins along each dimension. that the switching | bet. interm and dark| 13.342.0 |
_ D.urin.g thg online testing phase, the rpbot generated. thegmong _coIor cubes Figure 7: Time taken (in seconds) to
distribution in the r-g space corresponding to the test im-is working.  The fing-and-walk-to-ball
age. This distribution was compared to the previously savedfirst row in Figure 7
distributions and was assigned the illumination class ef th refers to the case where the robot performs the task in the
distribution that was most similar to the test distributids bright (normal) illumination and no change in illumination
a similarity measure, we usd_ divergence given two 2D occurs. The other two rows correspond to the case where a
(r, g) distributions A and B (withV = 64, the number of  change in illumination occurs after 1.5sec.
bins along each dimension), Though this procedure is not required during the normal
game, it can still be performed in real-time on the robot.
s B;; Addition of this procedure causes just a slight decrease in
L(A,B) = - Z (Aij - lnA ) @ frame rate fron80fps to~ 25fps.

i=0 j=0 tJ

Lighting | Time (sec) |
Bright-Constant | 6.7 (+0.6) |

[

b

By
I

The more similar two distributions are, the smaller is 3, Summary and Conclusions
the KL-divergence between them. Since the KL-divergence

measure is essentially a function of the log of the observedSignificant advances have been made in the field of com-
color distributions, it is less sensitive to large peaksh@ t  puter vision algorithms leading to its increasing use in re-
observed color distributions in comparison to measurés tha lated fields such as Al and robotics. Still, the use of these
do not have a similar effect of flattening the peaks. Hence, methods in practical tasks with computational constraints
it is less affected by images with large amounts of a single has been minimal, primarily because it is not feasible to run



many algorithms in real-time with limited computationalre  [5] D. H. Brainard and W. T. Freeman. Bayesian color con-
sources. Our focus is on developing efficient algorithms. stancy.Journal of Optical Soceity of America 24(7):1393—-
In this paper, we have described the development of an 1411, 1997.
entire vision system on a mobile robot platform with a cam- [6] D. Comaniciu and P. Meer. Mean shift: A robust approach
era as the primary sensor. As opposed to previous research toward feature space analysiEEE Transactions on Pattern
using other sensors such as lasers and sonar, the camera has Analysis and Machine Intelligenc@4(5):603-619, 2002.
limited field-of-view and image resolution. Furthermore [7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
our robots’ legged locomotion introduces dynamic changes Introduction to Algorithms (Second Edition)MIT Press,
in camera position. In addition, all computation has to @ccu September, 2001.
on-board in real-time with limited computational resowwce  [8] G.Finlayson, S. Hordley, and P. Hubel. Color by corrielat
These constraints, drawn from the RoboCup legged robot A simple, unifying framework for color constancin IEEE
domain and representative of current directions in mobile ~ Transactions on Pattern Analysis and Machine Intelligence
robotics, enforce the need for efficient algorithms that run 23(11), November 2001.
atreal-time. We have shown that with innovative algorithms  [9] D. Forsyth. A novel algorithm for color constandy Inter-
and modifications to existing ones it is possible to build an national Journal of Computer Visioi(1):5-36, 1990.
efficient real-time vision system without compromising on [10] D. Fox. Adapting the sample size in particle filters thgh
the desired quality of performance. In the process, we have kld-sampling. International Journal of Robotics Research
been able to efficiently tackle hard vision problems such as 2003.
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