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Introduction | probabilistic map-based localization
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 Map-based localization
 The robot estimates its position using perceived information and a map
 The map 
 might be known (localization) 
 Might be built in parallel (simultaneous localization and mapping – SLAM)

 Challenges
 Measurements and the map are inherently error prone
 Thus the robot has to deal with uncertain information
→ Probabilistic map-base localization

 Approach
 The robot estimates the belief state about its position 

through an ACT and SEE cycle

Localization | Introduction to Map-Based Localization 3

Localization | definition, challenges and approach

Where am I?



Robot Localization: Historical Context

• Initially, roboticists thought the world could be modeled exactly

• Path planning and control assumed perfect, exact, deterministic world

• Reactive robotics (behavior based, ala bug algorithms) were developed 
due to imperfect world models

• But Reactive robotics assumes accurate control and sensing to react –
also not realistic

• Reality: imperfect world models, imperfect control, imperfect sensing

• Solution: Probabilistic approach, incorporating model, sensor and 
control uncertainties into localization and planning

• Reality: these methods work empirically!



Requirements of a Map Representation for a Mobile Robot

• The precision of the map needs to match the precision with which the 
robot needs to achieve its goals

• The precision and type of features mapped must matcht he precision 
of the robot’s sensors

• The complexity of the map has direct impact on computational 
complexity for localization, navigation and map updating



ZürichLocalization II

Map Representation
Continuous Line-Based

a) Architecture map
b) Representation with set of finite or infinite lines
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ZürichLocalization II

Map Representation
Exact cell decomposition

 Exact cell decomposition - Polygons
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ZürichLocalization II

Map Representation
Approximate cell decomposition

 Fixed cell decomposition
 Narrow passages disappear
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ZürichLocalization II

Map Representation
Topological map

node
(location)

edge
(connectivity)
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 A topological map represents the environment as a 
graph with nodes and edges. 
 Nodes correspond to spaces
 Edge correspond to physical connections between nodes

 Topological maps lack scale and
distances, but topological 
relationships (e.g., left, right, etc.)
are mantained



Zürich

Map Representation
Topological map

 London underground map

Localization II
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 Robot is placed somewhere in the 
environment → location unknown

 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors again
→  finds itself next to a pillar

 Belief updates (information fusion)

Localization | Introduction to Map-Based Localization 4

Concept | SEE and ACT to improve belief state
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 The robot moves and estimates its position through its proprioceptive sensors
 Wheel Encoder (Odometry)

 During this step, the robot’s state uncertainty grows

Localization | Introduction to Map-Based Localization 11

ACT | using motion model and its uncertainties

ሻݔሺ݌

ݔ
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 The robot makes an observation using its exteroceptive sensors
 This results in a second estimation of the current position

Localization | Introduction to Map-Based Localization 12

SEE | estimation of position based on perception and map
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 The robot corrects its position by combining its belief before the observation 
with the probability of making exactly that observation

 During this step, the robot’s state uncertainty shrinks

Localization | Introduction to Map-Based Localization 13

Belief update | fusion of prior belief with observation
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a) Continuous map with 
single hypothesis probability distribution ݌ሺݔሻ

b) Continuous map with 
multiple hypotheses probability distribution ݌ሺݔሻ

c) Discretized metric map (grid ݇) with 
probability distribution ݌ሺ݇ሻ

d) Discretized topological map (nodes ݊) with 
probability distribution ݌ሺ݊ሻ

Localization | Introduction to Map-Based Localization 15

Probabilistic localization | belief representation
ሻݔሺ݌

ݔ
ሻݔሺ݌

ݔ
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݇
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 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors 
again →  finds itself next to a pillar 

 Belief update (information fusion)
Localization | Introduction to Map-Based Localization 16

Take home message | 
ACT - SEE Cycle for Localization
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 Mobile robot localization has to deal with error prone information
 Mathematically, error prone information (uncertainties) is best represented by 

random variables and probability theory

 ݌ ݔ ൌ ሺܺ݌ ൌ ܺ probability that the random variable	ሻ:ݔ has value	ݔ .(is true	ݔ)
 ܺ: random variable
 .ܺ might assume	a specific value that:ݔ
 The Probability Density Functions (PDF) describes 

the relative likelihood for a random variable to take on 
a given value

 PDF example: The Gaussian distribution:

Localization | Refresher on Probability Theory

Probability theory | how to deal with uncertainty
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 ݌ ,ݔ ݕ : joint distribution representing the probability that the random variable 
ܺ takes on the value ݔ and that ܻ takes on the value ݕ
→ ݔ and ݕ	is true.

 If ܺ and ܻ are independent we can write:

Localization | Refresher on Probability Theory

Basic concepts of probability theory | joint distribution

݌ ,ݔ ݕ ൌ ሻݕሺ݌ሻݔሺ݌

3
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 ݌ ݔ ݕ : conditional probability that describes the probability that the random 
variable ܺ takes on the value ݔ	conditioned on the knowledge that ܻ for sure 
takes ݕ.

and if ܺ and ܻ are independent (uncorrelated) we can write:

Localization | Refresher on Probability Theory

Basic concepts of probability theory | conditional probability

݌ ݔ ݕ ൌ
,ݔሺ݌  ሻݕ
ሻݕሺ݌

݌ ݔ ݕ ൌ
݌ ݔ  ሻݕሺ݌
ሻݕሺ݌ ൌ ሻݔሺ݌
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 The theorem of total probability (convolution) originates from the axioms of 
probability theory and is written as:

for discrete probabilities

for continuous probabilities

 This theorem is used by both Markov and Kalman-filter localization algorithms 
during the prediction update.

Localization | Refresher on Probability Theory

Basic concepts of probability theory | theorem of total probability

݌ ݔ ൌ෍݌ ݔ ݕ ݌ ݕ
௬

݌ ݔ ൌ න ݌ ݔ ݕ ݌ ݕ ݕ݀
௬
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 The Bayes rule relates the conditional probability ݌ ݔ ݕ to its inverse ݌ ݕ ݔ .
 Under the condition that ݌ ݕ ൐ 0, the Bayes rule is written as:

 ൌ ሻିଵݕሺ݌ normalization factor (݌׬ ൌ 1ሻ

 This theorem is used by both Markov and Kalman-filter localization algorithms 
during the measurement update.

Localization | Refresher on Probability Theory

Basic concepts of probability theory | the Bayes rule

݌ ݔ ݕ ൌ
݌ ݕ ݔ ሻݔሺ݌

ሻݕሺ݌

݌ ݔ ݕ ൌ ݌ ݕ ݔ ሻݔሺ݌
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 Probability theory is widely and very successfully used for mobile robot 
localization

 In the following lecture segments, its application to localization will be 
illustration
 Markov localization
 Discretized pose representation 

 Kalman filter
 Continuous pose representation and Gaussian error model

 Further reading:
 “Probabilistic Robotics,” Thrun, Fox, Burgard, MIT Press, 2005.
 “Introduction to Autonomous Mobile Robots”, Siegwart, Nourbakhsh, Scaramuzza, MIT Press 2011

Localization | Refresher on Probability Theory

Usage | application of probability theory to robot localization

7
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 Information (measurements)
is error prone (uncertain)
 Odometry
 Exteroceptive sensors (camera, laser, …)
 Map

→ Probabilistic map-based localization

Localization | the Markov Approach 2

Markov localization | applying probability theory to localization
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 Discretized pose representation ݔ௧ →  grid map

 Markov localization tracks the robot’s belief state ܾ݈݁ ௧ݔ using an arbitrary 
probability density function to represent the robot’s position

 Markov assumption: Formally, this means that the output of the estimation 
process is a function ݔ௧ only of the robot’s previous state ݔ௧ିଵ	and its most 
recent actions (odometry) ݑ௧ and perception .௧ݖ

 Markov localization addresses the global localization problem, the position 
tracking problem, and the kidnapped robot problem.

Localization | the Markov Approach 3

Markov localization | basics and assumption

݌ ௧ݔ ,଴ݔ ௧ݑ ,଴ݑ⋯ ௧ݖ ଴ݖ⋯ ൌ ݌ ௧ݔ ,௧ିଵݔ ,௧ݑ ௧ݖ
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 ACT | probabilistic estimation of the robot’s new belief state ܾ݈݁	ሺݔ௧ሻ based on 
the previous location ܾ݈݁ሺݔ௧ିଵሻ and the probabilistic motion model 
݌ ௧ݔ ,௧ݑ ௧ିଵݔ 	with action ݑ௧ (control input). 

→ application of theorem of total probability / convolution

for continuous probabilities

for discrete probabilities

Localization | the Markov Approach 5
4

Markov localization | applying probability theory to localization 

ܾ݈݁ ௧ݔ ൌ න݌ ௧ݔ ,௧ݑ ௧ିଵݔ ܾ݈݁ ௧ିଵݔ ௧ିଵݔ݀

ܾ݈݁ ௧ݔ ൌ ෍ ݌ ௧ݔ ,௧ݑ ௧ିଵݔ ܾ݈݁ ௧ିଵݔ
௫೟షభ
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 SEE | probabilistic estimation of the robot’s new belief state ܾ݈݁ ௧ݔ as a 
function of its measurement data ݖ௧ and its former belief state ܾ݈݁	ሺݔ௧ሻ:

→ application of Bayes rule

where ݌ ௧ݖ ܯ,௧ݔ is the probabilistic measurement model (SEE), that is, the 
probability of observing the measurement data ௧ݖ given the knowledge of the map 
ܯ and the robot’s position ݔ௧. Thereby  ൌ ሻିଵݕሺ݌ is the normalization factor so 
that ∑݌ ൌ 1 .

Localization | the Markov Approach 5
5

Markov localization | applying probability theory to localization 

ܾ݈݁ ௧ݔ ൌ ݌ ௧ݖ ܯ,௧ݔ ܾ݈݁ ௧ݔ
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 Markov assumption: Formally, this means that the output is a function ݔ௧ only 
of the robot’s previous state ݔ௧	and its most recent actions (odometry) ݑ௧ and 
perception .௧ݖ

Localization | the Markov Approach 5
6

Markov localization | the basic algorithms for Markov localization

For all ݔ௧ do

ܾ݈݁ ௧ݔ ൌ ∑ ݌ ௧ݔ ,௧ݑ ௧ିଵݔ ܾ݈݁ ௧ିଵ௫೟షభݔ (prediction update) 

ܾ݈݁ ௧ݔ ൌ ݌ ௧ݖ ܯ,௧ݔ ܾ݈݁ ௧ݔ (measurement update)

endfor

Return  ܾ݈݁ሺݔ௧ሻ
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Localization | the Markov Approach 7

ACT | using motion model and its uncertainties
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Localization | the Markov Approach 8

ACT | using motion model and its uncertainties

prior belief

ܾ݈݁ ௧ݔ ൌ ෍ ݌ ௧ݔ ,௧ݑ ௧ିଵݔ ܾ݈݁ ௧ିଵݔ ௧ିଵݔ݀
௫೟షభ

prediction update

ܾ݈݁ ௧ିଵݔ

ݔ
151 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0.25

0.5

0.75

uncertain motion
(odometry)

ACT

௧ሻݑሺ݌

ݑ
151 2 3 4 5 6 7 8 9 10 11 12 13 14 16

0.25

0.5

0.75

ܾ݈݁ ௧ݔ

ݔ
151 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0.25

0.5

0.75



|
Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart 

ASL
Autonomous Systems Lab

SEE

Localization | the Markov Approach 9

SEE | estimation of position based on perception and map
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Figure 5.23 Markov localization using a grid-map.
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The robot corrects its position by combining its
belief before the observation with the probability
of that observation using Bayes rule. This reduces
the uncertainty.
Note we need to use a scaling factor to make sure 
all probabilities add up to 1
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Calculation of the robot's position after the ACT move in (a),(b) above:
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Zürich

Markov localization

 Let us discretize the configuration space into 10 cells

 Suppose that the robot’s initial belief is a uniform distribution from 0 to 3. Observe that all the 
elements were normalized so that their sum is 1.

Localization II
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Zürich

Markov localization

 Initial belief distribution

 Action phase: 
Let us assume that the robot moves forward with the following statistical model

 This means that we have 50% probability that the robot moved 2 or 3 cells forward.
 Considering what the probability was before moving, what will the probability be after the motion?

Localization II
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Zürich

Markov localization
Action update

 The solution is given by the convolution (cross correlation) of the two distributions

Localization II

          *
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Zürich

Markov localization
Perception update

 Let us now assume that the robot uses its onboard range finder and measures the distance 
from the origin. Assume that the statistical error model of the sensors is:

This plot tells us that the distance of the robot from the origin can be equally 5 or 6 units.
 What will the final robot belief be after this measurement? 

The answer is again given by the Bayes rule:

Localization II

          
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Markov Localization Example, p. 313 Siegwart

1 INITIAL BELIEF:  Bel(X) at time t 0.25 0.25 0.25 0.25 0 0 0 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

2 Now move the robot with probabilities below:

3 MOTION PROBABILITY: U(t) -robot moves 2 or 3 units 0 0 0.5 0.5 0 0 0 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

4 Now CONVOLVE Bel(X) with U(t)

5 UPDATED BELIEF:  Bel(X) 0 0 0.125 0.25 0.25 0.25 0.125 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

6 Now use sensor to update your Bel(X)

7 SENSOR  Probabilities:  Z(t) - origin is 5 or 6 units away 0 0 0 0 0 0.5 0.5 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

8 Apply sensor measurement to current Bel(X)

9 UNNORMALIZED SENSOR UPDATE 0 0 0 0 0 0.125 0.0625 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9

10 NORMALIZATION = .0625 + 0.125= 0.1875 0.125 / 0.1875 = .667 , 0.0625/ 0.1875 = .33

11 NORMALIZED SENSOR UPDATE: Bel(X) at  t+1 0 0 0 0 0 0.6667 0.3333 0 0 0

GRID CELL 0 1 2 3 4 5 6 7 8 9
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 The real world for mobile robot is at least 2D (moving in the plane)
→ discretized pose state space (grid) consists of ݔ, ,ݕ ߠ
→ Markov Localization scales badly with the size of the environment

 Space: 10 m x 10 m with a grid size of 0.1 m 
and an angular resolution of 1°
→ 100 ∙ 100 ∙ 360 ൌ 3.6	10଺ grid points (states)
→ prediction step requires in worst case

3.6	10଺ ଶ	multiplications and summations
 Fine fixed decomposition grids result in a huge state space
 Very important processing power needed
 Large memory requirement

Localization | the Markov Approach 10

Markov localization | extension to 2D
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 Adaptive cell decomposition
 Motion model (Odomety) limited to a small 

number of grid points 
 Randomized sampling
 Approximation of belief state by a representative subset 

of possible locations
 weighting the sampling process with the probability 

values
 Injection of some randomized (not weighted) samples

 randomized sampling methods are also known as 
particle filter algorithms, condensation algorithms, and 
Monte Carlo algorithms.

Localization | the Markov Approach 11

Markov localization | reducing computational complexity
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 Continuous pose representation ݔ௧
 Kalman Filter Assumptions: 
 Error approximation with normal distribution: 
ݔ ൌ ܰሺߤ,  (Gaussian model)	ଶሻߪ

 Output ݕ௧ distribution is a linear (or  linearized) 
function of the input distribution: ݕ ൌ ଵݔܣ ൅ ଶݔܤ

 Kalman filter localization tracks the robot’s 
belief state ݌ ௧ݔ typically as a single 
hypothesis with normal distribution.

 Kalman localization thus addresses the 
position tracking problem, but not the 
global localization or the kidnapped robot 
problem.

Localization | the Kalman Filter Approach

Kalman Filter Localization | Basics and assumption

௧ሻݔሺ݌

௧ݔ

3

ߤ

ߪ
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Localization | the Kalman Filter Approach 11

Kalman Filter Localization | in summery

ሻݔሺ݌

ݔ

௧௠ݔ

Observation:
Probability of 

making this 
observation

ො௧ݔ

Prediction:
Robot’s belief 
before the 
observation

௧ݔ

Estimation:
Robot’s belief 

update

௧ݔ

1. Prediction (ACT) based on previous estimate and odometry
2. Observation (SEE) with on-board sensors
3. Measurement prediction based on prediction and map
4. Matching of observation and map
5. Estimation → position update (posteriori position)




