
Coordinate Frames and Transforms

1 Specifiying Position and Orientation

• We need to describe in a compact way the position of the robot. In 2 dimensions (planar mobile robot),
there are 3 degrees of freedom (DOF): X,Y position and 1 angular orientation parameter θ

• In 3 dimensions there are 6 DOF: X,Y, Z position and 3 angular orientation parameters specifying orien-
tation of the gripper in space. There are a number of ways to specify these angles which we will discuss
later.

• In 2-D, we can specify both position and orientation using a translation vector (2x1 vector) and a rotation
matrix (2x2) which encodes the orientation information.

2 2D Rotation Matrix

• Orthonormal matrix: columns are orthogonal basis vectors of unit length.

• Row vectors are also orthogonal unit vectors

• Determinant = 1 (Right handed system) -1(Left handed)

• Columns establish axes of new coordinate system with respect to previous frame

ROT (θ) =

[
cosθ −sinθ
sinθ cosθ

]

EXAMPLE:

ROT (90) =

[
0 −1
1 0

]
ROT (45) =

[
.7 −.7
.7 .7

]

Suppose we have 2 coordinate systems, A and B that differ by a rotation. If we have the coordinates of a point
in coordinate system B, BP , we can find the equivalent set of coordinates in coordinate system A by using the
rotation matrix to transform the point from one system to the other:

AP = ARB
BP

The inverse rotation matrix (ARB)
−1 is just the transpose of the original rotation matrix:

(ARB)
−1

= (ARB)
T

= BRA

You can check this out by multiplying a 2D rotation matrix by its transpose which yields the identity matrix.
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𝜃 = 45

X_a

Y_b

Y_a

X_b

bP =(2,0)

aP =(1.4,1.4)

aP =aRb
bP

aRb = cos 𝜃 -sin 𝜃
sin 𝜃 cos 𝜃

.7   -.7

.7    .7
=

2D Rotation Matrix



Going left to right, rotations are done in the new or local frame established by the previous rotations. As we
go right to left, the transformations are done in global coordianates.

3 Including Translations: Homogeneous Coordinates

• When we want to establish a relationship between two 2D coordinate systems (we refer to these as coordi-
nate frames), we need to represent this as a translation from one frame’s origin to the new frames origin,
followed by a rotation of the axes from the old frame to the new frame.

• Transforming a 2-D point with a 2x2 matrix allows for scaling, shearing and rotation, but not translation.

• However we can use a method known as homogeneous coordinates to embed both a translation and
rotation into one 3x3 matrix. You can think of this as embedding our 2D space in a 3D space.

• By using a 3x3 matrix, we can add translation to the transformation. Since we need to apply 3x3 matrices
to 3-D vectors, we add an arbitrary scaling factor (typically with value 1) to the 2-D coordinates of a point
to make it a 1x3 vector. You can think of the 2-D point as the projection into 2-D of an arbitrarily scaled
3-D point.

• By using a 4x4 matrix, we can add translation to the transformation. Since we need to apply 4x4 matrices
to 4-D vectors, we add an arbitrary scaling factor (typically with value 1) to the 3-D coordinates of a point.
You can think of the 3-D point as the projection into 3-D of a 4-D point.

• Homogeneous coordinates allow us to embed a lower dimensional space in a higher dimensional space.
So a point in 2D space [Px, Py]

T can be represented by a 3D point [Px, Py, 1]
T where the third coordinate

is an arbitrary scaling factor which we can also choose to be 1.

We can define a 3x3 transform from coordinate frame A to coordinate frame B as:

ATB =

 cosθ −sinθ Px

sinθ cosθ Py

0 0 1


Note that the first and second columns of the transform matrix specify the coordinates of the X and Y axes

of the new coordinate frame. The third column is the origin of the new coordinate frame with respect to the
previous frame. So in the transform above, the new X axis is pointing in direction (cosθ, sinθ), and the new
origin is at location (Px, Py).

Homogeneous transforms contain BOTH rotation and translation information. The upperleft 2x2 matrix is
the rotation matrix and the 2x1 third column vector is the translation. It is important to remember that trans-
lation is done first, then rotation when using a transform like this that embeds both rotation and translation.
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4 Extensions to 3D

Similar to what we did in 2D, we can also specify rotations and translations in 3D using homogeneous coordi-
nates. We can represent a point [x, y, z]T in 3D as a 4D homogenous vector[x, y, z, 1]T .

To specify rotation, we use a 3D rotation matrix. Since we can rotate about any of the three axes (X,Y, or
Z) we can specify each canonical robtation matrix:

ROT (Z, θ) =

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1



ROT (X, θ) =

 1 0 0
0 cosθ −sinθ
0 sinθ cosθ



ROT (Y, θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ


Finally we can add translation in the 4th colum of the transform matrix to define a transform from coordinate

system i to i+ 1:

iTi+1 =


nx ox ax px
ny oy ay py
nz oz ax pz
0 0 0 1


The upper left 3x3 matrix is the rtoation and the last column is the translatio, and .n, o, a are the unit vectors

of the i+ 1 frame’s X,Y, Z axes relative to frame i, and frame i+ 1’s origin is at [px, py, pz]T relative to frame
i.

We can also define an inverse transform. To calculate the inverse of 4x4 homogeneous transform, we simply
take the transpose of the 3x3 rotation matirx, and use the negated dot products of the original translation against
each column of the original transform:

T =


nx ox ax px
ny oy ay py
nz oz ax pz
0 0 0 1



T−1 =


nx ny nz −p · n
ox oy oz −p · o
ax ay az −p · a
0 0 0 1


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Figure 1: Exercise: try to write transforms for frames 0T1, 0T2,3T5, and 0T5. Also prove that 0T3 =0 T1
1T2

2T3
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