
Figure 1: Left: constructing a Voronoi cell by intersecting half-planes. The shaded cell is the intersec-
tion of all half planes generated from the perpendicular bisectors of the point and the other points in
the plane. Right: A Voronoi Diagram for a set of points.

CS 4733, Class Notes - Voronoi Path Planning

1 Voronoi Diagrams

• Visibility graph path planning has the problem that we navigate along the vertices of grown
polygons. If we are not careful, we can come very close to actual obstacles if our growing is
incorrect, or more realistically, mobile robot control has some errors in it.

• A better idea may be to try to find paths that are not close to obstacles, but in fact as far away as
possible from obstacles. This will create a maximal safe path, in that we never come closer to
obstacles than we need.

• To do this, we will look at the Voronoi Diagram in the plane. Let P = {p1, p2, . . . , pn} be a set
of points in the plane called sites. The Voronoi diagram is the sub-division of the plane into n

distinct cells, one for each site. Each cell has the property that a point q corresponds to a site pi

iff dist(q, pi) < dist(q, pj) for each pj ∈ P with j 6= i

• A Voronoi diagram can be used to find out the trading area of a region . If you are planning to
open a new Home Depot store, you want to know what region it will serve, and how this will
relate to exisitng Home Depot’s in the region. Assuming people go to the nearest Home Depot,
you can create a Voronoi diagram which shows how a region will be subdivided by adding more
stores in the region (note: this assumes a Euclidean distance metric which may not be applicable
with travel by car on existing roads).

• How do we compute such a diagram? The straightforward method (see fig. 1) is to find the
perpendicular bisector between a site p and a site q. This separates the plane into two half-

1



planes, one with points closer to p and one with points closer to q. If we intersect all the half
planes that separate a site pi from the other sites pj , we can find the Voronoi cell determined by
pi. Doing this for all the points creates the Voronoi diagram.

• The above brute force procedure can be sped up appreciably, and there are many known algo-
rithms to create a Voronoi Diagram, with a lower bound of O(n log n).

2 Path Planning Using Voronoi Diagrams

• Assuming we have point-based obstacles and a point robot, we can use the Voronoi diagram to
navigate. You can think of the Voronoi diagram as a Voronoi graph, made up of edges and ver-
tices. To go from a point Pstart to a point Pgoal, we simply find the nearest points on the Voronoi
graph to (Pstart , Pgoal): (P ∗start , P ∗

goal). Wethen use a standard graph search type algorithm
(e.g Dijkstra’s algorithm) to traverse the vertices and edges of the graph from P ∗startto P ∗

goal.

• Suppose the robot isn’t a point and the obstacles aren’t a point? The two-dimensional region in
which the robot moves will contain buildings and other types of barriers, each of which can be
represented by a convex or concave polygonal obstacle. To find the generalized Voronoi diagram
for this collection of polygons, we can use an approximation based on the simpler problem of
computing the Voronoi diagram for a set of discrete points. We estimate the polygonal obstacle
boundaries by discrete points.

Method:

1. Approximate the boundaries of the polygonal obstacles with the large number of points
that result from subdividing each side of the original polygon into small segments.

2. Compute the Voronoi diagram for this collection of approximating points.

3. Once this complicated Voronoi diagram is constructed, eliminate those Voronoi edges
which have one or both endpoints lying inside any of the obstacles.

4. The remaining Voronoi edges form a good approximation of the generalized Voronoi dia-
gram for the original obstacles in the map.

• To take into account a robot which isn’t point size, we need to find critical points and critical
lines in the Voronoi diagram. These are places where the Voronoi path has a local minima. At
these points we can see if the robot’s diameter will fit through the space at the critical point: is
the diameter greater than the critical line length. Note that this assumes a fixed robot orientation,
or we can use the maximum diameter of the robot over all rotations.

2



23

9/17/2008M. Stilman (RIM@GT) 45

Practical Algorithm 2: Environment Model

9/17/2008M. Stilman (RIM@GT) 46

Voronoi Diagrams: Practical Algorithm 2

Brushfire GVG Generation

• Start with an empty grid 
with obstacles = 1

111

111111

11111111111

1111111111

111111111

11111111

1111111

111

1111

11111

1111111111

111111111111

111111111111

1111

1111



24

9/17/2008M. Stilman (RIM@GT) 47

Voronoi Diagrams: Practical Algorithm 2

Brushfire GVG Generation
• “Wavefront”

• Start with an empty grid 
with obstacles = 1

• Expand all cells (i) to (i+1)

• If a cell is expanded twice, 
label as a GVG edge and do
not expand further.

22221112

222221111112

111111111112

111111111122

21111111112

21111111122

21111112212

22222221112

211112

222222111112

1111221111112

11112211111111

11112211111111

11112222222222

11112

9/17/2008M. Stilman (RIM@GT) 48

Voronoi Diagrams: Practical Algorithm 2

Brushfire GVG Generation
• “Wavefront”

• Start with an empty grid 
with obstacles = 1

• Expand all cells (i) to (i+1)

• If a cell is expanded twice, 
label as a GVG edge and do
not expand further.

33333222211123

2222211111123

1111111111123

1111111111223

211111111123

2111111112323

32111111232123

32222223211123

333333332111123

2222332111112

111123321111112

111123211111111

111123211111111

111123222222222

111123333333333



25

9/17/2008M. Stilman (RIM@GT) 49

Voronoi Diagrams: Practical Algorithm 2

Brushfire GVG Generation
• “Wavefront”

• Start with an empty grid 
with obstacles = 1

• Expand all cells (i) to (i+1)

• If a cell is expanded twice, 
label as a GVG edge.

333332222111234

222221111112345

111111111112345

111111111122345

211111111123345

211111111232334

321111112321123

432222223211123

333333332111112

222234432111112

111123321111112

111123211111111

111123211111111

111123222222222

111123333333333


