
CS 4733 Notes: Stanford Arm Inverse Kinematics

Figure 1: Stanford Robotic Arm. The frame diagram shows the first three joints, which are in a R-R-P
configuration (Revolute-Revolute-Prismatic.

1. To solve inverse kinematics for the first 3 joints of the Stanford arm we first look
at the matrix T 0

3 :
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Looking at P (last column of matrix) there are no obvious relationships that
isolate a single joint variable (Θ1,Θ2,d3).

2. The technique we employ is to try to rearrange the equations hoping a single
variable can be isolated.

T 0
3 = T 0

1 T 1
2 T 2

3

Multiplying both sides (on the left) by (T 0
1 )−1 we get

(T 0
1 )−1 T 0

3 = T 1
2 T 2

3 = T 1
3
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The matrices are below with only the fourth column filled in:

(T 0
1 )−1 T 0

3 =

















| | | C1Px + S1Py

| | | −Pz + d1

| | | −S1Px + C1Py

| | | 1








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

=

















| | | S2d3

| | | −C2d3

| | | d2

| | | 1


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


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= T 1
3

We can equate the third entry in last column in each matrix:

−S1Px + C1Py = d2 (1)

We have now isolated Θ1. To solve for Θ1, define auxiliary variables r and Φ:

r =
√

P 2
x + P 2

y ; Φ = atan2(Py, Px)

Substitute in (1) for Px,Py : Px = r C φ, Py = r S φ

−S1rCφ + C1rSφ = d2

r(SφC1 − S1Cφ) = d2

S(φ − Θ1) =
d2

r

and by the fact that C = ±
√

1 − S2

C(φ − Θ1) = ±
√

√

√

√1 − (
d2

r
)2 = ±

√

r2 − d2
2

r

S(φ − Θ1)

C(φ − Θ1)
=

d2

r

±
√

r2−d2

2

r

=
d2

±
√

r2 − d2
2

φ − Θ1 = atan2

(

d2, ±
√

r2 − d2
2

)

Solving for Θ1, we get

Θ1 = φ − atan2

(

d2, ±
√

r2 − d2
2

)

Θ1 = atan2(Py, Px) − atan2

(

d2, ±
√

r2 − d2
2

)

− 2 solutions
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Figure 2: Geometric analysis of Stanford Arm

Geometrically, the figure above describes what the solution for Θ1 is all about.
Project vector (Px, Py, Pz) onto the unit vector axis which is along the direction
of d2. The unit vector axis along d2 is simply the direction of the Y axis after a
rotation of Θ1.

[

Px Py Pz

]











−S1

C1

0











= d2 → −S1Px + C1Py = d2

C(Θ1 + 90 − φ) =
d2

r
= C(90 − (φ − Θ1)) = S(φ − Θ1)

If S(φ − Θ1) =
d2

r
then C(φ − Θ1) = ±

√

√

√

√1 − (
d2

r
)2 =

±
√

r2 − d2
2

r

Since we know angle φ = atan2(Py, Px) we can find Θ1.
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Figure 3: Top: Arm with Θ1 = 0 , Θ2 = 90. Bottom: multiple solutions for Θ1 when P = (−1,
√

3, 0)

3. Example: if Θ2 = 90◦, then the manipulator looks as in figure 3(top). (assume
d3 =

√
3, d2 = 1).

Now rotate Θ1 by 90 and P = (−1,
√

3, 0) (bottom part of figure 3).

Using the formula for Θ1:

Θ1 = atan2(Py, Px) − atan2(d2, ±
√

r2 − d2
2)

= atan2(
√

3, −1) − atan2(1, ±
√

3)

Θ1 = 120 − 30 = 90
or

120 − 150 = −30

These are the 2 solutions for Θ1.
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Figure 4: Geometry for finding Θ2
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4. To find Θ2 from our relationship (T 0
1 )−1 T 0

3 = T 1
2 T 2

3 = T 1
3 we notice that:

Tan Θ2 =
S2d3

C2d3
=

C1Px + S1Py

Pz − d1

or Θ2 = atan2(C1Px + S1Py, Pz − d1)

Figure 4 shows the geometric relationships for finding Θ2.

As in the previous section, the distance CB in figure 4 is the projection of the
vector (Px, Py, Pz) onto the unit vector axis which is along the direction of the
X axis rotated by Θ1.

[

Px Py Pz

]











C1

S1

0











= C1Px + S1Py

5. To find d3
(3) C1Px + S1Py = S2d3

(4) − Pz + d1 = −C2d3

Multiply (3) by S2 and (4) by C2 then add the equations:

S2(C1Px + S1Py) = S2
2d3

+ C2(−Pz + d1) = C2d3

S2(C1Px + S1Py) + C2(Pz − d1) = d3

6. Recapping

Θ1 = atan2(Px, Py) − atan2(d2, ±
√

r2 − d2)
Θ2 = atan2(C1Px + S1Py, Pz − d1)

atan2(−(C1Px + S1Py), d1 − Pz)
d3 = S2(C1Px + S1Py) + C2(Pz − d1)

if P = (−1,
√

3, 5), and assume d1 = 5 and d2 = 1:

Θ1 Θ2 S1 C1 S2 C2 S2(C1Px + S1Py) + C2(Pz − d1) = d3

90 90 1 0 1 0
√

3

90 -90 1 0 -1 0 −
√

3

-30 -90 −1
2

√
3

2
-1 0

√
3

-30 90 −1
2

√
3

2 1 0 −
√

3
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Figure 5: Multiple solutions of arm for P = (
√

3, 1, 5)

7. Find a solution if P = (
√

3, 1, 5) assume d2 = 1 and d1 = 5.

Θ1 Θ2 S1 C1 S2 C2 S2(C1Px + S1Py) + C2(Pz − d1) = d3

0 90 0 1 1 0
√

3

0 -90 0 1 -1 0 −
√

3

-120 -90 −
√

3
2

−1
2

-1 0
√

3

-120 90 −
√

3
2 −1

2 1 0 −
√

3

Θ1 = atan2(1,
√

3) − atan2(1,
√

3) = 30 − 30 = 0

= atan2(1,
√

3) − atan2(1,−
√

3) = 30 − 150 = −120

Θ2 = atan2(
√

3, 0) = 90◦

= atan2(−
√

3, 0) = −90◦

Geometrically : 4 solutions in all. Figure 5 shows 2 - the other 2 are simply with
a negative value of r.
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Calculating Angles from Sin, Cos,Tan

• There will be many situations in robotic calculations where the magnitude of the sine, cosine, or tangent
of an angle is known, and we need to calculate the magnitude of the angle. Although this seems to be
a trivial matter, in reality, it is very important, because there can be grave ambiguities in the answer that
may yield an erroneous result, stopping a robot controller from functioning properly. This is true even
with a calculator or a computer. To understand this, let’s do a simple calculation.

• Suppose that you use your calculator to calculate sin 75◦ as 0.966. If you enter the same number into your
calculator and calculate the angle from it, you will find the same 75◦ angle. However, if you do the same
with sin 105◦, you will find the same 0.966 as before. Here lies the basic error. The sine of two angles
with equal distance from 90◦ is always the same, and thus the calculator always returns the smaller angle.
The same is true for cosine and tangent of an angle; the cosine of the plus or minus of the same angle is
the same, while the tangent of an angle is the same if 180◦ is added to it.

• To know the exact magnitude of an angle, it is necessary to determine in what quadrant the angle lies.
This will enable us to correctly know what the angle really is. However, to determine the quadrant of an
angle, it is necessary to know the signs of both the sine and the cosine of the angle.

• In the previous example, if you calculate the values of cos 75◦ and cos 105◦, you will notice that they are
respectively 0.259 and -0.259. Considering both the sines and the cosine of 75◦ and 105◦, we can easily
calculate their correct values. The same principle is true for the tangent of an angle.

• In robotic calculations, we will encounter the same situation, where tan of angles are generally found. If
the simple atan (arctan) function of a calculator or computer is used, it may yield an erroneous result. But
if both the sine and the cosine of the angle are found and used in a function, we can calculate the correct
angle. Most computer languages have a function called ATAN2(sin, cos), in which the values of the sine
and cosine of the angle, entered as arguments, are automatically used to return the value of the angle. In
all other situations, either with your calculator or other computer languages, you will have to write such a
function. As a result, it is generally necessary to find two equations for each angle, one that yields the sine
of the angle, and one that yields the cosine of the angle. Based on the sign of the two, we will determine
the quadrant and, thus, the correct value of the angle.

• The following is a summary of rules for calculating the angles in each quadrant (you may program this
into your robotic routines or your calculator for future use):

- If sin is positive and cos is positive, the angle is in quadrant 1, then angle = atan(a).

- If sin is positive and cos is negative, the angle is in quadrant 2, then angle = 180 - atan(a).

- If sin is negative and cos is negative, the angle is in quadrant 3, then angle = 180 + atan(a).

- If sin is negative and cos is positive, the angle is in quadrant 4, then angle = -atan(a).

• The program should check to see if either the sine or the cosine are zero. In that case, instead of calculating
the tangent, it should use the cosine or the sine to calculate the angle to prevent an error.

• Useful formulae: Law of Cosines: C2 = A2 + B2 − 2 A B Cos(θ)

Double Angle Formulas:
Sin(θ1 ± θ2) = Sinθ1Cosθ2 ± Sinθ2Cosθ1

Cos(θ1 ± θ2) = Cosθ1Cosθ2 ∓ Sinθ1Sinθ2
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