

Localization | Introduction to Map-Based Localization Autonomous Mobile Robots

Roland Siegwart

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza

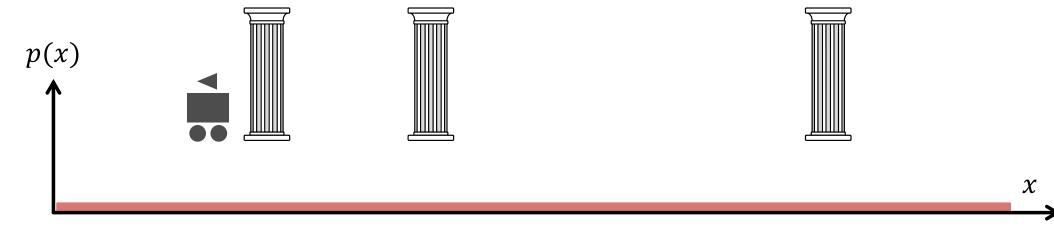
Introduction | probabilistic map-based localization

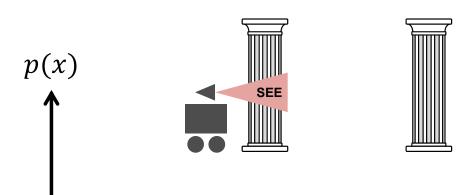
Localization | definition, challenges and approach

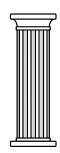
- Map-based localization
 - The robot estimates its position using perceived information and a map
 - The map
 - might be known (localization)
 - Might be built in parallel (simultaneous localization and mapping SLAM)

Challenges

- Measurements and the map are inherently error prone
- Thus the robot has to deal with uncertain information
 - → Probabilistic map-base localization
- Approach
 - The robot estimates the belief state about its position through an ACT and SEE cycle




- Robot is placed somewhere in the environment → location unknown
- SEE: The robot queries its sensors
 → finds itself next to a pillar


- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again
 → finds itself next to a pillar
- Belief updates (information fusion)

- Robot is placed somewhere in the environment → location unknown
- SEE: The robot queries its sensors
 - → finds itself next to a pillar

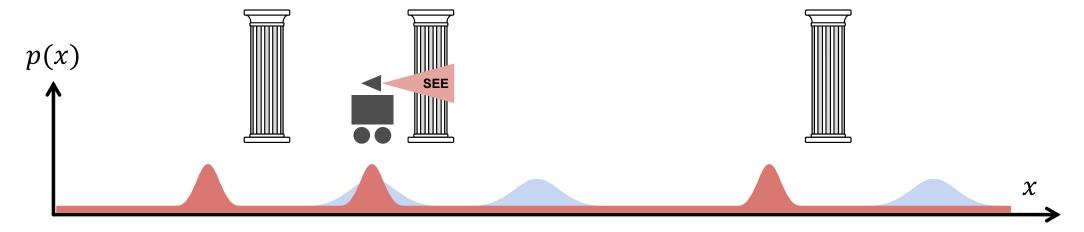
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again
 → finds itself next to a pillar
- Belief updates (information fusion)

- Robot is placed somewhere in the environment → location unknown
- SEE: The robot queries its sensors
 - → finds itself next to a pillar

- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief updates (information fusion)

- Robot is placed somewhere in the environment → location unknown
- SEE: The robot queries its sensors → finds itself next to a pillar

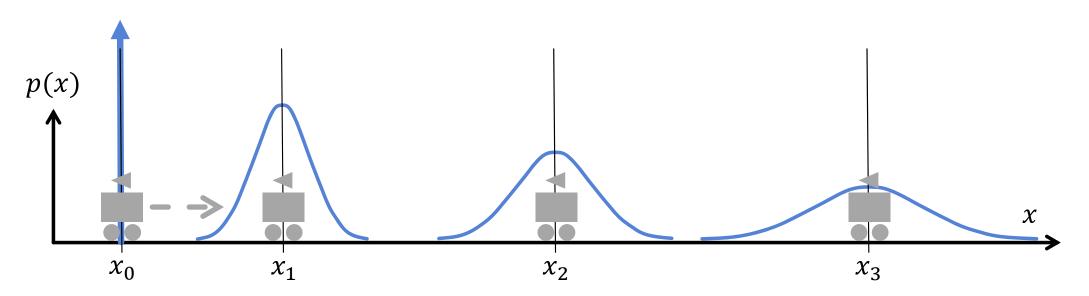
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief updates (information fusion)


- Robot is placed somewhere in the environment → location unknown
- SEE: The robot queries its sensors
 → finds itself next to a pillar

- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again
 → finds itself next to a pillar
- Belief updates (information fusion)


- Robot is placed somewhere in the environment → location unknown
- SEE: The robot queries its sensors → finds itself next to a pillar

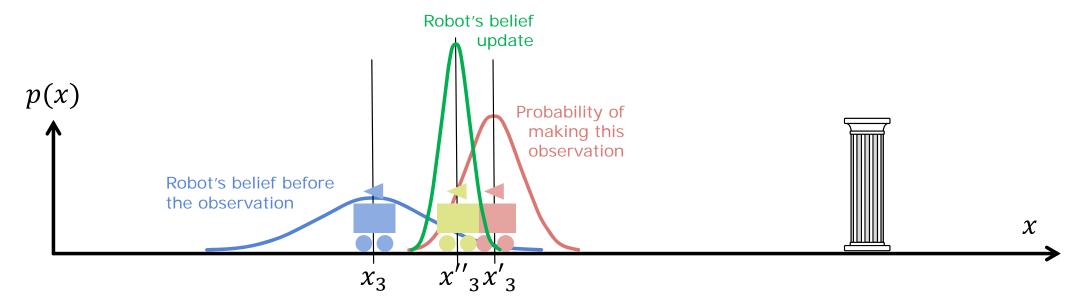
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief updates (information fusion)


- Robot is placed somewhere in the environment → location unknown
- SEE: The robot queries its sensors
 - \rightarrow finds itself next to a pillar

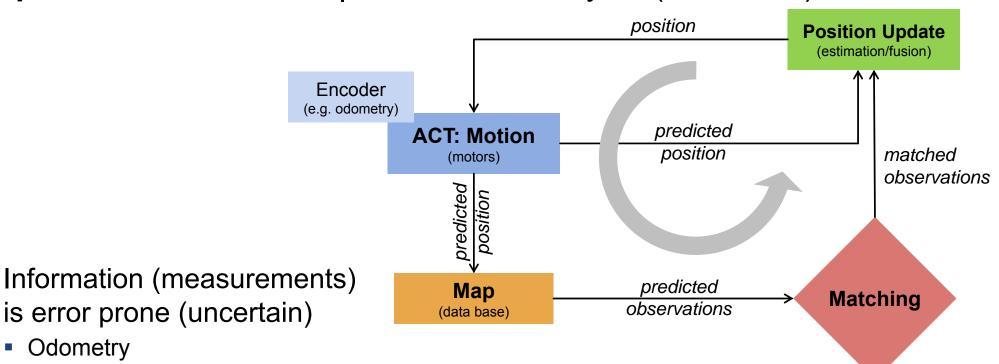
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief update (information fusion)


ACT | using motion model and its uncertainties

- The robot moves and estimates its position through its proprioceptive sensors
 - Wheel Encoder (Odometry)
- During this step, the robot's state uncertainty grows


SEE | estimation of position based on perception and map

- The robot makes an observation using its exteroceptive sensors
- This results in a second estimation of the current position



Belief update | fusion of prior belief with observation

- The robot corrects its position by combining its belief before the observation with the probability of making exactly that observation
- During this step, the robot's state uncertainty shrinks

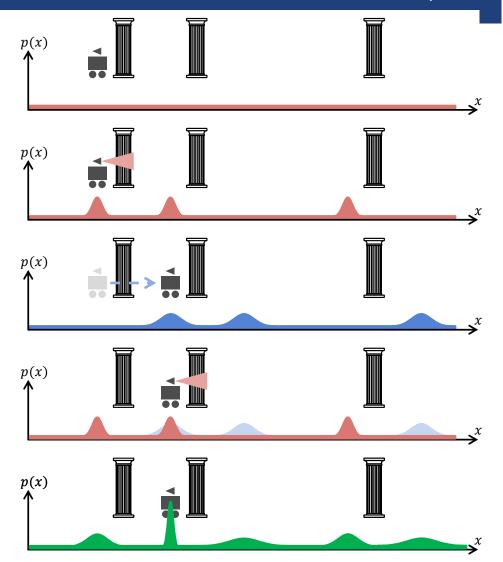
Map-based localization | the estimation cycle (ACT-SEE)

- Odometry
- Exteroceptive sensors (camera, laser, ...)
- Map
- Probabilistic map-based localization

observations (sensor data / features)

measured

SEE: Perception (Camera, Laser, ...)

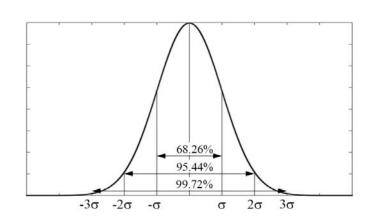

Probabilistic localization | belief representation

- a) Continuous map with single hypothesis probability distribution p(x)
- b) Continuous map with multiple hypotheses probability distribution p(x)
- c) Discretized metric map (grid k) with probability distribution p(k)
- d) Discretized topological map (nodes n) with probability distribution p(n)

Take home message | ACT - SEE Cycle for Localization

- SEE: The robot queries its sensors
 → finds itself next to a pillar
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief update (information fusion)

Localization | Refresher on Probability Theory Autonomous Mobile Robots


Roland Siegwart

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza

Probability theory | how to deal with uncertainty

- Mobile robot localization has to deal with error prone information
- Mathematically, error prone information (uncertainties) is best represented by random variables and probability theory
- p(x) = p(X = x): probability that the random variable X has value x (x is true).
 - X: random variable
 - *x*: a specific value that *X* might assume.
 - The Probability Density Functions (PDF) describes the relative likelihood for a random variable to take on a given value
 - PDF example: The Gaussian distribution:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Basic concepts of probability theory | joint distribution

- p(x,y): **joint distribution** representing the probability that the random variable X takes on the value x and that Y takes on the value y \rightarrow x and y is true.
- If *X* and *Y* are independent we can write:

$$p(x,y) = p(x)p(y)$$

Basic concepts of probability theory | conditional probability

• p(x|y): conditional probability that describes the probability that the random variable *X* takes on the value *x* conditioned on the knowledge that *Y* for sure takes y.

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

and if X and Y are independent (uncorrelated) we can write:

$$p(x|y) = \frac{p(x)p(y)}{p(y)} = p(x)$$

Basic concepts of probability theory | theorem of total probability

The theorem of total probability (convolution) originates from the axioms of probability theory and is written as:

$$p(x) = \sum_{y} p(x|y)p(y)$$
 for discrete probabilities

$$p(x) = \int_{V} p(x|y)p(y)dy$$
 for continuous probabilities

 This theorem is used by both Markov and Kalman-filter localization algorithms during the prediction update.

Basic concepts of probability theory | the Bayes rule

- The **Bayes rule** relates the conditional probability p(x|y) to its inverse p(y|x).
- Under the condition that p(y) > 0, the Bayes rule is written as:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

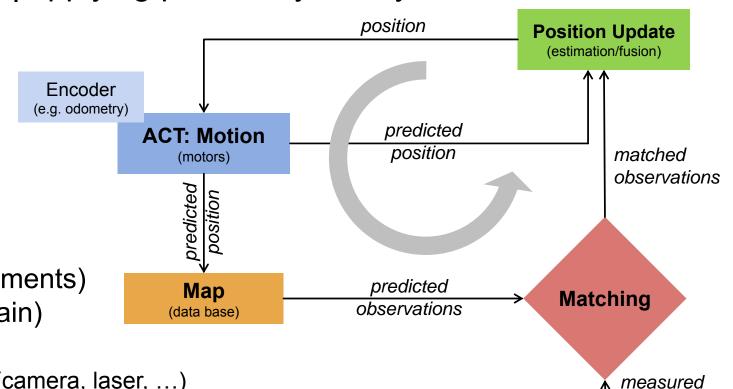
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

$$p(x|y) = \eta p(y|x)p(x)$$
 $\eta = p(y)^{-1}$ normalization factor $(\int p = 1)$

This theorem is used by both *Markov* and *Kalman-filter* localization algorithms during the measurement update.

Usage | application of probability theory to robot localization

- Probability theory is widely and very successfully used for mobile robot localization
- In the following lecture segments, its application to localization will be illustration
 - Markov localization
 - Discretized pose representation
 - Kalman filter
 - Continuous pose representation and Gaussian error model
- Further reading:
 - "Probabilistic Robotics," Thrun, Fox, Burgard, MIT Press, 2005.
 - "Introduction to Autonomous Mobile Robots", Siegwart, Nourbakhsh, Scaramuzza, MIT Press 2011



Localization | the Markov Approach Autonomous Mobile Robots

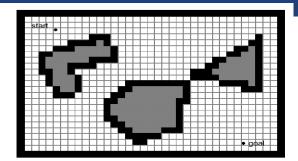
Roland Siegwart

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza

Markov localization | applying probability theory to localization

- Information (measurements) is error prone (uncertain)
 - Odometry
 - Exteroceptive sensors (camera, laser, ...)
 - Map
- Probabilistic map-based localization

SEE: Perception


(Camera, Laser, ...)

observations

(sensor data / features)

Markov localization | basics and assumption

Discretized pose representation $x_t \rightarrow \text{grid map}$

- Markov localization tracks the robot's belief state $bel(x_t)$ using an arbitrary probability density function to represent the robot's position
- Markov assumption: Formally, this means that the output of the estimation process is a function x_t only of the robot's previous state x_{t-1} and its most recent actions (odometry) u_t and perception z_t .

$$p(x_t|x_0, u_t \cdots u_0, z_t \cdots z_0) = p(x_t|x_{t-1}, u_t, z_t)$$

Markov localization addresses the *global localization problem*, the *position* tracking problem, and the kidnapped robot problem.

Markov localization | applying probability theory to localization

- **ACT** | probabilistic estimation of the robot's new belief state $bel(x_t)$ based on the previous location $bel(x_{t-1})$ and the probabilistic motion model $p(x_t|u_t,x_{t-1})$ with action u_t (control input).
 - → application of theorem of total probability / convolution

$$\overline{bel}(x_t) = \int p(x_t|u_t, x_{t-1})bel(x_{t-1}) dx_{t-1}$$
 for continuous probabilities

$$\overline{bel}(x_t) = \sum p(x_t|u_t, x_{t-1})bel(x_{t-1})$$
 for discrete probabilities

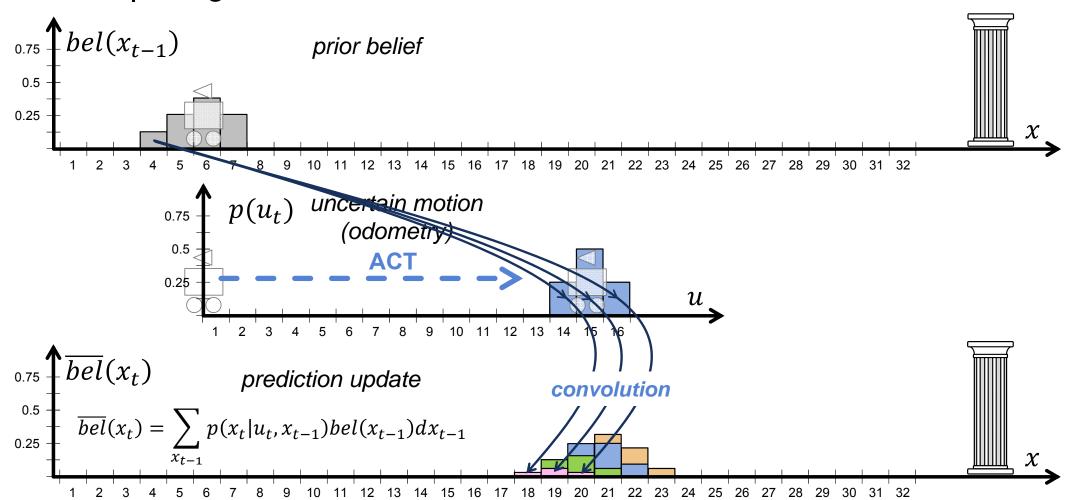
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

Markov localization | applying probability theory to localization

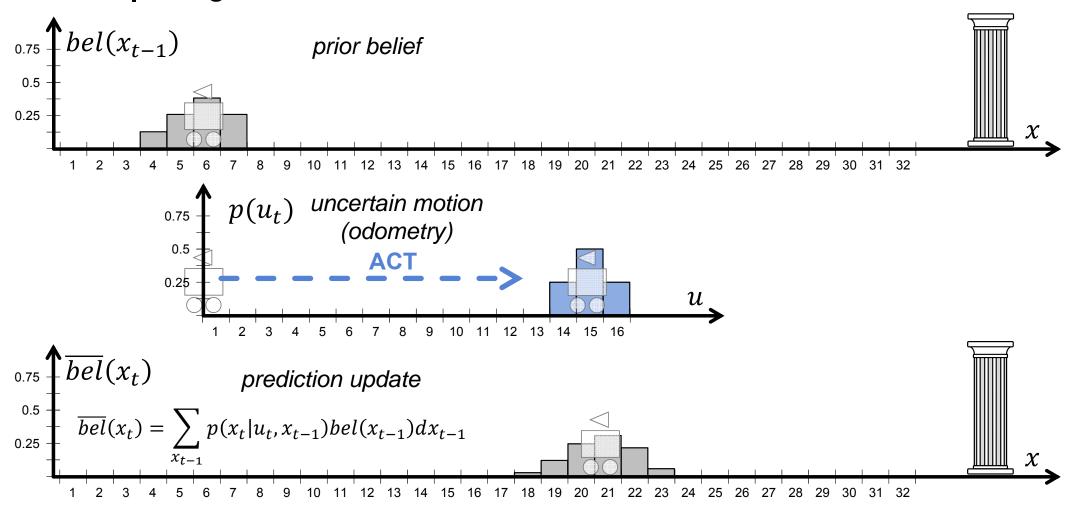
- **SEE** | probabilistic estimation of the robot's new belief state $bel(x_t)$ as a function of its measurement data z_t and its former belief state $bel(x_t)$:
 - → application of Bayes rule

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

$$bel(x_t) = \eta p(z_t|x_t, M)\overline{bel}(x_t)$$

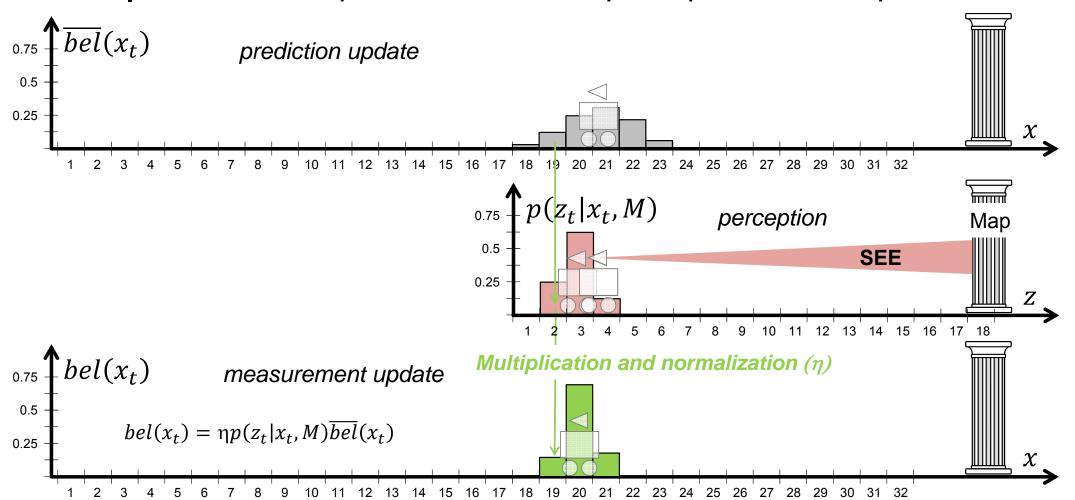

where $p(z_t|x_t,M)$ is the probabilistic measurement model (SEE), that is, the probability of observing the measurement data z_t given the knowledge of the map M and the robot's position x_t . Thereby $\eta = p(y)^{-1}$ is the normalization factor so that $\sum p = 1$.

Markov localization | the basic algorithms for Markov localization


For all
$$x_t$$
 do
$$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t|u_t,x_{t-1})bel(x_{t-1}) \qquad \text{(prediction update)}$$

$$bel(x_t) = \eta p(z_t|x_t,M)\overline{bel}(x_t) \qquad \text{(measurement update)}$$
 endfor
$$\text{Return } bel(x_t)$$

Markov assumption: Formally, this means that the output is a function x_t only of the robot's previous state x_t and its most recent actions (odometry) u_t and perception z_t .


ACT | using motion model and its uncertainties

ACT | using motion model and its uncertainties

SEE | estimation of position based on perception and map

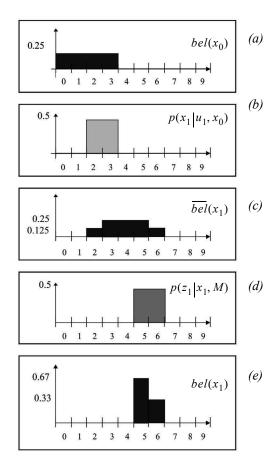


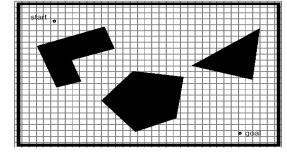
Figure 5.23 Markov localization using a grid-map.

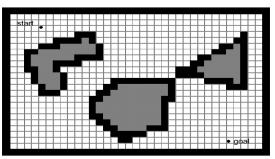
$$p(x_1 = 2) = p(x_0 = 0)p(u_1 = 2) = 0.125,$$
 (5.44)

$$p(x_1 = 3) = p(x_0 = 0)p(u_1 = 3) + p(x_0 = 1)p(u_1 = 2) = 0.25$$
 (5.45)

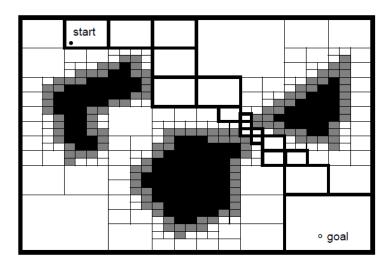
$$p(x_1 = 4) = p(x_0 = 1)p(u_1 = 3) + p(x_0 = 2)p(u_1 = 2) = 0.25$$
(5.46)

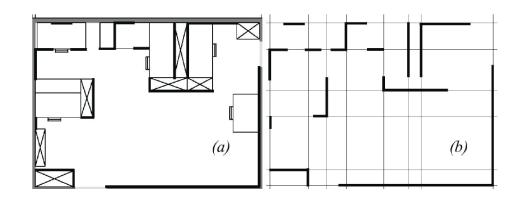
$$p(x_1 = 5) = p(x_0 = 2)p(u_1 = 3) + p(x_0 = 3)p(u_1 = 2) = 0.25$$
 (5.47)

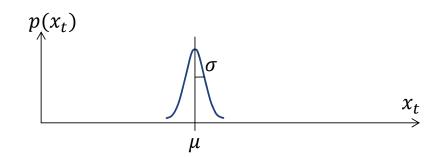

$$p(x_1 = 6) = p(x_0 = 3)p(u_1 = 3) = 0.125$$
 (5.48)


Markov localization | extension to 2D

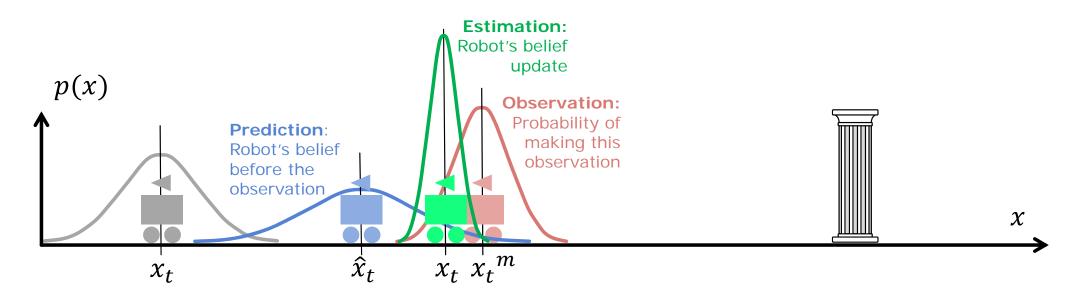
- The real world for mobile robot is at least 2D (moving in the plane)
 - \rightarrow discretized pose state space (grid) consists of x, y, θ
 - → Markov Localization scales badly with the size of the environment
- Space: 10 m x 10 m with a grid size of 0.1 m and an angular resolution of 1°
 - → $100 \cdot 100 \cdot 360 = 3.6 \cdot 10^6$ grid points (states)
 - → prediction step requires in worst case $(3.6 \ 10^6)^2$ multiplications and summations


- Very important processing power needed
- Large memory requirement


Markov localization | reducing computational complexity


- Adaptive cell decomposition
- Motion model (Odomety) limited to a small number of grid points
- Randomized sampling
 - Approximation of belief state by a representative subset of possible locations
 - weighting the sampling process with the probability values
 - Injection of some randomized (not weighted) samples
 - randomized sampling methods are also known as particle filter algorithms, condensation algorithms, and Monte Carlo algorithms.

Kalman Filter Localization | Basics and assumption


- Continuous pose representation x_t
- Kalman Filter Assumptions:
 - Error approximation with normal distribution: $x = N(\mu, \sigma^2)$ (Gaussian model)
 - Output y_t distribution is a linear (or linearized) function of the input distribution: $y = Ax_1 + Bx_2$
- Kalman filter localization tracks the robot's belief state $p(x_t)$ typically as a single hypothesis with normal distribution.
- Kalman localization thus addresses the position tracking problem, but **not** the global localization or the kidnapped robot problem.

Kalman Filter Localization | in summery

- Prediction (ACT) based on previous estimate and odometry
- Observation (SEE) with on-board sensors
- Measurement prediction based on prediction and map
- Matching of observation and map
- **Estimation** → position update (posteriori position)

