
CS 4733 Class Notes: Kinematic Singularities and Jacobians

1 Kinematic Singularities

1. If we try to control a manipulaotr in Cartesian space, we can sometimes run into difficulties since
the inverse mapping from Cartesian space to joint space can sometimes become a problem. These
problem positions of the robot are referred to as singularities or degeneracies.

2. At a singularity, the mobility of a manipulator is reduced. Usually, arbitrary motion of the ma-
nipulator in a Cartesian direction is lost. This is referred to as “Losing a DOF”.

3. Boundary Singularities (also known as workspace singularities) are a common type of singularity.
They are usually caused by a full extension of a joint, and asking the manipulator to move beyond
where it can be positioned. Typically, this is trying to reach out of the workspace at the farthest
extent of the workspace.

4. Internal Singularities (also known as joint space singularities). They are generally caused by
an alignment of the robots axes in space. For example, if 2 axes become aligned in space, ro-
tation of one can be canceled by counterrotation of the other, leaving the actual joint location
indeterminate. Also, certain kinematic alignments specific to each manipulator can cause these.

5. At a joint space singularity, infinite inverse kinematic solutions may exist.

6. At a joint space singularity, small Cartesian motions may require infinite joint velocities, causing
a problem.

7. By analyzing the Jacobian matrix of a manipulator we can find the singular posiitons of the robot.
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Figure 1: 2-DOF Polar, planar manipulator. The endpoint has coordinates (rCosθ , rSinθ).

2 Manipulator Jacobians

Because we control the robot in joint space and tend to reason about motion in Cartesian space, we
need to fully understand the mapping from joint space to Cartesian space and vice-versa. Forward and
inverse kinematics describe the static relationship between these spaces, but we must also understand
the differential relationships.

To do this, we will define a mapping between small (differential) changes in joint space and how
they create small (differential) changes in Cartesian space.

Figure 1 is a 2-DOF polar manipulator. Joint 1 is a revolute joint and joint 2 is a prismatic joint,
with an endpoint of (rCosθ , rSinθ). Let us find the rate of change of x and y, i.e. their velocities,
using the chain rule to differentiate x and y with respect to time t: 1

dx

dt
=

∂(r cosθ)

∂r

dr

dt
+

∂(r cosθ)

∂θ

dθ

dt
==> ẋ = cosθṙ − rsinθθ̇

dy

dt
=

∂(r sinθ)

∂r

dr

dt
+

∂(r sinθ)

∂θ

dθ

dt
==> ẏ = sinθṙ + r cosθθ̇

[
dx
dt
dy

dt

]

=

[
∂x
∂θ

∂x
∂r

∂y

∂θ

∂y

∂r

] [
dθ
dt
dr
dt

]

1Chain Rule:

z = F (x, y) dz =
∂F

∂x
dx +

∂F

∂y
dy

dz

dt
=

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
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[

ẋ
ẏ

]

=

[

−r sin θ cos θ
r cos θ sin θ

] [

θ̇
ṙ

]

The matrix which relates changes in joint parameter velocities to Cartesian velocities is called
the Jacobian Matrix. This is a time-varying, postion dependent linear transform. It has a number of
columns equal to the number of degrees of freedom in joint space, and a number of rows equal to the
number of degrees of freedom in Cartesian space.The Jacobian for this manipulator is:

[

ẋ
ẏ

]

= J

[

θ̇
ṙ

]

where J =

[

−r sin θ cos θ
r cos θ sin θ

]

If we specify the Cartesian velocities, we can find the joint parameter velocities with the inverse
Jacobian. The inverse Jacobian is:

[

J−1
]

[

ẋ
ẏ

]

=

[

θ̇
ṙ

]

where J−1 =

[
−sin θ

r
cos θ

r

cos θ sin θ

]

A singularity occurs when the joint velocity in joint space becomes infinite to maintain Cartesian
velocity. It shows us where the continuity in joint space breaks down as related to Cartesian space. A
singularity occurs whenever the determinant of the Jacobian is 0 (meaning we cannot invert it). The
associated Jacobian matrix is said to be singular. To find when this occurs we set

det (J) = 0

and solve for the singularity. In this case, det (J) = −r. The determinant is 0 when r = 0. Since
r is the radius of the manipulator, the robot has a singularity when we try to move through the origin
in Cartesian space. At this point, the joint space velocity of joint 1 becomes infinite to achieve any
Cartesian velocity vector(see figure 2).

Figure 2: 2-Link Polar Manipulator near origin. If we establish a manipulator path that takes the gripper
along the positive X axis to the negative X axis by decreasing r, we can see that joint 1 (θ) will have to
rotate from 0 degrees to 180 degrees as the gripper passes through the origin. This rotation will cause
the joint to have an infinite velocity as the configuration changes from the positive to negative X axis.
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Figure 3: 2-Link RR Planar Manipulator

3 Jacobian of 2-link Revolute-Revolute (RR) Manipulator

T 0
1 =








C1 −S1 0 C1L1

S1 C1 0 S1L1

0 0 1 0
0 0 0 1








T 1
2 =








C2 −S2 0 C2L2

S2 C2 0 S2L2

0 0 1 0
0 0 0 1








T 0
2 =








C12 −S12 0 C1L1 + L2C12

S12 C12 0 S1L1 + L2S12

0 0 1 0
0 0 0 1








The T matrices for the manipulator are above (see figure 3. Since this is planar manipulator, we will find J
such that

[

Ẋ

Ẏ

]

= J

[

Θ̇1

Θ̇2

]

; J =

[
∂X
∂Θ1

∂X
∂Θ2

∂Y
∂Θ1

∂Y
∂Θ2

]

X = C1L1 + L2C12 ;
∂X

∂t
=

∂(C1L1 + L2C12)

∂Θ1

∂Θ1

∂t
+

∂(C1Ll + L2C12)

∂Θ2

∂Θ2

∂t

Ẋ = (−S1L1 − L2S12)Θ̇1 − L2S12Θ̇2

Y = S1L1 + L2S12 ;
∂Y

∂t
=

∂(S1L1 + L2S12)

∂Θ1

∂Θ1

∂t
+

∂(S1L1 + L2S12)

∂Θ2

∂Θ2

∂t

Ẏ = (C1L1 + L2C12)Θ̇1 + L2C12Θ̇2

and

[

Ẋ

Ẏ

]

=

[

−S1L1 − L2S12 −L2S12

C1L1 + L2C12 L2C12

] [

Θ̇1

Θ̇2

]

Again, the Jacobian matrix relates rate of change of joint variables to rate of change of Cartesian
variables.
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4 Finding Singularites of the 2-Link Manipulator

If we invert the Jacobian, we get:

J−1Ẋ = Θ̇

The inverse is undefined whenever det (J)=0. (It is a singular matrix.) So, by solving det (J)=0, we can
find singularities in the robot workspace.

J =

[

−S1L1 − L2S12 −L2S12

C1L1 + L2C12 L2C12

]

det (J) = (−S1L1 − L2S12)(L2C12) + (L2S12)(C1L1 + L2C12)
= −S1L1L2C12 − L2

2S12C12 + C1L1L2S12 + L2
2S12C12

= L1L2(S12C1 − C12S1) = L1L2(S(Θ1 + Θ2 − Θ1))
det (J) = L1L2SΘ2

Setting this equal to zero, we find singular positions:

L1L2SΘ2 = 0

1. if L1=0, cannot move arm radially; also Θ1 indeterminate

2. if L2=0, cannot move arm radially; also Θ2 indeterminate

3. if S2=0, arm is at full extension (θ2=0), or looped back onto link 1 (θ2=180)- again, we cannot
move radially in Cartesian space. Loss of Cartesian motion.
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Figure 4: Stanford Arm Frame Diagram - first 3 joints only

5 Stanford Arm Jacobian - first 3 joints only






X
Y
Z




 =






C1S2d3 − S1d2

S1S2d3 + C1d2

C2d3 + d1




 ;






Ẋ

Ẏ

Ż




 = J






Θ̇1

Θ̇2

ḋ3




 ;






Ẋ

Ẏ

Ż




 =






∂X
∂Θ1

∂X
∂Θ2

∂X
∂d3

∂Y
∂Θ1

∂Y
∂Θ2

∂Y
∂d3

∂Z
∂Θ1

∂Z
∂Θ2

∂Z
∂d3











Θ̇1

Θ̇2

ḋ3






J =






−S1S2d3 − C1d2 C1C2d3 C1S2

C1S2d3 − S1d2 S1C2d3 S1S2

0 −S2d3 C2






Singularities: when det (J)=0

det (J) = S2d3(S1S2(−S1S2d3 − C1d2) − C1S2(C1S2d3 − S1d2))
+C2((−S1S2d3 − C1d2)(S1C2d3) − (C1S2d3 − S1d2)(C1C2d3))

= S2d3[−S2
1S

2
2d3 − S1S2C1d2 − C2

1S
2
1d3 + C1S1S2d2]

+C2[−S2
1S2C2d

2
3 − C1S1C2d2d3 − C2

1S2C2d
2
3 + C1S1C2d2d3]

= S2d3[−d3S
2
2 [C

2
1 + S2

1 ] + C2[−S2C2d
2
3[S

2
1 + C2

1 ]]
= S2d3[−d3S

2
2 ] − C2

2S2d
2
3 = −S2

2d
2
3 − C2

2S2d
2
3 = −S2d

2
3[S

2
2 + C2

2 ]
det (J) = −S2d

2
3

When d3 = 0, the arm cannot move in Cartesian Z direction

When s2 = 0, the arm is tangent to the workspace inner boundary; it cannot move along shoulder axis
direction
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Figure 5: Left: Microbot Robot. Right: Singular position for reduced (i.e 3 axis - ignore tool roll joint)
Microbot Robot

6 Microbot Robot Jacobian - First 3 joints

The solution ot the first three joints of the Microbot Robot is:

Joint θ d a α
1 θ1 d1 0 -90
2 θ2 0 a2 0
3 θ3 0 a3 0

T 0
3 =








| | | c1(a2c2 + a3c23)
N S A s1(a2c2 + a3c23)
| | | d1 − a2s2 − a3s23

| | | 1








Find Jacobian J such that





Ẋ

Ẏ

Ż




 = J






Θ̇1

Θ̇2

Θ̇3




 ; J =






∂X
∂Θ1

∂X
∂Θ2

∂X
∂Θ3

∂Y
∂Θ1

∂Y
∂Θ2

∂Y
∂Θ3

∂Z
∂Θ1

∂Z
∂Θ2

∂Z
∂Θ3






Ẋ = JΘ̇

J−1Ẋ = Θ̇

J =








−s1(a2c2 + a3c23) −s2c1a2 − s23a3c1 −s23a3c1

c1(a2c2 + a3c23) −s2s1a2 − s23a3s1 −s23a3s1

0
︸︷︷︸

joint 1 has no effect on Cartesian Z velocity

−c2a2 − c23a3 −c23a3







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To find singularities, we set Jacobian Det = 0

det(J) =
(c2a2 + a3c23)[−s1(a2c2 + a3c23)(−s23a3s1) + c1(a2c2 + a3c23)(s23a3c1)]
−c23a3[s1(a2c2 + a3c23)(s2s1a2 + s23a3s1) + c1(a2c2 + a3c23)(s2c1a2 + s23a3c1)]

= (c2a2 + c23a3)[s
2
1a2a3c2s23 + s2

1a
2
3s23c23 + c2

1a3a2c2s23 + c2
1a

2
3c23s23]

−c23a3[s
2
1s2a

2
2c2 + s2

1s2a2a3c23 + s2
1a2c2s23a3 + s2

1a
2
3s23c23

+c2
1a

2
2c2s2 + c2

1s2a2a3c23 + c2
1s23a3a2c2 + c2

1a
2
3s23c23]

= [c2a2 + c23a3][a2a3c2s23 + a2
3s23c23]

−c23a3[a
2
2c2s2 + s2a2a3c23 + s23a3a2c2 + a2

3s23c23]

= [c2a2 + c23a3][a3s23(a2c2 + a3c23)]
−c23a3[a2s2(a2c2 + a3c23) + a3s23(a2c2 + a3c23)]

= [c2a2 + c23a3][a3s23][a2c2 + a3c23]
−c23a3[(a2s2 + a3s23)(a2c2 + a3c23)]

= [a2c2 + a3c23][(a3s23)(a2c2 + a3c23) − c23a3(a2s2 + a3c23)]
= [a2c2 + a3c23][a3s23a2c2 − c23a3a2s2]
= [a2c2 + a3c23][a3a2( s23c2 − c23s2

︸ ︷︷ ︸

s(Θ2+Θ3−Θ2)=sΘ3

)]

= [a2c2 + a3c23][a3a2s3]
√

Analysis: det (J) = 0 when

1. a3 = 0 ; Lose link length

2. a2 = 0 ; Lose link length

3. s3 = 0 ; Elbow forearm fully extended

4. [a2c2 + a3c23] = 0; This is the projection of the forearem and upper arm onto the x axis. If they
sum to 0, then arm is over the origin, and joint 1 loses its ability to position the robot (see figure
5.
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7 How to Compute a Matrix Inverse

NOTE: This method is only efficient for small matrices!

Given

A =






a11 a12 a13

a21 a22 a23

a31 a32 a33






its Determinant, det A = a11A11 + a12A12 + a13A13

where Aij is the determinant of the minor matrix formed by deleting the row i and column j.

Aij = (−1)i+jdet Mij

Aij is the cofactor.

So det A = a11

∣
∣
∣
∣
∣

a22 a23

a32 a33

∣
∣
∣
∣
∣
− a12

∣
∣
∣
∣
∣

a21 a23

a31 a33

∣
∣
∣
∣
∣
+ a13

∣
∣
∣
∣
∣

a21 a22

a31 a32

∣
∣
∣
∣
∣

= a11A11 + a12A12 + a13A13

Now, look at the matrix product:





a11 a12 a13

a21 a22 a23

a31 a32 a33











A11 A21 A31

A12 A22 A32

A13 A23 A33




 =






det A 0 0
0 det A 0
0 0 det A






each diagonal entry is the det A, and off diagonal entries are zero (Try it, you will see they vanish).
We can write the above product as:

A · AT
cofactors = (det A)I

A · AT
cofactors

det (A)
= I

and inverse of A is
AT

cofactors

det (A)
= A−1

Note the AT
cofactors is a transpose of the minors of A appended with correct sign.

Example: Find Inverse of





1 3 0
0 2 6
4 0 5




 AT

cofactors =






10 −15 18
24 5 −6
−8 12 2






det A = 82

A−1 =
AT

cofactors

det (A)
=






10/82 −15/82 18/82
24/82 5/82 −6/82
−8/82 12/82 2/82











1 3 0
0 2 6
4 0 5






︸ ︷︷ ︸

Multiply these two = I

=






1 0 0
0 1 0
0 0 1





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