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CS W4733 NOTES - Inverse Kinematics

| nver se Kinematics

1. Forward Kinematics is a mapping from joint sp&g¢o Cartesian spadéd’:

F(Q) = W

This mapping is one to one - there is a unique Cartesian caafiga for the robot for a given
set of joint variables. Inverse Kinematics is a method to firelinverse mapping from’ to Q:

Q = F (W)

. The inverse kinematics problem has a wide range of apjitain robotics. Most of our high

level problem solving about the physical world is posed int€aan space. While we can reason
about the physical world in Cartesian terms, the robot isaed in joint space - that is what we
ultimately can control. Once we solve a problem for its Cage space constraints, we need to
map these constraints into the robot’s joint space usingrgazkinematics. For example, if we
specify a straight line trajectory for a robot arm, we neebreak that trajectory into a set of
joint space values over time to get the robot to follow the.lin

. The inverse kinematics mapping is typically one to manier€& are usually multiple sets of

joint variables that will yield a particular Cartesian cgpiiation. When solving the inverse
problem, we often have to choose one solution from a numbealaf solutions. There are also
degenerate cases with an infinite number of solutions taligularities).

. Some solutions of the inverse mapping may not be phygicadllizable. This is due to ma-

nipulators having physical joint limits that prevent theahanism from achieving certain joint
configurations that may be solutions to the inverse kinesaatioblem (e.g. a joint may not have
a full 360 degree motion).

. There may not be a closed form solution to the inverse proldt all for some manipulators.

However, most manipulators use a 3 DOF wrist that has intergpaxes. This allows us to
separate the inverse problem into a 3 DOF problem for findiegendpoint of the wrist and a
3 DOF problem for finding the orientation of the wrist. Thisedan fact have a closed form
solution.

. Numerical methods can be used to find a solution to theseyamoblem if a closed form solution

does not exist.

. Aredundant robot is one that has extra DOF’s (more than the space théwalyks in requires).

For example, a 7-DOF robot has an extra DOF if it is used in oum@al 6-DOF Cartesian space.
This can be useful for reaching around obstacles, and agpbllisions with other objects in
the workspace.



8. To solve inverse kinematics, we use a variety of methodsngtric, trigonometric and alge-
braic. There are certain forms that you can recognize anduke the appropriate method to

solve for a joint variable.

9. Once you solve for a joint variable, you can think of the ipatator as a reduced DOF mech-
anism - with one less joint. Now solve this manipulator’'sdarse problem and keep doing this

until all joints are solved for.

2 Cylindrical and Spherical Robot I nver se Kinematics
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Figure 1. Top: 3-DOF Spherical Robot. This robot’s final sfmmm is found by
Rot(Z,0) Rot(Y, ¢) Trans(x,r) (note: these are not D-H transforms). Bottom: 3-DOF Cyilindr
cal Robot. This robot’s final transform is found Bt(Z, 0) Trans(Z,d) Trans(x,r) (note: these
are not D-H transforms)



1. CYLINDRICAL: Given the finall’ matrix of the cylindrical robot witl? = (P,, P,, P.), find
0, d, r for the cylindrical robot.

Cos® —Sin® 0 rCosO®

70 _ Sin® Cos® 0 rSin®©
3 0 0 1 d
0 0 0 1

2. First, we look for positions in the T matrix that have a $&n¢priable isolatedP, in the matrix
Ty (last column, third row) is only dependent on the variahlso we can directly solve for d:
d = P,.

3. We notice thaP’; + P = r*. Sor = +,/P? + P2

4. To solve foro, we can take the ratio of, and P,:

P, rSinoO
Fi = Pos® = Tan® , © = atan2(P,, P,)
5. Note there are two solutions ferand © values to reach this position in space. If we take
the postiive value of, then® = atan2(P,, P,), and if we take the negative value othen

© = atan2(—P,, —P,)

The two solutions are equivalent tg ©) and(—r, © + 180)). However, the negative value of
r may not be physically realizable in an actual robot - the amy only extend radially forward.
Also, considerP = (0, 0, K) - can we solve for inverse kinematics in this robot configoret

SPHERICAL robot has 3 variables: RadiusLongitude angle and latitude angl®. For the
Spherical robot the final matrix is:

Cos®©Cos® —SmO CosOSin® rCosPCosO
Sin©Cos® Cos® Sin©Sin® rCosPSin©
—Sind 0 Cos® —rSind
0 0 0 1

Ty =

1. r is the length of the the spherical arm radius and is equal to:

r = &/P} + P2 + P2
2. To solve ford, P, = —rSin®, and® = Sin~'(P,/ — r). Noter has 2 values from above.

3. As in the cylindrical robot, the ratio @, and P, yields a solution fol©:

P rCos®SinO
Fi = C0sdC0s0 Tan® , © = atan2(P,, P,)or © = atan2(—P,, —F,)

4. Asin cylindrical robot, there are multiple solutions. Jet the second solution, find the point on
the sphere directly opposite where the manipulator is (#,at?,, P, choose-F,, —F,, —F.,).
The second solution is the latituide and longitude of the peint withr’s value negated. It also
may not be physically realizable with the manipulator. N&itegularity P = (0, 0, K).
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3 Adept Robot Inverse Kinematics

Vertical
Elbow extension

Figure 2: Adept 1 Scara Robot arm. This arm is in a R-R-P-R gardtion.f,, 0, , 6, are the revolute
joint angle variables ang; is the prismatic joint variable. The robot is pictured in tHeme position
in the frame diagram using the values of the joint varialiktsd in the table below.

1. Given the final position of the robot PE(, P,, P.,). Find©,, ©,, ¢;, andO, for the scara robot.
The finalT matrix is given below:

Ciio—g Si—o-a 0 a1Ch+ axCis

Si—oea —Ciocy 0 a1S1 + a2Si1-2
0 0 -1 dl — (3 — d4
0 0 0 1

T =

2. To find®,: if we square and surf?, and P, we can get an expression@y:

Pg? + Py2 = (a101 + CL201_2)2 + (a151 + a251_2)2

Pg? + Py2 = CL% + ag + 2&1&201(0102 + 5152) + 2&1&251(5102 — 5201)

Pf + P; = a% + a% + 2a1a201202 + 2a1agSng
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Figure 3: Solution t®, of Adept, as seen from above (along Z axis)

Pj + P; = a% + ag + 2a1a2C5

P2+ P2—a?—a?
Cy = . S - 2552:\/1—022

2@1@2

Oy =+ Cos™ ! Pf—i—PyQ—a%—a%
2 2@1&2

3. This is really just the derivation of the Law of Cosines g¥hwe can also use to finé, (see
figure above):
aj + a3 — 2a1a2C0s(180 — ©3) = P2 4+ P (Law of Cosines)

2 2 _ .2 2
P, + P; —aj — a3

—2&1 asg

Cos(180 — O,) =

2 2 .2 2
P, + P; —aj — a3

—2@1&2

—Cos(09) =

2 2 2 2

2&1&2

Cos(0,) =



4. To solve for©,, we solve for the following:
a1Cy + asCi_o = P, Two equations in two

a151 + a2S1_2 = P, unknowns (Cy, Sy)
(9 known from above)

alcl + a20102 -+ a2515'2 = Px s &151 -+ a25102 — &25201 = Py

(a1 + (1202)01 + (CLQSQ)Sl = Px s (—CLQSQ)Cl + (CL1 + (1202)51 = Py

(IQSQP$ + (CL1 + a202)Py

S p—
! (@252)% + (a1 + a2C5)?

((11 + a202)P$ — (IQSQPy

C p—
' (a252)2 + (CLl + a202)2

@1 = atang(aQSQng + ((11 + CLQCQ)Py, (a1 + a202)P$ — (IQSQPy)

5. To solve forgs:
P,=d—q—dy; ¢3=dy —dy— P,
6. To solve foro,: The final roll angle cannot be determined from the positiecter [P,, P,, P.].

If we are given the orientation matrix, then we can use thesatf N,,, N, to find ©,

Si—o-4 . Ny

C(1—2—4 B N$

Tany_p_4 =

@1 - @2 - @4 = &t&ng(Ny, N:c)

@4 = —ataNQ(Ny, Nx) + @1 - @2
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Figure 4: Example solution ignoring, with 2 arm positions

7. Example Solution (n®.,) if a; = /3, as = 1, d; = 5, d, = 2 and P=/3,-1,1], solve for joint
variables:

(P} + P} — ai — a3)
2&1&2

) = +90°

Oy = +Cos™ ! < ) = iCosl(%

@1 = atang(CLgSQP;B + ((ll + CLQCQ)Py, (a1 + a202)P$ — GQSQPy)

Zf @2 = +9007 @1 = atan2(0,4) =0°

if ©y = —-90°, ©; = atang(—\/g7 1) = —60°

G3=dy—dy—P,=5—-2—-1=2

Two Solutions:

O O g
0° 90° 2
—60° —=90° 2



