CS 4733 Class Notes: Forward Kinematics

Reference: Chapter 3, Robot Modeling and Control by Spong, Hutchinson and Vidyasgar, Wiley, 2006.

1 Establishing Frames Between Links of a Robot

- A robot is a series of links and joints, which creates a kinematic chain. Each link connnects 2 adjacent joints, and each joint connects 2 adjacent links (see figure 1.)
- We need to set up a coordinate frame for every joint of the robot. Once we do this, we can establish a set of transformations that will take us from one joint frame to the next.
- If we combine all these transformations from frame 0 to frame n, we can define the entire robot transformation matrix T_{n}^{0}.
- All joints, without exception, are represented by a Z axis. If we have a revolute (rotary motion) joint, we rotate about Z. If we have a prismatic joint (a linear sliding joint), we translate along Z. Notation: joint k connects link $k-1$ and link k, and it rotates θ_{k} about the Z_{k-1} axis. When joint k is actuated, link k moves.
- A robot with n joints will have $n+1$ links, since each joint connects 2 links. We number the joints from 1 to n, and we number the links from 0 to n starting at the base. We can think of link 0 as the fixed base of the robot that never moves.
- With the $i^{\text {th }}$ joint we describe a joint variable q_{i}, which is an angular rotation if a revolute joint or a linear displacement if a prismatic joint.
- Each link has a coordinate frame attached to it. Frame $o_{i} x_{i} y_{i} z_{i}$ is attached to link i. This means that whatever robot motions occur, the coordinates of every point on link i are constant when expressed in the $i^{t h}$ coordinate frame.
- When joint i is actuated, the link i and its entire frame experience a resulting motion. Figure 1 shows a more general way to analyze the relationship between links and joints. Figure 2 shows some frames attached to a 3-link manupulator.

Figure 1: Relationship of joints and links on a robot mechanism

1.1 Creating Transform T_{i}^{i-1} from Frame $i-1$ to Frame i

We need to specify 4 parameters that will allow us to completely describe the transformation from one frame of the robot to the next. These parameters are called the Denavit - Hartenberg parameters. When we describe a robot using this notation, we refer to it as $D-H$ notation.

1. Rotate about the Z_{i-1} axis by an angle of $\theta_{i} . \theta_{i}$ is called the joint angle.
2. Translate along Z_{i-1} by d_{i}. d_{i} is called the link offset distance.
3. Translate along X_{i} axis (newly rotated X axis from step 1 above) by a_{i}. This will bring the orgins of the two coordinate frames together. a_{i} is called the link length.
4. Rotate about the X_{i} axis by an angle α_{i}. This angle is called the link twist angle, and it will align the Z axes of the two frames.

This entire process can be summarized by chaining together the 4 transformations above into a single composite transformation:

$$
\begin{align*}
T_{i}^{i-1} & =\operatorname{Rot}\left(Z, \theta_{i}\right) \operatorname{Trans}\left(Z, d_{i}\right) \operatorname{Trans}\left(X, a_{i}\right) \operatorname{Rot}\left(X, \alpha_{i}\right) \tag{1}\\
& =\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} C \alpha_{i} & S \theta_{i} S \alpha_{i} & a_{i} C \theta_{i} \\
S \theta_{i} & C \theta_{i} C \alpha_{i} & -C \theta_{i} S \alpha_{i} & a_{i} S \theta_{i} \\
0 & S \alpha_{i} & C \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{2}
\end{align*}
$$

We will see that this choice of parameters is not unique. However, this is a standard way of specifying the relation of each coordinate frame to the next one in a serial kinematic chain.

1.2 Setting up a Table of D-H parameters

From the discussion above, all we need to provide to solve the forward kinematics of a robot are 4 parameters: $\theta_{i}, d_{i}, a_{i}, \alpha_{i}$. If we fill in a table like the one below, we can completely specify the robot's forward kinematic structure:

Joint	θ	d	a	α
1				
2				
3				
\ldots	\ldots	\ldots	\ldots	\ldots
N				

Using this table, we can just plug into the transform matrix for each link of the robot, and multiply them together. Note that the joint variable is either θ for revolute joints or d for prismatic joints.

Figure 3.1: Coordinate frames attached to elbow manipulator.
Figure 2: D-H frames for 3 link elbow manipulator. Note: manipulator is pictured after rotation $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=(90,0,0)$
Figure 2 shows a 3-link elbow manipulator. Assume link lengths of a_{2} and a_{3} for links 2 and 3, and that the link 1 offset is d_{1} :

Joint	θ	d	a	α
1	θ_{1}	d_{1}	0	90
2	θ_{2}	0	a_{2}	0
3	θ_{3}	0	a_{3}	0

$$
\begin{gather*}
A_{1}^{0}=\left[\begin{array}{cccc}
C_{1} & 0 & -S_{1} & 0 \\
S_{1} & 0 & -C_{1} & 0 \\
0 & 1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{2}^{1}=\left[\begin{array}{cccc}
C_{2} & -S_{2} & 0 & a_{2} C_{2} \\
S_{2} & C_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{3}^{2}=\left[\begin{array}{cccc}
C_{3} & -S_{3} & 0 & a_{3} C_{3} \\
S_{3} & C_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{3}\\
T_{3}^{0}=A_{1}^{0} A_{2}^{1} A_{3}^{2}=\left[\begin{array}{cccc}
C_{1} C_{2} C_{3}-C_{1} S_{2} S_{3} & -C_{1} C_{2} S_{3}-C_{1} S_{2} S_{3} & S_{1} & C_{1} C_{2} a_{3}+C_{1} a_{2} \\
S_{1} C_{2} C_{3}-S_{1} S_{2} S_{3} & -S_{1} C_{2} S_{3}-S_{1} S_{2} C_{3} & -C_{1} & S_{1} C_{2} a_{3}+S_{1} a_{2} \\
S_{2} C_{3}+C_{2} S_{3} & -S_{2} S_{3}+C_{2} C_{3} & 0 & S_{2} a_{3}+d_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{4}
\end{gather*}
$$

If $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=(90,0,0)$, then substituting in T_{3}^{0} we get the matrix:

$$
T_{3}^{0}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{5}\\
1 & 0 & 0 & a_{2}+a_{3} \\
0 & 1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This shows the end effector location as $\left(0, a_{2}+a_{3}, d_{1}\right)$ as shown in the figure. Note also the directions of the axes in the final end-effector frame are equal to the column vectors of T_{3}^{0}.

2 Settting up a Frame Diagram

- In analyzing a robot mechanism, we often create a frame diagram that graphically shows the relationships between the DH -frames of the robot.
- Starting from a base coordinate frame, we align the Z axis with the first joint axis. Call this joint axis Z_{i-1}. Every joint axis in the mechanism will be a Z axis. The axis of the next joint in the chain Z_{i} is either parallel, intersecting or skew with Z_{i-1}.
- if Z_{i} and Z_{i-1} are intersecting, then X_{i} is in the direction of the cross product of the $2 Z$ axes.
- if Z_{i} and Z_{i-1} are parallel, then X_{i} is in the direction of common normal between the 2 parallel axes. Since there are many equal normals between the 2 parallel axes, we usually take as the X_{i} axis the normal through the origin O_{i-1} from the previous frame and establish origin O_{i} as the point of intersection of the normal with Z_{i}. Note that the link offset distance d_{i} will be zero in this case.
- if Z_{i} and Z_{i-1} are skew, then X_{i} is in the direction of the common (unique) normal between the 2 axes.
- Once we have a new X and Z axis, and an origin for the new frame we are done. The Y axis will simply be the cross product of Z and X.
- Using these rules we then move out the mechanism, a joint and a frame at a time, filling in the D-H parameters and setting up the manipulator transforms.
- We also usually designate a zero - position frame diagram of the robot which is a graphical depiction of the frames when all joint variables are zero. The examples that follow will make this clear.
- Another analysis of the manipulator is to defineits geometric workspace: the volume of space reachable by the endpoint of the manipulator. For the previous example of the elbow manipulator (fig. 2), the workspace is a sphere.

3 Example: Forward Kinematics, Cylindrical Manipulator

Figure 3.7: Three-link cylindrical manipulator.
Table 3.2: DH parameters for 3-link cylindrical manipulator.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	0	d_{1}	θ_{1}^{*}
2	0	-90	d_{2}^{*}	0
3	0	0	d_{3}^{*}	0
variable				

Figure 3: Three link Cylindrical Manipulator
Figure 5 shows a picture of this mechanism and its frame diagram. A frame diagram shows the robots configuration for each link of the robot. The table of joint parameters is in figure 3. Substituting these values into the D-H frame transformation matrices we get:

$$
\begin{gather*}
A_{1}^{0}=\left[\begin{array}{cccc}
C_{1} & -S_{1} & 0 & 0 \\
S_{1} & C_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{2}^{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{3}^{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{6}\\
T_{3}^{0}=A_{1}^{0} A_{2}^{1} A_{3}^{2}=\left[\begin{array}{cccc}
C_{1} & 0 & -S_{1} & -S_{1} d_{3} \\
S_{1} & 0 & C_{1} & C_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{7}
\end{gather*}
$$

Note: d_{1} could be zero, in which case the origin of link 1 would be the same as link 2 's origin.
Example: Let $\theta_{1}=90, d_{1}=0, d_{2}=3$ and $d_{3}=5$. Then substituting into the transform matrix, we can see the manipulator endpoint (last column of matrix) is at $(-5,0,3)$.

4 Example: Forward Kinematics, Spherical Wrist

Figure 3.8: The spherical wrist frame assignment.
Table 3.3: DH parameters for spherical wrist.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	-90	0	θ_{4}^{*}
5	0	90	0	θ_{5}^{*}
6	0	0	d_{6}	θ_{6}^{*}

* variable

Figure 4: Spherical wrist frame assignments
Aa spherical wrist can be added to the cylindirical manipulator to orient the end-effector (gripper) in space. The first 2 angles effectively point the gripper in a spherical coordinate system, and the last angle is a roll angle that orients the gripper about the approach axis. The table of joint parameters is in figure 4. Substituting these values into the D-H frame transformation matrices we get:

$$
\begin{align*}
& A_{4}^{3}= {\left[\begin{array}{cccc}
C_{4} & 0 & -S_{4} & 0 \\
S_{4} & 0 & C_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{5}^{4}=\left[\begin{array}{cccc}
C_{5} & 0 & S_{5} & 0 \\
S_{5} & 0 & -C_{5} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{6}^{5}=\left[\begin{array}{cccc}
C_{6} & -S_{6} & 0 & 0 \\
S_{6} & C_{6} & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right] } \tag{8}\\
& T_{6}^{3}=A_{4}^{3} A_{5}^{4} A_{6}^{5}=\left[\begin{array}{cccc}
C_{4} C_{5} C_{6}-S_{4} S_{6} & -C_{4} C_{5} S_{6}-S_{4} C_{6} & C_{4} S_{5} & C_{4} S_{5} d_{6} \\
S_{4} C_{5} C_{6}+C_{4} S_{6} & -S_{4} C_{5} S_{6}+C_{4} C_{6} & S_{4} S_{5} & S_{4} S_{5} d_{6} \\
-S_{5} C_{6} & S_{5} S_{6} & C_{5} & C_{5} d_{6} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{9}
\end{align*}
$$

You can append the 2 matrices $T_{3}^{0} T_{6}^{3}$ to get the final matrix ${ }^{0} T_{6}$ of the cylindrical manipulator with the spherical wrist. This mechanism has 6 DOF and 6 joint variables: $\theta_{1}, d_{2}, d_{3}, \theta_{4}, \theta_{5}, \theta_{6}$.

5 Example: Forward Kinematics: 3 Link Manipulator B

Figure 5: Manipulator B: Mechanism and frame diagram
Figure 5 shows a picture of this mechanism and its frame diagram. A frame diagram shows the robots configuration for each link of the robot.

The table of joint parameters is as follows:

Joint	θ	d	a	α
1	θ_{1}	0	a_{1}	-90
2	θ_{2}	0	a_{2}	0
3	θ_{3}	0	a_{3}	0

Substituting these values into the $\mathrm{D}-\mathrm{H}$ frame transformation matrices we get (note: $C_{23}=\operatorname{Cos}\left(\theta_{2}+\theta_{3}\right)$, same for S_{23}.

$$
\begin{gather*}
A_{1}^{0}=\left[\begin{array}{cccc}
C_{1} & 0 & -S_{1} & a_{1} C_{1} \\
S_{1} & 0 & C_{1} & a_{1} S_{1} \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{2}^{1}=\left[\begin{array}{cccc}
C_{2} & -S_{2} & 0 & a_{2} C_{2} \\
S_{2} & C_{2} & 0 & a_{2} S_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{3}^{2}=\left[\begin{array}{ccccc}
C_{3} & -S_{3} & 0 & a_{3} C_{3} \\
S_{3} & C_{3} & 0 & a_{3} S_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{10}\\
A_{2}^{0}=\left[\begin{array}{cccc}
C_{1} C_{2} & -C_{1} S_{2} & -S_{1} & C_{1} C_{2} a_{2}+C_{1} a_{1} \\
S_{1} C_{2} & -S_{1} S_{2} & -C_{1} & S_{1} C_{2} a_{2}+S_{1} a_{1} \\
-S_{2} & -C_{2} & 0 & -S_{2} a_{2} \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{3}^{0}=\left[\begin{array}{cccc}
C_{1} C_{23} & -C_{1} S_{23} & -S_{1} & C_{1} C_{23} a_{3}+C_{1} C_{2} a_{2}+C_{1} a_{1} \\
S_{1} C_{23} & -S_{1} S_{23} & C_{1} & S_{1} C_{23} a_{3}+S_{1} C_{2} a_{2}+S_{1} a_{1} \\
-S_{23} & -C_{23} & 0 & -a_{3} S_{23}-S_{2} a_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{11}
\end{gather*}
$$

If $\theta_{1}=90, \theta_{2}=90, \theta_{3}=-90$, then

$$
A_{3}^{0}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \tag{12}\\
1 & 0 & 0 & a_{1}+a_{3} \\
0 & -1 & 0 & -a_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

6 Example: Forward Kinematics: 3 Link Manipulator D

Figure 3 shows a picture of this mechanism and its frame diagram.

Figure 6: Manipulator D: Mechanism and frame diagram
The table of joint parameters is as follows:

Joint	θ	d	a	α
1	θ_{1}	0	a_{1}	180
2	0	q_{2}	0	90
3	θ_{3}	0	a_{3}	0

Substituting these values into the D-H frame transformation matrices we get:

$$
\begin{gather*}
A_{1}^{0}=\left[\begin{array}{cccc}
C_{1} & S_{1} & 0 & a_{1} C_{1} \\
S_{1} & -C_{1} & 0 & a_{1} S_{1} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{2}^{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & q_{2} \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{3}^{2}=\left[\begin{array}{ccc}
C_{3} & -S_{3} & 0 \\
S_{3} a_{3} C_{3} \\
C_{3} & 0 & a_{3} S_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \tag{13}\\
A_{2}^{0}=\left[\begin{array}{cccc}
C_{1} & 0 & -S_{1} & a_{1} C_{1} \\
S_{1} & 0 & C_{1} & a_{1} S_{1} \\
0 & -1 & 0 & -q_{2} \\
0 & 0 & 0 & 1
\end{array}\right] ; A_{3}^{0}=\left[\begin{array}{cccc}
C_{1} C_{3} & -C_{1} S_{3} & -S_{1} & C_{1} C_{3} a_{3}+C_{1} a_{1} \\
S_{1} C_{3} & -S_{1} S_{3} & C_{1} & S_{1} C_{3} a_{3}+S_{1} a_{1} \\
-S_{3} & -C_{3} & 0 & -a_{3} S_{3}-q_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{14}
\end{gather*}
$$

if $\theta_{1}=90$ and $\theta_{3}=0$ and $q_{2}=5:$

$$
A_{3}^{0}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \tag{15}\\
1 & 0 & 0 & a_{1}+a_{3} \\
0 & -1 & 0 & -5 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

