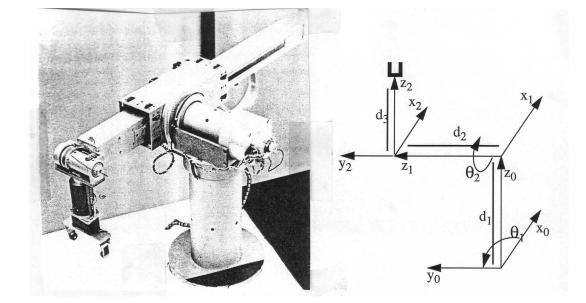
CS 4733, Class Notes: Forward Kinematics II



1 Stanford Manipulator - First Three Joints

Figure 1: Stanford Robotic Arm. The frame diagram shows the first three joints, which are in a R-R-P configuration (Revolute-Revolute-Prismatic.

joint	θ	d	a	α
nnn1	θ_1	d_1	0	-90
2	θ_2	d_2	0	90
3	0	d_3	0	0
4				
5				
6				

$$T_1^0 = \begin{bmatrix} C_1 & 0 & -S_1 & 0 \\ S_1 & 0 & C_1 & 0 \\ 0 & -1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} T_2^1 = \begin{bmatrix} C_2 & 0 & S_2 & 0 \\ S_2 & 0 & -C_2 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} T_3^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_2^0 = \begin{bmatrix} C_1C_2 & -S_1 & C_1S_2 & -S_1d_2\\ S_1C_2 & C_1 & S_1S_2 & C_1d_2\\ -S_2 & 0 & C_2 & d_1\\ 0 & 0 & 0 & 1 \end{bmatrix} T_3^0 = \begin{bmatrix} C_1C_2 & -S_1 & C_1S_2 & C_1S_2d_3 - S_1d_2\\ S_1C_2 & C_1 & S_1S_2 & S_1S_2d_3 + C_1d_2\\ -S_2 & 0 & C_2 & C_2d_3 + d_1\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

if $\theta_1 = \theta_2 = 0, d_3 = 0$: $T_3^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 1 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (Zero Position)

2 4-DOF Gantry Robot

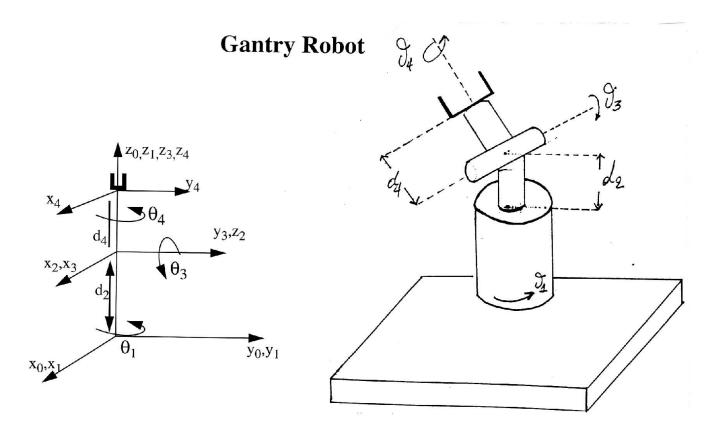


Figure 2: Gantry Robot Arm. This arm is in a R-P-R-R configuration. θ_1 , θ_3 , θ_4 are the revolute joint angle variables and d_2 is the prismatic joint variable. d_4 is a constant.

		0	7			1		
	joint	θ	d	a	α	J		
	1	θ_1	0	0	0			
	1 2 3	0	d_2	0	-90			
	3	θ_3	0	0	90			
	4	θ_4	d_4	0	0			
$A_1^0 = \begin{bmatrix} C_1 \\ S_1 \\ 0 \\ 0 \end{bmatrix}$	$-S_1$ C_1 0 0	$egin{array}{ccc} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \ \end{array}$		$\frac{1}{2} =$	$\begin{bmatrix} 1\\0\\0\\-0\end{bmatrix}$	$\begin{array}{c} 0 \\ 0 \\ -1 \\ 0 \end{array}$	0 1 0 0	$\begin{bmatrix} 0 \\ 0 \\ d_2 \\ 1 \end{bmatrix}$
$A_3^2 = \begin{bmatrix} C_3 & 0\\ S_3 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$	$egin{array}{ccc} S_3 \ -C_3 \ 0 \ 0 \ 0 \ 0 \ \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}$	$\left] A_4^3 \right]$	=	$egin{array}{ccc} C_4 & - \ S_4 & 0 & 0 & 0 & 0 \end{array}$	$-S_4$ C_4 0 0	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ d_4 \\ 1 \end{array}$

$$A_{2}^{0} = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{1} & 0 & -S_{1} & 0 \\ S_{1} & 0 & C_{1} & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$A_{4}^{2} = \begin{bmatrix} C_{3} & 0 & S_{3} & 0 \\ S_{3} & 0 & -C_{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{4} & -S_{4} & 0 & 0 \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{3}C_{4} & -C_{3}S_{4} & S_{3} & S_{3}d_{4} \\ S_{3}C_{4} & -S_{3}S_{4} & -C_{3} & -C_{3}d_{4} \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$A_{4}^{0} = A_{2}^{0}A_{4}^{2} = \begin{bmatrix} C_{1} & 0 & -S_{1} & 0 \\ S_{1} & 0 & C_{1} & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{3}C_{4} & -C_{3}S_{4} & S_{3} & S_{3}d_{4} \\ S_{3}C_{4} & -S_{3}S_{4} & -C_{3} & -C_{3}d_{4} \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{1}C_{3}C_{4} - S_{1}S_{4} & -C_{1}C_{3}S_{4} - C_{4}S_{1} & C_{1}S_{3} & C_{1}S_{3}d_{4} \end{bmatrix}$$

$$= \begin{bmatrix} C_1C_3C_4 - S_1S_4 & -C_1C_3S_4 - C_4S_1 & C_1S_3 & C_1S_3d_4\\ C_3C_4S_1 + C_1S_4 & -C_3S_1S_4 + C_1C_4 & S_1S_3 & S_1S_3d_4\\ -S_3C_4 & S_3S_4 & C_3 & C_3d_4 + d_2\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

if
$$\theta_1 = \theta_3 = \theta_4 = 0, d_2 = 0$$
: $A_4^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (Zero Position)
if $\theta_1 = \theta_3 = \theta_4 = 90, d_2 = D$: $A_4^0 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_4 \\ 0 & 1 & 0 & D \\ 0 & 0 & 0 & 1 \end{bmatrix}$

3 Scara Arm

A SCARA arm (Selective Compliant Articulated Robot Arm) is a commonly found nrobotic manipulator. It is well suited for pick-and-place operations where an object is approached from above, grasped and then transported to another location where the object is deposited.

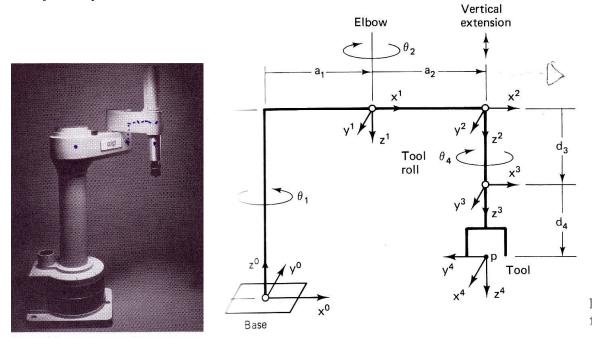


Figure 3: Adept 1 Scara Robot arm. This arm is in a R-R-P-R configuration. θ_1 , θ_2 , θ_4 are the revolute joint angle variables and q_3 is the prismatic joint variable. The robot is pictured in the *Home* position in the frame diagram using the values of the joint variables listed in the table below.

axis	θ	d	a	α	Home
1	θ_1	d_1	a_1	π	0
2	θ_2	0	a_2	0	0
3	0	q_3	0	0	100
4	θ_4	d_4	0	0	$\pi/2$

$$T_{tool}^{base} = T_1^0 T_2^1 T_3^2 T_4^3 = \\ \begin{bmatrix} C_1 & S_1 & 0 & a_1 C_1 \\ S_1 & -C_1 & 0 & a_1 S_1 \\ 0 & 0 & -1 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_2 & -S_2 & 0 & a_2 C_2 \\ S_2 & C_2 & 0 & a_2 S_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_4 & -S_4 & 0 & 0 \\ S_4 & C_4 & 0 & 0 \\ 0 & 0 & 1 & d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ T_{tool}^{base} = \begin{bmatrix} C_{1-2-4} & S_{1-2-4} & 0 & a_1 C_1 + a_2 C_{1-2} \\ S_{1-2-4} & -C_{1-2-4} & 0 & a_1 S_1 + a_2 S_{1-2} \\ 0 & 0 & -1 & d_1 - q_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where $S_{1-2-4} = Sin(\theta_1 - \theta_2 - \theta_4)$ (same for C_{1-2-4}).