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Abstract— Designing and fabricating new robotic systems is
typically limited to experts, requiring engineering background,
expensive tools, and considerable time. In contrast, to facilitate
everyday users developing custom robots for personal use,
this work presents a new system to easily create printable
foldable robots from high-level structural specifications. A user
merely needs to select electromechanical components from a
library of basic building blocks and pre-designed mechanisms,
then connect them to define custom robot assemblies. The
system then generates complete mechanical drawings suitable
for fabrication, instructions for the assembly of electronics, and
software to control and drive the final robot. Several robots
designed in this manner demonstrate the ability and versatility
of this process.

I. INTRODUCTION

While robots are widely used for research and commer-
cial applications, they are not yet ubiquitous in everyday
life for personalized tasks. Creating a new robotic system
typically involves repeated design iterations using a variety
of computer-aided design tools. Domain-specific expertise
is generally required to create the requisite mechanical
drawings for a structural body, electronic circuits to connect
sensors and actuators, and software to manage system inputs
and outputs. This entire process often needs to be rerun for
each new robot desired, making the design and fabrication
of new robots slow and introducing a knowledge barrier for
casual users.

For the general public to obtain a device able to accom-
plish a specified function, computational tools are required
that can create robots from high-level descriptions. The long-
term objective is to develop a hardware compiler that can
start with functional specifications of a desired system and
automatically design and fabricate a robot to accomplish
those. This paper takes a step towards that vision with a
system to simultaneously generate the mechanical, electrical,
and software components of a robot from its structural
specifications, allowing non-experts to easily design elec-
tromechanical systems with custom specifications and then
quickly and inexpensively fabricate the designed robot.

The presented approach modularizes mechanical, electri-
cal, and software components to represent them in a database
suitable for hierarchical composition. These parameterized
components are characterized in terms of their geometric
and physical properties; while experts can directly generate
new low level building blocks, casual users can simply
connect existing designs to make custom electromechanical
devices. The system then automatically outputs a collection
of files with which the user can manufacture the specified

978-1-4799-6933-3/14/$31.00 ©2014 IEEE

robot: fabrication drawings get sent to a desktop cutter to
generate cut-and-fold origami-inspired 3D structures, wiring
instructions guide the user to assemble sensors and actuators
onto that structure using plug-and-play electronic modules,
and libraries and application software get loaded onto a
central microcontroller. The resulting robot can be wirelessly
controlled from an auto-generated user interface (UI) on a
smartphone.

This work extends the previous work reported in [1], [2],
which focused only on mechanical structures, to create a
system which directly translates structural specifications into
a fully functional printable robot. In particular, this paper
presents the following:

« a system which encapsulates mechanical, electrical, and
software designs into parameterizable self-contained
components with well-defined interfaces for composi-
tion with other such components,

« a process to hierarchically compose those elements into
electromechanical mechanisms of arbitrary complexity,

e a library of base and derived components, and

« several robots designed, fabricated, and operated using
the proposed system.

This paper begins in section II with a brief look at related
research. A detailed breakdown of the desired goals of this
work is presented in section III, followed by a description
of the implementation in section IV. Several case studies in
which this system was used to design and fabricate a variety
of robots follow in section V. The paper concludes with an
analysis of the benefits of this system and plans for future
work in section VI.

II. RELATED WORK

This paper builds on a body of work developing pro-
cesses to rapidly fabricate robots. In particular, 2D processes
have been used to create 3D structures [3], [4] and robots
[5]-[7] in various mediums across a range of size scales.
These fabrication methods have been employed for rapid
prototyping (e.g. in [8]), being able to produce devices
in a timeframe of minutes. However, creating robots with
these processes typically requires careful hand design by
experienced engineers.

There have been attempts to automate the decomposition
of 3D shapes, notably in [9]-[11], to generate 2D fold
patterns. These tools and algorithms, however, focus mostly
on solid objects, employing various heuristics to generate
polyhedra obeying certain rules. Compliant and kinematic
structures are not addressed.
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The system presented in this paper extends earlier work
on simplifying the design of origami inspired cut-and-fold
robotics. Manually scripted elements were used to simplify
design iteration in [1] to create folded micro air vehicles,
while component-based mechanical design was demonstrated
in [2].

III. SYSTEM GOALS

Robot creation traditionally consists of a sequence of
phases during which mechanical, electrical, and software
subsystems are designed and then integrated. This process
must be largely started anew for each distinct robot, requiring
the designer to have a deep understanding of the interplay
between the separate subsystems as they relate to the robot as
a whole. Instead, the system presented in this work leverages
a modular paradigm which allows electrical, mechanical,
and software components to be coupled at the lowest level.
As a user combines these larger electromechanical modules,
subsystem designs are assembled behind the scenes to main-
tain an integrated design throughout the modular hierarchy.
This high-level layout of modules can thus be compiled to
generate fabrication specifications which directly produce the
robot.

In order to realize this system, a library of modules must
be created by expert users that encapsulates mechanical
and electrical components. In [2], a modular method was
proposed for specifying mechanisms by combining struc-
tural elements with compliant degrees of freedom. Analo-
gous electrical blocks can now be defined using the same
paradigm: expert designers create the building blocks with
parameterized specifications and allowable interfaces for
composition. Modularizing these systems gives the ability to
group the mechanical and electrical blocks into higher level
modules. Users can then combine basic blocks into complex
electromechanical systems, with flexibility arising from the
parameterized specifications.

These higher order objects can also be included in the
library, allowing for mechanisms of ever increasing com-
plexity. This allows a user to describe their desired robot
in a more natural manner: rather than manually laying
out edges and faces, a gripper module can be defined by
attaching two fingers to a base, and connecting it to a servo
module for actuation. The finger and servo modules were
similarly modularly designed, and the gripper assembly can
then itself be added to the library. Some elements currently
implemented in the design library can be seen in Figure 1.

This modular paradigm has also been applied to the soft-
ware required for controlling the robot and interfacing with
its various components. Just as there are common mechanical
or electrical building blocks that a user would want to use,
there are common software snippets that the system can
offer for control and interfaces; for example, a motor is
usually controlled by setting its speed and a joint is usually
controlled by setting its angle. Thus, such code can be written
by expert users to augment the electromechanical modules
with software and user interface (UI) elements. Furthermore,
since the system is aware of the modular layout, it can decide

Component Library

Spoke Arduino* Brain
Beam* | Tendon I [ Servol\lomr*] Motor
ActuatedGripper
Block* | Finger I [Phnt,oSensm’*]
| Hinge* | | HeaderMount | l Switch* ]
[FlexHinge*) [Wheel] (EModule®] | Component Type
- Mech
[Extension*] [Gripper] Firmware*
Electrical
UI Element*
Integrated
* base unit

Fig. 1. A library of modular components enables robotic design to be
reduced to hierarchical composition of pre-designed elements. The starred
components are basic building blocks defined from scripts by experts; the
rest have been assembled within the design system and added to the library.

how the devices should be wired to the central processor and
therefore automatically generate code for the brain which can
interface with the distributed electrical devices.

A custom robot can therefore be designed, fabricated,
and controlled by novice users utilizing these augmented
modules. Once a high-level description of the modular lay-
out is provided, the system can automatically compose the
subcomponents stored within each module to generate all
necessary instructions and files. It ensures that the mechan-
ical elements are physically joined into the final structure,
wires the electronic modules to the adjacent devices, and
generates a final code package that can be programmed onto
the central processor. The user then follows the generated
instructions to build the robot, and can immediately control
it using the automatically generated user interface.

IV. CO-DESIGN IMPLEMENTATION

To implement the goals described in the preceding section,
the script-based paradigm for designing mechanical compo-
nents presented in [1], [2] was extended to include a method
of modularizing distributed electronic systems and software.
This forms the modular approach to defining complete
robot designs by software code objects. Mechanical blocks,
electrical blocks, integrated electromechanical modules, and
software can be collected into a library for use in higher
order designs.

A. Modularized mechanical structures

The modular design of structural elements using Python
scripts is described in [2]. An origami inspired cut-and-fold
fabrication process is used to generate 3D structures from
2D patterned sheets of plastic. A library of basic mechanical
components form the building blocks from which complex
geometries can be built by casual users, and then quickly
fabricated using inexpensive tools and materials.

B. Modularized electronics

Typical robotic functionality includes various forms of
sensing, actuation, processing, communication, and user in-
terfacing. Many of the electromechanical transducers re-
quired to accomplish physical tasks are often distributed
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Fig. 2. Each electrical module features connections for an upstream and
downstream module as well as three ports for connecting devices such as
servos, LEDs, or digital and analog sensors. These modules are designed
to be plug-and-play and do not require reprogramming based upon location
or connected devices.

throughout the robot, while other devices such as the core
processor are collected on a central controller board. This
generally requires the design and fabrication of a new con-
troller board for each unique robot. Though techniques exist
to generate such printed circuit boards (PCBs) [1], creating
new printed circuit boards for each new robot requires a
long design cycle that becomes expensive and untenable for
casual users. A new system is therefore presented which
allows electrical layouts to mirror distributed mechanical
layouts, supports reusability, and allows novices to easily
design complex systems.

The modularity hinges upon small plug-and-play mod-
ules that can communicate with each other and connect to
devices such as actuators or sensors. The modules, shown
in Figure 2, each feature an ATtiny85 microcontroller and
three available ports to which devices can be connected.
These ports can be used for driving general purpose digital
outputs or pulse-width modulation (PWM) controls, and can
measure digital or analog inputs. Modules can be connected
together as chains as shown in Figure 3, in which each
module communicates with its neighbors via a standard one-
wire serial protocol. These chains are ultimately connected
to a microcontroller unit acting as the brain of the robot.
Most common sensors and actuators can be driven by these
modules, thus minimizing the need for custom PCBs in most
cases. For special purpose devices, a custom PCB need only
provide the standard three-wire interface to integrate into any
other designed system, allowing for general purpose reuse.

By utilizing this distributed configuration in which devices
are attached to modules at the location of interest on the
robot and information is sent along chains to control the
devices or read from sensors, the robot’s capabilities are
no longer limited by the physical layout of a brain — as
many modules as desired can be quickly added to the robot.
Furthermore, the modules are exactly the same regardless of
how they are used; the microcontrollers are programmed with
code that does not need modification when using different
robots or components. The brain is programmed with auto-
generated code defining the particular configuration of the
robot, and communicates the necessary information to the

Fig. 3. Modules can be connected together to form distributed chains.
In this case, two chains have been added to the brain and devices such as
motors, LEDs, or sensors can then be plugged into any of the modules’
ports.

modules for configuring their pin types. In this way, lever-
aging pre-made plug-and-play modules promotes reusability
and allows electrical layouts to match the distributed nature
of mechanical configurations, so that software components
can easily encapsulate electrical functionality along with
structural elements.

This modularization facilitates the creation of basic
reusable electrical blocks including sensors, LEDs, and ser-
vomotors. These can be assembled into common higher
order compositions, such as joints, wheels, or grippers; the
user can use the dimensions of the electrical components
to appropriately adjust the exposed parameters of the me-
chanical components in order to ensure compatibility. Since
the physical modules are generic and identical, the system
can automatically decide an appropriate layout and thereby
eliminate the need for users to consider appropriate pin
usage, availability, or capability. It then outputs instructions
for how to plug all of the devices together to realize the
generated design.

C. Automatic code and Ul generation

The library of electrical blocks can be augmented with
driver code and UI elements for controlling the physical
modules as well as their connected devices. As a result,
the configuration of electrical modules can be processed to
automatically generate C++ code for a microcontroller brain,
such as an Arduino, which can configure all of the modules’
pin types at startup and provide a framework for controlling
all of the connected devices. Furthermore, the user can imme-
diately control the robot via an auto-generated user interface;
a smartphone application wirelessly communicates with the
robot to determine its configuration, then compiles the Ul
elements from the software modules and presents appropriate
controls for each attached device. Advanced users can also
leverage the auto-generated code library to define custom
interface controls better suited for their particular robot. A
few lines of high-level descriptive code therefore allow a
user with limited engineering experience to create software
to control an arbitrary robot. An example of using this
modularized electrical and UI system is shown in Figure 4.
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Fig. 4. The above code illustrates the definition of electronics for a robotic
arm with two joints, one of which has an LED on it, and a gripper with a
sensor. The arm can be controlled via the auto-generated Ul on the left or
a custom-written graphical interface on the right.

In addition to allowing novice users to control their robot,
the generated code provides a framework for easily writing
custom code. When the system analyzes the described robot
configuration, it assigns each device a “virtual pin number,”
as shown in Figure 5, and this list of virtual pins is presented
to the user along with the building instructions. If the user
then opens the generated Arduino file, they can interface with
the attached devices by simply using the virtual pin numbers.
For example, if a sensor was assigned a virtual pin number
of 3, a user can simply call robot.analogRead(3) as if it was
connected directly to the brain. The generated robot library
will determine the corresponding module and physical pin,
and send the command along the appropriate chain. The user
can therefore program as they normally would program an
Arduino, and all of the work for interfacing with the actual
electronic layout is done behind the scenes. Similar methods
are also provided for using the Bluetooth to communicate
with the smartphone and for common tasks such as setting
a motor speed or joint angle.

D. Integrated library-based design

The components described above have been combined
into an augmented library of electromechanical modules
which also contain associated code and UI elements. This
then provides the foundation from which users can design
a complete robotic system, assembling intuitive building
blocks into an integrated electromechanical robot together
with its human interface.

In order to realize a custom robot to solve a particular task,
a user determines how to break the task into simple subtasks,
and identifies modules from the library to accomplish each
subtask. If a specific desired item does not exist, an alternate
similar one may be adapted, or a new module may be
composed from lower level components. In the end, the
description is compiled to generate the required design files;
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Fig. 5. As devices are added to the design, each one is automatically
assigned a virtual pin number. Users can then control the robot using the
virtual pin numbers, so that knowledge of the actual chain configuration is
not required.

drawings can be sent to a cutter to fabricate the cut-and-
fold mechanical structures and the generated software is
programmed directly onto the brain module. Instructions
on where to mount the electrical and electromechanical
components are displayed, and the user then assembles the
physical elements to create the final desired system and uses
the auto-generated Ul to control it.

V. CASE STUDIES

This method was used to design and fabricate several
different compiled robots, demonstrating a variety of distinct
electromechanical mechanisms.

A. Two-Wheeled Roller

A simple Segway-inspired two-wheeled mobile robot is
shown in Figure 7. The robot, nicknamed the Seg, is specified
by three parameters:

o the dimensions of the brain module (in this case the

Arduino Pro Mini),

« the dimensions of the continuous rotation servos used

as drive motors (in this case Turnigy TGY-1370’s), and

o the desired ground clearance (in this case 25mm).
Note that the dimensions of the chosen electrical devices
are used to scale the chosen mechanical components (by
adjusting parameters exposed by the designer of the me-
chanical blocks). The user can design a Seg using the
enhanced electromechanical library by attaching two motor
mounts to a central body, along with a tail for stability. The
resulting component-based hierarchical design is presented
in Figure 6.

Since the necessary mechanical and electrical components
are encapsulated within the modules, the compiler creates
design drawings for the body and wheels as well as code for
the brain. Each motor mount provides information about the
hardware as well as software and firmware. These get added
to the core brain module, associated with the central body,
as the mechanical mounts get physically linked. Instructions
for connecting the modules and devices are then displayed to
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Fig. 6. Each node on this tree represents a component in the design of
the two-wheeled robot, generated solely by composing its child nodes. The
leaf nodes were design by expert designers, but every higher level of the
design can be assembled from its children by a casual user.

Fig. 7. The Seg, a two-wheeled mobile robot, was compiled from
modular electromechanical components. Electrical components are directly
connected to the brain using the modular software interface.

the user, and the app can immediately be used to control the
robot. Auto-generated Ul controls can be used to address
each individual electronic component, or a virtual joystick
can be implemented by an expert for a more intuitive con-
troller. A summary of the robot’s characteristics are provided
in Table I.

This robot can also be used as a platform to explore custom
software development. For example, the generated software
library was employed to write a program for autonomous
execution. Only a few simple lines of custom code were
needed to use the light sensor to detect whether the robot
is over black or white paper and thereby allow the robot to
follow a line. The robot could then use provided methods
for determining if the app is currently connected to switch
between Bluetooth mode (controlled by the graphical inter-
face), or autonomous mode (following black lines on the
floor).

TABLE I
PERFORMANCE OF TWO-WHEELED SEG ROBOT

Metric Result

Approximate design time 1 hr
Approximate fabrication time 20  min
Approximate Cost 20.00 USD
Weight 42 g
Maximum speed 23 cm/s
Turning radius (both wheels activated) 0 cm
Turning radius (one wheel activated) 4 cm

|Ha1fAnt|
EBrain I@"MI FixedLegs MovingLegs
m Motor || FourBar

Arduino UI element
Mount Firmware
Servomotor

Cutout
Beam

Fig. 8. The design of the walking robot is similar to that of the Seg,
with the addition of mechanical leg and flexure components. The higher-
level brain and motor components (shaded), can be reused from the earlier
design.

Fig. 9. A complex hexapod walker can be generated by adapting existing
library elements generated from past designs.

B. Hexapod Walker

A more complicated mechanical structure can be em-
ployed to create a legged walking robot. In this case, the
drive motors circularly actuate legs with two degrees of
freedom, constrained to move in a plane by flexural four-
bar linkages. Fixed legs provide a stable base. This demon-
strates the versatility of modular design: components can be
assembled hierarchically to define complex mechanisms with
ease, with similar structures copied between components.
The component hierarchy can be seen in Figure 8, and the
resulting structure can be seen in Figure 9. The bulk of the
design was taken from the Seg robot, thus greatly reducing
design time.

C. Grasping Arm

In contrast to the locomotive robots above, an alternate
configuration is presented by the multi-segment arm shown
in Figure 11. In this case, the design specifications call for
actuated joints to control the position of an end effector. The
end effector itself is an integrated electromechanical mecha-
nism included in the higher level assembly; the entire design
hierarchy can be seen in Figure 10. This robot employs
modular electronic components, with each actuated joint
containing its own servo and drive circuits. The distributed
nature of devices within the arm highlights the advantage of
a distributed electrical system made possible by the plug-
and-play electronic modules. This also allows for the daisy-
chaining of arbitrarily many components, enabling robotic
designs of ever-increasing complexity.
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Fig. 10.  The design tree for the gripper arm shows how a complex
electromechanical device can be hierarchically assembled from simpler
mechanisms. The integrated brain and servo modules are adapted from the
earlier robots with slight modifications to enable daisy chained electronic
modules, and the servo module is shared between the hinge and gripper
mechanisms.

Fig. 11. A robotic arm was generated by connecting two actuated joints
and an actuated gripper in the modular software interface.

Using the generated code, the arm could be immediately
controlled using the automatically generated UI or the graph-
ical arm depicted in Figure 4. Some performance metrics are
also presented in Table II.

VI. CONCLUSIONS AND FUTURE WORK

The presented system embodies a paradigm which rethinks
the way in which robots are designed and constructed. By
utilizing a modular system for both the mechanical and elec-
trical components, a library of enhanced electromechanical
modules with relevant software has been created. Experts
can define new base components in a matter of hours, while
casual users can define new integrated modules from base
components in a matter of minutes. These modules can then
be reused in new ways for different robots, and can be
hierarchically combined to create arbitrarily complex designs
using the provided script-based infrastructure. This modular
encapsulation enables the system to automatically generate
fabrication files, control software, and user interfaces based

TABLE I
PERFORMANCE OF ROBOTIC ARM

Metric Result

Approximate design time 1 hr
Approximate fabrication time 30 min
Approximate cost 27.00 USD
Weight 60 g
Maximum joint angle (actuated) +35 deg
Maximum joint angle (mechanism) +110 deg
Gripper Strength (on 1.5 cm object) 100 mN

upon high-level structural descriptions. Three diverse robots
generated with this system have been tested and presented,
demonstrating that users with limited technical knowledge
can quickly and inexpensively create robots. This system
therefore makes strides towards the goal of a complete robot
compiler that brings custom robotics into the domain of
personal use and changes how robots are integrated into daily
life.

While the foundations for a robot compiler have been
described and tested, future work must be done to effect
a more complete integration of the various subsystems and
provide a wider range of functionality. By further developing
the provided libraries and forging a tighter connection be-
tween the mechanical and electrical designs, the necessary
structural descriptions can be simplified and more diverse
robots can be created. The system can also be augmented
to actively aid the design process by helping the user de-
termine a hierarchical composition, suggesting components,
performing verification, and automatically resolving errors.
Different fabrication methods, such as 3D printing, may also
be incorporated to extend the functionality of the generated
robots. Then, additional layers of abstraction can be added
to allow definitions via functional specification rather than
individually composing scripted components.
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