
CS4733 Class Notes, Computer Vision
Sources for online computer vision tutorials and demos - http://www.dai.ed.ac.uk/HIPR2 and

Computer Vision resources online - http://www.dai.ed.ac.uk/CVonline

1 Vision Sensing

• The fundamental relationship in imaging a surface is:I(X, Y ) = F (R, G, L), where I=intensity
of the image at pixel (X,Y), R=Reflectance of the surface, G=Geometry of the surface, and
L=Lighting

• Given the image intensitiesI, we would like to recover the surfaces we have imaged (i.e. depth
and orientation at each point on the surface). There are are 2main problems in inverting this
equation:

• Mapping is projection from 3-D to 2-D, which means the inverse is multi-valued (each visible
point projects to a unique image point, but each image point “back projects” to a line in space.

• The effects ofR, G, L on intensity of the image are coupled. They can not be easily separated
out.

• To make vision systems work, we need to add constraints. Without constraints, vision problem
is too hard and too ill-posed to solve

2 Machine Vision

• Why is it machine vision so hard when we can “see” with so little conscious effort?

– Matrix is not a retina; variable resoltuion in retina

– Biological systems use active vision. High leve of coordination between eye movements
and procesing

– Biological vision is robust to lighting changes, surface reflectance changes, color changes,
resolution changes

• Robot Vision systems are characterized by:

– Images tend to be binary, not gray scale

– Resolution reduced to enable real-time processing

– Lighting is controlled

– Objects usually in known position and orientation

– 2-D methods prevail; 3-D methods typically require more computation
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• The process of acquiring an image, processing it and understanding its content (i.e. perception)
can be thought of as a “Signals to Symbols” paradigm.

• Low-level: image acquisition, noise reduction, enhancement, edge detection.

• Middle-level: Segmentation and region labeling. Surface recovery - depth and orientation (2
1/2-D sketch). Analysis of texture, motion, color, shadingetc.

• High-level: Labeling of images with 3-D components, objectrecognition, functional analysis

LEVELS OF MACHINE VISION

LOW MIDDLE HIGH
Digitization Shape From Methods Scene Understanding
Compression -texture 3-D Preception
Enhancement -motion Object Recognition
Morphology -shading Model Building
Features -stereo
edges, corners Segmentation

2 1
2
-D Sketch

• The hardest problem in using machine vision is getting the low and high levels integrated.

3 Low Level Vision

We first acquire images digitally. An Image is a continuous signal that is sampled at discrete spacings
called pixels. Each pixel is typically quantized to 8 bits ofresolution mononchrome (256 gray levels)
or 24 bits for color (8 bits each for the 3 color channels Red, Blue and Green).

Low-lvel vision is a series of weak methods to understand simple scenes. Many common low-level
processes use the following idea:

• For each image, construct a new filtered image.

• The filtered image will consist of a weighted sum of the pixelssurrounding each pixel in the
image. Every pixel gets combinedlocally with the same set of weights.

3.1 Filtering

• Images are subject to noise. Common filters include median filter to reduce spike noise, averag-
ing and Gaussian smoothing filters to remove high frequency components. Filtering can be done
in the spatial domain with convolutions or in the frequency domain using Fourier techniques.
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Figure 1: Gaussian filter. Left: 1-D Gaussian with mean=0 andσ = 1. Middle: 2-D Gaussian with
mean=0 andσ = 1. Right: 5x5 convolution mask for Gaussian smoothing with mean=0 andσ = 1

• Mean Averaging Filter: This filter just averages the pixel values in a neighborhood around a

pixel. Neighborhood sizes are variable, depending upon thespatial extent of the filter needed.

Common sizes are 3x3, 5x5, 7x7 etc. A 3x3 mean filter uses the following set of local weights:
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• Gaussian Smoothing Filter: Another smoothing filter is the Gaussian filter, which uses a neigh-
borhood that approximates the fall-off of a Gaussian centered on the pixel of interest. This filter
has larger weights for the central pixels and nearest neighbors rather than the mean filter which
treats all pixels in the neighborhood with equal weights. See figure 1 above.

Figure 2: Median filter. Noisy pixel in center (150) is removed by median of its neighborhood.

• Median Filter: This filter is used to remove outlier noise values in a region. It is based upon
order statistics, and is a non-linear filter. In this filter, pixels in a neighborhood are sorted by
value, and themedian value of the pixel’s in the neighborhood is taken to be the filter’s response.
If the pixel being processed is an outlier, it will be replaced by the median value. This filter is
useful for “shot” or “salt-and-pepper” noise. See figure 2.
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3.2 Enhancement

Often, most of the image values will be centered within a limited range of the full 256 gray levels of
an image.Contrast stretching performs a linear remapping from the gray level range(Ilow, Ihigh) to
(0, 255), effectively “stretching” the contrast in the image. See figure 3. Before the stretching can be
performed it is necessary to specify the upper and lower pixel value limits over which the image is to
be normalized. Often these limits will just be the minimum and maximum pixel values in the image.
For example for 8-bit graylevel images the lower and upper limits might be 0 and 255. Call the lower
and the upper limits a and b respectively.

The simplest sort of normalization then scans the image to find the lowest and highest pixel values
currently present in the image. Call these c and d. Then each pixel P is scaled using the following
function:Pout = (Pin − c)( b−a

d−c
) + a

Figure 3: Contrast stretching. Original image and histogram and stretched image and histogram.

Histogram equalization is used to change the response over the entire range of gray values. Of-
ten, it is used to create auniform histogram that has all gray values used at the same frequency. This
may or may not be useful: large homogeneous regions can get remapped into many gray levels, in-
troducing texture(see figure 4). If an image hasR rows andC columns, and there areN gray levels
z1, z2, z3, . . . , zn total (e.g. 256) then uniform histogram equalization requires each gray value to occur
q = R×C

N
times. Using the original histogram, we defineHin[i] as the number of pixels in the original

image having gray levelzi. The first gray level thresholdt1 is found by advancingi in the input image
histogram untilq pixels are used. All input image pixels with gray level< t1 will be mapped to gray
levelz1 in the output image:

t1−1
∑

i=1

Hin[i] ≤ q <
t1

∑

i=1

Hin[i]

This means thatt1 is the smallest gray level such that the original histogram contains no more
thatnq pixels with lower gray values. Thekth thresholdtk is defined by continuing the iteration:

tk−1
∑

i=1

Hin[i] ≤ k · q <
tk

∑

i=1

Hin[i]
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Figure 4: Histogram Equalization. Original image and histogram and equalized image and histogram.
See http://www.dai.ed.ac.uk/HIPR2/histeq.htm.

3.3 Edge Detection

Find the gradients at each pixel in the image using a gradientoperator. Common edge detection masks
look for a derivative of the image intensity values in a certain direction. Derivatives are found by
differencing the intensity values. The simplest edge detector masks are:

V ericalOrientedEdge :
[

−1 1
]

HorizontalOrientedEdge :

[

−1
1

]

Each edge detector esentially generates a gradient in theX andY directions,Gx, Gy. We can
calculate the gradient magnitude of the filter’s response as:

‖G‖ =
√

G2
x + G2

y or ‖|G‖| = |Gx| + |Gy|

and the edge’s orientation (direction) will beθ = atan2(Gy, Gx).

More sophisticated masks include the Sobel Operators:

V ertical :







−1 0 1
−2 0 2
−1 0 1





 Horizontal :







−1 −2 −1
0 0 0
1 2 1






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Autonomous Mobile Robots, Chapter 4

© R. Siegwart, I. Nourbakhsh

Zero Crossing of Laplacian of Gaussian

l Identification of features that are stable and match well

l Laplacian of intensity image

l Convolution with P:

l Step / Edge Detection
in Noisy Image
Ø filtering through

Gaussian smoothing

P=

4.1.8



Figure 5: Edge Detection on image. Edge color signifies edge magnitude (brighter == larger magni-
tude.

4 Middle Level Vision

Middle level vision tries to move beyond the pixel level to larger abstractions including shape and
geometry.

4.1 Region Labeling: Recursive Region Growing

Recursive region growing is a simple method. Starting from abinary image, it scans the image for
any foreground pixels (not black). For each foreground pixel, it labels that pixel with a unique la-
bel, “grows” the pixel by coloring any of its non-black 4-neighbors with this unique color label, and
pushing these pixels on a queue. The queue is then processed until empty. All 4-connected pixels in
the region will be labeled consistently. Recursive method can be slow however, and may need large
memory for recursive calls.
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4.2 Region Labeling: Blob Coloring

This algorithm uses 2 passes. The first pass labels each pixeland the second pass merges the labels
into a consistent labeling.

Let the initial color,k = initcolor, and choose a colorincrement to change the color each time
a new blob is found. Scan the image from left to right and top tobottom. Assign colors to each
non-zero pixel in pass 1. In pass2, we merge the regions whosecolors are equivalent. To maintain the
equivalence table between merged colors, we can use a standard disjoint set Union-Find data structure.

If I(xC) = 0 then continue
else begin

ifI(xU) = 1 andI(xL) = 0
then color(xC): = color (xU)

ifI(xL) = 1 andI(xU) = 0
then color(xC): = color (xL)

ifI(xL) = 1 andI(xU) = 1
then begin /* two colors are equivalent. */

color (xC): = color (xL)
color (xL) is equivalent to color(xU)
end

ifI(xL) = 0 andI(xU) = 0 /* new color */
then color(xC): = k; k: = k + color increment

end

X

X

X
L C

U

Figure 6: Image topology ofxu, xc, xl for region growing
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Figure 7: Blob coloring. Left: original binary image. Middle: blob color assignment after first pass.
Right: Blob color assignment after merging colors.

Below are 3 ascii images, showing the original test pattern in figure 6, the first pass results, and
the final image after region labels are merged. The initial color=80 and the color increment is 50.

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0
0 80 0 0 130 130 130 130 0
0 80 0 0 0 0 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 180 180 0 130 0
0 80 0 0 0 0 0 130 0
0 80 80 80 80 80 80 80 0

0 0 0 0 0 0 0 0 0
0 130 0 0 130 130 130 130 0
0 130 0 0 0 0 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 230 230 0 130 0
0 130 0 0 0 0 0 130 0
0 130 130 130 130 130 130 130 0

5 Simple Shape Matching

• Template Matching: Simple matching of masks (templates) that contain object’s image structure

• Object is represented as a region of pixels. Region is compared against all other positions in the
image.

• Measure is absolute value of difference between template pixels and image pixels - zero means
exact match. Find minimum response for template operator and this is best match

• Problems: Translation, Rotation, Scaling, Lighting changes between image and template

• Translation is handled by applying template everywhere in image

• Rotation handled by using a set of templates oriented every few degrees. Increases cost
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• Scaling is more difficult. Can scale templates but not easily. Not clear how many scales to use.

• Lighting changes can be alleviated by using normalized correlation. Use correlation operator
and scale template responses by average intensities of image and template.

• Method of Moments: Use statistical properties of object to match.

Continuous : Mij =
∫ ∫

xi yj f(x, y)dxdy ; Discrete : Mij =
∑ ∑

xi yj f(x, y)

• If we assumef(x, y) is a mass function that calculates object mass at each point of the object
x, y, then these are the moments of inertia from physics.

• If we further assumef(x, y) is binary valued (1= object present in image, 0= no object atx, y)
then we can use these moments as shape descriptors

• M00 is simply the area of the object in the image. Counts the pixels that contain the object.

• We can calculate thecentroid of the object. This is equivalent to the point where an objectof
uniform mass balances. The mass is equally distributed in all directions.

Xc =
M10

M00
. Yc =

M01

M00

• By translating the object coordinates byXc, Yc, we can move the object to a known coordinate
system. These arecentral moments. Creates translational invariance in moment computation.

• Rotational Invariance can be achieved by finding princiapl axis of object. This is the axis of the
moment of least inertia. We can always align an object’s principal axis withX Y or Z axis.

• Scaling invariance is posible usingnormalized moments which scales by an area measure.

• Higher order moments can be used as unique shape descriptorsfor an object. Problem: simple
scalar measures like this are not robust.

5.1 Finding the Principal Axis

Assume a point set centered on the origin:(x − xc, y − yc), where the centroid of the points is(xc, yc). To find
the principal axis we want to find the rotation angle that willalign the axis of minimum intertia with the X axis:

We rotate the points by−θ to align the dataset with thex axis:

ROT (Z,−θ)

[

cosθ sinθ

−sinθ cosθ

]

; ⇒

[

cosθ sinθ

−sinθ cosθ

] [

x

y

]

=

[

xcosθ − ysinθ

−xsinθ + ycosθ

]

9



© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Matching using Correlation

 Find locations in an image that are similar to a template

 Filter = template                                test it against all image locations

 Similarity measure: Sum of Squared Differences (SSD)

 Similarity measure: Correlation?

Lecture 6 - Perception - Vision
Lec. 6
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Figure 8: Left: Principal Axis of a 2D object whose centriod is at the origin. Right: rotated object so
principal axis is aligned with X axis.

So we can calculate the moments of order 2 for a rotated point set by:
∑ ∑

(−xsinθ + ycosθ)2

These are the moments of order 2 about the X axis for the rotated point set. The term(−xsinθ + ycosθ) is
the vertical distance from the X axis (i.e. the Y coordinate value) of the transformed point set.

Now, find the value ofθ that minimizes that measure. We do this by differentiating with respect toθ, and
setting the resulting measure equal to zero:

∑ ∑

2(−xsinθ + ycosθ)(−xcosθ − ysinθ) = 0

2
∑ ∑

(x2sinθcosθ + xysin2θ − xycos2θ − y2sinθcosθ) = 0

2sinθcosθ
∑ ∑

x2 + 2(sin2θ − cos2θ)
∑ ∑

xy − 2cosθsinθ
∑ ∑

y2 = 0

Using the definition of discrete momentsMij :

2sinθcosθM20 + 2(sin2θ − cos2θ)M11 − 2cosθsinθM02 = 0

whereMij refers toCentral Moments, moments where the centroid is translated to the origin.

Sincesin2θ = 2sinθcosθ andcos2θ = cos2θ − sin2θ, we can substitute to get:

sin2θM20 − 2cos2θM11 − sin2θM02 = 0

and
sin2θ

cos2θ
=

2M11

M20 − M02

The principal angle is:2θ = atan2(2M11,M20 − M02)
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5.2 Example: Moments

Figure 9: Left: Image used in example below. Right: Idea of Principal angle computation: rotate blob
by −β so its coincident with X axis

From the image above, we have a region R denoted by values = 1. We can calculate the discrete moments
for the region as:

Mij =
∑ ∑

xi yj f(x, y)

andm00 = 9, m01 = 45, m10 = 36, m11 = 192, m02 = 255, m20 = 150.

We can createcentral moments by finding the centroid and translating the region so that theorigin is the
centroid,(xc, yc) :

Area = m00 = 9 ; xc =
m10

m00
= 4 ; yc =

m01

m00
= 5

Finally, the principal angle for the image on the left is computed asβ = atan2(2M11 ,M20−M02

2 :

β =
atan2(24,−24)

2
=

135

2
= 67.5◦
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