CS4733 Class Notes, Computer Vision

Sources for online computer vision tutorials and demos p:titww.dai.ed.ac.uk/HIPR2 and

Computer Vision resources online - http://www.dai.edigfCVonline

1 Vision Sensing

2

The fundamental relationship in imaging a surfacd {sX, Y) = F(R, G, L), where |=intensity
of the image at pixel (X,Y), R=Reflectance of the surface, @e@etry of the surface, and
L=Lighting

Given the image intensitiels we would like to recover the surfaces we have imaged (i.pthde
and orientation at each point on the surface). There are arai problems in inverting this
equation:

Mapping is projection from 3-D to 2-D, which means the ineeis multi-valued (each visible
point projects to a unique image point, but each image ptiatk projects” to a line in space.

The effects ofk, GG, L on intensity of the image are coupled. They can not be easgraited
out.

To make vision systems work, we need to add constraints. dditbonstraints, vision problem
is too hard and too ill-posed to solve

Machine Vision

Why is it machine vision so hard when we can “see” with soditibnscious effort?

— Matrix is not a retina; variable resoltuion in retina

— Biological systems use active vision. High leve of coortiorabetween eye movements
and procesing

— Biological vision is robust to lighting changes, surfaca®tance changes, color changes,
resolution changes
Robot Vision systems are characterized by:

— Images tend to be binary, not gray scale

— Resolution reduced to enable real-time processing

— Lighting is controlled

— Objects usually in known position and orientation

— 2-D methods prevail; 3-D methods typically require more patation
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The process of acquiring an image, processing it and uradelistg its content (i.e. perception)
can be thought of as a “Signals to Symbols” paradigm.

Low-level: image acquisition, noise reduction, enhanaaiexige detection.

Middle-level: Segmentation and region labeling. Surfaaeovery - depth and orientation (2
1/2-D sketch). Analysis of texture, motion, color, shadatg

High-level: Labeling of images with 3-D components, objatognition, functional analysis

LEVELS OF MACHINE VISION

LOW MIDDLE HIGH

Digitization Shape From Methods Scene Understandgling
Compression  -texture 3-D Preception
Enhancement -motion Object Recognition
Morphology  -shading Model Building
Features -stereo

edges, corners Segmentation
2 2-D Sketch

e The hardest problem in using machine vision is getting tiaedod high levels integrated.

3 Low Level Vision

We first acquire images digitally. An Image is a continuogmal that is sampled at discrete spacings
called pixels. Each pixel is typically quantized to 8 bitge$olution mononchrome (256 gray levels)
or 24 bits for color (8 bits each for the 3 color channels RddeBnd Green).

Low-Ivel vision is a series of weak methods to understangbbrscenes. Many common low-level
processes use the following idea:

e For each image, construct a new filtered image.

e The filtered image will consist of a weighted sum of the pixaisrounding each pixel in the
image. Every pixel gets combinéaotally with the same set of weights.

3.1 Filtering

¢ Images are subject to noise. Common filters include median fd reduce spike noise, averag-
ing and Gaussian smoothing filters to remove high frequeanyponents. Filtering can be done
in the spatial domain with convolutions or in the frequenoyn@in using Fourier techniques.



0.4

0.3r1 0.2

4 | 16| 26| 16| 4

— | 7|26 41| 26| 7

f \‘

0
£
“M\‘

0.1}
"“:’:\\\

4 16| 26| 16| 4

Figure 1. Gaussian filter. Left: 1-D Gaussian with mean=0@nd 1. Middle: 2-D Gaussian with
mean=0 and = 1. Right: 525 convolution mask for Gaussian smoothing with mean=0ard1

e Mean Averaging Filter: This filter just averages the pixel values in a neighborhaodiad a
pixel. Neighborhood sizes are variable, depending uporsplagial extent of the filter needed.
Common sizes are 3x3, 5x5, 7x7 etc. A 3x3 mean filter uses tleviog set of local weights:
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e Gaussian Smoothing Filter: Another smoothing filter is the Gaussian filter, which usesigm
borhood that approximates the fall-off of a Gaussian cedten the pixel of interest. This filter
has larger weights for the central pixels and nearest neighfather than the mean filter which
treats all pixels in the neighborhood with equal weights fgure 1 above.
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Neighbourhood values:
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Figure 2: Median filter. Noisy pixel in center (150) is remdJiy median of its neighborhood.

e Median Filter: This filter is used to remove outlier noiseued in a region. It is based upon
order statistics, and is a non-linear filter. In this filter, pixels in a neiginbood are sorted by
value, and thenedian value of the pixel’s in the neighborhood is taken to be therfdtresponse.
If the pixel being processed is an outlier, it will be repldd® the median value. This filter is
useful for “shot” or “salt-and-pepper” noise. See figure 2.

3



3.2 Enhancement

Often, most of the image values will be centered within at@dirange of the full 256 gray levels of
an image.Contrast stretching performs a linear remapping from the gray level rageg, . Z5,.) to
(0, 255), effectively “stretching” the contrast in the image. Searfeg3. Before the stretching can be
performed it is necessary to specify the upper and lowel padee limits over which the image is to
be normalized. Often these limits will just be the minimund anaximum pixel values in the image.
For example for 8-bit graylevel images the lower and uppeité might be 0 and 255. Call the lower
and the upper limits a and b respectively.

The simplest sort of normalization then scans the image dtifie lowest and highest pixel values
currently present in the image. Call these c and d. Then eixeh P is scaled using the following
function: Py = (Pin — ¢)(52) + @
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Figure 3: Contrast stretching. Original image and histogaad stretched image and histogram.

Histogram equalization is used to change the response over the entire range of gagsvaOf-
ten, it is used to createwniform histogram that has all gray values used at the same frequ&hty
may or may not be useful: large homogeneous regions can meippEed into many gray levels, in-
troducing texture(see figure 4). If an image Hasows andC' columns, and there a® gray levels
21,29, 23, - - -, 2 tOtal (e.g. 256) then uniform histogram equalization reggieach gray value to occur
q = R]XVC times. Using the original histogram, we defifg, [i] as the number of pixels in the original
image having gray level;,. The first gray level threshold is found by advancingin the input image
histogram untily pixels are used. All input image pixels with gray levelt; will be mapped to gray

level z; in the output image:
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This means that; is the smallest gray level such that the original histogramt@ins no more
thatng pixels with lower gray values. Thieth threshold:,, is defined by continuing the iteration:
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Figure 4: Histogram Equalization. Original image and hgséon and equalized image and histogram.
See http://www.dai.ed.ac.uk/HIPR2/histeq.htm.

3.3 Edge Detection
Find the gradients at each pixel in the image using a grad@ertator. Common edge detection masks

look for a derivative of the image intensity values in a dert@direction. Derivatives are found by
differencing the intensity values. The simplest edge detenasks are:

VericalOrientedEdge : [ -1 1 } HorizontalOriented Edge : [ _11 ]

Each edge detector esentially generates a gradient iXthedY" directions,G,, G,. We can
calculate the gradient magnitude of the filter’s response as

Gl = G+ Gy or |Gl = |Ga] + ]Gyl

and the edge’s orientation (direction) will Be= atan2(G,, G,).
More sophisticated masks include the Sobel Operators:

-1 0 1 -1 -2 -1
Vertical : -2 0 2 Horizontal : 0 0 0
-1 0 1 1 2 1
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Figure 5: Edge Detection on image. Edge color signifies edggnitude (brighter == larger magni-
tude.

4 Middle Level Vision

Middle level vision tries to move beyond the pixel level togar abstractions including shape and
geometry.

4.1 Region Labeling: Recursive Region Growing

Recursive region growing is a simple method. Starting frobirary image, it scans the image for
any foreground pixels (not black). For each foreground Ipikdabels that pixel with a unique la-
bel, “grows” the pixel by coloring any of its non-black 4-gabors with this unique color label, and
pushing these pixels on a queue. The queue is then processleehupty. All 4-connected pixels in
the region will be labeled consistently. Recursive methaa loe slow however, and may need large
memory for recursive calls.



4.2 Region Labeling: Blob Coloring

This algorithm uses 2 passes. The first pass labels eachgngdehe second pass merges the labels
into a consistent labeling.

Let the initial color,k = init.,.,, and choose a coldncrement to change the color each time
a new blob is found. Scan the image from left to right and toppdtiom. Assign colors to each
non-zero pixel in pass 1. In pass2, we merge the regions wdtdses are equivalent. To maintain the
equivalence table between merged colors, we can use a glatigi@int set Union-Find data structure.

If I(z¢) = 0 then continue
else begin

if/(zy) =1andl(z;) =0

then color(z¢): = color (zy)

|f](ZL’L) =1 and](xU) =0

then color(z¢): = color (zr)

|f](ZL’L) =1 and](xU) =1

then begin /* two colors are equivalent. */
color (z¢): = color (z)
color () is equivalent to colofz)
end

if[(x;) = 0andl(xy) = 0 /* new color */
then color(z¢): = k; k: = k + colorincrement

end

Figure 6: Image topology of,,, z., x; for region growing



Figure 7: Blob coloring. Left: original binary image. Midsdlblob color assignment after first pass.
Right: Blob color assignment after merging colors.

Below are 3 ascii images, showing the original test patteriigure 6, the first pass results, and
the final image after region labels are merged. The initildrs@0 and the color increment is 50.

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0
0 80 0 0 130 130 130 130 0
0 80 0 0 0 0 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 180 180 0 130 0
0 80 0 0 0 0 0 130 0
0O 80 8 8 80 80 80 80 0
0 0 0 0 0 0 0 0 0
0 130 0 0 130 130 130 130 0
0 130 0 0 0 0 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 230 230 0 130 0
0 130 0 0 0 0 0 130 0
0 130 130 130 130 130 130 130 0

5 Simple Shape Matching

e Template Matching: Simple matching of masks (templatest)¢bntain object’s image structure

e Objectis represented as a region of pixels. Region is coaajagainst all other positions in the
image.

e Measure is absolute value of difference between templatdgpand image pixels - zero means
exact match. Find minimum response for template operatbtlas is best match

e Problems: Translation, Rotation, Scaling, Lighting ches\getween image and template
e Translation is handled by applying template everywherenage

¢ Rotation handled by using a set of templates oriented eesvydegrees. Increases cost
8



e Scaling is more difficult. Can scale templates but not eabibt clear how many scales to use.

¢ Lighting changes can be alleviated by using normalizedetation. Use correlation operator
and scale template responses by average intensities oéiamattemplate.

e Method of Moments: Use statistical properties of object aich.
Continuous : M;; = //a:’ v f(z,y)dzdy; Discrete: My => > z'y’ f(z,y)
e If we assumef(z,y) is a mass function that calculates object mass at each ploineé @bject

x,y, then these are the moments of inertia from physics.

o If we further assumé (z, y) is binary valued (1= object present in image, 0= no object a)
then we can use these moments as shape descriptors

e My is simply the area of the object in the image. Counts the pittedt contain the object.

e We can calculate theentroid of the object. This is equivalent to the point where an obgéct
uniform mass balances. The mass is equally distributed diractions.

_ Mo
MOO

My

X =
Moo

- Ye
¢ By translating the object coordinates By, Y., we can move the object to a known coordinate
system. These arentral moments. Creates translational invariance in moment computation.

¢ Rotational Invariance can be achieved by finding princia af object. This is the axis of the
moment of least inertia. We can always align an object’sqyoia axis withX Y or Z axis.

e Scaling invariance is posible usimgrmalized moments which scales by an area measure.

e Higher order moments can be used as unique shape descfgotars object. Problem: simple
scalar measures like this are not robust.

5.1 Finding the Principal Axis

Assume a point set centered on the origin— z.,y — y.), where the centroid of the points(is., y.). To find
the principal axis we want to find the rotation angle that afign the axis of minimum intertia with the X axis:

We rotate the points by to align the dataset with theaxis:

ROT(Z,—0) [ cost) Smﬁl ) l cost smﬂl [x] _ l xcost — ysind ]

—sinf cosf |’ —sinf cosf y —xsinf + ycosl



Lec. 6

i Matching using Correlation

Lecture 6 - Perception - Vision

= Find locations in an image that are similar to a template

= Filter = template
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= test it against all image locations
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= Similarity measure: Sum of Squared Differences (SSD)

S0 = SiF 07+ Sl 07 S 1)
w“‘\

Correlation

J:| 26 | 37 | 21 | 50 [ 54 | 1 | 50 | 65 | 59 | 16\ | 42 | /17

= Similarity measure: Correlation? ‘
J:| 30 | 37 | 41 29 | 51 | 85 | 56 | 21 | 48 | 86 | 101 | 77

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL



Figure 8: Left: Principal Axis of a 2D object whose centrigdat the origin. Right: rotated object so
principal axis is aligned with X axis.

So we can calculate the moments of order 2 for a rotated peirtys > > (—xsinf + ycos@)2

These are the moments of order 2 about the X axis for the tbpatimt set. The terni—xsiné + ycosf) is
the vertical distance from the X axis (i.e. the Y coordinatue) of the transformed point set.

Now, find the value ob that minimizes that measure. We do this by differentiatirith wespect t&, and
setting the resulting measure equal to zero:

Z Z 2(—zsind + ycosh)(—xcos — ysinh) =0
2 Z Z (z%sinfcosh + xysin®0 — xycos®0 — y*sinfcosh) =0

2sinfcosb Z Z 2% + 2(sin?0 — cos>0) Z Z xy — 2cosfsind Z Z > =0

Using the definition of discrete moments;;:

2sinbcosd Moy + 2(sm29 — 60829)M11 — 2co0s0sinf@Mpz =0

wherelM;; refers toCentral Moments, moments where the centroid is translated to the origin.

Sincesin20 = 2sinfcost andcos20 = cos*6 — sin0, we can substitute to get:

sin20 Moy — 2c0820M11 — sin20 My = 0

and
sin20 2M11

cos20 Moy — Moy

The principal angle is20 = atan2(2M1, Moy — My2)
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5.2 Example: Moments | i
1 Y — —- 10
T 10000000000
0000000 C0QO0O0
X(01114800000
L CO00DT110000
0000011100
Co0QGO0ODQODODQ
0000000000
Bl0OOODODOOQODO

Figure 9: Left: Image used in example below. Right: Idea afi¢tpal angle computation: rotate blob
by — /3 so its coincident with X axis

From the image above, we have a region R denoted by values = awcalculate the discrete moments
for the region as:

My =YY a"y f(z,y)

andmoo =9, mo1 = 45, m1g = 36, m11 = 192, mga = 255, mgg = 150.
We can createentral moments by finding the centroid and translating the region so thatotfigin is the
centroid,(zc, y) :

Area:m00:9;x02@:4;y02@_5
moo moo
i inci i ; _ atan2(2My1,Mao—Mos .
Finally, the principal angle for the image on the left is cargal ass = 2
tan2(24,—-24 135
ﬁ = aran (27’ ) = 7 = 67.5°
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