Robotic Motion Planning: Bug Algorithms

Robotics Institute 16-735
http://voronoi.sbp.ri.cmu.edu/~motion
Howie Choset
http://voronoi.sbp.ri.cmu.edu/~choset

What's Special About Bugs

- Many planning algorithms assume global knowledge
- Bug algorithms assume only local knowledge of the environment and a global goal
- Bug behaviors are simple:
- 1) Follow a wall (right or left)
- 2) Move in a straight line toward goal
- Bug 1 and Bug 2 assume essentially tactile sensing
- Tangent Bug deals with finite distance sensing

Bug algorithms *

- Simple and intuitive
- Straightforward to implement
- Success guaranteed (when possible)
- Assumes perfect positioning and sensing
- Sensor based planning - has to be incremental and reactive
*Reference: Principles of Robot Motion. MIT Press. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian Thrun. Thanks to Howie Choset, CMU, for these slides

Bug algorithms

- Assumptions:
- Point robot
- Contact sensor (Bug1,Bug2) or finite range sensor (Tangent Bug)
- Bounded environment
- Robot position is perfectly known
- Robot can measure the distance between two points

A Few General Concepts

- Workspace W
- $\mathfrak{R}(2)$ or $\mathfrak{R}(3)$ depending on the robot
- could be infinite (open) or bounded (closed/compact)
- Obstacle $W O_{i}$
- Free workspace $W_{\text {free }}=W \backslash \cup_{i} W_{i}$

The Bug Algorithms

Insect-inspired

- known direction to goal
-robot can measure distance $d(x, y)$ between pts x and y
- otherwise local sensing
walls/obstacles \& encoders
- reasonable world

1) finitely many obstacles in any finite area
2) a line will intersect an obstacle finitely many times
3) Workspace is bounded

$$
\begin{gathered}
W \subset B_{r}(x), r<\infty \\
B_{r}(x)=\{y \in \mathscr{R}(2) \mid d(x, y)<r\}
\end{gathered}
$$

Buginner Strategy

"Bug 0" algorithm

\square

- known direction to goal
- otherwise local sensing walls/obstacles \& encoders

Some notation:
$q_{\text {start }}$ and $q_{\text {goal }}$
"hit point" $q^{H}{ }_{i}$ "leave point $q_{i}{ }_{i}$

A path is a sequence of hit/leave pairs bounded by $q_{\text {start }}$ and $q_{\text {goal }}$

Buginner Strategy

"Bug 0" algorithm

- known direction to goal
- otherwise local sensing walls/obstacles \& encoders

1) head toward goal
2) follow obstacles until you can head toward the goal again
3) continue
\square

Buginner Strategy

"Bug 0" algorithm

1) head toward goal
2) follow obstacles until you can head toward the goal again
3) continue

Bug Zapper

What map will foil Bug 0 ?
"Bug 0" algorithm

1) head toward goal
2) follow obstacles until you can head toward the goal again
3) continue

Bug Zapper

What map will foil Bug 0 ?

"Bug 0" algorithm

1) head toward goal
2) follow obstacles until you can head toward the goal again
3) continue

- start

A better bug?

$$
\text { But add some memory! }\left\{\begin{array}{r}
\bullet \text { known direction to goal } \\
\cdot \text { otherwise local sensing } \\
\text { walls/obstacles } \& \text { encoders }
\end{array}\right.
$$

\square

Bug 1

But some computing power! $\left\{\begin{array}{l}\text { • known direction to goal } \\ \cdot \text { otherwise local sensing }\end{array}\right\}$

Vladimir Lumelsky \& Alexander Stepanov: Algorithmica 1987
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Bug 1

$$
\text { But some computing power! }\left\{\begin{array}{r}
\cdot \text { known direction to goal } \\
\cdot \text { otherwise local sensing } \\
\text { walls/obstacles } \& \text { encoders }
\end{array}\right.
$$

"Bug 1" algorithm

1) head toward goal
2) if an obstacle is encountered, circumnavigate it and remember how close you get to the goal
3) return to that closest point (by wall-following) and continue

Vladimir Lumelsky \& Alexander Stepanov: Algorithmica 1987
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

BUG 1 More formally

- Let $\mathrm{q}_{0}^{\mathrm{L}}=\mathrm{q}_{\text {start }} ; \mathrm{i}=1$
- repeat
- repeat
- from $q_{i-1}{ }^{2}$ move toward $q_{\text {goal }}$
- until goal is reached or obstacle encountered at $\mathrm{q}^{\mathrm{H}}{ }_{\mathrm{i}}$
- if goal is reached, exit
- repeat
- follow boundary recording pt ${ }^{L}{ }_{i}$, with shortest distance to goal
- until $q_{\text {goal }}$ is reached or q_{i} is re-encountered
- if goal is reached, exit
- Go to $\mathrm{q}^{\text {L }}$
- if move toward $q_{\text {goal }}$ moves into obstacle
- exit with failure
- else
- $i=i+1$
- continue

Bug1-example

Figure 2.1 The Bug1 algorithm successfully finds the goal.

Figure 2.2 The Bug1 algorithm reports the goal is unreachable.

Bug 1 analysis

Bug 1: Path Bounds

What are upper/lower bounds on the path length that the robot takes?
$\mathrm{D}=$ straight-line distance from start to goal

$P_{i}=$ perimeter of the i th obstacle

Lower bound:
What's the shortest
distance it might travel?

Upper bound:
What's the longest
distance it might travel?

What is an environment where your upper bound is required?
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Bug 1 analysis

Bug 1: Path Bounds

What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to goal

What is an environment where your upper bound is required?
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

How Can We Show Completeness?

- An algorithm is complete if, in finite time, it finds a path if such a path exists or terminates with failure if it does not.
- Suppose BUG1 were incomplete
- Therefore, there is a path from start to goal
- By assumption, it is finite length, and intersects obstacles a finite number of times.
- BUG1 does not find it
- Either it terminates incorrectly, or, it spends an infinite amount of time
- Suppose it never terminates
- but each leave point is closer to the obstacle than corresponding hit point
- Each hit point is closer than the last leave point
- Thus, there are a finite number of hit/leave pairs; after exhausting them, the robot will proceed to the goal and terminate
- Suppose it terminates (incorrectly)
- Then, the closest point after a hit must be a leave where it would have to move into the obstacle
- But, then line from robot to goal must intersect object even number of times (Jordan curve theorem)
- But then there is another intersection point on the boundary closer to object. Since we assumed there is a path, we must have crossed this pt on boundary which contradicts the definition of a leave point.

Another step forward?

Call the line from the starting point to the goal the m-line

"Bug 2" Algorithm

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

A better bug?

Call the line from the starting point to the goal the \boldsymbol{m}-line

"Bug 2" Algorithm

1) head toward goal on the m-line

A better bug?

Call the line from the starting point to the goal the \boldsymbol{m}-line

"Bug 2" Algorithm

1) head toward goal on the m-line
2) if an obstacle is in the way, follow it until you encounter the m -line again.

A better bug?

"Bug 2" Algorithm

1) head toward goal on the m-line
2) if an obstacle is in the way, follow it until you encounter the m -line again.
3) Leave the obstacle and continue toward the goal

A better bug?

"Bug 2" Algorithm

1) head toward goal on the m-line
2) if an obstacle is in the way, follow it until you encounter the m-line again.
3) Leave the obstacle and continue toward the goal

A better bug?

"Bug 2" Algorithm

1) head toward goal on the m-line
2) if an obstacle is in the way, follow it until you encounter the m-line again closer to the goal.
3) Leave the obstacle and continue toward the goal

Better or worse than Bug1?
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Bug2 - example

Figure 2.3 (Top) The Bug2 algorithm finds a path to the goal. (Bottom) The Bug2 algorithm reports failure.

BUG 2 More formally

- Let $\mathrm{q}_{0}^{\mathrm{L}}=\mathrm{q}_{\text {start; }} \mathrm{i}=1$
- repeat
- repeat
- from $q_{i-1}{ }_{i-1}$ move toward $q_{\text {goal }}$ along the m-line
- until goal is reached or obstacle encountered at $q^{H}{ }_{i}$
- if goal is reached, exit
- repeat
- follow boundary
- until $q_{\text {goal }}$ is reached or q^{H} is re-encountered or m -line is re-encountered, x is not $\mathrm{q}_{\mathrm{i}}{ }_{\mathrm{i}}, \mathrm{d}\left(\mathrm{x}, \mathrm{q}_{\text {goal }}\right)<\mathrm{d}\left(\mathrm{q}_{\mathrm{i}} \mathrm{i}, \mathrm{q}_{\text {goal }}\right)$ and way to goal is unimpeded
- if goal is reached, exit
- if q^{H} is reached, return failure
- else
- $q_{i}^{L}=m$
- i=i+1
- continue

Figure 2.4 Bug2 Algorithm.

head-to-head comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

Bug 2 beats Bug 1

Bug 1 beats Bug 2

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

head-to-head comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

head-to-head comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

BUG 1 vs. BUG 2

- BUG 1 is an exhaustive search algorithm
- it looks at all choices before commiting
- BUG 2 is a greedy algorithm
- it takes the first thing that looks better
- In many cases, BUG 2 will outperform BUG 1, but
- BUG 1 has a more predictable performance overall

Bug 2 analysis

Bug 2: Path Bounds

What are upper/lower bounds on the path length that the robot takes?

What is an environment where your upper bound is required?
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

"Quiz"

Bug 2 analysis

Bug 2: Path Bounds

What are upper/lower bounds on the path length that the robot takes?
$\mathrm{D}=$ straight-line distance from start to goal
$\mathrm{P}_{\mathrm{i}}=$ perimeter of the i th obstacle

Lower bound:
What's the shortest
distance it might travel?

Upper bound:
What's the longest
distance it might travel?
D

$$
D+\sum_{i} \frac{n_{i}}{2} \mathbf{P}_{i}
$$

$\mathbf{n}_{\mathbf{i}}=\#$ of m -line intersections of the i th obstacle
What is an environment where your upper bound is required?
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

A More Realistic Bug

- As presented: global beacons plus contact-based wall following
- The reality: we typically use some sort of range sensing device that lets us look ahead (but has finite resolution and is noisy).
- Let us assume we have a range sensor

Raw Distance Function

Tangent Bug

- Tangent Bug relies on finding endpoints of finite, conts segments of ρ_{R}

Problem: what if this distance starts to go up?
Ans: start to act like a BUG and follow boundary

Motion-to-Goal Transition from Moving Toward goal to "following obstalces"

Currently, the motion-to-goal behavior "thinks" the robot can get to the goal

Motion-to-Goal Transition Among Moving Toward goal to "following obstacles"

Currently, the motion-to-goal behavior "thinks" the robot can get to the goal

Motion-to-Goal Transition Minimize Heuristic

Minimize Heuristic Example

At x, robot knows only what it sees and where the goal is,

so moves toward O_{2}. Note the line connecting O_{2} and goal pass through obstacle

so moves toward O_{4}. Note some "thinking" was involved and the line connecting O_{4} and goal pass through obstacle

Choose the pt O_{i} that minimizes $\mathrm{d}\left(\mathrm{x}, \mathrm{O}_{\mathrm{i}}\right)+\mathrm{d}\left(\mathrm{O}_{\mathrm{i}}, \mathrm{C}_{\text {goal }}\right)$

Motion To Goal Example

Choose the pt O_{i} that minimizes $\mathrm{d}\left(\mathrm{x}, \mathrm{O}_{\mathrm{i}}\right)+\mathrm{d}\left(\mathrm{O}_{\mathrm{i}}, \mathrm{q}_{\text {goal }}\right)$

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Transition from Motion-to-Goal

Choose the pt O_{i} that minimizes $\mathrm{d}\left(\mathrm{x}, \mathrm{O}_{\mathrm{i}}\right)+\mathrm{d}\left(\mathrm{O}_{\mathrm{i}}, \mathrm{q}_{\text {goal }}\right)$

Problem: what if this distance starts to go up?

Ans: start to act like a BUG and follow boundary

M is the point on the "sensed" obstacle which has the shorted distance to the goal

Followed obstacle: the obstacle that we are currently sensing

Blocking obstacle: the obstacle that intersects the segment
$(1-\lambda) x+\lambda q_{\text {goal }} \forall \lambda \in[0,1]$

They start as the same

Boundary Following

Move toward the O_{i} on the followed obstacle in the "chosen" direction

M is the point on the "sensed" obstacle which has the shorted
distance to the goal obstacle which has the shorted
distance to the goal

Followed obstacle: the obstacle that we are currently sensing

Blocking obstacle: the obstacle that intersects the segment

[^0]They start as the same

$d_{\text {followed }}$ and $d_{\text {reark }}$

$\mathrm{d}_{\text {followed }}$ is the shortest distance between the sensed boundary and the goal

- $\mathrm{d}_{\text {reach }}$ is the shortest distance between blocking obstacle and goal (or my distance to goal if no blocking obstacle visible)

$$
\begin{aligned}
& \Lambda=\left\{y \in \partial \mathcal{W} \mathcal{O}_{b}: \lambda x+(1-\lambda) y \in \mathcal{Q}_{\text {free }} \quad \forall \lambda \in[0,1]\right\} . \\
& d_{\text {reach }}=\min _{c \in \Lambda} d\left(q_{\text {goal }}, c\right)
\end{aligned}
$$

- Terminate boundary following behavior when $\mathrm{d}_{\text {reach }}<\mathrm{d}_{\text {followed }}$

```
Note: d_followed = d_min, d_reach = d_leave in Chapter 2 Bug Algorithms text
```


Example: Zero Senor Range

1. Robot moves toward goal until it hits obstacle 1 at H 1
2. Pretend there is an infinitely small sensor range and the Oi which minimizes the heuristic is to the right
3. Keep following obstacle until robot can go toward obstacle again
4. Same situation with second obstacle
5. At third obstacle, the robot turned left until it could not increase heuristic
6. Dfollowed is distance between M_{3} and goal, dreach is distance between robot and goal because sensing distance is zero

Example: Finite Sensor Range

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Example: Infinite Sensor Range

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Tangent Bug

- Tangent Bug relies on finding endpoints of finite, conts segments of ρ_{R}

Now, it starts to see something --- what to do?
Ans: Choose the pt O_{i} that minimizes $\mathrm{d}\left(\mathrm{x}, \mathrm{O}_{\mathrm{i}}\right)+\mathrm{d}\left(\mathrm{O}_{\mathrm{i}}, \mathrm{q}_{\text {goal }}\right)$
"Heuristic distance"
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

The Basic Ideas

- A motion-to-goal behavior as long as way is clear or there is a visible obstacle boundary pt that decreases heuristic distance
- A boundary following behavior invoked when heuristic distance increases.
- A value $d_{\text {followed }}$ which is the shortest distance between the sensed boundary and the goal
- A value $\mathrm{d}_{\text {reach }}$ which is the shortest distance between blocking obstacle and goal (or my distance to goal if no blocking obstacle visible)
- Terminate boundary following behavior when $\mathrm{d}_{\text {reach }}<\mathrm{d}_{\text {followed }}$

Tangent Bug Algorithm

1) repeat
a) Compute continuous range segments in view
b) Move toward $n \in\left\{T, O_{i}\right\}$ that minimizes $h(x, n)=d(x, n)+d\left(n, q_{\text {goal }}\right)$ until
a) goal is encountered, or
b) the value of $h(x, n)$ begins to increase
2) follow boundary continuing in same direction as before repeating
a) update $\left\{\mathrm{O}_{i}\right\}, \mathrm{d}_{\text {reach }}$ and $\mathrm{d}_{\text {followed }}$ until
a) goal is reached
b) a complete cycle is performed (goal is unreachable)
c) $d_{\text {reach }}<d_{\text {followed }}$

Note the same general proof reasoning as before applies, although the definition of hit and leave points is a little trickier. In the text, - d_reach == d_leave and d_followed==d_min

Implementing Tangent Bug

- Basic problem: compute tangent to curve forming boundary of obstacle at any point, and drive the robot in that direction
- Let $\mathrm{D}(\mathrm{x})=\min _{\mathrm{c}} \mathrm{d}(\mathrm{x}, \mathrm{c}) \quad \mathrm{c} \in \cup_{\mathrm{i}} W O_{i}$
- Let $\mathrm{G}(\mathrm{x})=\mathrm{D}(\mathrm{x})-\mathrm{W}^{*} \leftarrow$ some safe following distance
- Note that $\nabla \mathrm{G}(\mathrm{x})$ points radially away from the object
- Define $T(x)=(\nabla G(x))$ the tangent direction
- in a real sensor (we'll talk about these) this is just the tangent to the array element with lowest reading
- We could just move in the direction $\mathrm{T}(\mathrm{x})$
- open-loop control
- Better is $\delta x=\mu(T(x)-\lambda(\nabla G(x)) G(x))$
- closed-loop control (predictor-corrector)

Sensors!

Robots’ link to the external world...

Sensors, sensors, sensors! and tracking what is sensed: world models

IR rangefinder

sonar rangefinder

sonar rangefinder

gyro

CMU cam with onboard processing
odometry...

Tactile sensors

on/off switch
as a low-resolution encoder...
analog input: "Active antenna"

Surface acoustic waves

Capacitive array sensors

Resistive sensors

Tactile applications

Infrared sensors

"Noncontact bump sensor"

(1) sensing is based on light intensity.
"object-sensing" IR

diffuse distance-sensing IR

IR emitter/detector pair

(2) sensing is based on angle receved.

InfraRed (IR) Distance Sensor

The IR beam causes a particular pixel in the linear CCD array to give maximum response (peak). The distance can then be computed

Distance D4

Infrared calibration

The response to white copy paper (a dull, reflective surface)

fluorescent light

incandescent light

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Infrared calibration

energy vs. distance for various materials
(the incident angle is 0°, or head-on)
(with no ambient light)

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Sonar sensing

single-transducer sonar timeline

a "chirp" is emitted into the environment
typically when reverberations from the initial chirp have stopped
"receiving" mode and awaits a signal... limiting range sensing
after a short time, the signal will be too weak to be detected

Polaroid sonar emitter/receivers
16-735, Howie Choset with slides from G.b.Aagheramage.bdidait for paired sonars...

Sonar effects

Draw the range reading that the sonar will return in each case...

Sonar effects

Draw the range reading that the sonar will return in each case...

Sonar effects

(a) Sonar providing an accurate range measurement
(b-c) Lateral resolution is not very precise; the closest object in the beam's cone provides the response
(d) Specular reflections cause walls to disappear
(e) Open corners produce a weak spherical wavefront
(f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing

Sonar modeling

Summary

- Bug 1: safe and reliable
- Bug 2: better in some cases; worse in others
- Should understand the basic completeness proof
- Tangent Bug: supports range sensing
- Sensors and control
- should understand basic concepts and know what different sensors are

[^0]: Maintain $\mathrm{d}_{\text {followed }}$ and $\mathrm{d}_{\text {reach }}$

