Solver-aided DSL with
RUSETTE

Rui Zhao (rz2290)

Solver-aided Programming

e Software is widely used

 We all want to build programs, not only
software engineers

hardware biologist social
designer scientist

Solver-aided Programming

1960 - Software crisis
1970 - Program logics

1980 - Mechanization of logic
1990 - Mechanized tools

Solver-aided Programming

 We all want to build programs

\

Solver aided Languages

less code

less time

hardware biologist social
designer scientist

less effort

Solver-aided Programming

1960 - Software crisis

1970 - Program logics

1980 - Mechanization of logic

1990 - Mechanized tools

2000 - Solvers and tools, eg. SAT, SMT
2010 - Solver-aided Languages

Four Elementary Queries

S: synthesize a code fragment

V: checking that an implementation satisfies a
desired property

L: localizing code fragments that cause an
undesired behavior

A: asking an angelic oracle to divine values
that make the execution satisfy a specification

Programming

e Specification

P(x) {

J

Programming

* | have test cases

P(x) {

}

assert(safe(p(2)))

Programming with Solver-aided tools

| do not have test cases

P(x) { translate....

}

assert(safe(p(X))) solver

Programming with Solver-aided tools

e Verification

P(x) { Ix . - safe(P(x))
}
assert(safe(p(X))) solver

Programming with Solver-aided tools

* Find a value that fails the program

P(x) { Ix . - safe(P(x))
}
assert(safe(p(X))) solver

Programming with Solver-aided tools

* Debugging
P(x) { X = 42 A safe(P(x))
V=X+2;
}...
assert(safe(p(X))) solver

Programming with Solver-aided tools

* Debugging

P(x) { X = 42 A safe(P(x))

v = choose();

}

assert(safe(p(X))) solver

Programming with Solver-aided tools

* Find the pair that fails the execution

PX){ Jv . safe(P(42, v))

v = choose();

}

assert(safe(p(X))) solver

Programming with Solver-aided tools

* Synthesis
P(x) { v . safe(P(42, v))
v="77;
}...
assert(safe(p(X))) solver

Programming with Solver-aided tools

* Synthesis
p(x) { Jde . Vx . safe(Pe(x))
V=X-2;
}...
assert(safe(p(X))) solver

Current Problems

* It’s very hard to write a solver-aided tool / PL

Learn the problem domain g

Design a domain language

Build a symbolic compiler
from the domain language
to constraints

Solution

* It’s very hard to write a solver-aided tool / PL

Learn the problem domain g

Design a domain language

Get a symbolic compiler for
free, implement an
interpreter for the new PL

Languages

* Layers

Interpreter library

Host Language

Solver-aided Languages

* Layers

Interpreter library

Solver-aided Host Language

Symbolic Virtual Machine

What is Rosette

Solver-aided host language

A framework for designing solver-aided
programming languages

Rosette itself is a solver-aided programming
anguage embedded in Racket

-rees designers from having to compiler the
new language to constraints

How does Rosette work

 Take BV as an example

def bvmax(ro, rl):
r2 = bvge (rO, rl)
r3 = bvneg(r2)
r4 = bvxor(rO,r2)
r5 = bvand(r3,r4)
ré = bvxor(rl,r5)
return ré

How does Rosette work

 Take BV as an example

> bvmax (-1,-2)

def bvmax(ro, rl):
r2 = bvge (rO, rl)
r3 = bvneg(r2)
r4 = bvxor(rO,r2)
r5 = bvand(r3,r4)
ré = bvxor(rl,r5)
return ré

(define bvmax
((2 bvge 0 1)
(3 bvneg 2)
(4 bvxor 0 2)
(5 bvand 3 4)
(6 bvxor 1 5))

How does Rosette work

* Take BV as an example . pmax (12

(deﬁne bvmax (define (interprgt prog inpgts)
. (make-registers prog inputs)
((2 pvge 0 1) (for ([stmt prog])
(match stmt
(3 ovneg 2) [(list out opcodein ...)
(4 bvxor 0 2) (define op (eval opcode))
(define args (map load in))
25 ovand 3 45)) (store out (apply op args))
6 bvxor 15]
)
))

load(last)

How does Rosette work

 Take BV as an example

0 1 2 3 4 5 6

-2 -1 0 0 -2 0 -1

(define bvmax
((2 bvge 0 1)
(3 bvneg 2)
(4 bvxor 0 2)
(5 bvand 3 4)
(6 bvxor 1 5))

> bvmax (-1,-2)

(define (interpret prog inputs)
(make-registers prog inputs)
(for ([stmt prog])
(match stmt
[(list out opcodein ...)
(define op (eval opcode))
(define args (map load in))
(store out (apply op args))
]
)

)
load(last)

How does Rosette work

 Take BV as an example

(2

(define bvmax

ovge 0 1)
ovheg 2)
ovxor 0 2)
ovand 3 4)
ovxor 1 5))

(define-symbolic n0O n1 number?)
(define inputs (list n0O n1))
(verify
(assert (= (interpret bvmax inputs)
(apply max inputs))
)
)

> verify (bvmax, max)
(O, _2)

> bvmax(0, -2)
-1

How does Rosette work

 Take BV as an example

(define bvmax
((2 bvge 0 1)
(3 bvneg 2)
(4 bvxor 0 2)
(5 bvand 3 4)
(6 bvxor 1 5))

/

(define-symbolic n0O n1 number?)
(define inputs (list n0O n1))
(verify
(assert (= (interpret bvmax inputs)
(apply max inputs))
)
)

> verify (bvmax, max)
(O, _2)

> bvmax(0, -2)
-1

How does Rosette work

e Take BV as an example > debug (bvmax, max, (0, -2))

(define bvmax (define inputs (list 0-2))
N (debug [input-register?]
((2 OVEE 0 1) (assert (= (interpret bvmax inputs)
(3 ovneg 2) / (apply max inputs))
)
(4 bvxor 0 2))

(5 bvand 3 4)
(6 bvxor 15))

How does Rosette work

e Take BV as an example > debug (bvmax, max, (0, -2))

(define bvmax (define inputs (list 0-2))
N (debug [input-register?]
((2 OVEE 0 1) (assert (= (interpret bvmax inputs)
(3 ovneg 2) / (apply max inputs))
)
(4 bvxor 0 2))

(5 bvand 3 4)
(6 bvxor 1 5))

How does Rosette work

* Take BV as an example > synthesize (bvmax, max)

(define bvmax (define inputs (list 0-2))
N (debug [input-register?]
((2 OVEE 0 1) (assert (= (interpret bvmax inputs)
(3 ovneg 2) / (apply max inputs))
)
(4 bvxor ? ?))

(5 bvand 3 ?)
(6 bvxor ? ?))

How does Rosette work

* Take BV as an example > synthesize (bvmax, max)

(define bvmax (define inputs (list 0-2))
N (debug [input-register?]
((2 OVEE 0 1) (assert (= (interpret bvmax inputs)
(3 ovneg 2) / (apply max inputs))
)
(4 bvxor 0 1))

(5 bvand 3 4)
(6 bvxor 1 5))

How does Rosette work

 Take BV as an example

def bvmax(ro, rl):
r2 = bvge (rO, rl)
r3 = bvneg(r2)
r4 = bvxor(rO,rl)
r5 = bvand(r3,r4)
ré = bvxor(rl,r5)
return ré

(define bvmax
((2 bvge 0 1)
(3 bvneg 2)
(4 bvxor 0 1)
(5 bvand 3 4)
(6 bvxor 1 5))

References

Growing Solver-Aided languages with ROSETTE slides: https://
excape.cis.upenn.edu/documents/rosette_ Emina.pdf

Growing Solver-Aided languages with ROSETTE paper: http://
homes.cs.washington.edu/~emina/pubs/rosette.onward13.pdf

A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages:
http://homes.cs.washington.edu/~emina/pubs/rosette.pldil4.pdf

Github Repository for Rosette: https://github.com/emina/rosette

Programming for everyone: http://fm.csl.sri.com/SSFT14/rosette-
lecture.pdf

Images and code fragments | used in this slides are from the papers and
slides above

Thank you !

