
Swift: a reactionary
language?

Kevin Roark Jr.

I’m going to be talking about Apple a lot.

I just want to make it clear that I am not obsessed with
Apple. I think it is a somewhat-questionable corporation
that can make very good things but that can also have a
bad attitude and bad habits. It should not be lauded as
something beyond human or idolized.

However, take this with a grain of salt, as I have an iPhone,
a MacBook, and really enjoy mobile iOS development; all
three are real nice.

The Incremental evolution of Objective-C

things have been added to the language over the years
(not that I really have been around to see it …)

● subscripting
● block-syntax
● ARC
● dot-syntax
● the move away from “id”
● literals
● and so on

… but eventually there’s a tipping point

Some things you can’t
fix incrementally. There
are flaws in Objective-C
that would have never
been overcome. Horrible,
horrible flaws.
Sometimes you have to …

BREAK BACKWARDS COMPATIBILITY
AND START FRESH!!!

Imagine …
Objective-C
without the C.

Quick Note on last week’s presentation

Java 8’s lambdas are an interesting example of
incremental evolution. Their implementation is
weird, but potentially could work. That can’t
happen forever though … in some ways I think
of Swift as akin to scala -> a brand new
language with the runtime of something old.

I built some hype. Here’s a quick overview of
Objective-C’s worst parts.

● it is too dynamic. you can make the compiler do anything. you will get a lot
of runtime crashes.

● it is a strict superset of c. it is thus syntactically limited by a very old
language.

● “faking” of properties, enums, and quite a bit more
● verbose to the point of absurdity
● header files
● you can call “malloc” ...
● no visibility control
● accidental overrides
● mutable and immutable copy …
● behavior of nil
● …. on and on for a long time

great little programming blog: http:
//nearthespeedoflight.com/

BUT Objective-C really is not so bad and has a
lot of good ideas

● robust libraries
● multi-threading is nice (GCD)
● categories and extendibility
● readability
● range of communication patterns
● … this list also actually goes on too.
● applications on the personal computers

and phones we use every day for the
most part run on Objective-C and are
sometimes pretty cool … so it can’t be
the worst.

Language Influences and Features

Language language language

Features features features

Influences from other languages
● Javascript -> closure syntax, func keyword, identity operators, var,

etc.
● Python -> ranges, object-oriented & functional elements, inferred static

typing
● Ruby -> string interpolation, optional binding, implicit returns
● Java -> generics are quite similar, the extending a “rock solid runtime”

idea
● Rust -> null is much less of a concept, safety and correctness are

heralded
● Objective-C -> Cocoa, LLVM, emphasis on enumerations, ARC,

categories, XCode is actually great.
● Clearly a wide net was cast

Speaking of programming languages as vehicles

Interesting Language Features

A quick note: I clearly don’t have time to dive
into everything, and this is not going to be a full
picture of Swift.

I will try to focus on things that I think are
interesting. I will also try to go quickly.

Small, but really excited about this one.

● “=” is no longer an expression
● think about it
● no more unnecessary “=” vs “==” bugs
● why did language designers ever think this

was a good idea

Variable and Function Declarations: a
Hodgepodge

var x : Int = 25
var y : String?
var z : [Double] = [2.0, 3.0]

func addOne(x: Int?) -> Int? {
if x != nil {

return x + 1;
 } else {

return nil;
}

}

private func ... func funct(externalName localName: String) { … }

func funct(#externalName: String) { … }

func funct(externalName: String = “Swift”) { … }

Type inference

small but nice and safe way to cut down on
redundancy in code. Expressive Static Typing.

var x = “hi!!!!” // this is totally encouraged, if a variable is
being assigned a value at initialization.

The function type of a closure can be inferred as well.

Immutability baked into declarations

let x = 2; // think of x like a #define constant, or a final variable in java.
this provides safety and allows for compiler optimizations

var x = 2; // capable of change

The Mutable and Immutable variants of containers in Objective-C are
no longer necessary.

@final func cool() -> String { return “cool” } // can’t be overridden

The inout parameter keyword

I thought this
was a very neat
idea that is
certainly more
explicit than
doing it with
pointers in C

func swapValues<T>(inout a: T,
inout b: T) {

let tempA = a
a = b
b = tempA

}

Switch statement overhaul

● switch case on any fundamental types, and enums
● “break” is implied, aka fallthrough is not the default behavior!!
● mandatory exhaustiveness
● ranges in a switch
● ** and more ** -> look how fun

switch name {
case “kev”: println(“hi”)
case “al”: println(“hello”)
default: break // check it out

}

switch i {
case 0: println(“none”)
case 1...3: println(“a lil”)
case 4..<7: println(“some”)
case _ where i >= 7: println(“a lot”)

}

Strings
Strings seem like they should be easy to get right. In many ways
programming often comes down to string manipulation. In Swift they
are a fundamental pass-by-value and immutable type.

In Objective-C they really are not good.
NSMutableString string = [NSMutableString alloc] initWithString:@”Hello”];
[string appendString:@” world”];
NSString greeting = [NSString stringByAppendingString:@”my name is Kevin”];

Swift looks script-like and fun in comparison (but pretty standard
compared to other new languages)
var string = ”Hello” + “ world”;
var greeting = string + “my name is Kevin”;

Optional Types
Objective-C:
NSString x = @”hello”; // great
NSString y = nil; // fine

Swift
var x : String = “hello”; // great
var x : String? = nil; // ok
var x : String = nil; // COMPILER ERROR

breaks the paradigm / idea of every pointer being to x or to nil. An explicit
annotation of allowing nothingness is required. Complexity is reduced. The
compiler *can check everything*.

Unwrapping an optional

var potentialTopic: String? = “swift”
if potentialTopic != nil {
 println(potentialTopic!)
}

Optional binding is short and sweet and neat

var potentialTopic: String? = “swift”
if let topic = potentialTopic.uppercase() {

println(topic)
} else {

println(“there never was a topic”)
}

Optional Chaining

or, the options continue (killer pun)

let count = object.items!.count // ERROR
vs.
let count = object.items?.count // count is implied
to be an optional type and will contain nothing
in this case

Type Casting
The is operator checks
the type of an object.

if item is Movie {
 let movie = item as Movie
 movie.play()
}

The as operator
downcasts the object
into a specific
subclass. It returns a
non-optional type and
can lead to runtime
errors.

The optional as operator is obviously cool.

I think all of this casting syntax in general is
much nicer than what you see in C and its
derivatives

Look at this crazy and useful thing you can do

told y’all switch-
case was
overhauled and is
going to be used
all the time

Multiple Return Types, aka Tuples

NSError *error;
NSData *data = [NSData dataWithContentsOfFile(file, &error);

let (data, error) = Data.dataWithContentsOfFile(file)

This is just an example, but it reduces the need for pointer-
based in-out parameters and for stupid small structs or
classes.

The worst part of
Objective-C is its type
system.

Swift introduces generics. Many things are
better. Take a look.

Here’s an example

NSArray can contain pointers to objects of any type (and
not any primitives). You can keep track of what is inside
and be reasonably sure based on an API, but come on …
(also, why have an array that can’t have integers in it?)

Here’s what can be bad:
NSArray *arr = @[@”cool”, [UIButton new], [NSNumber numberWithInt:2]];
for (NSDictionary *dict in arr) {

[dict setObject:nil forKey:@”ok”]; // this breaks for so many reasons
}

Generics Fix some problems

● we can know specifically what is inside of a collection.
● functions can be written to support nice “polymorphic”

behavior, while having guarantees of what the
parameters they support can do.

● no more “object 0xas234a2323b does not respond to
selector ‘count’ …”

Where clauses & generics syntax

func containersAreEquivalent<C1: Container, C2: Container
where C1.ItemType == C2.ItemType, C1.ItemType: Equatable>
(someContainer: C1, anotherContainer: C2) -> Bool {

// body of the function
}

taken directly from the Swift
Reference BookAllows very detailed specification of the constraints on a

generic function’s potential types

Collections are much better (than in
Objective-C

● they are typed (using generics)
● they can contain objects or non-objects
● they can contain optional values
● these all seem like no-brainers, but you

probably haven’t programmed in Objective-C

Powerful structs
small model classes aren’t actually so bad, like I alluded to earlier. It’s just that they are a big pain to
write in Objective-C.
@interface MyClass

@property (nonatomic, strong) NSString *name;

@property (nonatomic, assign) NSInteger age;

- (instancetype)initWithName:(NSString *)name age:(NSInteger)age;

@end

@implementation MyClass // not writing this implementation is a runtime crash. I’ve done it.

-(instancetype)initWithName:(NSString *)name age:(NSInteger)age { self = [super init]; if (self) { _name = name; _age = age; } return
self; }

@end

Structs are another answer to that problem. Structs are first-class types very similar to objects, but that are
always bassed by value. Swift encourages creation of many small and useful models.
struct MyStruct {

let name: String

let age: Int

};

Closures are really nice

Objective-C’s block syntax is *not*.
if you will pardon my language, there is a very nice website called
fuckingblocksyntax.com that Objective-C developers have to use every
time they need to use a block. Let’s go there.

http://fuckingblocksyntax.com/

A progression of valid sorting closures in Swift

sorted(objects, {
(s1: String, s2: String) -> Bool in

return s1 > s2
})1.

Type inference

sorted(objects, { s1, s2 in return s1 > s2 })

2.

Implicit returns in single-line closures

sorted(objects, { s1, s2 in s1 > s2 })

3.

Shorthand argument names

sorted(objects, { $0 > $1 })

4.

And a very specific case …

sorted(objects, >)

5.

Feature-rich Enumerations

● think “abstract data type” style
● can have behaviors and methods
● do not need to have associated “raw” values
● first-class types that lend themselves really

well to a lot of things. I think enumerations
will be very popular “idiomatic” in Swift.

Objects and Properties
computed properties /
getter and setters

property observers

examples from the Swift Programming Language Book

Extensions

● an evolution of Objective-C’s categories
● allow you to extend the functionality of an existing type

in a separate definition
● makes sense for adding protocol conformance, edge-

case functions that perhaps don’t belong in the main
implementation

● also is really a great thing for extending classes whose
source code you do not have access to (a la libraries)

Operator Madness

● operator implementation for classes by naming
a function “+” with the correct signature

● can also make custom operators named
anything with these symbols: “/ = - + * % < > ! &
| ^ . ~”

Rare feature: literal convertibles
class Dog { var name … }
var dog : Dog = “sally” // obviously an error

class Cat : StringLiteralConvertible {
var name
class func convertFromStringLiteral(value: StringLiteralType) -> Cat
{ return Cat(value) }

}
var cat : Cat = “iceman” // works !!!

note the “class”
modifier

Notes on how swift works

C O M P I L E R

R U N T I M E

Chris Lattner seems smart

● Went to grad school at University of Illinois and worked
on LLVM, now works at Apple as the lead of developer
tools

● big part of ARC
● primary author of LLVM
● and a big part of clang
● …
● worked alone on swift secretly for ~1 year starting in

2010.

The Swift Model - “The Minimal Model”
● Statically compiled
● Small runtime
● Flexible, Predictable, Efficient
● Transparent interaction with C and Objective-C
● Easily deployed to previous versions of iOS and OS X
● No non-deterministic JIT or GC pauses
● Native code with no artificial abstraction enabling bare-to-the-metal

programming

From the “Advanced Swift” session of WWDC ‘14

Swift’s compiler

● not hard to guess that Swift uses LLVM
● what is potentially more interesting is that it also uses a

modified Clang, which is traditionally a c-language front-
end

● Swift is in many ways an abstraction and optimization
on top of the Objective-C runtime, making the bridge
between them and utilization of Apple’s existing tools
relatively smooth

● “new language, established tools” is a consistent pattern
we’re seeing

Compiler Architecture
The only difference from the
standard LLVM flow is an
additional high-level optimization
step allowing language-specific
analyses.

From the “Advanced Swift” session of WWDC ‘14

These language-specific optimizations
● Removing abstraction penalties

○ Performs global analysis of app. Structs shouldn’t hurt. Internally even the
lowest level types like Ints and Floats are written as struct wrappers
around native LLVM types. So struct zero-abstraction-cost is essentially
guaranteed

● Generic specialization
○ Rather than constructing all called versions of generic functions, generic

specialization allows compiler to run generic code directly.
● Devirtualization

○ Resolving dynamic method calls at compile-time.
● ARC optimization, Enum analysis, Alias analysis, Value propagation, Library

optimizations on Strings and Arrays, etc.

From the “Advanced Swift” session of WWDC ‘14

The Swift <-> Objective-C bridge

Apple couldn’t afford to discard its rich Cocoa history and expect its developers to follow.

As a result, anything** written in Objective-C can be used from Swift, and visa-versa (the
signatures of methods are mangled to look good both ways, it’s quite cool). This how Apple
compromised: a fundamentally new language that somehow doesn’t break compatibility.

Swift is a break in paradigm from Objective-C in terms of philosophy, but not programming
legacy.

** really, most things. Anything with an advanced Swift feature (like tuples) that can’t readily be
expressed in Objective-C. To guarantee that a piece of code is accessible in Objective-C, use
the @objc attribute to have the compiler check for you.

What looks like direct frontend
translation goes on behind the scenes

In Objective-C, a UITableView looks like this:

UITableView *tableView = [[UITableView alloc] initWithFrame:
CGRectZero style:UITableViewStyleGrouped];
[tableView insertSubview:subview atIndex:2]

In Swift:

var tableView = UITableView(CGRectZero, .Grouped)
tableView.insertSubview(subview, atIndex: 2)

This happens automatically, for any
piece of code in either language
from the other, so long as you import
the necessary files.

Of course the actual
implementation is more
complex, but in the most part
it involves a single
relatively efficient copy
(especially efficient for
immutable types)

Secret:

● Swift objects are Objective-C objects under the
hood.
○ same layout as an Objective-C class
○ the bridge from a swift object to an Objective-C

object is essentially free
● subclassing any Objective-C object from Swift

prevents the static swift optimizations and makes
the class fully accessible from Objective-C

Performance differences
benchmarks from http://www.jessesquires.com/apples-to-apples/

CRAIG LIED?

http://www.jessesquires.com/apples-to-apples/

After Swift Beta 3

 asdfasdfasdf speed vs. safety?

And then Beta 5

P.S. the standard library sort even outperforms raw C

Why is it faster?
● Objective-C replaces every call with a weird

dynamic method dispatch
● stricter type rules allow the compiler to

optimize method lookups
● smart compiler knows when objects can skip

the heap
● more efficient register usage (no _cmd

parameter, for one)
● no “aliasing” (multiple pointers per memory

chunk, think restrict keyword)
● the more rigid structure generally allows for

more specific optimizations, given a really
smart compiler (which we have already
seen).

devil’s advocate:

does this speed come at a cost of
flexibility?

is this speed necessary for GUI
applications?

https://mikeash.com/pyblog/friday-
qa-2014-07-04-secrets-of-swifts-
speed.html

Playgrounds

● making incremental changes for large projects in
compiled languages wastes a lot of time.

● Playgrounds act almost like a python or node.js REPL,
but for fancy GUI apps

● there is also a traditional REPL for non-interactive code
● something the developers of Swift are very proud of

Language Design Constraints

e x p r e s s i v e n e s s

Performance

● has to have buttery scroll on an iPhone (and an
Apple watch…)

● C-based culture of performance baked into the
company and community

● will be compared to Objective-C
● strength of a systems programming language

Interface With Existing Infrastructure

● Cocoa and everything developers expect
from last 30 years. It doesn’t make sense to
start anew.

● Apple’s existing suite of compilation tools
● Apple’s culture (it’s hard to change, the cult,

etc.)

Responding to Objective-C criticisms

● type safety
● expressiveness (clearly one of the most important features)
● correctness
● safety
● irregular and obtuse syntax
● incorporation of aspects from modern

programming language theory

The developers of Swift see it, in many ways, as
a protocol-based language. They imagine a
common pattern of using extensions of a class
to conform to specific protocols (composition
pattern). I think this idea is good and in
interesting way to approach a language.

Idea stated in the “Advanced Swift” session of WWDC ‘14

Language evolution

each swift binary
contains its own small
version of the runtime
so that apps written
in swift beta will
always run

Swift’s Bad Parts

REALLY BAD PARTS

THINGS ARE SOMETIMES BAD

Things lost from Objective-C

● the dynamic nature of Objective-C can be beneficial at
times. Sometimes you can be smarter than a compiler, I
take it.

● Instantiating classes by name can be helpful
● so can message passing
● intentional swizzling

SWIFT IS
WALLED INSIDE

OF APPLE

Optionals are great ...
but they do not fully solve the null-reference problem.

The Cocoa libraries are built with the expectation that
nil is used to signify nothing. Swift allows implicit
optional unwrapping, which saves a lot of time if you
believe that an optional will have a value. But it makes
things unsafe. The safe thing to do is verbose, but
unsafe thing is easier and still exists.

In a similar vein …

Immutable declarations with let are a great
idea, but the path-to-least-resistance is to use
var for everything. Additionally, value semantics
with collections and mutability can be a whole
separate mess.
In short, The mutability problem is also not
solved.

Multi-paradigm languages can always
have the problem of redundancy. Swift
has been said to suffer from having its
cake and eating it too.

Controversial features

I’m just going to say “operator overloading” and
“custom operators” and “emojis are valid in
identifier names”.

Notes on Swift’s Future

T H E F U T U R E

OF SWIFT

Swift Reached 1.0

On september 9th. What does that mean?

Swift is like Rust or Go (sort of), except it is
going to be used immediately by a lot of
people. That’s where the whole “closed
ecosystem” and “single option for developer
tool” thing comes in.

Takeaway

Swift is clearly a revelation for Objective-C developers with
some interesting new features.

However, Swift is clearly not perfect, and constrained from
being as “progressive” as Rust or Haskell by things like Cocoa
compatibility, performance concerns, and conflicting
aspirations.

Would it be used if Apple didn’t ask for / force it? Hard to say.

But for the
most part,

thing is good.

