

Columbia Engineering

UNIVERSITY OF **ARTIFICIAL INTELLIGENCE**

Motivation

Causal models help us estimate causal effects when experiments are infeasible. But an incorrect model leads to incorrect conclusions. How can we efficiently test causal models with hidden variables?

Contributions

We propose an efficient algorithm, ListCl, for testing causal graphs via conditional independencies (CIs):

- **1.Real-world applicability:** test causal models with hidden variables against non-parametric data distributions.
- 2. Fewer tests: avoids exponentially many redundant CI tests by leveraging the c-component local Markov property.
- 3. Faster execution: runs in polynomial delay, enabling graph testing in poly-time intervals.

Fig. 1. A causal graph \mathcal{G}

An Example

- $A \rightarrow B := A$ causes B
- $C \leftrightarrow D := C$ and D are confounded by hidden factors
- *C*-*Component* := bidirected connected component e.g., $\{A, C, D, F, H, J\}$

This graph encodes **1198** CIs!

- For example, $A \perp E \mid D$ and $J \perp B$, $C \mid A$, D, E.
- Asymptotically $\Theta(4^n)$.

Testing all of them is redundant!

• A subset of only **11** CIs implies all others.

39th Annual AAAI Conference on Artificial Intelligence, Feb 25 – March 4. 2025, Philadelphia, PA, USA