
 Motivation

Causal models help us estimate causal effects when 

experiments are infeasible. But an incorrect model leads 

to incorrect conclusions. How can we efficiently test 

causal models with hidden variables?

We introduce the c-component local Markov property, which 

defines an exponentially smaller set of CIs that provably 

implies all others.
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We propose an efficient algorithm, ListCI, for testing causal 

graphs via conditional independencies (CIs): 

1.Real-world applicability: test causal models with hidden 

variables against non-parametric data distributions. 

2. Fewer tests: avoids exponentially many redundant CI 

tests by leveraging the c-component local Markov 

property. 

3. Faster execution: runs in polynomial delay, enabling graph 

testing in poly-time intervals.

 Contributions

Result II: A Poly-Delay Algorithm

 Empirical Performance
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 An Example

This graph encodes 1198 CIs! 

• For example,   and  .  

• Asymptotically  . 

Testing all of them is redundant!  

• A subset of only 11 CIs implies all others.

A ⊥ E ∣ D J ⊥ B, C |A, D, E
Θ(4n)

Fig. 1. A causal graph  𝒢

ListCI is orders of magnitude faster than baselines on  bnlearn 
graphs with up to 100 nodes.

Fig. 3. Runtime of ListCI vs. baselines on bnlearn graphs. Each shaded region 
indicates the interval of   on which the relevant algorithm timed out on some graphs 
with   nodes. The y-axis uses a logarithmic scale.
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Testing Causal Models with Hidden Variables in Polynomial Delay 
via Conditional Independencies 

•   :=    causes   

•   :=    and   are 

confounded by hidden 

factors 

• C-Component :=  bidirected 

connected component e.g., 

  

A → B A B
C ↔ D C D

{A, C, D, F, H, J}

 J ⊥ B |A, F

Fig. 2. Search tree for listing CIs invoked by C-LMP for the variable   in graph 
  (Fig. 1). We use a divide-and conquer approach with backtracking to 
enumerate ACs and output the corresponding CIs.
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𝒢

  J ⊥ B |A, F, H

  J ⊥ A, B, C, D, E

Phase Transitions?

Fig. 4. #CIs invoked by C-LMP vs 
probability of a bidirected edge for 
Erdos-Renyi random graphs with n 

nodes.  Top: no directed edges. 
Bottom: n directed edges.

How does the graph topology 
associated with c-components 
affect the #CIs invoked by C-LMP? 

In theory,   where   is the 
size of the largest c-component. 

In practice, as we increase the 
number of bidirected edges: 
•  Phase 1: While c-components are 

sparse, #CI increases 
exponentially. 

• Phase 2: As c-components 
become more dense, #CI decays 
exponentially. 

𝒪(n2s) s

Local Markov Property (Lauritzen et al 1990): For every variable 

  in  , 
          

X 𝒢
X ⊥ Non-Desc(X)∖pa(X) ∣ pa(X)

Causal graphs with 
hidden variables?

C-Component Local Markov Property:   For every variable   in  

  and every ancestral c-component   relative to  ,  
           

X
𝒢 C X

X ⊥ S+
C∖Pa(C) ∣ pa(C)

LMP  ❌ C-LMP ✅


