
Artificial Intelligence and
Machine Learning



What is Artificial Intelligence?

• You know what it is—computer programs that “think” or 
otherwise act “intelligent”
• The Turing test?

•What is “machine learning” (ML)?
• It’s simply one technique for AI—throw a lot of data at a program 

and let it figure things out
•What are “neural networks”?
• A currently popular technique for ML
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How Does ML Work?

• Lots of complicated math
• Not the way human brains with human neurons work
• To us, it doesn’t matter—we’ll treat it as an opaque box with 

certain properties
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How ML Works

• You feed the program a lot of training data
• From this training data, the ML algorithm builds a model of 

the input
• New inputs are matched against the model
• Examples: Google Translate, Amazon and Netflix’s 

recommendation engines, speech and image recognition
• However—machine learning algorithms find correlations, not 

causation
• It’s not always clear why ML makes certain connections
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Correlation versus Causation
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Training Data

• Training data must represent the desired actual input space
• Ideally, the training records should be statistically 

independent
• If you get the training data wrong, the output will be biased
• To understand or evaluate the behavior of an ML system, you 

need the code and the data it was trained on
• “Algorithm transparency” alone won’t do it
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Learning Styles

Supervised
• A human labels the training data 

according to some criteria, e.g., spam 
or not spam
• The algorithm then “learns” what 

characteristics make items more like 
spam or more like non-spam

Unsupervised
• Finds what items cluster together
• Useful for large datasets, where there 

is no ground truth, or where labels 
don’t matter
• What counts is similarity
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Supervised: Image Recognition

• Feed it lots of pictures of different things
• Label each one: a dog, a plane, a mountain, etc.
• Now feed it a new picture—it will find the closest match and 

output the label
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Unsupervised Learning

• Feed in lots of data without ground truth
• The algorithms find clusters of similar items; they can also 

find outliers—items that don’t cluster with others
• They can also find probabilistic dependencies—if a certain 

pattern of one set of variables is associated with the values 
of another set, a prediction can be made about new items’ 
values for those variables
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Uses of Machine Learning
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Recommendation Engines

• To recommend things to you, Amazon, Netflix, YouTube, etc., 
do not need to know what you buy or watch
• Rather, they just need to know that people who liked X also 

tended to like Y and Z.
• This is a classic example of unsupervised learning

Machine Learning 11



An Amazon Recommendation
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Finding Terrorists?

• There are very, very few terrorists
•Where are you going to find enough training data?
• Almost certainly, any features the real terrorists have in 

common will be matched by very many other innocent 
people
• The algorithms can’t distinguish them
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Finding Terrorists

• There are very, very few terrorists
•Where are you going to find enough training data?
• Almost certainly, any features the real terrorists have in 

common will be matched by very many other innocent 
people
• The algorithms can’t distinguish them
•When humans do this, we call it profiling
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A Recent Facebook Patent
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ML Doesn’t Always Work 
the Way We Want it To…
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Some Examples

• Biased training data
•Microsoft Tay
• Recidivism risk
• Targeted advertising
•More…
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Watch Out for Biased Training Data!
Training data that doesn’t represent actual data
• Google Photos misidentified two African-American men as 

gorillas
• Jacky Alciné—a programmer and one of the people who was 

misidentified, “I understand HOW this happens; the problem is moreso 
on the WHY.”
• Likely cause: not enough dark-skinned faces in the training dataset

• Cultural biases by the trainers 
• Mechanical Turk workers are often used for labeling

• False positives and false negatives
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Bias In, Bias Out

• Suppose you want an ML system to evaluate job applications
• You train it with data on your current employees
• The ML system will find applicants who “resemble” the 

current work force
• If your current workforce is predominantly white males, the 

ML system will select white male applicants and perpetuate 
bias
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Microsoft Tay

• A Twitter “chatbot”
• Tay “talked” with people on Twitter
•What people tweeted to it became its training data
• It started sounding like a misogynist Nazi…
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What Happened?

• People from 4Chan and 8Chan decided to troll it.
•With ML, vile Nazi garbage in, vile Nazi garbage out
•Microsoft didn’t appreciate just what people would try.
• “Sinders is critical of Microsoft and Tay, writing that 

‘designers and engineers have to start thinking about codes 
of conduct and how accidentally abusive an AI can be.’” (Ars 
Technica)
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https://arstechnica.com/information-technology/2016/03/tay-the-neo-nazi-millennial-chatbot-gets-autopsied/


Recidivism

• Several companies market “risk assessment tools” to law 
enforcement and the judiciary
• Do they work? Do they exhibit impermissible bias?
• A ProPublica study says that one popular one doesn’t work 

and does show racial bias: blacks are more likely to be seen 
as likely reoffenders—but the predictions aren’t very 
accurate anyway
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What Happened?

• Inadequate evaluation of accuracy
• Using the program in ways not intended by the developers
• Proxy variables for race
• Using inappropriate variables, e.g., “arrests” rather than 

“crimes committed”
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Hypertargeted Advertising

• It’s normal practice to target ads to the “right” audience
•ML permits very precise targeting—others can’t even see the 

ads
• Used politically—some research says that YouTube’s 

recommendation algorithms radicalize people
• Target managed to identify a pregnant 16-year-old—her 

family didn’t even know
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Target

• People habitually buy from the same stores
• They tend to switch only at certain times, e.g., when a baby 

is born
• Target analyzed sales data to find leading indicators of 

pregnancy
• They then sent coupons to women who showed those 

indicators
• People found that creepy—so Target buried the coupons 

among other, untargeted stuff that they didn’t really care if 
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ChatGPT and Other Large Language Models

• Not intelligent!
• As with all ML systems, based on a large amount of training data
• They generate probabilistic sentences, based on the chance of the next 

word occurring in its training data
• Words are represented as vector—long lists of numbers (probably tens of 

thousands of numbers) for each word
• Words that are somehow related have vectors that are “near” each other—

“dog” will be closer to “cat” than it is to “computer”
• Arithmetic on vectors: “biggest” - “big” + “small” can produce a vector that is close 

to “smallest”
• Can echo biases in training data: “doctor” - “man” + “woman” → “nurse”

• Detailed understanding of the output is often beyond human grasp
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Privacy and ML

• ML algorithms can act on you without knowing who you are
• ML algorithms can link disparate datasets to identify you, even 

without common database keys
• ML algorithms can predict thing about you

And: these algorithms are often wrong—is that better or worse?
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Questions?

Machine Learning 28

Red-eyed vireo, Central Park, August 31, 2022


