Device Encryption

Communications versus Device Encryption

Communications

- Sometimes called "data in motion"
- Key is negotiated; can use "forward secrecy"
 - Possible active attacks
- If weaknesses are found, including to algorithms, protocol can evolve
- Can use "forward secrecy"

Devices

- "Data at rest"
- Key is permanently fixed for each encryption
 - Attacker (probably) cannot interfere with the encryption process
- Encrypted data must survive future attacks

Forward Secrecy

- (Sometimes called "perfect forward secrecy")
- If a device or long-term key is compromised after a cryptographic session ends, it is not possible to decrypt earlier conversations
- Thus, if a user decrypts—or is forced to decrypt—their phone after a Signal conversation, it would not help the government decrypt older conversations
- Forward secrecy is used in all modern encryption protocols
- We will therefore concentrate on decrypting devices in this class

Device Encryption

- How are devices encrypted?
- Why are these methods strong?
- How do these methods fail?

4

Threat Models

- Who are your (plausible) enemies?
- What are their (plausible) powers?
- What do they want?

5

Attack Surfaces

- What are the places an attacker can reach?
- How weak are those places?
- Note: both answers depend on your threat model

- If the attacker has the key and access to the file, they can decrypt it
- Assumption: law enforcement (or Customs) will always have access to the file; the "defense" here must be legal
- The question: can the key be protected?
 - Related: where do the keys come from? Where, if anywhere, are they stored?

Encryption Types

- Manual encryption
- Disk encryption
- File system encryption
- Data class encryption

8

Manual Encryption

- Specify a key when saving or opening a file
- Could be inconvenient—must do it every time
- Every file utility must support encryption and decryption
- Attack surface: the entire OS, if running
- There are human and technical objections

What's a File System?

- A disk is like a giant book of sectors (rather than pages)
- A *file system* is a way of organizing the sectors, to let you find the information you want—something like a table of contents, but instead of chapters, sections, subsections, etc., we have folders (AKA *directories*) and files
 - The sectors in a file need not be in order—the file system says where they all are
- We also have a supply of unused sectors called the *free list*
 - When a file is deleted, its table-of-contents entry is cleared, but the the sectors typically are not erased
 - Forensic analysis tools can recover the contents of these sectors!

Disk Encryption

- Encrypt every sector, whether in use or part of the free list
- Minimal attack surface if the key isn't supplied
 - Use indirection: encrypt the disk with a random key; encrypt that key with a password
 - To permanently destroy the whole disk, just destroy that encrypted key—that's fast!
- But protection is all-or-nothing; the same key protects the entire disk
- To boot the system, the key must (somehow!) be supplied
 - (Could a key have been left lying around after the last boot?)

Į

File System Encryption

- Each file is encrypted separately
- You can have different keys for different files or directories full of files
- These keys can be supplied at different times, or as needed
- Good granularity of protection—but there can be a much larger attack surface

iOS Security

- The CPU contains a secure enclave a way to run selected pieces of code completely isolated from the rest of the system
 - Has separate memory not accessible from the rest of the system
 - In theory, minimal attack surface for the code in the secure enclave
- Specific iOS functions are executed in the enclave
 - Examples: data and keychain encryption, PIN entry, biometric authentication
- Contains a random device UID key generated at first power-on or at hard reset

Data Protection Classes

- iOS permits different classes of data to be encrypted differently
 - In other words, encrypted with different keys
- But: it's up to application programmers to select the proper storage class for different types of data
- Attack surface: whatever part of the OS is able to run

Data Protection Classes on iOS

No protection: Encrypted with device UID key only

unlock

be decrypted after that

Complete Protection: Key evicted when the device is locked

- **After First Unlock:** Protected at boot time; key available after first PIN-based
- Protected Unless Open: When a file is closed, its key is "evicted"; data cannot

How It's Done

- The device UID key is used to create the No Protection key, via a hash
- supplied PIN
- A tag for each class is also hashed in

The other keys are created by hashing together the UID key and the user-

Why It's Secure

Powered off: Disk is encrypted; UID key is in the secure enclave only

If the UID key is changed, the disk is effectively erased

functions

Large attack surface—but what of the PIN?

After First Unlock: PIN has been entered; secure enclave can calculate other protection class keys

restore the key to iOS

- **Powered Up:** The UID key is available—can produce key to decrypt many phone
- Protected Unless Open; Complete Protection: The secure enclave decides when to

Generating PIN-Protected Keys

- Can only be done by the secure enclave nothing else has access to the UID key
- The key generation process is inherently slow: 80 ms per guess
 - There are 1,000,000 possible six-digit PINs will take 80,000 seconds to try all possible PINs
 - If lower-case letters and digits are used: 5.5 years
- The secure enclave, by default, wipes the phone after 10 failed guesses

iPhone Attack Surface

It can answer calls before a PIN is entered...

Attacking iOS Security: What Works

- iOS has a large attack surface while running, both before and especially after first unlock
- Many companies have found security flaws in iOS that allow them in
 - They market forensic software to law enforcement
- Recall: after first unlock, most keys are present in RAM, and the secure enclave knows the the rest...

Before First Unlock?

- UID, and it limits guesses
- Are there security holes in the secure enclave API? Unclear...
 - Holes to allow grabbing the UID?
 - Holes to reset the guess counter or up the limit?

In theory, there are no attacks possible before first unlock—the PIN and the device UID key are necessary, only the secure enclave can access the device

What (Probably) No Longer Works

- Insert a boobytrapped USB device
 - iPhones won't talk to newly inserted USB devices more than a short while after the phone is locked
- Replace the firmware with an image that reveals the device UID
 - Installing new firmware requires knowledge of the PIN Apple locked themselves out of the ability to create nasty images
- NEW: You must enter your device PIN to sync with a computer

Android Phones

- There's no one Android
 - Google supplies a base system, but each vendor customizes it
 - Apple controls the hardware and the software for iOS; Google controls neither
 - Some vendors with high-end hardware implement encryption; low-end platforms do not
 - Some Android phones have a weaker analog to Apple's Secure Enclave

Android Encryption

- Two types, full disk encryption and file encryption
- Full disk: must supply PIN at boot time for the phone to do anything
- File encryption: two types
 - Device-encrypted: always available after boot; similar to Apple's scheme.
 Used for system applications
 - Credential-encrypted: similar to Apple's AFU encryption
 - Keys are never evicted from memory after boot; no equivalent to iOS Complete Protection

Going Around Encryption

- "You don't go through strong security, you go around it"
- Smart guesses at the PIN
- Faking the biometrics
- The cloud

Guessing PINs

- Your fingers leave oily marks on the screen when you touch it
 - Is there a pattern around the PIN digits?
 - Even better with Android's pattern unlock: look for smears
- Thermal sensing immediately after unlock
- Ubiquitous surveillance cameras
 - people have to use their PIN...

• For people who still mask, face-unlock doesn't work that well anymore;

Faking—or Forcing—the Biometrics

- Creation of fake fingerprints has been demonstrated several times
 - Some sensors have been buggy and accept almost anything...
 - Better sensor designs incorporate *liveness detectors*, but sometimes those can be fooled
- Apple's facial recognition appears to be quite strong—it looks for facial features, open eyes, a face that's close enough, etc.
- Phones typically disable biometric authentication periodically, or after a few failed tries

Cloud Backups

- Many phones and apps back up their data to some form of cloud storage Apple explicitly makes some of this available via iCloud
- App stores know what you've installed
- Most email services use IMAP, where the primary copy of all messages is on the server
- Google collects *lots* of data about people, from Android phones and from Google apps

cloud services?

Does the party that seized the device have the ability to compel cooperation from

Laptops

- All modern laptop operating systems support full disk encryption
 - MacOS FileVault; Windows BitLocker
- What about backup keys (AKA recovery keys)?
 - Apple: print out a recovery key and/or enable unlock via AppleID password
 - Microsoft: print out a recovery key; cloud key backups are also used
- Is the owner's backup disk encrypted?

Device Encryption

- Most devices are pretty secure if they're powered off when seized
- Much of the data may be available via cloud services
- There are often ways around the encryption

Outside the Usual Threat Model

- "Decap" the chip and read out the device UID directly
 - This will let you speed up the 80 ms per guess rate
- Unsolder the SSD, back it up, and try guesses when you hit the limit, restore the SSD from the backup

9

A Threat Model in Some Places...

https://xkcd.com/538/

Bird of the Day

Winter wren, Central Park, November 12, 2023

