
C*C*

Also written as Also written as cstarcstar and pronounced and pronounced Sea
Sea
StarStar ..

AuthorsAuthors

NameName UNIUNI RoleRole

Shannon JinShannon Jin sj2802sj2802 ManagerManager

Khyber SenKhyber Sen ks3343ks3343 Language GuruLanguage Guru

Ryan LeeRyan Lee dbl2127dbl2127 System ArchitectSystem Architect

Joanne WangJoanne Wang jyw2118jyw2118 TesterTester

IntroductionIntroduction

C* is a general-purpose systems programming language. It is between the level of C and Zig on a
C* is a general-purpose systems programming language. It is between the level of C and Zig on a
semantic level, and syntactically it also borrows a lot from Rust (pun intended). It is meant primarily
semantic level, and syntactically it also borrows a lot from Rust (pun intended). It is meant primarily
 for programs that would otherwise befor programs that would otherwise be
implemented in C for the speed, simplicity, and explicitness of the
implemented in C for the speed, simplicity, and explicitness of the
 language, but want a few simple higher-level language constructs, more expressiveness, and some safety,
language, but want a few simple higher-level language constructs, more expressiveness, and some safety,
but no so many overwhelming language features and implicitbut no so many overwhelming language features and implicit
costs like in Rust, C++, or Zig.costs like in Rust, C++, or Zig.

It has manual memory management (no GC) and uses LLVM as its primary codegen backend, so can be
It has manual memory management (no GC) and uses LLVM as its primary codegen backend, so can be
optimized as well as C, or even better in cases. All of C*'s higher-level language constructs are
optimized as well as C, or even better in cases. All of C*'s higher-level language constructs are
zero-cost, meaning none of thosezero-cost, meaning none of those
features give it any overhead over C, which often lead to a
features give it any overhead over C, which often lead to a
highly-optimized style where in C you would take less efficient shortcuts (e.x. function pointers and
highly-optimized style where in C you would take less efficient shortcuts (e.x. function pointers and
 type-erased generics) and use dangerous constructs like type-erased generics) and use dangerous constructs like gotogoto . In the future,. In the future,
it may also have a C backend so that it can target any architecture where there is a C compiler.it may also have a C backend so that it can target any architecture where there is a C compiler.

While a general-purpose language, C* will probably have the most advantages when used in systems and
While a general-purpose language, C* will probably have the most advantages when used in systems and
embedded programming. It’s expressivity and high-level features combined with its relative simplicity,
embedded programming. It’s expressivity and high-level features combined with its relative simplicity,
performance, andperformance, and
explicitness is a perfect match for many of these low-level systems and embedded
explicitness is a perfect match for many of these low-level systems and embedded
programs.programs.

Language FeaturesLanguage Features

This will contain a high-level overview of the important features of C*, but for a more in-depth
This will contain a high-level overview of the important features of C*, but for a more in-depth
explanation of things, see explanation of things, see The C* LanguageThe C* Language

section.section.

Expression OrientedExpression Oriented

C* is highly-expression oriented. Unlike C, where many things are only statements, most things in C*
C* is highly-expression oriented. Unlike C, where many things are only statements, most things in C*
are expressions. Things like:are expressions. Things like:

Statements evaluate to the unit type Statements evaluate to the unit type ()() ..

Blocks evaluate to their last expression, which could be a statement (and thus
Blocks evaluate to their last expression, which could be a statement (and thus
 ()()) or a trailing expression (with no `;)) or a trailing expression (with no `;)

Functions and closures themselves.Functions and closures themselves.

 ifif , , if/elseif/else , , matchmatch are all
 are all
expressions.expressions.

 forfor evaluates to the evaluates to the breakbreak value, which is usually
 value, which is usually
 ()() ..

Postfix EverythingPostfix Everything

Most unary operators and keywords can be used postfix as well.Most unary operators and keywords can be used postfix as well.

 .if {}.if {}

 .if {} else {}.if {} else {}

 .match {}.match {}

 .for {}.for {}

 .*.* for dereference for dereference

 .&.& for pointer to for pointer to

 .&mut.&mut for mutable pointer to for mutable pointer to

 .!.! for negation for negation

 .@().@() for builtins, like as (casting), size_of, etc. for builtins, like as (casting), size_of, etc.
 .@cast(T).@cast(T) : convert to : convert to TT , like an int to float cast,
, like an int to float cast,
or an int widening castor an int widening cast

 .@ptr_cast<T>().@ptr_cast<T>() : cast a pointer like : cast a pointer like *T*T to
 to
 *U*U

 .@bit_cast<T>().@bit_cast<T>() : reinterpret the bits, like from
: reinterpret the bits, like from
 u32u32 to to f32f32

 .@size_of().@size_of() : size of a type: size of a type

 .@align_of().@align_of() : alignment of a type: alignment of a type

 .@call(func).@call(func) : call a function or closure in a unified syntax: call a function or closure in a unified syntax

Combined with everything Combined with everything being an
being an
expressionexpression, , matchmatch , and
, and
having having methodsmethods, this makes it much easier to write
, this makes it much easier to write
 things in a very fluid style.things in a very fluid style.

Furthermore, and perhaps most importantly in practice, this makes autocompletion vastly better, because
Furthermore, and perhaps most importantly in practice, this makes autocompletion vastly better, because
an IDE can narrow done what you may type next based on the type of the previous expression. This can’t
an IDE can narrow done what you may type next based on the type of the previous expression. This can’t
be done with postfixbe done with postfix
operators and functions (rather than methods). You get to think in one forward
operators and functions (rather than methods). You get to think in one forward
direction, rather than having to jump from some prefix things to some postfix things.direction, rather than having to jump from some prefix things to some postfix things.

Algebraic Data TypesAlgebraic Data Types

C* has C* has structstruct s for product types and s for product types and enumenum s for sum
s for sum
 types. This is very powerful combined with types. This is very powerful combined with pattern
pattern
matchingmatching. . enumenum s in particular, which are like tagged
s in particular, which are like tagged
unions, are much safer and correct compared to C unions. These data typesunions, are much safer and correct compared to C unions. These data types
are also fully zero-cost;
are also fully zero-cost;
 there is no automatic boxing, and the safe performance as C can be easily be achieved. Sometimes even
there is no automatic boxing, and the safe performance as C can be easily be achieved. Sometimes even
better, because the layout of compound types is unspecified in C*.better, because the layout of compound types is unspecified in C*.

For example, you can do this to make a copy-on-write string.For example, you can do this to make a copy-on-write string.

structstruct StringString {{

 ptr ptr:: **u8u8,,

 len len:: usizeusize,,

}}

structstruct StringBufStringBuf {{

 ptr ptr:: **u8u8,,

 len len:: usizeusize,,

 cap cap:: usizeusize,,

}}

enumenum CowStringCowString {{

 BorrowedBorrowed((StringString)),,

Shannon

Shannon

Shannon

Shannon

Shannon

 OwnedOwned((StringBufStringBuf)),,

}}

Pattern MatchingPattern Matching

Instead of having a Instead of having a switchswitch statement like in C, C* has a generalized
 statement like in C, C* has a generalized
 matchmatch statement, which can be used to match many more expressions, including
 statement, which can be used to match many more expressions, including
 integers (like in C), integers (like in C), enumenum variants, dereferenced pointers, slices, arrays,
 variants, dereferenced pointers, slices, arrays,
andand
strings. Also, there is no fall-through, but strings. Also, there is no fall-through, but matchmatch cases can be combined
 cases can be combined
explicitly.explicitly.

Furthermore, just like you can destructure to pattern match in a Furthermore, just like you can destructure to pattern match in a matchmatch

statement, you can also do the same as a general statement, like in a statement, you can also do the same as a general statement, like in a letlet .
.
 It’s like an unconditional It’s like an unconditional matchmatch ..

letlet cow cow == CowStringCowString::::BorrowedBorrowed(("🐄""🐄"));;

letlet len len == matchmatch cow cow {{

 BorrowedBorrowed((ss)) =>=> s s..lenlen(()),,

 OwnedOwned((ss)) =>=> s s..lenlen(()),,

}};;

letlet StringString {{ptrptr,, len len}} == "🐄""🐄";;

Note that string literals are of the Note that string literals are of the StringString type similarly defined as above,
 type similarly defined as above,
and you can redeclare/shadow variables like and you can redeclare/shadow variables like lenlen ..

GenericsGenerics

C* supports generic types and values, but they are at this point unconstrained. That is, they are like
C* supports generic types and values, but they are at this point unconstrained. That is, they are like
C++'s concept-less templates. They are always monomorphic, except when the exact same code can be shared
C++'s concept-less templates. They are always monomorphic, except when the exact same code can be shared
 (no boxing ever). They(no boxing ever). They
are not currently higher-kinded. Types and functions can be generic over both
are not currently higher-kinded. Types and functions can be generic over both
 types and values, like this:types and values, like this:

enumenum OptionOption<<TT>> {{

 NoneNone,,

 SomeSome((TT)),,

}}

enumenum ShortVecShortVec<<TT,, NN:: u8u8>> {{

 InlineInline {{

 array array:: [[TT;; NN]],,

 len len:: u8u8,,

 }},,

 AllocatedAllocated {{

 ptr ptr:: OptionOption<<**TT>>,,

 len len:: usizeusize,,

 cap cap:: usizeusize,,

 }},,

}}

fnfn short_vec_lenshort_vec_len<<TT,, NN:: u8u8>>((vv:: **ShortVecShortVec<<TT,, NN>>)):: usizeusize {{

 v v..matchmatch {{

 InlineInline {{lenlen,, _ _}} =>=> len len..@@castcast(()),,

 AllocatedAllocated {{lenlen,, _ _}} =>=> len len,,

 }}

}}

Non-Null PointersNon-Null Pointers

C* has pointers, C* has pointers, *T*T and and *mut T*mut T , but they are always
, but they are always
non-null valid pointers. To express nullability, use non-null valid pointers. To express nullability, use Option<*T>Option<*T> , which
, which
uses the uses the 00 pointer representation for the pointer representation for the NoneNone

variant. Nullability can also be nested with variant. Nullability can also be nested with OptionOption , like, like
 Option<Option<*T>>Option<Option<*T>> , which can’t easily be done in C with nullable
, which can’t easily be done in C with nullable
pointers.pointers.

Monadic Error HandlingMonadic Error Handling

There are no exceptions in C*, just like C. It uses return values for error handling, similarly to C.
There are no exceptions in C*, just like C. It uses return values for error handling, similarly to C.
But C* has much better support for this using the But C* has much better support for this using the OptionOption and
 and
 ResultResult types. types.

The definitions of these types are:The definitions of these types are:

structstruct OptionOption<<TT>> {{

 NoneNone,,

 SomeSome((TT)),,

}}

structstruct ResultResult<<TT,, EE>> {{

 OkOk((TT)),,

 ErrErr((EE)),,

}}

That is, That is, OptionOption represents an optional value, and
 represents an optional value, and
 ResultResult represents either a successful represents either a successful OkOk value or an
 value or an
error error ErrErr value. value.

There is special syntactic support for using these two monadic types for error-handling using the
There is special syntactic support for using these two monadic types for error-handling using the
 .?.? postfix operator in postfix operator in trytry blocks: blocks:

structstruct IndexErrorIndexError {{

 index index:: usizeusize,,

}}

fnfn get_by_indexget_by_index<<TT>>((aa:: **[[TT]],, i i:: usizeusize)):: ResultResult<<TT,, IndexErrorIndexError>> {{

 ifif ((i i << a a..lenlen(()))) {{

 OkOk((aa[[ii]]))

 }} elseelse {{

 ErrErr((IndexErrorIndexError {{indexindex:: i i}}))

 }}

}}

structstruct IndexPairIndexPair {{

 first first:: usizeusize,,

 second second:: usizeusize,,

}}

fnfn get_two_by_indexget_two_by_index<<TT>>((aa:: **[[TT]],, i i:: usizeusize,, j j:: usizeusize)):: ResultResult<<TT,, IndexErrorIndexError>> trytry {{

 letlet first first == trytry {{

 get_by_indexget_by_index((aa,, i i))..??

 }};;

 letlet second second == get_by_indexget_by_index((aa,, j j))..??;;

 IndexPairIndexPair {{firstfirst,, second second}}

}}

This desugars toThis desugars to

fnfn get_two_by_indexget_two_by_index<<TT>>((aa:: **[[TT]],, i i:: usizeusize,, j j:: usizeusize)):: ResultResult<<TT,, IndexErrorIndexError>> {{

 letlet first first == trytry {{

 get_by_indexget_by_index((aa,, i i))..matchmatch {{

 OkOk((ii)) =>=> i i,,

 ErrErr((ee)) =>=> returnreturn ErrErr((ee)),,

 }}

 }};;

 letlet second second == get_by_indexget_by_index((aa,, j j))..matchmatch {{

 OkOk((ii)) =>=> i i,,

 ErrErr((ee)) =>=> returnreturn ErrErr((ee)),,

 }}

 OkOk((IndexPairIndexPair {{firstfirst,, second second}}))

}}

As you can see, without the try As you can see, without the try .?.? operator and operator and trytry

blocks, doing all the error handling with just blocks, doing all the error handling with just matchmatch quickly becomes tedious.
 quickly becomes tedious.
This is also kind of like a monadic This is also kind of like a monadic dodo notation, except it is in C* limited to
 notation, except it is in C* limited to
 just the monads just the monads Option<T>Option<T> ,,
and
and
 Result<T, E>Result<T, E> (over (over TT).).

Note also that Note also that trytry blocks can be specified at the function level as well as
 blocks can be specified at the function level as well as
normal blocks.normal blocks.

Uncatchable PanicsUncatchable Panics

While monadic error-handling with While monadic error-handling with OptionOption and and ResultResult

 is usually superior, there are still cases where you have unrecoverable errors (maybe you don’t want to
is usually superior, there are still cases where you have unrecoverable errors (maybe you don’t want to
handle out of memory conditions), or where you’d rather just end thehandle out of memory conditions), or where you’d rather just end the
program than handle the error. In
program than handle the error. In
 this case, you can this case, you can panicpanic , which will print an error message and immediately
, which will print an error message and immediately
 abortabort ..

To do this with an To do this with an OptionOption or or ResultResult , you can just
, you can just
call call .unwrap().unwrap() , which will panic if it was , which will panic if it was NoneNone or
 or
 ErrErr and return the and return the SomeSome or or OkOk

value.value.

There is no language-supported unwinding. There is no language-supported unwinding. abortabort is immediately called after a
 is immediately called after a
panic, and only the OS cleans things up. Nothing is stopping you from calling
panic, and only the OS cleans things up. Nothing is stopping you from calling
 setjmpsetjmp and and longjmplongjmp from C, but no unwinding of
 from C, but no unwinding of
 deferdefer statements is done, statements is done,
and it may result in undefined behavior. There is no
and it may result in undefined behavior. There is no
undefined behavior, however, in a normal panic because you just simply
undefined behavior, however, in a normal panic because you just simply
 abortabort ..

DeferDefer

To aid in resource handling, C* has a To aid in resource handling, C* has a deferdefer keyword.
 keyword.
 deferdefer defers the following statement or block until the function returns, but will
 defers the following statement or block until the function returns, but will
 run it no matter where the function returns from (but not
run it no matter where the function returns from (but not
 panicpanic s/s/ abortabort s) (actually, the
s) (actually, the
 deferdefer will will
run when its block exits, but its easier to just think about function
run when its block exits, but its easier to just think about function
blocks first).blocks first).

For example, you can use this to ensure you correctly clean up resources in a function:For example, you can use this to ensure you correctly clean up resources in a function:

externextern "C""C" fnfn openopen((pathpath:: **u8u8,, flags flags:: i32i32)):: i32i32;;

externextern "C""C" fnfn closeclose((fdfd:: i32i32)):: i32i32;;

fnfn open_file_in_diropen_file_in_dir((dirdir:: **[[u8u8]],, filename filename:: **[[u8u8]])):: ResultResult<<i32i32,, StringString>> trytry {{

 letlet mutmut path path == VecVec..newnew((MallocatorMallocator(())));;

 defer path defer path..freefree(());;

 trytry {{

 ifif ((dirdir..lenlen(()) >> 00)) {{

 path path..extendextend((dirdir))..??;;

 path path..pushpush((b'/'b'/'))..??;;

 }}

 path path..extendextend((filenamefilename))..??;;

 path path..pushpush((00))..??;;

 }}..map_errmap_err((fnfn((__)) "alloc error""alloc error"))..??;;

 letlet path path == path path..as_ptras_ptr(());;

 letlet fd fd == openopen((pathpath,, O_RDWRO_RDWR))..matchmatch {{

 --11 =>=> ErrErr(("open failed""open failed")),,

 fd fd =>=> fd fd,,

 }}..??;;

 defer defer printlnprintln((ff"opened {fd}""opened {fd}"));;

 returnreturn fd fd;;

}}

In this example, you have to allocate a path to store the directory and filename you combine, and then
In this example, you have to allocate a path to store the directory and filename you combine, and then
open that path and return the file descriptor if it was successful. You have to clean up the memory
open that path and return the file descriptor if it was successful. You have to clean up the memory
allocation, though, and do thatallocation, though, and do that
while still handling all the allocation errors and the open error. The
while still handling all the allocation errors and the open error. The
 latter can be done elegantly with latter can be done elegantly with trytry and and .?.? , but if
, but if
you mix in the you mix in the path.free()path.free() , you’d have to run it before every error return,
, you’d have to run it before every error return,
which means you have to duplicate itwhich means you have to duplicate it
and not use and not use .?.? anymore. anymore.

Instead, you can use Instead, you can use deferdefer for this. No matter where you return from the
 for this. No matter where you return from the
 function, it will run its statement right before that. You can also use function, it will run its statement right before that. You can also use deferdefer

 for any statement, not just resource cleanup, like logging for example.for any statement, not just resource cleanup, like logging for example.

However, sometimes you want to cancel a However, sometimes you want to cancel a deferdefer ::

structstruct FilePairFilePair {{

 fd1 fd1:: i32i32,,

 fd2 fd2:: i32i32,,

}}

fnfn open_two_filesopen_two_files((path1path1:: **[[u8u8]],, path2 path2:: **[[u8u8]])):: ResultResult<<FilePairFilePair,, StringString>> trytry {{

 letlet fd1 fd1 == open_file_in_diropen_file_in_dir((b""b"",, path1 path1))..??;;

 close close:: defer defer closeclose((fd1fd1));;

 letlet fd2 fd2 == open_file_in_diropen_file_in_dir((b""b"",, path2 path2))..??;;

 close close:: defer defer closeclose((fd2fd2));;

 printlnprintln((ff"opened {fd1} and {fd2}""opened {fd1} and {fd2}"));;

 undefer close undefer close;;

 FilePairFilePair {{fd1fd1,, fd2 fd2}}

}}

In this example, you want open two files and return them if successfull. If only one is successful,
In this example, you want open two files and return them if successfull. If only one is successful,
 though, that’s an error and you should close the first one before returning the error. In order to do
though, that’s an error and you should close the first one before returning the error. In order to do
 that cleanly, you can use the that cleanly, you can use the undeferundefer

keyword, which cancels an earlier
keyword, which cancels an earlier
 labeled labeled deferdefer , in this case labeled , in this case labeled closeclose ..

 deferdefer and and undeferundefer are actually syntax sugar for something a bit
 are actually syntax sugar for something a bit
more low-level and wordy:more low-level and wordy:

fnfn open_two_filesopen_two_files((path1path1:: **[[u8u8]],, path2 path2:: **[[u8u8]])):: ResultResult<<FilePairFilePair,, StringString>> trytry {{

 letlet fd1 fd1 == open_file_in_diropen_file_in_dir((b""b"",, path1 path1))..??;;

 letlet close1 close1 == {{fd1fd1}} fnfn(()) closeclose((fd1fd1));;

 letlet close1 close1 == close1 close1..@@deferdefer(())));;

 letlet fd2 fd2 == open_file_in_diropen_file_in_dir((b""b"",, path2 path2))..??;;

 letlet close2 close2 == {{fd1fd1}} fnfn(()) closeclose((fd1fd1));;

 letlet close2 close2 == close2 close2..@@deferdefer(())));;

 printlnprintln((ff"opened {fd1} and {fd2}""opened {fd1} and {fd2}"));;

 letlet close close == [[close2close2,, close1 close1]];;

 close close..undoundo(());;

 FilePairFilePair {{fd1fd1,, fd2 fd2}}

}}

That is, That is, .@defer().@defer() places the closure on the stack and returns a
 places the closure on the stack and returns a
 DeferDefer struct, which can be undone with struct, which can be undone with Defer.undo()Defer.undo()

 (([Defer].undo()[Defer].undo() just maps just maps Defer.undo()Defer.undo() over the
 over the
array). array). Defer.undo()Defer.undo() sets a bit in the sets a bit in the DeferDefer struct
 struct
 that it’sthat it’s
been undone. Then when the stack unwinds, any none-undone been undone. Then when the stack unwinds, any none-undone DefersDefers on
 on
 the stack are run.the stack are run.

Comparison to DestructorsComparison to Destructors

In many other languages, destructors are used for resource handling instead of defer. This is more
In many other languages, destructors are used for resource handling instead of defer. This is more
uniform, automatic, and safe, since destructors run automatically when dropped out of scope. If you have
uniform, automatic, and safe, since destructors run automatically when dropped out of scope. If you have
destructors, though, you alsodestructors, though, you also
need moves in order to do what we can do with
need moves in order to do what we can do with
 undeferundefer , but then you also need ownership, which C* doesn’t track. Furthermore,
, but then you also need ownership, which C* doesn’t track. Furthermore,
 deferdefer is a lot more explicit and flexible. All the resource cleanup is written
 is a lot more explicit and flexible. All the resource cleanup is written
explicitly so there are noexplicitly so there are no
hidden costs, which most programmers coming from C will prefer. And since you
hidden costs, which most programmers coming from C will prefer. And since you
can put any statement in a can put any statement in a deferdefer , it’s much more flexible than
, it’s much more flexible than
destructors.destructors.

MethodsMethods

C* has associated functions and simple methods, though these are largely syntactic sugar. To declare
C* has associated functions and simple methods, though these are largely syntactic sugar. To declare
 these for a type, simply write:these for a type, simply write:

structstruct PersonPerson {{

 first_name first_name:: StringString,,

 last_name last_name:: StringString,,

}}

implimpl HelloHello {{

 fnfn newnew((first_namefirst_name:: StringString,, last_name last_name:: StringString)):: SelfSelf {{

 SelfSelf {{first_namefirst_name,, last_name last_name}}

 }}

 fnfn say_hi1say_hi1((selfself:: SelfSelf)) {{

 printprint((ff"Hi {self.first_name} {self.last_name}""Hi {self.first_name} {self.last_name}"));;

 }}

 fnfn say_hi1say_hi1((selfself:: **SelfSelf)) {{

 printprint((ff"Hi {self.last_name}, {self.first_name}""Hi {self.last_name}, {self.first_name}"));;

 }}

 fnfn remove_last_nameremove_last_name((selfself:: **mutmut SelfSelf)) {{

 selfself..last_name last_name == """";;

 }}

}}

fnfn mainmain(()) {{

 letlet mutmut person person == PersonPerson..newnew(("Khyber""Khyber",, "Sen""Sen"));;

 {{

 person person..say_hi1say_hi1(());;

 person person..&&..say_hi2say_hi2(());;

 person person..&&mutmut..remove_last_nameremove_last_name(());;

 person person..say_hi1say_hi1(());;

 }}

 {{

 PersonPerson..say_hi1say_hi1((personperson));;

 PersonPerson..say_hi2say_hi2((personperson..&&));;

 PersonPerson..remove_last_nameremove_last_name((personperson..&&mutmut));;

 PersonPerson..say_hi1say_hi1((personperson));;

 }}

}}

In this example, we first declared a In this example, we first declared a struct Personstruct Person , and then an
, and then an
 implimpl block for block for PersonPerson to define methods/associated
 to define methods/associated
 functions for it. Note that this functions for it. Note that this implimpl block can be anywhere, even in other
 block can be anywhere, even in other
modules.modules.

In the In the implimpl block, we first declared an associated function
 block, we first declared an associated function
 Person.newPerson.new , which is just a normal function but namespaced to
, which is just a normal function but namespaced to
 PersonPerson . Similar, the other three methods are just normal functions, too, as seen
. Similar, the other three methods are just normal functions, too, as seen
when we call them explicity inwhen we call them explicity in
the second block in the second block in mainmain . But we can also use
. But we can also use
 .. syntax to call them, which just allows us to explicitly naming
 syntax to call them, which just allows us to explicitly naming
 PersonPerson ..

Inside an Inside an implimpl block, we can also use the block, we can also use the SelfSelf type
 type
as an alias to the type being implemented. This is especially useful with generics.as an alias to the type being implemented. This is especially useful with generics.

Note that the Note that the .&.& and and *Self*Self are explicit,
 are explicit,
because wan’t these kinds of things to be done explicitly. For example,
because wan’t these kinds of things to be done explicitly. For example,
 Person.say_hi1Person.say_hi1 takes takes SelfSelf by value, which means it must
 by value, which means it must
copy the copy the PersonPerson every time. If every time. If PersonPerson were a much
 were a much
 largerlarger
struct, this could be very expensive and we don’t want to hide that information. Also, the
struct, this could be very expensive and we don’t want to hide that information. Also, the
difference between difference between .&.& and and .&mut.&mut is explicit
 is explicit
 to make mutability explicit everywhere.to make mutability explicit everywhere.

ClosuresClosures

In C*, you can also use anonymous closures. These are similar to normal functions, but they can
In C*, you can also use anonymous closures. These are similar to normal functions, but they can
 “enclose” over values in the current scope.“enclose” over values in the current scope.

For example,For example,

implimpl <<TT,, FF>> OptionOption<<TT>> {{

 fnfn mapmap((selfself:: SelfSelf,, f f:: FF)):: FF((TT)) {{

 matchmatch selfself {{

 NoneNone =>=> NoneNone,,

 SomeSome((tt)) =>=> SomeSome((ff..@@callcall((tt)))),,

 }}

 }}

}}

fnfn mainmain(()) {{

 trytry {{

 letlet a a == SomeSome(("hello""hello"))..mapmap((fnfn((ss)) s s..lenlen(())))..??;;

 letlet b b == SomeSome(("world""world"))..mapmap(({{aa}} fnfn((ss)) a a ++ s s..lenlen(())))..??;;

 letlet c c == SomeSome(("🏳️‍⚧️""🏳️‍⚧️"))..mapmap(({{nn:: b b}} fnfn((ss)) n n ++ s s..lenlen(())))..??;;

 NoneNone..mapmap(({{aa..&&,, b b..&&mutmut,, n n:: &&mutmut c c}} fnfn((ss)) {{

 printprint((ff"{s}: {a.*}, {b.*}, {n.*}""{s}: {a.*}, {b.*}, {n.*}"));;

 n n..**++++;;

 b b..** +=+= n n..**;;

 }}));;

 printprint((ff"{s}: {a}, {b}, {c}""{s}: {a}, {b}, {c}"));;

 }}

}}

These are some example of how to create closures and how to call them. In particular:These are some example of how to create closures and how to call them. In particular:

Closures have a generic, unnamed type. So when we take a closure as a parameter, we need to use a
Closures have a generic, unnamed type. So when we take a closure as a parameter, we need to use a
generic (this is because closure type depend on what they capture). You can also apply a type to a
generic (this is because closure type depend on what they capture). You can also apply a type to a
 function type to get its returnfunction type to get its return
type, like type, like F(T)F(T) ..

We can call a closure using the unified calling syntax: We can call a closure using the unified calling syntax: .@call().@call() . Normal
. Normal
 function calls are function calls are ()() , and we want to be explicit when we’re actually
, and we want to be explicit when we’re actually
calling a closure, so calling a closure, so .@call().@call() is needed.
 is needed.
 .@call().@call() also works on normal functions, also works on normal functions,
though, since all functions can be
though, since all functions can be
 implicitly converted to non-capturing closures.implicitly converted to non-capturing closures.

The closure syntax is very similar to function syntax, with a few differences:The closure syntax is very similar to function syntax, with a few differences:
The return expression does not have to be a block, like in normal functions; it can
The return expression does not have to be a block, like in normal functions; it can
directly use an expression. Note that functions effectively just return a block. That’s how
directly use an expression. Note that functions effectively just return a block. That’s how
 trytry blocks work, for example. blocks work, for example.

Argument and return types are inferred, though they can still be specified if you want.
Argument and return types are inferred, though they can still be specified if you want.
This is because they are more local, and thus documented types are not as necessary.This is because they are more local, and thus documented types are not as necessary.

If you want to capture variables, you specify an anonymous struct literal before the
If you want to capture variables, you specify an anonymous struct literal before the
 fnfn . This follows the same normal rules for struct literals, but you
. This follows the same normal rules for struct literals, but you
don’t have to specify the type, since the type is anonymous. Then that struct’sdon’t have to specify the type, since the type is anonymous. Then that struct’s
fields are
fields are
available within the closure as variables.available within the closure as variables.

The way closures are implemented are by creating an anonymous struct of the captured closure context.
The way closures are implemented are by creating an anonymous struct of the captured closure context.
Then there is a method on that struct that takes the closure arguments and returns the closure body with
Then there is a method on that struct that takes the closure arguments and returns the closure body with
 the context structthe context struct
destructured inside (so its variables are in scope). This is what is called by
destructured inside (so its variables are in scope). This is what is called by
 .@call().@call() . Note that there are no indirect function calls, boxing, or allocations
. Note that there are no indirect function calls, boxing, or allocations
 involved in this, but it requires the use of generics. If nothing is captured by ainvolved in this, but it requires the use of generics. If nothing is captured by a
closure, though, then
closure, though, then
 it can be cased to a function pointer: it can be cased to a function pointer: fn(T, U): Rfn(T, U): R , which can be called
, which can be called
 indirectly and passed to C over FFI. The same is true of normal functions.indirectly and passed to C over FFI. The same is true of normal functions.

SlicesSlices

C* also has slices. These are a pointer and length, and are much preferred to passing the pointer and
C* also has slices. These are a pointer and length, and are much preferred to passing the pointer and
 length separately, like you usually have to do in C.length separately, like you usually have to do in C.

They are implemented like this (not actually, but similarly):They are implemented like this (not actually, but similarly):

structstruct SliceSlice<<TT>> {{

 ptr ptr:: **TT,,

 len len:: usizeusize,,

}}

But they can be written as But they can be written as *[T]*[T] . Actually, slices are unsized types, so their
. Actually, slices are unsized types, so their
 type is just type is just [T][T] , but usually , but usually *[T]*[T] is used and that
 is used and that
 is what’s equivalent to the above is what’s equivalent to the above Slice<T>Slice<T> ..

Unlike pointers like Unlike pointers like *T*T , slices can be indexed. By default, using the
, slices can be indexed. By default, using the
 indexing operator, this is bounds checked for safety, but there are also unchecked methods for indexing.
indexing operator, this is bounds checked for safety, but there are also unchecked methods for indexing.
Usually, though, bounds checking can be elided duringUsually, though, bounds checking can be elided during
sequential iteration, so the performance hit is
sequential iteration, so the performance hit is
minimal, and can be side-stepped if really needed.minimal, and can be side-stepped if really needed.

Slices can also be sliced to create subslices by indexing them with a range (e.x.
Slices can also be sliced to create subslices by indexing them with a range (e.x.
 [1..10][1..10] or or [1..][1..]). Again, this is bounds checked by
). Again, this is bounds checked by
default.default.

StringsStrings

There are multiple types of strings in C* owing to the inherent complexity of string-handling without
There are multiple types of strings in C* owing to the inherent complexity of string-handling without
 incurring overhead. The default string literal type is incurring overhead. The default string literal type is StringString , which is UTF-8
, which is UTF-8
encoded and wraps a encoded and wraps a *[u8]*[u8] . This is a borrowed slice type. This is a borrowed slice type
and can’t change
and can’t change
size. To have a growable string, there is the size. To have a growable string, there is the StringBufStringBuf type, but there is no
 type, but there is no
special syntactic support for this owned string. special syntactic support for this owned string. StringString s are made of
s are made of
 charchar s, unicode scalar values, when iterating (even though they ares, unicode scalar values, when iterating (even though they are
stored as
stored as
 [u8][u8]).). charchar s have literals like
s have literals like
 c'\n'c'\n' ..

Then there are byte strings, which are just Then there are byte strings, which are just *[u8]*[u8] and do not have to be UTF-8
 and do not have to be UTF-8
encoded. String literals for this are prefixed with encoded. String literals for this are prefixed with bb , like
, like
 b"hello"b"hello" (and for char byte literals, a (and for char byte literals, a bb prefix, too:
 prefix, too:
 b'c'b'c'). The owning version of this is just a). The owning version of this is just a
 Box<[u8]>Box<[u8]> (notice the unsized slice use), and the growable owning version is
 (notice the unsized slice use), and the growable owning version is
 just a just a Vec<u8>Vec<u8> ..

Furthermore, for easier C FFI, there is also Furthermore, for easier C FFI, there is also CStringCString and
 and
 CStringBufCStringBuf , which are explicitly null-terminated. All other string types are not
, which are explicitly null-terminated. All other string types are not
null-terminated, since they store their own length, which is way more efficient and safe. Literalnull-terminated, since they store their own length, which is way more efficient and safe. Literal
 CStringCString s have a s have a cc prefix, like
 prefix, like
 c"/home"c"/home" ..

And finally, there are format strings. Written And finally, there are format strings. Written f"n + m = {n + m}"f"n + m = {n + m}" , they can
, they can
 interpolate expressions within interpolate expressions within {}{} . Types that can be used like this must have
. Types that can be used like this must have
a a formatformat method (might change). format, or f-strings, don’t actually evaluate
 method (might change). format, or f-strings, don’t actually evaluate
 to ato a
string, but rather evaluate to an anonymous struct that has methods to convert it all at once into
string, but rather evaluate to an anonymous struct that has methods to convert it all at once into
a real string. Thus, f-strings do not allocate.a real string. Thus, f-strings do not allocate.

ImportsImports

Instead of using a preprocessor with Instead of using a preprocessor with #include#include s like in C, C* uses imports.
s like in C, C* uses imports.
Each file is a module of its name, and it can be imported to use in another file/module, or specific
Each file is a module of its name, and it can be imported to use in another file/module, or specific
 items from that module. Short modules can also be declareditems from that module. Short modules can also be declared
inline withinline with

modmod {{

}}

Structural CommentsStructural Comments

Besides just using Besides just using //// for line comments and for line comments and ////// for
 for
doc comments, doc comments, /-/- can be used for a sort of structural comment. That is, it
 can be used for a sort of structural comment. That is, it
will comment out the next item, whether that be the next expression, the next line, or the next
will comment out the next item, whether that be the next expression, the next line, or the next
 function.function.

C FFIC FFI

C* has no stable ABI, but can easily do C FFI by marking an item (like a function or a struct)
C* has no stable ABI, but can easily do C FFI by marking an item (like a function or a struct)
 extern "C"extern "C" . C* constructs are automatically converted to their C
. C* constructs are automatically converted to their C
equivalents:equivalents:

C*C* CC NotesNotes

 ()() voidvoid

 boolbool _Bool_Bool

 u8u8 uint8_tuint8_t

 i8i8 int8_tint8_t

 u16u16 uint16_tuint16_t

 i16i16 int16_tint16_t

 u32u32 uint32_tuint32_t

 i32i32 int32_tint32_t

 u64u64 uint64_tuint64_t

 i64i64 int64_tint64_t

 u128u128 unsigned __int128unsigned __int128

 i128i128 __int128__int128

 usizeusize size_tsize_t

 isizeisize ssize_tssize_t

 uptruptr uintptr_tuintptr_t

 iptriptr intptr_tintptr_t

 f16f16 _Float16_Float16

 f32f32 floatfloat

 f64f64 doubledouble

 f128f128 _Float128_Float128

 *T*T *T*T for argument typesfor argument types

 Option<*T>Option<*T> *T*T for return typesfor return types

 fn(T, U): Rfn(T, U): R R (*)(T, U)R (*)(T, U)

There is also an There is also an extern "C" union {}extern "C" union {} type available that is for FFI with C
 type available that is for FFI with C
 unionunion s. It is unknown which variant is active, unlike
s. It is unknown which variant is active, unlike
 enumenum s, which track that.s, which track that.

ExamplesExamples

GCDGCD

Here is how you write simple algorithms like GCD in C*:Here is how you write simple algorithms like GCD in C*:

fnfn gcdgcd((aa:: i64i64,, b b:: i64i64)):: i64i64 {{

 ((fnfn gcdgcd((aa:: u64u64,, b b:: u64u64)):: u64u64 {{

 matchmatch b b {{

 00 =>=> b b,,

 _ _ =>=> gcdgcd((bb,, a a %% b b)),,

 }}

 }}((aa..absabs(()),, b b..absabs(())))..@@castcast((i64i64))

}}

Systems ProgrammingSystems Programming

namename

Shannon

Here is an example program in C* for part of a simple HTTP/1.0 server,Here is an example program in C* for part of a simple HTTP/1.0 server,

equivalent to part0 of hw3 in Jae’s OS class (equivalent to part0 of hw3 in Jae’s OS class (https://gist.github.com/RyanLee64/957cf2336d9cea168839f549f99f8916https://gist.github.com/RyanLee64/957cf2336d9cea168839f549f99f8916).
).
 It showcases many of C*'s notable features,It showcases many of C*'s notable features,
like enums, methods, generics, defer,
like enums, methods, generics, defer,
expression-orientedness, postfix operators, pattern matching, closures, monadic error handling, and
expression-orientedness, postfix operators, pattern matching, closures, monadic error handling, and
byte, c, and format strings.byte, c, and format strings.

That code (the ported part) is ~230 LOC, while the C* below is only ~80 LOC, and it is more correct in
That code (the ported part) is ~230 LOC, while the C* below is only ~80 LOC, and it is more correct in
error handling and edge cases, faster in places (though IO dominates here), and the business logic
error handling and edge cases, faster in places (though IO dominates here), and the business logic
stands out more (while lessstands out more (while less
important things like errors, resource cleanup, allocations, and string
important things like errors, resource cleanup, allocations, and string
handling stay in the background). That is, C* allows you to be simulatenously more expressive while
handling stay in the background). That is, C* allows you to be simulatenously more expressive while
still staying correct and explicit, and the performance is just asstill staying correct and explicit, and the performance is just as
good if not better.good if not better.

enumenum StatusStatus {{

 OkOk,,

 NotImplementedNotImplemented,,

 BadRequestBadRequest,,

 // rest skipped for brevity// rest skipped for brevity

}}

structstruct RequestLineRequestLine {{

 method method:: **[[u8u8]],,

 uri uri:: **[[u8u8]],,

 version version:: **[[u8u8]],,

}}

implimpl RequestLineRequestLine {{

 fnfn checkcheck((selfself:: **SelfSelf)):: ResultResult<<(()),, StatusStatus>> trytry {{

 letlet SelfSelf {{methodmethod,, uri uri,, version version}} == selfself..**;;

 matchmatch ((methodmethod,, version version)) {{

 ((b"GET"b"GET",, b"HTTP/1.0"b"HTTP/1.0" || b"HTTP/1.1"b"HTTP/1.1")) =>=> {{}},,

 _ _ =>=> ErrErr((StatusStatus..NotImplementedNotImplemented))..??,,

 }}

 ifif uri uri..starts_withstarts_with((b'/'b'/'))..!! |||| uri uri..equalsequals((b"/.."b"/..")) |||| uri uri..containscontains((b"/../"b"/../")) {{

 ErrErr((StatusStatus..BadRequestBadRequest))..??;;

 }}

 }}

}}

fnfn mainmain(()):: ResultResult<<(()),, AnyErrorAnyError>> trytry {{

 letlet ((portport,, web_root web_root)) == std std..envenv..argvargv(())..matchmatch {{

 [[__,, port port,, web_root web_root]] =>=> ((portport..parseparse<<u16u16>>(())..??,, web_root web_root)),,

 [[programprogram,, ]] =>=> ErrErr((ff"usage: {program} <server_port> <web_root>""usage: {program} <server_port> <web_root>"))..??,,

 }};;

 letlet server_socket server_socket == SocketSocket..newnew((PF_INETPF_INET,, SOCK_STREAMSOCK_STREAM,, IPPROTO_TCPIPPROTO_TCP))..??;;

 defer server_socket defer server_socket..&&..closeclose(());;

 server_socket server_socket..&&..bindbind((SocketAddrSocketAddr {{

 family family:: AF_INETAF_INET,,

 addr addr:: InetAddrInetAddr {{

 addr addr:: INADDR_ANYINADDR_ANY..to_beto_be(()),,

 }},,

 port port:: port port..to_beto_be(()),,

 }}))..??;;

 server_socket server_socket..&&..listenlisten((55))..??;;

 letlet mutmut request_line_buf request_line_buf == VecVec..newnew(());;

 defer request_line_buf defer request_line_buf..freefree(());;

 letlet mutmut line_buf line_buf == VecVec..newnew(());;

 defer line_buf defer line_buf..freefree(());;

 looploop trytry {{

 letlet client_socket client_socket == server_socket server_socket..&&..acceptaccept(())..??;;

client_socket_closeclient_socket_close::

 defer client_socket defer client_socket..&&..closeclose(());;

 letlet mutmut client_stream client_stream == fdopenfdopen((client_socketclient_socket..fdfd,, c c"r""r"))..??;;

 undefer client_socket_close undefer client_socket_close;; // stream (`FILE *` in C) takes ownership// stream (`FILE *` in C) takes ownership

 defer client_stream defer client_stream..&&..closeclose(());;

 letlet line_or_status line_or_status == trytry {{

 // read and parse request line// read and parse request line

 letlet line line == client_stream client_stream..&&mutmut..read_lineread_line((bufbuf..&&mutmut))

 ..map_errmap_err((fnfn((__)) StatusStatus..BadRequestBadRequest))..??

 ..splitsplit((fnfn((bb)) " \t\r\n"" \t\r\n"..containscontains((bb))))..matchmatch {{

 [[methodmethod,, uri uri,, version version]] =>=> RequestLineRequestLine {{ method method,, uri uri,, version version }},,

 _ _ =>=> ErrErr((StatusStatus..NotImplementedNotImplemented))..??,,

 }};;

 line line..&&..checkcheck(())..??;;

 // read headers, skip them// read headers, skip them

 looploop {{

 client_stream client_stream..&&mutmut..read_lineread_line((bufbuf..&&mutmut))

 ..map_errmap_err((fnfn((__)) StatusStatus..BadRequestBadRequest))..??

 ..matchmatch {{

 "\n""\n" || "\r\n""\r\n" =>=> breakbreak,,

 _ _ =>=> {{}},,

 }}

 }}

 line line

 }}

 letlet ((lineline,, status status)) == matchmatch line_or_status line_or_status {{

 OkOk((lineline)) =>=> ((lineline,, StatusStatus..OkOk)),,

 ErrErr((statusstatus)) =>=> ((RequestLineRequestLine {{ method method:: b""b"",, uri uri:: b""b"",, version version:: b""b"" }},, status status)),,

 }};;

 client_socket client_socket..writewrite((ff"HTTP/1.0 {status.code()} {status.reason()}\r\n\r\n""HTTP/1.0 {status.code()} {status.reason()}\r\n\r\n"))..??;;

 matchmatch line_or_status line_or_status {{

 OkOk((__)) =>=> handle_requesthandle_request((web_rootweb_root,, line line..uriuri,, client_socket client_socket))..??,,

 ErrErr((__)) =>=> client_socket client_socket..writewrite((ff"<html><body>\n<h1>{status.code()} {status.reason()}</h1>\n</body></html>""<html><body>\n<h1>{status.code()} {status.reason()}</h1>\n</body></html>"))..??;;

 }}

 eprintlneprintln((ff"{client_socket.addr} \"{line.method} {line.uri} {line.version}\" {status.code()} {status.reason()}""{client_socket.addr} \"{line.method} {line.uri} {line.version}\" {status.code()} {status.reason()}"))..??;;

 }}

}}

https://gist.github.com/RyanLee64/957cf2336d9cea168839f549f99f8916

