
SMAP Language Reference Manual

Introduction
This manual describes the SMAP language that was introduced by the team during the proposal milestone. The manual describes the
concrete standards of the language and its syntax that is being used to implement this probabilistic language, along with the other numerous
features that can be implemented using the language. The language grammar provides an unambiguous parsing to the SMAP language.

Lexical Conventions

Tokens

There are five classes of tokens: identifiers, keywords, string literals, operators and other separators. Other tokens are ignored because they
act as separators, i.e. they separate the tokens. Blanks, horizontal and vertical tabs, newlines, formfeeds and comments are part of the group
of tokens that are ignored while parsing the program.

Comments

Single-line comments are denoted by the characters // which ignore all text following them until a newline is met. Multi-line comments are

denoted by the characters /* and */ which introduce and terminate the multi-line comment, respectively. Everything between the paired

multi-line comment characters is ignored. Comments do not nest and do not occur in literals.

Identifiers

Identifiers are a sequence of letters and digits. SMAP is case-sensitive since lowercase and uppercase letters are distinguished to allow for
camel case, and the underscore _ is included to allow for snake case. Identifiers must begin with an underscore or letter.

Keywords

The following identifiers are reserved for use as keywords:

Primitive Types and their Literals

Integer Literals

A sequence of digits in decimal format. Cannot start with a 0.

Bool Literals

Either true or false , implemented as integers 0 or 1.

Float Literals

A sequence of digits in decimal format containing a single . for the decimal point.

Character Literals

A text character in single quotes, for example 'a' . Escape characters '\n' , \\ , '\'' , '\"' , represent new line, regular slash, single quote,

 ,-. . . , . .

(` | o |\ /| o | | o

 `-. |- ;-. . ;-. ,-: | V | ,-: ;-. . ;-. . . | ,-: |- . ,-. ;-.

.) | | | | | | | | | | | | | | | | | | | | | | | | | | |

 `-' o `-' ' ' ' ' `-| ' ' o `-` ' ' ' |-' `-` ' `-` `-' ' `-' ' '

 `-' '

 ,. . ;-.

 / \ | |) | | o | o |

 |--| ;-. ,-| |-' ;-. ,-. |-. ,-: |-. . | . |- . .

 | | | | | | | | | | | | | | | | | | | | | |

 ' ' o ' ' `-' ' o ' `-' `-' `-` `-' ' ' ' `-' `-|

 `-'

okayToUseCamelCase //ok

okay_to_use_snake_case //ok

OkayToStartWithCapital //ok

_alsoOkay //ok

9_not_okay_to_start_with_number¬_okay_non_alphanumeric-=@#% // invalid

¬_okay_non_alphanumeric-=@#% // invalid

bool break case char default continue if elif else float for fn int list prob return string switch true false void

while .length

and double quote, respectively.

String Literals

A sequence of characters in double quotes, for example, "hello" . String literals are implemented as lists of char s. See section 7 for details

on implementation.

Lists

A list is a collection of a homogenous and mutable type of data, i.e. all of the objects inside the list would be of the same type. A list is also
dynamically sized, i.e. the list size is mutable.

There are multiple ways to initialize a list. Lists are defined by the list keyword followed by the singular type that the list will contain. Lists

can be created with an initial set of data or be empty and can have elements added to them dynamically.

Oftentimes, we need to append a value at the end or beginning of the list. This is easily done with the > and < symbol within list indexing.

Getting the length of the list is possible by using the .length operator which returns the length as an integer.

We allow the ++ operator on the list type to concatenate two lists of the same type together.

We can delete elements from a list using the right shift >> and left shift << operators. These operators are followed by an integer indicating

how many elements should be deleted. These operations can be considered as 'pushing' operators since the right shift >> 'pushes' off a

number of elements from the right side and the left shift << 'pushes' off a number of elements from the left side.

Strings

A string is syntactic sugar for a list of type char . Since strings are of type list char under-the-hood, strings can be defined either as a

string type or as a list char as there is no difference.

String literals are defined as any ASCII character between a pair of double quotes (ex. "this is a string"). Literals are cast to their

respective string representations at compilation time which allows for incredibly easy string manipulation and string building.

String Initialization

Strings can be initialized to string literals or variables of type list char or string .

String Promotion

Any literal of type int , float , char , or bool can be promoted into a string when being assigned to a variable of type string .

// Creating a list

list int myints = [3, 2, 5];

list int myints = [3, 2, 5];

list int emptylist;

//Indexing a list using positional notation:

myints[0] == 3; //evaluates to true

myints[0] = 1;

myints[0] == 1; //evaluates to true

myints[>] = 42;

myints[<] = 37;

// myints is now: [37, 3, 2, 5, 42]

myints.length == 5; //evaluates to true

list int numsToAdd = [100];

list int concatResult = myints ++ numsToAdd;

// concatResult == [37, 3, 2, 5, 42, 100]

// concatResult == [37, 3, 2, 5, 42, 100]

concatResult >> 2; // concatResult == [37, 3, 2, 5]

concatResult << 1; // concatResult == [3, 2, 5]

string stringFromLit = “apple”; //"apple"

string stringFromLit2 = “ banana”; //"banana"

list char listFromString = stringFromLit; //"apple"

list char listFromStringLit = “apple”; //"apple"

String Concatenation

Because lists already have a concatenation operator ++ , concatenating strings is conceptually the same.

Probability Type

The probability type is polymorphic; any type can be made into a probabilistic type with the prob type qualifier. The probability type models a

discrete distribution by matching probabilities to values.

Probability types are initialized with a pair of non-empty lists separated by a colon. The left hand side list represents probabilities and must be
of type list float . The right hand side list represents values and must be of type list type , where type is the type declared after the prob

type qualifier in the declaration. The floats within the probability distribution must be positive.

Once initialized, the list of values inside the probability type is immutable.

Here's an example of a good use of a probability type. Consider creating a game that requires enemies to be spawned of some difficulty. The
difficulty of the enemy is represented by the integers 1 , 2 , and 3 from easiest to hardest. Let's define a probability type called

randDifficulty to pick these dificulties according to a programmer-defined distribution.

Initialization

If lists of two different lengths are used during probability type initialization, the longer list is truncated to the length of the shorter list by
removing elements from end. The length must be greater than or equal to 1 (probability types cannot be initialized with lists of zero length).

The probability distribution does not need to sum to 1 during initialization. SMAP normalizes the probability distribution during initialization
and transformations (see Modifying Probability Types with Transformations and Normalization).

Accessing Fields

.length

The 'length' of a probability type returns the length of its lists.

Probability Distribution

The # operator extracts the list of probabilities. It is placed directly after the probability type.

Values

Values are selected by a probability range (inclusive) defined within brackets. This would return all the values with a matching probability
within the provided range. The return type is a list of the value type defined by the programmer during probability type initialization.

Picking Value According To Distribution

The ! operator extracts the list of probabilities based on the underlying distribution.

string number = 5; //"5"

string floatingNum = 5.0; //"5.0"

string charStr = 'a'; //"a"

string boolStr = true; //"true"

string concatString = stringFromLit ++ stringFromLit2; //”apple banana”

list char anotherConcat = concatString ++ stringFromLit2 ++ “ “ ++ 5; //"apple banana banana 5"

// prob <type> myprob = list float : list <type>

// the two type-identifiers must match!

prob int randDifficulty = [0.5, 0.25, 0.25] : [1, 2, 3];

prob int aNum = [0.25, 0.25, 0.5] : [7, 5]; // truncated and normalized to [0.5, 0.5] : [7, 5] during init

int len = aNum.length; // len == 2

prob int randDifficulty = [0.5, 0.25, 0.25] : [1, 2, 3];

list float vals = randDifficulty#; // vals == [0.5, 0.25, 0.25]

prob int randDifficulty = [0.5, 0.25, 0.25] : [1, 2, 3];

// return all values that have a matching probability between 0 and 1 (ie. all values)

list int vals = randDifficulty[0,1]; // vals == [1, 2, 3]

// return all values with probabilities within the range 0.0 - 0.25 (inclusive)

list int unlikelyVals = randDifficulty[0, 0.25]; //vals == [2, 3]

Modifying Probability Types With Transformations

We use transformations to safely modify a probability type’s underlying distribution. Transformations use the arithmetic operators + , - , * ,

/ as part of a “zipwith” function, and then normalize the resulting list of floats to represent a new distribution. Transformation expressions

can be generalized into four forms, with a probability type required on the left side of the operation.

Let’s take a look at these transformations in action. Consider the first case of probType OP anotherProbType .

How did we get the result [0.36,0.64] : [‘a’,’b’] ? Remember that the value lists of num and letter are immutable. Since letter is on

the left hand side of the transformation, its values are chosen to appear in the resulting probability type. Note that this means a
transformation between two probability types is associative but not commutative! Next, letter# and num# are zipped with the *

operator. Transformations use the probability type’s length (the minimum of its two list lengths) when performing zipwith , so the expression

can be broken down as follows.

Then the transformation normalizes the probabilities,

and final result is

Another example, probType OP list float :

Since int s are implicitly converted to float s in float op int or int op float expressions, probType OP list int expressions are

implicitly converted expressions of probType OP list float .

Another example, probType OP float :

Expressions of probType OP float are implicitly converted to expressions of probType OP list float , where the float transforming the

probability is promoted to a list of equal length with a single repeated value.

Since integers are implicitly converted to float s in float op int or int op float expressions, probType OP int expressions are

implicitly converted expressions of probType OP float .

int num = randDifficulty!; // num is 1, 2, or 3

probType OP anotherProbType

probType OP list float

probType OP list int

probType OP float

probType OP int

prob int num = [0.25, 0.15, 0.15, 0.45] : [6, 87, 4, 302];

prob char letter = [0.25, 0.75] : [‘a’,’b’];

letter = letter * num; // letter is [0.36,0.64] : [‘a’,’b’]

letter * num

zipwith letter# num# *

zipwith [0.25, 0.75] [0.25, 0.15, 0.15, 0.45] *

[0.25*0.25, 0.75*0.15]

[0.0625, 0.1125]

N([0.0625, 0.1125]) = [0.0625/0.157, 0.1125/0.157] = [0.36,0.64]

[0.36,0.64] : [‘a’,’b’]

prob int changedNum = Num * [0.2, 0.3];

// [0.53, 0.047]:Num[0,1]

// zipwith Num# letter# *

// zipwith [0.25, 0.15, 0.15, 0.45] [0.2, 0.3] *

// [0.25*0.2, 0.15*0.3]

// [0.05, 0.045]

// Normalize([0.05, 0.045]) = [0.05/0.095, 0.045/0.095] = [0.53, 0.047]

// final result is [0.53, 0.047] : [6, 87, 4, 302]

letter = letter + 3;

// [0.48, 0.52]:[‘a’, ‘b’]

// since letter.length = 2, 3 gets promoted to [3, 3]

// now we can do zip [0.36, 0.64] [3,3] + = [3.36, 3.64]

// Normalize([3.36, 3.64]) = [3.36/7, 3.64/7,] = [0.48, 0.52]

// final result is [0.48, 0.52]:[‘a’, ‘b’]

Type Binary Operators Supported

int ~ , + , - , * , / , & , | , ^ , >> , << , < , > , >= , <= , == , !=

float + , - , * , / , < , > , >= , <= , == , !=

bool == , != , && , ||

char == , !=

list <type> == , != , << , >>, ++

prob <type> == , != , + , - , * , /

Normalization

When a probability type is first initialized, or whenever a probability type is transformed, its internal probability list is normalized to ensure it
represents a valid distribution. There are three steps in the normalization process.

1. Check both the probability list and the value list are non-empty. If this check fails, throw an error.
2. Check the probability list contains only non-negative elements, and that the sum of the elements > 0. If this check fails, throw an error.
3. Divide each element by the sum

Expressions

Function Calls

A function call is an expression that is used to call a defined function, also called a function designator. The function name is followed by
parentheses and then the type and name of the required parameters which are separated by comma, if there are multiple parameters. The
parameters should match the type of the data which is defined during the function declaration. The type of the function call entire expression
is the type of the function’s return type specified during declaration, or void if the function doesn’t have one.

Example of valid function call expressions:

Here f_id, g_id, arg1_id and arg2_id are all identifiers.

Unary Operators

The unary operators are ~ and ! .

Unary expressions group left to right and are of two possible forms:

Binary Operators

There are four basic categories of binary operators, as well as concatenation.

Arithmetic: + , - , * , /

Bitwise: & , | , ^ , << , >>

Comparison: < , > , <= , >= , == , and !=

Logical: || , &&

These expressions group left to right and follow the general form

The only exceptions to the same type rule requirement are arithmetic operations between floats and ints (in which ints are implicitly cast to
floats), concatenation operator between a string and float, string and int, or string and char (where floats, ints, and chars are implicitly cast to
strings), and right and left shifts on lists for deleting elements, which require an argument of type int on the right hand side.

Note that == and != on lists and probability types enacts a “deep comparison”. Two probability types are equal if their probability lists and

value lists are equal. Lists are equal if they contain the same values in the same order.

Assignment Operator And Variations

The assignment operator takes the value on its right hand side and binds it to the identifier on the left.

f_id ()

g_id (type arg1_id, type arg2_id)

~ expression // bitwise not; flip all the bits

! expression // logical not; non zero values become 0, zeroes become 1

expression binop expression

// where binop is a binary operator and

// the expressions on either side of the operation are of the same type

Arithmetic expressions can be combined with the assignment operator to create four variations: += , -= , *= , and /= .

Speciality Operators For Strings and Lists

Left And Right Element Shifts

Two ternary operators are supported specifically for string manipulation, << : and >> : , left and right element shifts respectively.

These ternary expressions group left to right and follow the form:

In the left byte shift, expr1 is shifted to the left by expr2 bytes. The newly created space is filled with characters of value expr3 . Similarly, in

the right shift, expr1 is shifted right by expr2 number of bytes, and the newly created space is filled in with copies of char expr3 .

Since strings are lists, there exists a more general form of this operator on any list:

End Deletion Operator

<< and >> are binary operators that allow deletions from the beginning or end of a list (see Lists for usage and examples).

Overlap Operator

The overlap operator, ^^ : ,..., is designed specifically for string manipulation and takes in three or more expressions, with expressions

after the third separated by commas. It groups left to right and follows the form:

The overlap operator treats strings as “layers” placed on top of each other, and uses the third argument and onward to determine which parts
of the layers are treated as transparent. Based on its provided definition of “transparent” characters, overlap overlays expr1 on top of expr2 ,

resulting in a new string containing characters from both expr1 and expr2 . An example for clarity:

expr1 and expr2 do not need to be of equal length. Overlap will stop overlapping characters when either or both of the strings end.

Since strings are lists, there exists a more general form of this operator on any list:

Declaration And Initialization

identifier = expression

x = “hey” //the string literal “hey” gets bound to the name x

id OP= expr // syntactic sugar for id = id OP expr

x += 5 // syntactic sugar for x = x + 5

x -= 5 // syntactic sugar for x = x - 5

x *= 5 // syntactic sugar for x = x * 5

x /= 5 // syntactic sugar for x = x / 5

expr1 << expr2 : expr3

expr1 >> expr2 : expr3

// where expr1 is an expression of type string

// expr2 is an expression of type int

// expr3 is an expression of type char

expr1 << expr2 : expr3

expr1 >> expr2 : expr3

// where expr1 is an expression of type list <type>

// expr2 is an expression of type int

// expr3 is an expression of type <type>

expr1 ^^ expr2 : expr3 //minimum number of expressions needed

expr1 ^^ expr2 : expr3, expr4,...,exprn

// where expr1 is an expression of type string

// expr2 is an expression of type string

// expr3 is an expression of type char

// any following expressions are optional and of type char

“---O_O---” ^^ “.........” : “-” // yields “...O_O...”

expr1 ^^ expr2 : expr3 //minimum number of expressions needed

expr1 ^^ expr2 : expr3, expr4,...,exprn

// where expr1 is an expression of type list <type>

// expr2 is an expression of type list <type>

// expr3 is an expression of type <type>

// any following expressions are optional and of type <type>

Type Declaration

Five type specifiers: int , bool , float , string , and char

Two type qualifiers: prob and list

Types are declared using the following format:

Note that the type of these declarations are distinct:

Type Initialization

Types are initialized after declaration using the assignment operator. Initialization can occur immediately after declaration,

or some time later in a separate statement:

Initializers for bool , int , float , and char are expressions that evaluate to bool , int , float , and char literals respectively.

Function Declarators And Definitions

The function declarator consists of the fn keyword followed by the function signature. The fn keyword signifies a function declaration or

definition. The function signature lists the return type (void keyword is used if no return type) , name of the function, and a list of parameters

inside parentheses (if the function has 0 arguments, an empty pair of parentheses are used).

The function definition consists of the fn keyword, function signature, and function body. The latter is a block of statements denoted with

curly braces.

A Note On Blocks: Curly braces surrounding a group of statements denotes a “block” of statements. Entering a block signals entrance into a new,
more local scope. Contents like bindings (identifiers and their values) declared inside a block are not visible outside the block. Statements inside a
block are executed in sequence.

To declare a function without immediately specifying its definition, write out the fn keyword, then the type signature followed by a semicolon.

To declare and define a function or to define a function declared earlier, write the type signature followed by the body of the function
enclosed in curly braces.

Statements

A statement can be broken into three types:

1. expression-statement

2. selection-statement

3. iteration statement

The special control flow statements are return , continue , and break .

return exits the function scope and returns a value if supplied.

<qualifier>* <type-specifier> identifier; // where * means 0 or more

prob list int specialList; // one of a group of possible lists

list prob int listOfSpecialNums; /* a list where each elt is one of a group of possible integers */

list prob list list int num; /* a list of where each elt is one of a group of possible lists of int lists */

prob list list int num; // one of a group of possible lists of int lists

<qualifier>* <type-specifier> identifier = initializer;

<qualifier>* <type-specifier> identifier; //declared here

...

identifier = initializer; //initialized here

fn return-type name (type-specifier arg1_id, ... type-specifier argn_id)

fn return-type name (type-specifier arg1_id, ... type-specifier argn_id){

 statement;

 …

 statement;

 return identifier; //where identifier is of type return-type

}

continue jumps to the top of an iteration statement.

break exits an iteration statement.

Expression Statements

The most common kind of statements are expression statements. Expression statements consist of an expression followed by a semicolon.

Selection Statements

Selection statements choose one of multiple execution paths based on a condition

if - else statement format:

if - elif - else statement format:

Any number of elif blocks are allowed for each if - else pair. Lone if statements (without an attached else or elif block) are also

permitted.

Iteration Statements

Iteration statements consist of a block of statements executed in a loop until a condition is met.

while loop format:

for loop format:

switch loop format:

expr; //general format

int x = 3; //declaration and initialization statement (expr here is int x)

if (expr) {

 // this block only executes if expr evaluates to true

}

else{

 // this block only executes if expr evaluates to false

}

if (expr) {

 // this block only executes if expr evaluates to true

}

elif(expr2){ //expr2 is only evaluated if expr evaluates to false

 // this block only executes if expr2 evaluates to true

}

else{

 // this block only executes if none of the other blocks executed

}

while(condition){

//statements

}

for(scoped variable assignment; condition; statement){

//statements

}

switch(val){

 case val1:

 // statements here only execute if

 // val == val1

 break; //exit switch

 case val2:

 // statements here only execute if

 // val == val2

 break;

 ...

 case valn:

 // statements here only execute if

 // val == valn

 break;

 default:

 // statements here only execute if

 // default case is checked

switch must contain at least the default case. Without the break statement, execution flow continues down to the next case statement.

Grammar

We define the grammar using productions and rules in the parser.mly . The parser can be found here: https://github.com/magidandrew

/smap/blob/iteration2/parser.mly.

 break;

}

https://github.com/magidandrew/smap/blob/iteration2/parser.mly
https://github.com/magidandrew/smap/blob/iteration2/parser.mly
https://github.com/magidandrew/smap/blob/iteration2/parser.mly
https://github.com/magidandrew/smap/blob/iteration2/parser.mly
https://github.com/magidandrew/smap/blob/iteration2/parser.mly
https://github.com/magidandrew/smap/blob/iteration2/parser.mly

