
MP3 Player
4840 Final Project Presentation
-Zheng Lai -Zhao Liu
-Quan Yuan -Meng Li

Motivation

• We originally want to design a game that are
similar to Guitar Hero, combing MP3 player,
keyboard control and video game. But find out
that the plan is too big.

• Then we designed to do MP3 Player with
frequency display on the board

Project Overview

• Implemented software MP3 decoder
• To the raise the speed of decoding, optimized

original decoding algorithm
• Play out the decoded music
• Display frequency information as histogram on

the screen

Hardware Architecture

VGA ControllerWM8371 AUDIO
MODULE

NIOS_IISDRAM

AUDIO
FIFO

Avalon Bus

Audio Output Video Output

VGA output control module

• Since we want to display the amplitude of signals
of 64 different frequencies, a histogram with 64
rectangles are shown on the screen first.

• The vertical starting points of each rectangle are
defined with frequency information from the
output of the frequency analyzer. In this way,
frequency information is shown by rectangle
shapes. The whole histogram looks like those on
the classic media players.

1. Show histogram formed with 64 rectangles.

• First, to show 64 rectangles on screen, the
horizontal starting points, horizontal ending
points and vertical ending points of each
rectangle are fixed.

The following figure shows the horizontal timing
of the VGA: (vertical timing is similar)

For a 25.175MHz pixel clock,
HSYNC=96 pixels
HBACK_PORCH=48 pixels
HACTIVE = 640 pixels
FRONT_PORCH=16 pixels
HTOTAL =800 pixels

• Define a signal of Hcount. At every rising edge of clk25, Hcount add
1, therefore, Hcount works as a horizontal pointer of the scanning
position.

• When Hcount=HSYNC+HBACK_PORCH+RECTANGLE_HSTART,
where RECTANGLE_HSTART represents the horizontal starting
point of the rectangle, it means the pointer is moving into the
horizontal area of rectangles in the histogram.

• When Hcount=HSYNC +HBACK_PORCH+RECTANGLE_HEND,
where RECTANGLE_HEND represents the horizontal ending point
of the rectangle, it means the pointer is moving out of the horizontal
area of rectangles in the histogram. During the clock cycle and the
clock cycles following, the area on the screen will black out.

• Having the same function with Hcount, signal Vcount works as a
vertical pointer of the scanning position.

• When Vcount=VSYNC+VBACK_PORCH+RECTANGLE_VSTART,
where RECTANGLE_VSTART represents the vertical starting point
of the rectangle, it means the pointer is moving into the vertical area
of rectangles in the histogram.

• When Vcount=VSYNC +CBACK_PORCH+RECTANGLE_VEND,
where RECTANGLE_VEND represents the vertical ending point of
the rectangle, it means the pointer is moving out of the vertical area
of rectangles in the histogram. During the clock cycle and the clock
cycles following, the area on the screen will black out.

• The necessary condition for a point on screen to
light up is :

Hcount=HSYNC+HBACK_PORCH+RECTANGLE_HSTART
Vcount=VSYNC+VBACK_PORCH+RECTANGLE_VSTART

This means the pointer begins to enter into both the
vertical area and horizontal area of rectangles.

• The 64 rectangles in the histogram are all realized in this
way.

2. Control the height of each rectangle with the
frequency information from the output of the
frequency analyzer.

• The 64 vertical starting points of the 64 rectangles
are determined with frequency information from the
output of the frequency analyzer. In this way,
frequency information is shown by heights of each
rectangle.

• According to the situation that the active area of the
screen is 640*480, the ending point of each
rectangle in the histogram is chosen to be 380,
therefore, the frequency information input should
be from 0 to 380.

MP3 Decoding (Software)

• When doing each part, compare the result of
open source code and ours to verify the
correctness

• The very first parts that need to work on
input(file or data array) was actually harder
since more bugs occurred when we were doing
these parts

MP3 Decoding (Software)
• Problem:
• We don’t have a operating system. It’s difficult to

transplant a open-core MP3 decoding library on DE2
board

• We don’t have a file system either

• We translate the bit-stream in MP3 file to a huge array.
All decoding processes are operating based on this array

• We study the ISO/IEC 11172-3 carefully and raise a
program based on the algorithm proposed in the ISO
document. Before milestone #2, all time is spent on
making the decoder program on NIOS II to output a
same result compared with that on a desktop PC.

MP3 Decoding (Software)

Floating Histogram
• How to extract the frequency information for one frame?
Luckily, inputs of the function IMDCT (inversed modified

discrete cosine transform) contains frequency
information for a frame.

We take these frequency information and use it to control
the heights of 64 rectangle to exhibit a floating
histogram effect.

(The floating histogram may not reflect the accurate
frequency information. Since it should be overlaid with
its next and previous sub-band. But we only need a
visual effect)

Floating Histogram

• The original frequency information are single
precision variables. How to quantize?

We use low level programming , translate these
variables to fixed point format. After that the
translation result can be applied to the VGA
controller with minor computation. This speeds
up the decoding process, too.

Optimization

• MP3 decoding in PC is fast, but in the DE2 board
is slow!

• A piece of 3-minute MP3 music has thousands of
frames

• Original program: decoding one frame needs
more than 20 minutes! (using Nios II/e
processor)

• Even with Nios II/f, decoding one frame still
needs 5 minutes

Optimization

*IMDCT is in the “HYBRID” function

Optimization

• So we optimize algorithm
• Attempt1: Change the mathematical function to

lookup table
• Attempt2: Custom floating point operation

function
• Attempt3: Change floating point precision, from

double to single

Optimization #1

• Look up table
For example, in the requantization process,

The combinations of those integer variables (such as global gain, sub-block gain) are
limited. We can pre-calculate [xr] for each combination of variables and store them
in a big look-up tables.

We also generate look up tables for Sin and Cos in the process of hybrid synthesis.

 xri = signisi()* isi

4
3∗2

1
4 global_gain[gr] -210-8∗subblock_gain[window][gr]()

∗2− scalefac_multiplier*scalefac_s[gr][ch][sfb][window]()

Optimization #2

• Revised algorithms for floating point
computation (Not using standard C library). Our
goal is speeding up the decoding process without
loosing accuracy.

• The resulting algorithms contains only shifting
operation and integer multiplication.

Yield at least 16 bits of precision in the “fraction”
Part.

Optimization #2
• Floating Point Multiplication
• Pseudo Code for double precision multiplication:
• Double x, Double y;
• If x==0 || y==0;
• Return 0.0;
• Else
• Bit operation to extract sign,exponent,fraction;
• fraction|=0x0010000000000000;
• temp=(fraction_x>>27)*(fraction_y>>27);// integer multiplication
• test=(0x8000000000000&temp)>>51; // test the position of first 1;
• If test==1{
• fraction_result=(0x7FFFFFFFFFFFF&temp)<<1;
• exp_result=exp_x+exp_y-1022;
• }
• Else {
• fraction_result=(0x3FFFFFFFFFFFF&temp)<<2;
• exp_result=exp_x+exp_y-1023;
• }
• Return outcome=(sign_result<<63)| (exp_result<<52)| fraction_result;

Optimization #2

• Floating Point Addition

• Pseudo-code is too long and not shown here. But
the principle is the same. First extract the
fraction and exponent. Then do integer
multiplication and shifting accordingly.

Optimization #3

The Revised algorithms are still too slow! With
look-up table and these algorithms decoding for
one frame roughly takes half a minute. But one
frames last 26ms long.

1)We switch from double precision to single
precision.

2)Implement a custom instruction dedicated to
compute single precision floating point

Optimization

• Optimization Result.
• We can decode one frame within roughly 0.6 sec! Remember without any

optimization it takes roughly half an hour!

10.58Hardware Optz.

3012.8Software Optz.

30046.7Un-optimized

1560-Initial implement

Decoding time (s) per frame (timed
by watch)

Decoding time (s) per frame (timed by
timer)

Finally..

However,
1.We can not still meet the speed requirement.

Still need at least 20 times faster(26ms)
2. There are noise and distortion coming out from

WM8731. (The decoded PCM samples can be
played on DELL PC correctly, without noise)

Maybe we should not emphasize too much on
accuracy, and switch to fixed point computation.

Thank you

