
RUN, STEPHEN, RUN:

Shoot First, Ask Questions Later
Andrew Bui*, Cathy Chen†, Johnny Chin*, Andrew Sabatino*, Michael Scott†

*Department of Electrical Engineering

†Department of Computer Engineering

School of Engineering and Applied Science,

Columbia University in the City of New York

Abstract:
The design details of our target acquisition

and missile launching project is presented in

this paper. The main goal of this project is to

create a platform that locates and shoots a

non-lethal dart at a pre-determined target

and tracking device. This project utilizes both

the hardware and software capabilities of the

Altera DE2 Board, while also using our

knowledge of ballistics, image recognition and

robotics. The hardware design is first

presented along with a high level block

diagram of the project. Each hardware

component and peripheral is described in

detail. The software design is then presented

and its modules are described in details.

References used in the design construction are

presented at the end of the paper.

Introduction:
This project aims to create an automatic

target location and missile launching robot

on the FPGA. Through a camera interface, the

device will be able to locate the position of a

target, calculate its location in relation to the

missile launcher, acquire a “lock” on the

target and eliminate the threat. We have

purchased a Dream Cheeky missile launcher

that can rotate in both pitch and pan that we

plan to use for this project, as well as a

digital camcorder for sight.

System Overview:

Hardware:

Video Decoder:

The video decoder will be used to convert

the raw data into a digital format that is used

to obtain target position after image

processing through software. Since the

Altera DE2 board comes with ADV7181 TV

Decoder chip, we will utilize it for converting

the standard NTSC input from the camera to

an output of the CCIR656 YCbCr 4:2:2

standard. Given the requirement of the

standard, a clock of 27MHz will be used to

clock the decoder. In addition to the decoder

chip, we need to implement a module that

does 4:2:2 to 4:4:4 format conversion as well

as the YUV to RGB color space conversion.

The 16 bit data generated is then passed on

to the Avalon Bus for image processing to

obtain target location.

YcrCb to RGB Converter:

Because the signals from the video decoder

are encoded in YCrCb, they must be

converted to RGB by using the following set

of equations:

Y = 0.299 · R + 0.587 · G + 0.114 · B

Cr = 0.5 · R - 0.4148 · G - 0.0813 · B + 128

Cb = -0.1687 · R - 0.3313 · G + 0.114 · B + 128

This function will be performed in a separate

peripheral because of its possible

computational intensity. Various

optimizations can, and will, be explored at

implementation, to speed up the floating-

point computations in hardware. One

possible exploit is making use of a look-up

table for the multiplication, which has been

explored in a previous project.

X-Y coordinate generator:

One of the significant goals of the missile

targeting is the creation and implementation

of hardware that generates X and Y

coordinates of the desired target, taking the

live video feed as its input. This offers many

advantages over software implementation,

mainly in speed and modularity. As the

project is in its early stages, the target does

not yet have an exact definition. Items under

consideration are:

1. Physical normalization of

negative space in the video

frame – ie. Using a solid-

colored backdrop, etc.

2. Using a single chromatic

indicator for the target – i.e.

The target is red, etc.

3. Geometric target

configurations that would add

ease to X-Y generation – i.e.

Two concentric circles, etc.

There is some precedent for vision hardware

specializing in X-Y generation. The Wiimote

camera is the most visible and accessible

implementation. The camera itself is

attached to built-in image processing unit

which outputs x-y coordinates for up to 4

points of IR light. The camera itself is

monochromatic and has a low resolution of

128x96. The built-in processor uses 8x sub

pixel analysis to provide 1024x768

resolution. IR filtering is achieved using a

physical filter, and raw image data is not

available to the host.

This image processing paradigm will be

emulated; however one of the goals is to

avoid the need for targets in the IR spectrum.

IR targeting generally requires some form of

active target, namely IR LEDs, limiting the

targeting capabilities by design. Because a

physical filter offers considerable

simplification, however, the use of one will

be explored in whatever visible spectrum is

ultimately designated for the target.

Attempts will be made to find the established

hardware design of the built-in image

processing chip, however this design does

not appear to be readily available.

Open source computer vision software is

readily available and is a likely starting point.

One notable example is FreeTrack, an open

source head tracking software. This

software can be used in conjunction with

hardware such as TrackIR (an IR camera,

similar to the Wiimote) to implement head-

tracking controls in video games. The

sophistication of head tracking exceeds the

scope of this project, and the implication of

head tracking escalates the threat of a USB

missile launcher; however it may serve as a

useful reference.

SRAM:

The ISSI IS61LV25616, on the Altera DE2

FPGA board, is a high-speed, 4,194,304-bit

static RAM organized as 262,144 words by

16 bits. The pin description for the SRAM is

listed below:

SRAM PIN DESCRIPTIONS

A0-A17 Address Inputs

I/O0-I/O15 Data Inputs/Outputs

CE Chip Enable Input

OE Output Enable Input

WE Write Enable Input

LB Lower-byte Control (I/O0-I/O7)

UB Upper-byte Control (I/O8-I/O15)

NC No Connection

Vcc Power

GND Ground

The SRAM is used to store pixel data from

the YcrCb to RGB Converter. The SRAM acts a

frame buffer between the Video Decoder (via

the YcrCb to RGB Converter) and the VGA

Controller to facilitate the output of the

image from the camera to the VGA monitor.

There are a few challenges, regarding the

resolution of the frame buffer, in using the

SRAM. A 640X480 buffer at 16 bits / pixel

would take up 614 kB which is more than

the SRAM size of 512 kB. To solve this

challenge the resolution that is stored in the

buffer can be scaled down to 320X240 which

will result in a 1 to 4 mapping from buffer to

VGA pixel. This resolution will suit our

application since the frames shown on the

VGA will only be used to monitor (show the

user) the output from the camera.

The second challenge presented by the

SRAM is the fact that it cannot be written to

and read from concurrently. The timing

diagrams below displays this fact.

Figure 1 – Timing Diagram for SRAM read

Figure 2 – Timing Diagram for SRAM write which is WE controlled

The write to the SRAM and the VGA

controller drawing pixels cannot happen

during the same period of time to ensure

that the correct image is displayed. This

challenge can be resolved by having the

VGA controller control the read/write

operations of the SRAM.

VGA controller:

The VGA display will be used to debug the

system, allowing the user to see what the

system sees during target acquisition and

firing. The VGA controller will be

implemented as a peripheral hung off the

Avalon bus, clocked off the halved 50 MHz

global clock, as this corresponds to the

necessary 25 MHz pixel clock necessary

for the VGA protocol. Redrawing will be

triggered off the VGA Sync signal to limit

the redraw rate to 60Hz, the native rate of

the lab monitors. The display will resolve

at 320x240 to match the resolution of the

CCD sensor. The framebuffer will be

located in the SRAM, which is a copy of

the SDRAM video data after the post-

processing for intensity and RGB filtering.

The truncation of every other row and

column in the video space will ensure that

the data will fit into the SRAM, which is

limited at 512 kB. A system flag will let

the system know when the framebuffer

has been completely written to the

display, to ensure stable operation.

USB controller for Rocket Launcher:

The USB rocket launcher from Dream

Cheeky ™ comes with software that

controls the movement of the launcher.

The commands for the launcher are as

follows:

0 = stop

1 = up

2 = down

4 = left

8 = right

16 = fire

32 = reset

Using this information and the Host USB

port on the Altera DE2, a USB controller

will be built that outputs the 3 packets

needed, with a blank heading and trailing

packet and a middle packet with information.

USB protocol on the DE2 board is

provided by the Philips ISP1362 single

chip USB controller. The chip provides

data transfer for both host and device

interfaces and is compliant with USB

Specification Rv. 2.0. A device driver to

control the rocket launcher will need to

be written on the NIOSII.

Software:

NIOS PROCESSOR:

Video processing of X-Y coordinates/

Calibration:

The X-Y coordinates will be extracted

from the video signal after hardware-

implemented filtering of the RGB and

intensity characteristics. Under ideal

conditions, this should result in a set of

two points of high intensity green and

blue. The software should be able to

calculate the intersection of the lines

drawn between both the green and blue

points, thus finding a 2-dimension

projection of the target in the pixel space.

An initial calibration of the distances that

will be used for the green and blue

markers will anchor a physical distance in

the system, allowing the use of similarity

transforms to perceive an apparent sense

of depth. This will allow the system to

find the target’s location in a 3

dimensional space. A lookup table will

implement the necessary inclination

angle for a given distance using basic

ballistics equations. This should ensure a

“hit” in a roughly spherical area around

the point of intersection of the green and

blue markers, when taking into account

variance of the system actuator.

Aiming Launcher and firing:

 Once we obtain the target location,

we can control the rocket launcher using

USB, following the protocol for controlling

the rocket launcher. We will need to

conduct many trials to observe the

change in where the darts land with

respect to how many times each

command is sent. These statistics will be

used in C program in which we process

the coordinates and translate them into a

series of mechanical commands for

aiming and firing.

REFERENCES:

http://wiibrew.org/wiki/Wiimote#IR_Camera

http://www.instructables.com/id/Wii-Remote-IR-Camera-Hack/

http://wiki.wiimoteproject.com/IR_Sensor

http://www.sparkfun.com/commerce/pre...=Wii-Internals

http://www.free-track.net/english/

http://en.wikipedia.org/wiki/TrackIR

http://dgwilson.wordpress.com/

http://www.amctrl.com/rocketlauncher.html

http://www.planetanalog.com/showArticle.jhtml?articleID=219000119

http://www.pcs-ip.eu/index.php/main/edu/3

http://www.cs.columbia.edu/~sedwards/classes/2010/4840/lab2.pdf
http://www.roborealm.com/help/DC_Missile.php

http://dreamcheeky.com/index.php?pagename=product#

http://www.cs.columbia.edu/~sedwards/classes/2010/4840/ISSI-IS61LV25616-SRAM.pdf

http://www.cs.columbia.edu/~sedwards/classes/2009/4840/designs/RVD.pdf

