
Embedded Image Capture
CSEE 4840 Design Document − March 2010

Albert Jimenez Alexander Glass Nektarios Tsoutsos
School of Engineering and Applied Science

Columbia University

{alj2110, amg2229, nt2283}@columbia.edu

Abstract

This document describes our preliminary

design implementation based on put

research so far. Our system will use a

SRAM frame buffer and DMA controller to

save a single frame before compressing it

using a hardware JPEG core. At the same

time the video input at resolution 320x240

is routed to the VGA output. The NIOS

processor controls all peripherals and saves

the file to the SD card.

1 Introduction

For this design we plan to use the NIOS

process along with several Avalon

peripherals. The system will perform 2 basic

operations; the first is to display the video

input to the VGA output, and the second is

to compress a single frame and save it to a

file in the SD card. The first operation

requires to convert the analog input to

digital and change the color space. Then the

video signal is sent to the VGA controller to

be displayed on the screen. The video signal

is also saved frame by frame in a buffer, and

upon user request, this buffer is fed to a

JPEG module for compression. Finally, the

compressed data is saved to the SD card.

The system operates at 100MHz, and uses a

DMA controller and an SDRAM controller.

2 Hardware description

2.1 Video Decoder

The video input comes from the RCA

composite port on the board. This YUV

signal is fed to the Video decoder so that it is

converted from analog to digital format. The

Video decoder has an I2C for setting up the

necessary parameters. The output of this

module is in the YCbCr color space and the

desired resolution will be 320x240 pixels.

This module operates at 27MHz and uses

the on board clock. The output of this

module is send to the color space converter.

2.2 Frame buffer

In order to save the color space converter

output, we need a memory. We chose the

SRAM as our frame buffer because it is

faster and has a less complicated interface

than the SDRAM. The SRAM module on the

Altera Board is 512KB, which limits the size

of our frame. We plan to use frames of

320x240 pixels with 16 bits total depth,

which very well fits in this buffer. Running

at 50MHz, the delay to access a word in this

module will be 20ns. The maximum delay

for reading an entire frame will be about 1.5

ms. The frame buffer data will later be read

by the JPEG module to produce the

compressed frame.

2.3 DMA

Our motivation to use Direct Memory Access

stems from the need to decouple the SRAM

in the frame buffer from the NIOS

processor. The controller will allow the video

decoder to feed pixel lines into the SRAM

seamlessly, so that we can access the result

when needed. In principle, the DMA

controller will define the write address and

control signals in the SRAM, depending on

the video output.

2.4 SDRAM

The onboard SDRAM chip provides us with

8 MB of memory to store captured images.

We will also be using the chip to store the

jpeg converter program since the SRAM will

be used primarily for the video buffer. The

controller will be generated using the SOPC

builder, which conveniently provides the

signals necessary to communicate with the

SDRAM chip. We will use the NIOS

processor clock as the chip’s clock signal,

which will inevitably introduce a clock skew.

For proper operation it is necessary that the

chip’s clock signal leads the processor’s

signal by 3 ns. We will accomplish this by

using a phase locked loop (PLL) to supply

the correct clock signal.

2.5 Memory controller

The SDRAM needs a special controller to

handle refreshing and all read write

operations. This memory controller is a

megafunction and will be generated by the

SOPC builder. The NIOS processor

communicates with this controller via the

Avalon fabric, so that it can access the

stored program.

2.6 VGA controller

This module controls the VGA display. The

input for this module comes directly from

the color space converter in RGB format.

The input resolution will be 320x240, but

since the desired output is 640x480, the

image will be centered with unused pixels

set to black.

2.7 JPEG module

The JPEG module performs the compression

of raw RGB data. This data comes from the

frame buffer in the SRAM. The module

performs all the necessary steps of JPEG

encoding on 8x8 pixels blocks, that include:

 Color space conversion

 2D Discrete cosine transform

 ZigZag transformation

 Quantizer

 Run length encoding

 Huffman encoding

 File headers generation

The output of this module is saved to

memory. Inside, this core has a complex

Finite State Machine, that keeps track of

the current hardware operation. The NIOS

processor can orchestrate when is module is

invoked, so that the output will be saved to

a file in the SD card. This module is based

on project mkjpeg from opencores.org.

2.8 SD card

The SD card module operates using an SPI

interface. The processor will issue

commands and send data to be written on

the card. In particular, the system will save

.jpg screenshots of the video input, upon

user request. Then, the SD card contents

can be read from any other card reader.

2.9 PLL

For this project we plan to use two PLL

modules. The first module will be used to

insert delay to the SDRAM clock, compared

to the NIOS clock. The second one will be

used to double the frequency of the system.

Instead of running the system at 50MHz, it

is possible to run it at 100MHz using a clock

that comes from a PLL. We plan to use this

feature to improve the overall system

performance.

2.10 Color space converter

This module is used to change the color

space from YCbCr to RGB, so that is can be

used by the VGA controller. This module is

a megafunction that is included in the SOPC

builder.

2.11 The NIOS II

The central module of our system will be the

NIOS II processor. This IP core comes from

the SOPC builder and will be configured to

have a hardware multiplier and divider, as

well as a floating point unit with division

support. The NIOS will use the SDRAM as

its main memory, via a special memory

controller. The NIOS will also use the

Avalon bus to control all the other

peripherals. The operating frequency will be

100MHz, using the PLL clock multiplier.

The processor will be responsible for

orchestrating the JPEG compression, for

saving files to the SD card (using the SPI

interface) and for configuring the Video

decoder using the I2C interface. For

debugging, the NIOS incorporates a JTAG

interface.

3 Software description

3.1 The NIOS software

The NIOS software will be responsible for

coordinating all operations on the board.

The program will communicate with the

Video decoder using the I2C protocol. It will

also communicate with the card reader

using the SPI protocol. The software will be

responsible calculating a CRC wherever this

is needed. When the user presses a push

button, the program will direct the contents

of the frame buffer into the JPEG module

and grab the output. This output shall be

saved to the SD card as a separate file. The

program communicates with the VGA

controller and the other peripherals using

the Avalon bus.

3.2 Writing FAT files

In order to write to the SD card, we will

have to use a simple file system. We plan to

use the FAT16 file system that is very

simple to implement on the NIOS processor.

The first 512 bytes are the Parameter Block

and contain the volume information, the

directory information and the FAT table.

Each file consists of several clusters

described in that table. The file name we

will use are in the standard DOS format and

the directory structure will be flat.

4 Milestones

 Milestone 1 (March 29): Getting the

input of the camera to the VGA

display

 Milestone 2 (April 12): Compressing

a single frame using JPEG

 Milestone 3 (April 28): Saving the

compressed image to a file

5 References

http://www.cs.columbia.edu/~sedwards/class

es/2009/4840/designs/RVD.pdf

http://www.cs.columbia.edu/~sedwards/class

es/2009/4840/designs/RJ.pdf

http://www.cs.columbia.edu/~sedwards/class

es/2007/4840/designs/Imagic.pdf

www.cs.columbia.edu/~sedwards/classes/201

0/4840/tut_DE2_sdram_vhdl.pdf

http://www1.cs.columbia.edu/~sedwards/clas

ses/2010/4840/n2cpu_nii5v3.pdf

http://www.opencores.org/project,mkjpeg

http://white.stanford.edu/~brian/psy221/rea

der/Wallace.JPEG.pdf

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?

arnumber=90209

http://freedos-32.sourceforge.net/

