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Introduction: 
 
As our project is quite large in scope, we have decided to break it up into two 
distinct pieces which can be worked on independently. While the general idea 
behind our project is to create a voice over IP phone system, some of the 
techniques involved in the compression of the audio signal depart from what is 
generally regarded as the norm in VoIP communications. Therefore, the first 
module is a system utilizing the onboard ADC and DAC as well as the FPGA to 
produce companded signals for transmission. This is a departure from the 
standard µ-law or similar compression used on VoIP transmissions. The second 
module is more a more straightforward implementation of all the necessary 
networking subsystems for VoIP (SIP, RTP, UDP, TCP, and IP). The summaries of 
e two distinct modules are given below. th

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Summary of Companding Module: 
 
In his research with Professor Yannis Tsividis, Ari Klein extended a technique 
called companding to digital signal processors.  The idea was to reduce the 
dynamic range of the signals at the input to the ADC, output of the DAC, and 
internal to the DSP, so that these signals are always large, and thus take full 
advantage of the available bits in these devices.  This should increase the 
signal to quantization noise ratio at low signal levels.  All this should be 
done without otherwise disturbing the output (in other words, in the absence of 
quantization, the outputs of the companded and non-companded systems should be 
identical).  For this part of the project, we will be implementing this digital 
companding technique in hardware on the FPGAs for the case study of a simple 
digital reverberator. 
 
The formulas for accomplishing this have already been derived by Ari Klein and 
Yannis Tsividis.  For the purposes of this project, the important result from 
those formulas is that for the companding DSP to compute its next state (at 
time-step n+1) and its companded (always large) output, it requires: 

• ratios of envelopes of NEXT states (time-step n+1) of the prototype DSP 
• current state of companded DSP 
• companded (always large) input 

 
 

Block Diagrams: 
 
Conceptually, we want: 

 
 
The input is passed to the prototype (non-companded DSP), digital envelope 
detection is done on its states, ratios of envelopes are computed.  The input 
envelope is then used to modify the input (the input is divided by its 
envelope), giving the companded (always large) input, which is passed to the 
upper ADC.  The companded input and the ratios of envelopes are used by the 
companding DSP (DSPC), along with its current state, to give the companded 



output.  This companded output is then converted back to analog, and given back 
its envelope, to become the output of the system. 
 
Even though the conceptual system on the previous page would “theoretically” 
work, it is impractical for implementation in this project for several reasons.  
For example, we only have one ADC, and one DAC, and we also don’t ever want to 
do division on an FPGA, so computing ratios directly is a bad idea.   
 
We will effectively SIMULATE the analog components and the ADCs and DACs on the 
FPGA.  In other words, the actual FPGA’s ADC and DAC will give us inputs and 
outputs that have more bits than we will use in the “digital processor.”  The 
“analog” operations will be done digitally, but with these extra bits of 
precision.  The ADC’s in the diagram will be simulated by storing the “analog” 
signals in smaller registers.  We plan to use 8 bits for the “digital” part, and 
either 12 or 16 bits for the “analog” part. 
 
To avoid division, we will further restrict the envelopes to be integer powers 
of 2.  This means using a lookup table or some combinational logic to “round” 
the envelopes (always up) to an integer power of 2.  To compute ratios, we need 
only subtract the powers.  The benefits of using integers are that 
multiplication by these ratios (as is done in the companding DSP) may be 
accomplished by simple shifts, and that very few bits (at most 3 bits) are 
required to store the envelope information.  This leads to another 
simplification.  The envelope of the input will be computed in the analog 
domain.  We will only make ADCs for the companded input and the power of 2 
corresponding to the input envelope, so we only need an 8-bit ADC and a 3-bit 
ADC.  To get the original input back (for processing in the non-companded 
system), we simply shift the companded input back. 
 
Here is some more detail for some of the blocks: 
 
The original prototype (non-companding) reverberator: 

 
Envelope detection will be done on the input and on the 4 other signals shown 
(state1, state2001, ymid, and y).  We might end up changing the amount of the 
delays.  Also, if we find we have been too ambitious, and are very pressed for 
time, we might drop the second stage (everything to the right of ymid). 
Also, we might change the .8 gain to .75 to make it easier to implement. 



The corresponding companding reverberator (DSPC): 

 
The above is only the left half.  The right half is topologically the same; the 
number 1000 should be replaced by 2205, and the inputs and outputs are slightly 
different.  The “product” blocks will simply be implemented as shifters, since 
the ratios are all integer powers of 2. 
 
 
The envelope detection is accomplished by taking the absolute value and 
connecting the local maxima.  Suppose we want the envelope of x(n).  We would 
connect the points where |x(n)|>|x(n-1)| and |x(n)|>|x(n+1)|.  If I am not at 
such a point, I simply hold my envelope detector output constant (using FFs and 
MUXs).  The block diagram is: 

 
For the enabled subsystems (increasing and max), if the enable input is 
positive, the input is passed to the output.  Otherwise, the output is held at 
its previous value.  The “MinMax” block ensures that the envelope never goes 
below the input, and a small positive number thresh is added to ensure that the 
envelope is never zero. 
 
 



Required Components: 
At this point it looks like we will need: 

• ADC, DAC, audio codec 
• adders (and sutractors) 
• lots of MUXs to route signals 
• lots of FFs for holding state, handling timing, and doing envelope 

detection 
• lookup table (or combinational logic) for getting the closest power of 2 

larger than a signal (this will decide the shift amount for a particular 
signal, to ensure that the signal always takes full advantage of the 
available bits)  

• comparators for envelope detection and lookup table 
• memory to implement the delays.  If we can get away with it, we would like 

to use only the BRAM, but if we need more than 8KB of memory, we will use 
the SRAM. Fortunately, we have already used the SRAM in lab6. 

 
We will configure the ADC and DAC as OPB peripherals, just as we did with the 
SRAM in lab6.  Once George and Sambuddho have the ethernet controller 
implementing VoIP, we will replace either the ADC or the DAC with the ethernet 
controller (bits will be sent or received from the ethernet controller instead 
 DAC or ADC.) of

 
Timing issues:
At this point, we don't know enough about how the ADC and DAC timing works to 
give very detailed timing analysis for the whole system.    
 
It looks like the critical path will be: 
get input from ADC ---> shift input ---> shift it back ---> get x(n+1) and 
output with prototype (no companding) ---> do envelope detection on states, 
input, output from prototype ----> find closest power of 2 (get shift amount for 
every signal) ---> use shift amount, and shifted signals, and ratios to get the 
next state and output from the companding DSP ---> shift the output back to full 
dynamic range ----> send output to DAC  
 
It is a pretty long path.  If the sample rate is r (say, r=44.1kHz, for 
example), it would need to complete in time T=1/r.  This might prove 
unrealistic.  There are fortunately more options: 
We could do the processing of the current sample in the prototype in PARALLEL 
with processing the PREVIOUS sample in the companding processor.  This would add 
a latency of 1 sample, which shouldn't be a problem.  It will also mean 
duplicating hardware (the companding and prototype systems will no longer be 
able to share the same adders and shifters) 
Finally, if it is still not fast enough, then we can lower the sampling rate 
(22.05k, 16k, etc.) 
 
 
 
 
To test that our system works, we plan to add something to the state machine to 
let us skip everything but the prototype.  Then we can listen to the output of 
the prototype alone, and compare to the output of the full companding system. 
 
 
 



Summary of VoIP Module: 
 
 
We are implementing a SIP/RTP based VoIP soft phone:  This is the main program 
used to initiate connection to a peer FPGA based SIP/RTP based VoIP soft phone. 
It encapsulates the SIP connection packets in TCP packets (using the TCP Runtime 
Library) and connects to the peer FPGA soft phone. The other half of the module 
is used to carry out communication by transferring and receiving RTP based voice 
packets encapsulated in UDP packets (using the UDP Runtime Library).  This 
function forks into three threads: the sending thread, the receiving thread and 
the connection management (SIP) thread. These threads are scheduled in a pre-
emptive round robin fashion using the timer interrupt which passes control to 
the task scheduler to context switch between these tasks.  
 
TCP Runtime Library: 
 
The TCP Runtime Library is the core TCP subsystem. The main functionalities of 
this library are : 
 
 
1. Connection Request / TCP connect() operation for the SIP based connection 

initiation and setup.  
2. Maintain per connection connected socket descriptor block whose index into 

the connected socket descriptor index gives the source port of the 
connection as well as the socket descriptor number (similar to what is 
implemented in UNIX systems) 

3. Maintaining per connection TCP send / receive buffers and TCP timers for 
connection retransmission timeouts and TCP states like the the TIME_WAIT 
state. 
This is also used to maintain and timeout the SIP session on behalf of the 
user program – i.e. the VoIP soft phone. 

4. Implement the basic TCP functions like the TCP connect() , accept() , 
read() , write   

      and close().  
5. Implement a very simple TCP state machine. 

 
 
UDP Runtime Library: 
 
The UDP runtime library is used to communicate to the connected sockets’ 
descriptor array and the update the connection details such as populate the UDP 
send buffers and remove the packets from the UDP frame buffer. Both the UDP and 
the TCP subsystems talk to wrapper functions to encapsulate the packet into 
UDP/IP or TCP/IP encapsulation routines to encapsulate the contents into 
datagrams which are transferred to the IP subsystem to be transferred out 
through the Ethernet subsystem. The following are the functions of the UDP 
Runtime Library: 
 
 
1. Encapsulate a RTP voice packet to send and receive to the peer entity / 

peer FPGA based soft phone. 
2. Remove the RTP payload from the received RTP datagram and send it to the 

user application which is the local FPGA based soft phone. 
3. Implements simple UDP functions like the sendto() and recievefrom() to send 

and receive the UDP packets. 
 



 
IP Layer (The Network Layer) Runtime Library: 
 
The IP layer library is performs the following functions: 
 
1. Receive UDP / TCP segments and encapsulate them into IP datagrams 
2. Lookup the routing table to determine the appropriate network interface to 

be used to send the data out.  
3. Associate appropriate source  address to the packet which is being sent 

out. 
4. If there is no entry for the IP to MAC mapping communicate with the ARP 

module which takes inputs only from the IP layers and returns appropriate 
MAC address for the frame to be associated with for the appropriate 
destination IP address . 

5. Encapsulate the packet with a MAC layer header and send it to the Ethernet 
Packet Creation / Reception subsystem which sends it out of the MAC 
interface. 

6. The important functionality of the IP layer is to implement the IP send and 
recv functions to send the packet to the MAC subsystem which copies it to 
the On-chip SRAM of the Ethernet controller which is read up by the 
OPB_Ethernet / On board Ethernet Processor Chip. The same functionality is 
also implemented for the receiver function which is used to read out the 
packets from the OPB_Ethernet. Whenever there is an Etherent DMA completion 
interrupt, the program (Ethernet packet creation/reception subsystem) takes 
out the frame from the On-chip SRAM buffer and passes it to the higher 
layers thereby renewing the operations of the Ethernet controller chip and 
the local DMA operations associated with it.  

 
 
ARP Module:  
 
The APR (Address Resolution Module) is the one that actually maps IP address to 
MAC layer addresses and appends the MAC layer header to the outgoing datagram 
with the MAC layer header with appropriate MAC layer destination and source 
address which is what is understandable to the Ethernet Controller (which 
independently handles the physical layer signaling , channel coding , carrier 
sensing , collision detections and binary exponential backoff in case of 
collision detection ( the standard MAC layer mechanism used for collision 
avoidance in case of shared medium like the Ethernet).  It further talks to the 
Ethernet Packet creation , transmission and reception subroutines to send and 
receive the ARP requests and replies and to the the IP layer routing table / 
route – ARP cache to refresh entries for the destination MAC layer addresses for 
the IP addresses selected.  
 
Send / Receive Packets Module:  
 
This module simply acts as a bridge to send packets from the IP layer / ARP 
packets and send it to the Ethernet Packet creation  module to transfer it to 
the Ethernet controller via the OPB_Etherent SRAM contoller. 
 

 
 
 
 



Block Diagrams: 
 
VoIP SoftPhone Module: 
 

 
 
 
 
 
 



IP Layer Module: 
 

 
 
 
 
 
 
 
 
 



SIP/RTP Module: 
 

 
 
 
 
 
 



Task Scheduling Module: 
 

 
 
 
 
 
 
 
 



Other Figures and Timing Diagrams: 
 
Figure (1) Ethernet Controller Ring Buffer 

 
 
Figure (2) FPGA To SRAM Block Diagram 

 
 
Figure (3) FPGA To Ethernet Controller Block Diagram 

 
 



Figure (4) Ethernet Controller Timing Diagram 

 
 
Figure (5) SRAM Read Timing Diagram 

 
 
 
 



Figure (6) SRAM Write Timing Diagram 

 
 
 
Component Integration: 
 
Our plan is to integrate the two modules of the system using shared memory. 
Using a mutex or some similar device for sharing resource access, each of the 
modules will be able to read and write from a particular block of memory on the 
SRAM component. The companding component will therefore be able to write out 
data to the buffer on the fly in discretely sized chunks. The VoIP module will 
sample the buffer at a fixed rate and then packetize the data for network 
transmission. At the receiving end, the VoIP module will extract the data from 
the received packets and place it in a buffer in the SRAM from which the 
companding module can read. The compressed signal will then be decompressed and 
routed out through the DAC. 


