

SAE Auto Shifter
Design Report

Wade Brzozowski (wwb2103)
Joe Carey (jac2127)

Ron Alleyne (rja2001)

1. Abstract

Our design is to create a shifting system for the SAE racecar. The system will be
controlled by a PIC microcontroller. A heads-up display will show the RPM, current
gear, gear suggestion and include a temperature and oil pressure warning lights. The goal
is to allow the driver to be able to shift with the push of a button. Movement of the
physical shifter will be achieved with a specialized actuator designed for this particular
application.

2. Design Overview

Based on data taken from engine sensors, the main idea is to have a heads-up display
show the driver the current transmission gear and to make an appropriate
recommendation on when to shift the gear up or down. Shifting the gear in our system
would involve simply pushing a button. The main inputs to our system would be gear
position sensor, RPM signal taken off of the crankshaft position sensor, temperature, oil
pressure and buttons for shifting. All of these signals require some sort of circuitry to
integrate them properly with the microcontroller. A PIC microcontroller is used to
process the data and to provide control signals for the actuator as well as the display.
Software development for the microcontroller was done in assembly. Circuitry driving
the actuator utilizes power MOSFETs and off-the-shelf chips specialized to drive power
MOSFETs from the microcontroller.

3. Input Circuitry

Signals coming off the engine are not suitable for input directly to the PIC. Input circuitry
is needed to properly condition signals from the engine to ensure data is easily read by
the PIC. Care must also be taken to ensure the engine circuitry is not disturbed and
signals from the engine sensors do not harm the PIC.

3.1 RPM Buffer

The RPM signal was one of the most challenging to measure successfully; this was
because the RPM is a frequency dependant signal. The basic idea is to time the delay
between rising edges of the signal. From this, the period is know and the frequency is
easily determined—thus the RPMs. Most of the trouble came from the signal being
differential. First attempts included an instrumentation amplifier followed by a Schmidt
trigger. Here the idea was to convert the differential input to single ended while rejecting
any common mode. The Schmidt trigger would further filter out any noise that might
create multiple zero crossings thus giving an inaccurate reading. Preliminary tests showed
the design to work; when used with the actual RPM signal, however, erroneous readings
were shown on the RPM display. This was due impart to faulty opamps. Eventually a
simpler approach was adopted. This design included grounding one of the RPM signals

through a one-mega ohm resistor. The other RPM signal was passed through a one-kilo
ohm resistor to the input on the PIC. Additionally a 10nF capacitor is used to filter out
high frequency noise in the signal. This simplified approach cut down drastically the
number of components and made debugging much easier.

3.2 Buffers

Signals coming from the temperature and oil pressure sensors are simple analog voltages.
A simple unity gain buffer is used to present the engine wiring harness with a high
impedance. Analog to digital conversion is then done on the PIC.

4. Engine Kill Circuit

To allow the manual engine to be shifted without engaging the clutch, the current to the
ignition coils must be killed for a small period of time. This can be achieved by using part
of the project's motorcycle engine's existing electrical harness. By shorting the unused
"side-stand" relay to ground, the engine can be briefly shut off. Our implementation will
connect the lead of the side stand relay to the drain of a power MOSFET, which has a
common source. When the PIC output signal that is fed to the gate of the MOSFET goes
high, the side-stand relay will be shorted to ground. This solution was easy to implement,
as the wiring harness to car did not have to be modified. The original idea was to kill the
ignition right at the individual coils, but this would require cutting into the existing
wiring harness at four separate locations. By utilizing methods already present on the car,
a safer implementation was achieved without worry of damaging the ignition system.

5. Actuator Driver

A commercial actuator designed for auto shifting applications is used to engage the shift
lever. The actuator is a solenoid that requires a large amount of current. International
Rectifier’s IR2807Z power MOSFET was chosen to switch the current on and off due to
its large current capacity. This device is designed for automotive applications and is rated
for 75A, well in excess of actuators rated 45A. Compared to the other option of using a
relay the MOSFET proved to be the superior choice due to its physically smaller package
size as well as nearly one-fourth the cost. The IR2807Z also includes a fly back diode to
suppress voltage spikes induced when the actuator is turned off, making the overall
design simpler and cheaper by lowering the overall part count. A SPICE simulation was
done with values for resistance and inductance of the actuator found using an LCR meter.
The results of the simulation were used to determine to maximum amount of current
through the actuator as well as the total energy that would be dissipated by the MOSFET
to ensure that the device was operating within its specification. To interface the PIC to
the MOSFETs the IR4427 low side driver is used. This chip takes a logic level input
straight from the PIC and drives the power MOSFETs. The IR4427 supplies enough
current to quickly charge the gate capacitance on the MOSFETs allowing for a quick turn
on time.

6. Display

The main display is the dashboard. A Complex Programmable Logic Device (CPLD) was
located directly behind the dash to decode the various outputs of our PIC chip. This was
done to cut down on the number of wires that had to be run from the main box containing
the PIC to the dashboard. Eleven signals were used as inputs to the CPLD (outputs of the
PIC). Four will be used for the RPM display LEDs, three will be used to display the
current gear position on a seven-segment LED, two will be used to display engine
temperature, and two will be used for gear change suggestions. These signals, once

decoded by the CPLD will drive 28 LEDs located on the dash. VHDL was utilized to
program the CPLD.

7. Power Supply

The supply available on the car is 12V. A commercial voltage regulator package will be
used to supply 5V to the circuits of the board. A large 100μF was used as a coupling
capacitor. This was especially important due to the large current draw of the actuator.
What we were experiencing was that when the actuator fired the supply voltage on the
battery would drop and cause the microcontroller to reset. This was undesirable as the
system was then out of sync.

8. PIC Microcontroller

A PIC 16F877A was used as a microcontroller. The 16F877A provides a total of 33 I/O
pins with eight A/D channels. The large number of I/O was needed due to the large
number of outputs. Using a PIC microcontroller was an easy decision as it allowed us a
lot of flexibility in which pins are inputs and which are outputs. Also, the large number of
built in features of the PIC allowed for an easy implementation of kinds of measurements
of the real time data that we wanted to take. Data flash ROM is also available on the chip.
This will enable us to write parameters into the flash ROM for gear suggestions allowing
for tweaking. Below is a diagram of the 16F877A pins and the appropriate connections.

9. Software

At the heart of the racer’s gear control unit is a Microchip Technologies PIC16877A flash
programmable microprocessor. The PIC is clocked at 4MHZ with a an instruction
execution rate of 1MHZ. We used two of the PIC’s on-chip peripherals: the analog-to-
digital converter (ADC) and the timer.
The operation of the PIC’s ADC module results in a corresponding 10-bit digital number.
This module was used to convert the voltage readings delivered by the temperature
sensor of the electrical harness. The use of the ADC required the setting of the
appropriate control registers and the processing of the registers that stored the ADC
result.

The PIC’s timer module was use to find the instantaneous period of the RPM signal. With
each instruction execution, the 8-bit timer was incremented with the result being stored in
a special-purpose register.

The actual assembly code written to control the PIC begins with the initialization of the
chip’s pins as output or input ports and the setup of registers needed to control the
aforementioned peripherals. Additionally, registers used to implement the gear control
algorithm were also instantiated. Since the gear control unit would “boot” when the car
was powered, a delay1 was introduced to allow the electrical harness’ sensor signals to
settle before reading and processing them.

The main control loop of the gear control unit follows the initial display. The first part of
the loop measures the period of the RPM signal. With it being a base-band frequency
modulated signal, the useful information can be found in the period of this signal. This
information is later used to determine how the dashboard LED tachometer should be lit
up to represent the current RPM reading. The code next uses the gear position sensor to
determine if the system is calibrated. With this sensor being nothing more than a binary
signal, it is impossible to know which gear the unit is in if it starts in anything other than
the neutral gear. Fortunately, the stock control unit ensures that the engine’s electrical
harness will usually not be powered unless the car is in neutral. The results could be
problematic if the gear control unit tried to actuate the gear shift lever down from the first
gear or up from the sixth gear. This possibility is eliminated by essentially disabling most
functioning of the main control loop when the system has not been calibrated or more
specifically, when the system has not sensed a neutral reading on the gear position sensor
at least once since receiving power. The only code component that continues to function
while the unit is an un-calibrated state is the dashboard display.

After calibration has been confirmed, the steering wheel gear shift buttons are polled to
see if the driver is requesting a shift. With a 1MHZ processor, the duty cycle of the
control loop is short enough to keep the unit from missing requests for gear shifts. The
buttons are de-bounced in the sense that the code will not register a button press until it

1 Delay code for any period of time written in assembly for the PIC was obtained easily with the use of
http://www.sxlist.com/techref/piclist/codegen/delay.htm

senses the button have been pressed and then released in separate iterations of the control
loop. Once a button is press, its validity is confirmed by doing a bounds-check on the
current gear. The system will only allow the current gear to be greater than or equal to 1
and less than or equal to 6. A valid press is processed by incrementing the current gear,
setting the appropriate port bit to kill the engine for a specified period of time, writing to
the appropriate port bit to actuate the signal for another period of time and then clearing
the bit signaling that the engine no longer be killed. By introducing time-precise delays
during the design phase, the system could be later tweaked to meet the needs of the
engine.

Next, the system updates the RPM display by comparing the current RPM signal period
to know RPM signal period benchmarks. Also, the temperature sensor readout, the oil
pressure sensor readout and the gear suggestion for the current RPM sensor reading and
current gear reading are also refreshed. All of the display outputs are encoded and written
to ports that the CPLD decodes and uses to power the appropriate dashboard display
LEDs. The RPM sensor readout is translated to a 4-bit number that is written on four
ports to signal the CPLD about how many RPM tachometer LEDs to power. The
temperature readout made available by the ADC is translated to a hot, cold and warm
LED. It should be noted the gear readout is only accurate when the gear control unit is
used to automatically shift the engine. Otherwise, this readout and the gear suggestion are
inaccurate. Following the code implementing the main loop are the code blocks used to
implement small operations that support the functioning of the main loop.

10. Fabrication

Our board was fabricated using the simple but time-consuming method of wire wrapping.
This process consists of taking 30-gauge wire and wrapping it around header pins to
make the various connections. To make sure that these connections were secure, we also
soldered every wire wrap directly to the header pins. We chose to do this because of time
constraints and the cost was much lower than the alternatives. The main drawback of
wire wrapping is the wires remain exposed on the backside of the board. In a project
such as this, where drilling and welding are occurring constantly, having these exposed
wires is not desired because they have a higher likelihood of being damaged or severed.
Ideally, we would have designed a printed circuit board (PCB) and had it fabricated
professionally. However, since we only needed one board, the cost was not economical.
If this project were to be mass-produced, a PCB would be used as the cost per board
would go down as the number of boards fabricated increased.

11. Results

Initially, while working in the lab, every test we ran went well. It wasn’t until we had to
interface with the car’s wire harness that we began having problems. First, op-amps
began failing, so we decided to replace them with resistors in a voltage divider
configuration. They provide the same functionality as a unity gain buffer; however, they
only reduced the signals to 6V. After reading the PIC datasheet we decided that 6V was

a low enough voltage and that it would not damage our processor. Another circuit of
ours that we had planned on using also became useless, due to op-amp failures, was our
Schmitt Trigger. The trigger was supposed to reduce the “ringing” of the RPM signal
and thus making it into a more suitable square wave. We noticed this problem when we
first went to test our LED tachometer. All 14 LEDs would light up periodically even
though the RPM level was well below redline. To fix this, we implemented a low pass
filter in our assembly code. In the code we stated if the time between two rising edges of
the RPM signal were effectively less than what would be equivalent to 15,000 RPMs, we
would ignore that signal because it was actually the ringing of the impure signal. Once
these fixes were made our dashboard performed amazingly well.
We encountered surprisingly few problems when it came to our actuator control. Most
problems occurred when we hooked the actuator up to our circuit incorrectly and blew a
power MOSFET. However, as of this paper, we have not been able to test to see if the
engine kill time is long enough to result in a proper shift. We are still looking for a safe
way to test this without having to actually drive the car.

12. Conclusions

This project plainly illustrated to us the difficulty encountering when interfacing
electronics with a real-world mechanical peripheral. Considering the difficultly during
integration, we are very pleased and somewhat surprised at the ability to produce a
functioning product. We learned how invaluable it is to have definite arrangements for
circuit topology and fabrication in hand before the integration phase. Unfortunately, we
found ourselves still designing and building after the time came for integration. Another
useful engineering lesson learned is the ease with which we could solve problems in
software. While software solutions limit efficiency, they were easier to deal with and
provided the immediate assurance hardware solutions do not always provide. We also
learned how much fabrication decisions factor into the durability and debugging of such
an application. Finally, we learned how important it is to set modest goals when it comes
to the scope of such a project. While we achieved functionality in all the significant areas
of our design goals, there were fine details that did not receive the attention because of
the pressure to solve bigger problems. All in all, this project was a great learning
experience and provided us with a measure of real-world experience that would not have
been as accessible in some of the more conventional embedded systems projects.

13. Appendix

13.1 VHDL Code
LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity decoder is
port(inputs : in std_logic_vector(6 downto 0);
 RPM : out std_logic_vector(13 downto 0);
 gear : out std_logic_vector(2 downto 0));
end decoder;

architecture behavior of decoder is

begin
 process(inputs)
 begin
 case inputs(6 downto 3) is --RPM
 when "0000" =>
 RPM(13 downto 0) <= "00000000000000"; --0 RPM
 when "0001" =>
 RPM(13 downto 0) <= "00000000000001"; --1000
 when "0010" =>
 RPM(13 downto 0) <= "00000000000011"; --2000
 when "0011" =>
 RPM(13 downto 0) <= "00000000000111"; --3000
 when "0100" =>
 RPM(13 downto 0) <= "00000000001111"; --4000
 when "0101" =>
 RPM(13 downto 0) <= "00000000011111"; --5000
 when "0110" =>
 RPM(13 downto 0) <= "00000000111111"; --6000
 when "0111" =>
 RPM(13 downto 0) <= "00000001111111"; --7000
 when "1000" =>
 RPM(13 downto 0) <= "00000011111111"; --8000
 when "1001" =>
 RPM(13 downto 0) <= "00000111111111"; --9000
 when "1010" =>
 RPM(13 downto 0) <= "00001111111111"; --10,000
 when "1011" =>
 RPM(13 downto 0) <= "00011111111111"; --11,000
 when "1100" =>
 RPM(13 downto 0) <= "00111111111111"; --12,000
 when "1101" =>
 RPM(13 downto 0) <= "01111111111111"; --13,000
 when "1110" =>
 RPM(13 downto 0) <= "11111111111111"; --14,000
 when others =>
 RPM(13 downto 0) <= "11111111111111"; --error
 end case;

 case inputs(2 downto 0) is --Gear Display
 when "000" => --gfedcba
 gear(2 downto 0) <= "1000000"; --0, neutral
 when "001" => --gfedcba
 gear(2 downto 0) <= "1111100"; --1
 when "010" => --gfedcba
 gear(2 downto 0) <= "0010010"; --2
 when "011" => --gfedcba
 gear(2 downto 0) <= "0011000"; --3
 when "100" => --gfedcba
 gear(2 downto 0) <= "0101100"; --4
 when "101" => --gfedcba
 gear(2 downto 0) <= "0001001"; --5
 when "110" => --gfedcba
 gear(2 downto 0) <= "0000001"; --6
 when others => --gfedcba
 gear(2 downto 0) <= "0000011"; --E, error

 end case;
 end process;
end behavior;

13.2 PIC assembly code

;
 Title "SAE autoshifter."
;
 list P = 16F877A
;
 include "P16F877A.inc" ; use definition file for 16F877A
;
; --------------------
; USER RAM DEFINITIONS
; --------------------
;
 CBLOCK 0x20 ; RAM starts at address 20h
gear
flag
rpm_flag
neutral_last
neutral
calibrated
NaHi
clkl
clkh
d1
d2
d3
Xhi
Xlo
 ENDC
;
 org 0x0000 ; start address = 0000h
 goto Initialize

; INITIALISE PORTS
; binary used to see inividual pin level

Initialize
 movlw b'00000000'
 movwf INTCON
 movlw 0x00
 movwf NaHi
 movwf 0x07
 movwf gear
 movlw b'00000000' ; all port pins = low
 movwf PORTA
 movlw b'00000000'
 movwf PORTB
 movlw b'00000000'
 movwf PORTC
 movlw b'00000111'
 movwf PORTD
 movlw b'00000000'

 movwf PORTE

 ;start a/d code
 bsf STATUS,RP0 ;bank 1
 bcf STATUS,RP1
 movlw b'00001110'
 clrf ADCON1 ;left justified, input an0
 bcf STATUS,RP0 ;bank 0
 movlw B'01000001' ;Fosc/8 [7-6], A/D ch0 [5-3], a/d on [0]
 movwf ADCON0

 bsf STATUS,RP0 ; set RAM Page 1 for TRIS registers
 bcf STATUS,RP1
 ; INITIALISE PORTS
 ; binary used to see individual pin IO status

 movlw b'11111111' ;1=input, 0=output
 movwf TRISA
 movlw b'11110010'
 movwf TRISB
 movlw b'00000000'
 movwf TRISC
 movlw b'00000000'
 movwf TRISD
 movlw b'00000000'
 movwf TRISE

 bcf STATUS,RP0 ; back to RAM page 0

 movlw 0x00
 movwf TMR1L
 movwf TMR1H
 movwf TMR1L
 movwf flag
 movwf rpm_flag
 movwf neutral
 movwf calibrated
 movwf neutral_last
 movlw b'00000001'
 movwf T1CON

 ;delay to allow everything to settle
 call startup_delay

;main loop in which displays are updated
Main

rpm1 btfsc PORTB,5
 goto rpm1
rpm2 btfss PORTB,5
 goto rpm2
 movlw 0x00
 movwf TMR1L
 movwf TMR1H
 movwf TMR1L
rpm3 btfsc PORTB,5
 goto rpm3

rpm4 btfss PORTB,5
 goto rpm4
 movf TMR1L,W
 movwf clkl
 movf TMR1H,W
 movwf clkh

 btfss PORTB,4
 bsf calibrated,0 ; neutral must be low
 btfss calibrated,0
 goto button_done ; must not be calibrated

 ;check if we are in neutral
 btfss PORTB,4
 bsf neutral,0 ; must not be in neutral anymore

 btfsc PORTB,4
 bcf neutral,0 ; must not be in neutral anymore

 btfss neutral,0
 goto here

 clrf gear ;set display to '0'
 clrf PORTD
 goto button_done

here
 btfss neutral_last,0
 goto here2
 movlw 0x01
 movwf gear
 movwf PORTD

here2
 btfsc PORTB,5
 call rpm_check
 btfss PORTB,5
 bcf rpm_flag,0

 ;check if the buttons are pressed
 btfss PORTB,7
 goto button_up
 btfss PORTB,6
 goto button_down

button_done
 ;clear the flag if needed
 btfss PORTB,7
 goto $+3
 btfsc PORTB,6
 bcf flag,0

 movf neutral,W
 movwf neutral_last

 ;update the rpm
 movlw 0x17 ; put 6000 in x

 movwf Xhi
 movlw 0x70
 movwf Xlo
 call compare_unsigned_16 ;test if count is less than 6000
 btfsc STATUS, C
 goto rpm_0 ; if count is greater than 6000 we have 0 RPM
 movlw 0x0b ; check 3000
 movwf Xhi
 movlw 0xb8
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_1000
 movlw 0x07 ; check 2000
 movwf Xhi
 movlw 0xd0
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_2000
 movlw 0x05 ; check 1500
 movwf Xhi
 movlw 0xdc
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_3000
 movlw 0x04 ; check 1200
 movwf Xhi
 movlw 0xb0
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_4000
 movlw 0x03 ; check 1000
 movwf Xhi
 movlw 0xe8
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_5000
 movlw 0x03 ; check 857
 movwf Xhi
 movlw 0x59
 movwf Xlo

call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_6000
 movlw 0x02 ; check 750
 movwf Xhi
 movlw 0xee
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_7000
 movlw 0x02 ; check 667
 movwf Xhi

 movlw 0x9b
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_8000
 movlw 0x02 ; check 600
 movwf Xhi
 movlw 0x58
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_9000
 movlw 0x02 ; check 545
 movwf Xhi
 movlw 0x21
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_10000
 movlw 0x01 ; check 500
 movwf Xhi
 movlw 0xf4
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_11000
 movlw 0x01 ; check 462
 movwf Xhi
 movlw 0xce
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_12000
 movlw 0x01 ; check 429
 movwf Xhi
 movlw 0xad
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_13000

 ;low pass filter
 movlw 0x01 ; check 400
 movwf Xhi
 movlw 0x90
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 goto rpm_max
 goto rpm_impossible

rpm_0
 movf PORTC,W
 andlw 0xf0
 addlw b'00000000'
 movwf PORTC
 goto led_finish

rpm_1000
 movf PORTC,W
 andlw 0xf0
 addlw b'00000001'
 movwf PORTC
 goto led_finish
rpm_2000
 movf PORTC,W
 andlw 0xf0
 addlw b'00000010'
 movwf PORTC
 goto led_finish
rpm_3000
 movf PORTC,W
 andlw 0xf0
 addlw b'00000011'
 movwf PORTC
 goto led_finish
rpm_4000
 movf PORTC,W
 andlw 0xf0
 addlw b'00000100'
 movwf PORTC
 goto led_finish
rpm_5000
 movf PORTC,W
 andlw 0xf0
 addlw b'00000101'
 movwf PORTC
 goto led_finish
rpm_6000
 movf PORTC,W
 andlw 0xf0
 addlw b'00000110'

movwf PORTC
 goto led_finish
rpm_7000
 movf PORTC,W
 andlw 0xf0
 addlw b'00000111'
 movwf PORTC
 goto led_finish
rpm_8000
 movf PORTC,W
 andlw 0xf0
 addlw b'00001000'
 movwf PORTC
 goto led_finish
rpm_9000
 movf PORTC,W
 andlw 0xf0
 addlw b'00001001'
 movwf PORTC
 goto led_finish
rpm_10000
 movf PORTC,W
 andlw 0xf0

 addlw b'00001010'
 movwf PORTC
 goto led_finish
rpm_11000
 movf PORTC,W
 andlw 0xf0
 addlw b'00001011'
 movwf PORTC
 goto led_finish
rpm_12000
 movf PORTC,W
 andlw 0xf0
 addlw b'00001100'
 movwf PORTC
 goto led_finish
rpm_13000
 movf PORTC,W
 andlw 0xf0
 addlw b'00001101'
 movwf PORTC
 goto led_finish
rpm_max
 movf PORTC,W
 andlw 0xf0
 addlw b'00001110'
 movwf PORTC
 goto led_finish

rpm_impossible

led_finish
 movf gear,W
 sublw 0x01
 btfsc STATUS,Z
 call one_sug
 movf gear,W
 sublw 0x02
 btfsc STATUS,Z
 call two_sug
 movf gear,W
 sublw 0x03
 btfsc STATUS,Z
 call three_sug
 movf gear,W
 sublw 0x04
 btfsc STATUS,Z
 call four_sug
 movf gear,W
 sublw 0x05
 btfsc STATUS,Z
 call five_sug
 movf gear,W
 sublw 0x06
 btfsc STATUS,Z
 call six_sug

;do an a/d

ad_portc
 bsf ADCON0,GO ;Start A/D conversion
Wait
 btfsc ADCON0,GO ;Wait for conversion to complete
 goto Wait

 movf ADRESH,W ;Write A/D result to W register
 addlw 0x6b ;overflow will occur if voltage on PORT RA0 > 2.9V
 btfsc STATUS,C
 goto ad_hot

 movf ADRESH,W ;Write A/D result to W register
 addlw 0x94 ;overflow will occur if voltage on PORT RA0 > 2.1V
 btfsc STATUS,C
 goto ad_ok

 goto ad_cold ;if we get here PORT RA0 < 2.1V

ad_hot
 bsf PORTC,7
 bcf PORTC,6
 bcf PORTC,5
 goto ad_done
ad_ok
 bcf PORTC,7
 bsf PORTC,6
 bcf PORTC,5
 goto ad_done
ad_cold
 bcf PORTC,7
 bcf PORTC,6
 bsf PORTC,5
ad_done

 ;check oil pressure, change display appropriately
 btfsc PORTB,1
 bsf PORTD,4 ;pressure too low
 btfss PORTB,1
 bcf PORTD,4 ;pressure OK

 goto Main

button_up
 ;if button still pressed, exit
 btfsc flag,0
 goto done_up
 bsf flag,0

 movf gear,W
 sublw 0x06
 btfsc STATUS,Z
 goto done_up

 movlw 0x01
 addwf gear,W
 movwf gear
 movwf PORTD

 bsf PORTD,7 ; engine kill

 call e_kill_delay ; 25ms
 bsf PORTD,6 ; actuate up

call actuate_delay ; 100ms
 bcf PORTD,6 ; stop actuation

 call e_kill_delay ; 25 ms
 ;total shift time = 150ms
 bcf PORTD,7; engine unkill
done_up
 goto button_done

button_down
 ;if button still pressed, exit
 btfsc flag,0
 goto done_down
 bsf flag,0

 decfsz gear,W
 goto $+2
 goto done_down
 movwf gear
 movwf PORTD

 bsf PORTD,7 ; engine kill

 call e_kill_delay ; 25ms
 bsf PORTD,5 ; actuate down

 call actuate_delay ; 100ms
 bcf PORTD,5 ; stop actuation

 call e_kill_delay ; 25ms
 ;total shift time = 150ms
 bcf PORTD,7; engine unkill

done_down
 goto button_done

compare_unsigned_16:
 movf Xhi,w
 subwf clkh,w ; subtract Y-X
Are_they_equal:
 ; Are they equal ?
 skpz
 goto results16
 ; yes, they are equal -- compare lo
 movf Xlo,w
 subwf clkl,w ; subtract Y-X
results16:
 ; if X=Y then now Z=1.
 ; if X>Y then now C=0.
 ; if X<=Y then now C=1.
 return

rpm_check
 btfsc rpm_flag,0
 goto rpm_done
 movf TMR1L,W
 movwf clkl
 movf TMR1H,W
 movwf clkh
 movlw 0x00
 movwf TMR1L
 movwf TMR1H
 movwf TMR1L
 bsf rpm_flag,0
rpm_done
 return

one_sug
 ;if gear=1 and rpm>9000, shift up
 movlw 0x02
 movwf Xhi
 movlw 0x58
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 bcf PORTB,3
 btfss STATUS,C
 bsf PORTB,3
 return

two_sug
 ;if gear=2 and rpm>9500, shift up
 movlw 0x02
 movwf Xhi
 movlw 0x58
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 bcf PORTB,3
 btfss STATUS,C
 bsf PORTB,3

 ;if gear=2 and rpm<4500, shift down
 movlw 0x05
 movwf Xhi
 movlw 0xdc
 movwf Xlo
 call compare_unsigned_16
 btfss STATUS, C
 bcf PORTB,2
 btfsc STATUS,C
 bsf PORTB,2
 return

three_sug
 ;if gear=3 and rpm>9000, shift up
 movlw 0x02
 movwf Xhi
 movlw 0x58

 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 bcf PORTB,3
 btfss STATUS,C
 bsf PORTB,3

 ;if gear=3 and rpm<4000, shift down
 movlw 0x05
 movwf Xhi
 movlw 0xdc
 movwf Xlo
 call compare_unsigned_16
 btfss STATUS, C
 bcf PORTB,2
 btfsc STATUS,C
 bsf PORTB,2
 return

four_sug
 ;if gear=4 and rpm>9500, shift up
 movlw 0x02
 movwf Xhi
 movlw 0x58
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 bcf PORTB,3
 btfss STATUS,C
 bsf PORTB,3

 ;if gear=4 and rpm<3750, shift down
 movlw 0x05
 movwf Xhi
 movlw 0xdc
 movwf Xlo
 call compare_unsigned_16
 btfss STATUS, C
 bcf PORTB,2
 btfsc STATUS,C
 bsf PORTB,2
 return

five_sug
 ;if gear=5 and rpm>8000, shift up
 movlw 0x02
 movwf Xhi
 movlw 0x58
 movwf Xlo
 call compare_unsigned_16
 btfsc STATUS, C
 bcf PORTB,3
 btfss STATUS,C
 bsf PORTB,3

 ;if gear=5 and rpm<4000, shift down
 movlw 0x05

 movwf Xhi
 movlw 0xdc
 movwf Xlo
 call compare_unsigned_16
 btfss STATUS, C
 bcf PORTB,2
 btfsc STATUS,C
 bsf PORTB,2
 return

six_sug
 ;if gear=6 and rpm<3000, shift down
 movlw 0x05
 movwf Xhi
 movlw 0xdc
 movwf Xlo
 call compare_unsigned_16
 btfss STATUS, C
 bcf PORTB,2
 btfsc STATUS,C
 bsf PORTB,2
 return

startup_delay
 ;2 second delay to let signals settle
 movlw 0x11
 movwf d1
 movlw 0x5D
 movwf d2
 movlw 0x05
 movwf d3
Delay_0
 decfsz d1, f
 goto $+2
 decfsz d2, f
 goto $+2
 decfsz d3, f
 goto Delay_0

 ;4 cycles
 goto $+1
 goto $+1
 return

e_kill_delay
 ;25ms delay
 movlw 0x4F
 movwf d1
 movlw 0xC4
 movwf d2
Delay_1
 decfsz d1, f
 goto $+2
 decfsz d2, f
 goto Delay_1

 ;2 cycles

 goto $+1
 return

actuate_delay
 ;100ms delay
 movlw 0x03
 movwf d1
 movlw 0x18
 movwf d2
 movlw 0x02
 movwf d3
Delay_2
 decfsz d1, f
 goto $+2
 decfsz d2, f
 goto $+2
 decfsz d3, f
 goto Delay_2

 ;6 cycles
 goto $+1
 goto $+1
 goto $+1
 return

 end

	3. Input Circuitry
	11. Results

