

SAE Auto Shifter
Design Report

Wade Brzozowski (wwb2103)
Joe Carey (jac2127)

Ron Alleyne (rja2001)

1. Design Overview

 Our design is to create a shifting system for the SAE racecar. The system will be
controlled by a PIC microcontroller. A heads up display will show the RPM, current gear,
gear suggestion, and include a temperature and oil pressure warning lights. The goal is to
allow the car driver to be able to shift with the push of a button. Movement of the
physical shifter will be achieved with a specialized actuator designed for this particular
application.

2. Input Circuitry

 Signals coming off the engine are not suitable for input directly to the PIC. Input
circuitry is needed to properly condition signals from the engine to ensure that data is
easily read by the PIC. Care must also be taken to ensure that the engine circuitry is not
disturbed and that signals from the engine sensors do not harm the PIC.

2.1 RPM Buffer

 For the RPM sensor a Schmidt trigger will be used. The signal coming off of the
RPM sensor is a distorted sine wave with a frequency of ten times the engine RPM. The
Schmidt trigger will fix the amplitude of the signal at either +5V or 0V. This will allow
the PIC to calculate the time between the rising edges of the RPM signal and thus find the
frequency and RPM. Noise will also be rejected well by the Schmidt trigger by rejecting
multiple zero crossings. A zener diode is included at the input to clamp the signal at an
appropriate level.

2.2 Temperature and Oil Pressure Buffers

 Signals coming from the temperature and oil pressure sensors are simple analog
voltages. A simple unity gain buffer is used to present the engine wiring harness with a
high impedance. Analog to digital conversion is then done on the PIC.

3. Engine Kill Circuit

 To allow the manual engine to be shifted without engaging the clutch, the coil to the
current must be killed for a small period of time. This can be achieved by using part of
the project's motorcycle engine's existing electrical harness. By shorting the unused "side-
stand" relay to ground, the engine can be killed. Our implementation will connect
the lead of the side stand relay to the drain of a power mosfet, which has a common
source. When the PIC output signal that is fed to the gate of the mosfet goes high,
the side-stand relay will be shorted to ground.

4. Actuator Driver

 A commercial actuator designed for auto shifting applications is used to engage
the shift lever. The actuator is a solenoid that requires a large amount of current.
International Rectifier’s IR2807Z power mosfet was chosen due to its large current
capacity and low price compared to other option. The IR2807Z also includes a fly back
diode to suppress voltage spikes induced when the actuator is turned off. To interface the
PIC to the mosfets the IR4427 low side driver is used. This chip take a logic level input
straight from the PIC and drives the power mosfets. The IR4427 supplies enough current
to quickly charge the gate capacitance on the mosfets allowing for a quick turn on time.

5. Display

 We will be using a CPLD to decode the various outputs of our PIC chip. We will
use 11 signals as inputs to the CPLD (outputs of the PIC). Four will be used for the RPM
display LEDs, three will be used to display the current gear position on a seven-segment
LED, two will be used to display engine temperature, and two will be used for gear
change suggestions. These signals, once decoded by the VHDL code provided in the
Appendix, will be connected to various LEDs. The LEDs will be mounted on the
dashboard of the SAE car so that the driver can closely monitor the data from the engine.

6. Power Supply

The supply available on the car is 12V. A commercial voltage regulator package
will be used to supply 5V to the circuits of the board.

7. PIC Microcontroller

 A PIC 16F877A will be used as a microcontroller. The 16F877A provides a total
of 33 I/O pins with eight A/D channels. Data flash ROM is available on the chip. This
will enable us to write parameters into the flash ROM for gear suggestions allowing for
tweaking through the serial port without having to reprogram the entire microcontroller.
Below is a diagram of the 16F877A pins and the appropriate connections.

8. Appendix

8.1 VHDL Code
LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity decoders is
port(inputs : in std_logic_vector(10 downto 0);
 outputs : out std_logic_vector(25 downto 0));
end decoders;

architecture behavior of decoders is

begin
 process(inputs)
 begin
 case inputs(10 downto 7) is --RPM
 when "0000" =>
 outputs(25 downto 12) <= "00000000000000"; --0 RPM
 when "0001" =>
 outputs(25 downto 12) <= "00000000000001"; --1000
 when "0010" =>
 outputs(25 downto 12) <= "00000000000011"; --2000
 when "0011" =>
 outputs(25 downto 12) <= "00000000000111"; --3000
 when "0100" =>
 outputs(25 downto 12) <= "00000000001111"; --4000
 when "0101" =>
 outputs(25 downto 12) <= "00000000011111"; --5000
 when "0110" =>
 outputs(25 downto 12) <= "00000000111111"; --6000
 when "0111" =>
 outputs(25 downto 12) <= "00000001111111"; --7000
 when "1000" =>
 outputs(25 downto 12) <= "00000011111111"; --8000
 when "1001" =>
 outputs(25 downto 12) <= "00000111111111"; --9000
 when "1010" =>
 outputs(25 downto 12) <= "00001111111111"; --10,000
 when "1011" =>
 outputs(25 downto 12) <= "00011111111111"; --11,000
 when "1100" =>
 outputs(25 downto 12) <= "00111111111111"; --12,000
 when "1101" =>
 outputs(25 downto 12) <= "01111111111111"; --13,000
 when "1110" =>
 outputs(25 downto 12) <= "11111111111111"; --14,000
 when others =>
 outputs(25 downto 12) <= "11111111111111"; --error
 end case;

 case inputs(6 downto 4) is --Gear Display
 when "000" => --abcdefg
 outputs(11 downto 5) <= "1111110"; --0, neutral
 when "001" => --abcdefg
 outputs(11 downto 5) <= "1100000"; --1

 when "010" => --abcdefg
 outputs(11 downto 5) <= "1011011"; --2
 when "011" => --abcdefg
 outputs(11 downto 5) <= "1110011"; --3
 when "100" => --abcdefg
 outputs(11 downto 5) <= "1100101"; --4
 when "101" => --abcdefg
 outputs(11 downto 5) <= "0110111"; --5
 when "110" => --abcdefg
 outputs(11 downto 5) <= "0111111"; --6
 when others => --abcdefg
 outputs(11 downto 5) <= "0011111"; --E, error
 end case;

 case inputs(3 downto 2) is --Gear Suggestion LEDs
 when "00" =>
 outputs(4 downto 3) <= "00"; --none on
 when "01" =>
 outputs(4 downto 3) <= "01"; --up shift
 when "10" =>
 outputs(4 downto 3) <= "10"; --down shift
 when others =>
 outputs(4 downto 3) <= "11"; --both on, error
 end case;

 case inputs(1 downto 0) is --Temperature LEDs
 when "00" =>
 outputs(2 downto 0) <= "001"; --cold
 when "01" =>
 outputs(2 downto 0) <= "010"; --normal
 when "10" =>
 outputs(2 downto 0) <= "100"; --hot
 when others =>
 outputs(2 downto 0) <= "111"; --all on, error
 end case;
 end process;
end behavior;

	2. Input Circuitry

