
CSEE W4840 Embedded System Design Lab 4

Stephen A. Edwards

Due February 26, 2004

Abstract

Forget everything you learned about C and implement the first
lab again, this time in pure VHDL. Count in hex on the seven-
segment display. Learn to command the Xilinx VHDL logic
synthesis tool.

1 Introduction

For labs 1–3, you treated the XSB-300E as mostly a target for C
programs. If this were our only objective, we would have cho-
sen a board with, say, a small processor and a few peripherals.
Instead, the board has a very flexible FPGA and beginning with
the lab, you will get a chance to take advantage of this flexibility
by designing and implementing your own hardware.

In this class, you’ll be using VHDL (VHSIC Hardware De-
scription Language) to describe hardware. It is a fairly verbose
language, but fairly simple at its core. You will want to consult
the Writing VHDL for RTL Synthesis handout available on the
class webpage for examples of how to write VHDL. Unfortu-
nately, the language is very big and large parts of it cannot be
directly transated into hardware. As such, things like the lan-
guage reference manual and the majority of VHDL books are
useless because they are too complicated and largely irrelevant
for specifying hardware.

Although the syntax of VHDL vaguely resembles that of an
imperative language like C, do not be deceived: VHDL is not
a programming language. In particular, the sort of imperative,
algorithmic thinking that works well to solve problems in C will
not work in VHDL. Specifically, a C-like VHDL program prob-
ably will not compile and even if it does, you will not like what
you get.

VHDL is closer to a purely structural language. In VHDL,
you mostly define how components connect. The main idea
is that a system is composed of hierarchically-arranged blocks
called entity/architecture pairs (everything in VHDL has a weird
name, unfortunately). For each block, you define its interface
(a list of wires that enter and leave it) and its guts, which may
consist of instances of other blocks, dataflow expressions (e.g.,
a particular signal is the logical AND of two others), and pro-
cesses that appear to contain imperative code.

2 The Assignment

As usual, we have provided a skeleton of the code for this lab, lo-
cated as usual at ˜sedwards/4840/lab4.tar.gz on the
ilab machines. This tarball contains a Makefile, two VHDL files
(suffix “.vhd”), and a few configuration files that together pro-
duce a bitstream for the FPGA that counts and blinks the LEDs
on the XSB-300E board. “make download” will compile the
VHDL source files, place and route them, produce a bitstream,
and download it to the FPGA.

Your assignment is to implement the behavior of the first lab
in VHDL, i.e., make the LEDs display a human-speed count
from 0–99 in decimal. The hello.vhd file contains a few clock
dividers (the default clock on the XSB-300E runs at 50 MHz,
slightly faster than your eyes could follow), connections to
the LED ports, and two instances of a trivial module called
“hex2led,” defined in hex2led.vhd.

You need to changed hex2led to decode the seven-segment
displays and adapt hello.vhd to emit a decimal count (it currently
counts in hexadecimal).

Show your working solution to a TA, have him sign off on it,
and turn in a listing of your VHDL source files.

As usual, short, elegant solutions (as much as possible in
VHDL) will receive better grades than messy ones.

1


