
Retina: Helping Students and Instructors Based on
Observed Programming Activities

Christian Murphy, Gail Kaiser, Kristin Loveland, Sahar Hasan
Dept. of Computer Science, Columbia University, New York NY 10027

{cmurphy, kaiser, kl2289, sh2503}@cs.columbia.edu

ABSTRACT
It is difficult for instructors of CS1 and CS2 courses to get
accurate answers to such critical questions as “how long are
students spending on programming assignments?”, or “what
sorts of errors are they making?” At the same time, students
often have no idea of where they stand with respect to the
rest of the class in terms of time spent on an assignment or
the number or types of errors that they encounter. In this
paper, we present a tool called Retina, which collects in-
formation about students’ programming activities, and then
provides useful and informative reports to both students and
instructors based on the aggregation of that data. Retina
can also make real-time recommendations to students, in
order to help them quickly address some of the errors they
make. In addition to describing Retina and its features, we
also present some of our initial findings during two trials of
the tool in a real classroom setting.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education—computer assisted instruction; K.3.2 [Computers
and Education]: Computer and Information Science Edu-
cation—computer science education

General Terms
Human Factors, Measurement

Keywords
Tutoring Systems, Compilation Errors, CS1, CS2

1. INTRODUCTION
Instructors of CS1 and CS2 courses often must rely on

anecdotal evidence, second-hand information, or hearsay to
find out answers to such critical questions as “how long
are students taking to complete the programming assign-
ments?”, or “what sorts of compilation and runtime errors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

are they making?” Teaching assistants might be able to give
some feedback based on what is observed during office hours
and tutoring sessions, but often the instructors have no con-
crete, objective empirical data regarding students’ program-
ming activities. If instructors knew precisely what problems
their students were having, they could address those in lec-
ture and tailor future assignments accordingly.

At the same time, students in these classes often have
no idea of where they stand with respect to the rest of the
class in terms of time spent on an assignment or the number
or types of errors that they encounter. It is common for
an introductory-level student to have great difficulties with
initial programming assignments. A student may think“this
is probably easy for everyone but me”, and not have evidence
of the fact that, actually, other students are struggling, too.
If students knew for certain that other students are enduring
similar experiences, they may not be as inclined to consider
computer science as too challenging and give up on it as a
field of study that they want to pursue [3].

Lastly, both instructors and students can often suffer from
a lack of “organizational memory”. Instructors may forget
what types of problems students had with assignments in
previous semesters; students may not remember how they
addressed particular compilation errors, or might not have
an accurate way of assessing how long an assignment will
take them to complete. Past information about students’
programming activities could thus be used to guide both
the instructors and the students.

To address these problems, we present a tool called Retina,
which collects objective observational data about students’
programming activities (focusing on compilation and run-
time errors), and then provides useful and informative re-
ports based on the aggregation of that data. These reports
provide instructors with information such as which students
seem to be struggling with an assignment or how long the
class is spending on it as a whole; students can see infor-
mation about their own work, such as the errors they have
previously made, and get a glimpse of their peers’ activities
as well. Retina can also make proactive recommendations
and suggestions to the students, for instance how long to
expect an assignment to take or what errors to look out for.

In addition to describing Retina and its features, we also
present some of our initial findings during two trials of the
tool, in which instructors used the collected data to improve
their courses, and the data was analyzed to see if any correla-
tions exist that may indicate which aspects of students’ pro-
gramming activities relate to academic success in the course.

2. RELATED WORK
Retina is closely related to the work of Jadud [9] and to the

tool ClockIt [17], both of which monitor and log student pro-
gramming activities to determine such information as when
a student starts working on an assignment, how much time
is spent, and what errors are made during that time. These
tools are focused only on BlueJ, however, whereas Retina
works with a variety of compiler environments: since BlueJ
only reports one compilation error at a time, this means
those tools cannot capture some data captured by Retina,
such as errors per compilation attempt. More importanly,
Retina adds additional functionality, particularly the recom-
mendation and suggestion features that allow the student
not only to see her past activities, but also get an idea of
what to expect in the future.

Similarly, while Hackystat [12] addresses the problems of
transparent data collection of programming activities, and
Gauntlet [5] and Expresso [8] are just two of the many tools
that seek to provide help about compiler errors, none of
these provide any out-of-the-box functionality with respect
to the use of such data for providing feedback and analysis
to the instructor and students.

Marmoset [19] and Web-CAT [4] are two important tools
that observe student programming behavior and automate
unit and system testing, but these tools are focused on logi-
cal errors (“does the program produce the correct output?”)
and not on syntax/semantic errors (“does the program com-
pile?”) or runtime errors (“does the program run to com-
pletion?”). Thus, Retina is complementary to these tools,
since it focuses on a different aspect of programming activi-
ties. Additionally, neither Marmoset nor Web-CAT provides
proactive recommendations to students, as is done in Retina.

The recommendation features of Retina are related to
many other important works that make suggestions based
on past programming activities, such as [7]. Previous work
in mining student source code repositories has looked at
whether programming activities can predict grade perfor-
mance [13] [15], but they only consider version control ac-
tivities and coding style, and not compilations and errors
as we do with Retina. Furthermore, none of these address
the particular needs of novice-level programmers and their
instructors.

3. RETINA FEATURES
Based on the data that is collected about students’ pro-

gramming activities, Retina provides numerous features for
both the instructors and the students.

3.1 Data Collection
Retina records students’ compilation attempts and com-

piler errors so that they can be stored in a central database
and later mined and analyzed. Currently, Retina supports
the command-line compiler through a modification to javac,
and we have also implemented plugins for both Eclipse and
BlueJ. When the student invokes the compiler, the student’s
name (or ID) and the current date and time are recorded in a
local XML file. Additionally, any compilation errors are re-
ported to the student as normal, but for each error, the type
of error, the file name and line number, and the associated
error message are all recorded as well. The data is then sent
to a central server, where it is stored in a relational database.
The entire process is completely transparent to the student,
and the performance impact is negligible.

To address privacy issues, Retina allows the student to opt
out of the collection of data entirely. Alternatively, the stu-
dent can specify that information be collected anonymously
so that it contributes only to the overall data for the class,
and cannot be tied back to the individual student.

When using the command-line Java VM for executing the
program, Retina can also record students’ runtime errors,
i.e. uncaught exceptions. This is done via integration with
Backstop [16], which intercepts any uncaught exceptions and
provides more user-friendly error messages. We modified
Backstop so that the student’s name, the current date and
time, the type of exception, the corresponding error message,
and the stack trace are all recorded to an XML file and then
sent to the central server.

3.2 Retina Instructor View
Once the data has been collected, instructors can access

the collected data through the Retina Instructor View, which
is implemented as a standalone Java application that runs
locally on the instructor’s system; the instructor can also
access the data remotely via a web browser interface. The
application has two modes: “Browse” and “Class”.

The “Browse” mode, shown in Figure 1, allows the in-
structor to get an understanding of an individual student’s
efforts on a particular assignment. The instructor can select
a student and an assignment for either the current semester
or a past one, and then see a list of all of the student’s
compilation and runtime errors, as well as aggregate data
about the total number of compilations, the total number of
compilation errors, and the most common compilation error.

Figure 1: Retina Instructor View in Browse Mode

The instructor can also see an approximation of how long
the student has spent on the assignment. Although it is im-
possible to know exactly how long the student is working
on the assignment, especially since we only capture discrete
compilation events and we do not know when the student
has started or finished the programming session, we can ap-
proximate the time by looking at each compilation event
and assuming that compilation events within a fixed time
(say, 30 minutes) of each other are part of the same session.
We then use the sum total of the individual programming
sessions as the approximate time spent on the assignment.
Others have also addressed this particular problem of under-
standing developers’ time spent on programming activities
[2], and tools such as the Eclipse Watcher [14] have been

developed to collect and record this information; we are in-
vestigating these for future integration with Retina.

In the “Class” mode, the instructor selects an assignment
and sees an overview of how the class has performed as a
whole. This mode allows the instructor to see the ten most
common compilation and runtime errors, and the number
of occurrences, so that the instructor can address the most
common ones as necessary. It also shows all students’ time
spent on the assignment, in descending order, and the av-
erage time spent for all students in the class. This lets the
instructor gauge the difficulty of a particular assignment and
to know how long students are spending on it as a class, but
also to see an overview of how each student is performing.

In this mode, the instructor can also see graphs that vi-
sually display when compilation events and errors occurred.
The instructor can then get a feel for when (relative to the
assignment being due) students started working on the as-
signment, and what time of day most students are working.

3.3 Retina Student View
Students can access their own Retina information via JSP

pages on a web server (so that the student need not install
any special software, and the instructor can modify the web
pages easily, if desired). A student logs into the Retina
Student View and is able to see information about her own
activities, and how she relates to the rest of the class.

A student can select an assignment (the default is the
current assignment) and see what compilation and runtime
errors she has made, as well as how much time has been
spent. It is our belief that, by seeing previous errors that
have since been fixed, the student may recall how she fixed
them, and then be able to use that knowledge to fix future
errors. This is one way in which Retina enables “personal
organizational memory”.

In order to help the student answer the question “how am
I doing with respect to the rest of the class?”, Retina also
reveals the average number of compilations (both the total
number and the number of successful ones, as well as per-
centages), average number of compilation errors, and aver-
age time spent for the entire class on the selected assignment,
as shown in Figure 2. Retina also shows the distribution of
values graphically, to give a visual clue as to where the stu-
dent stands, and indicates the most common errors made
in the class, in order to let the student see whether other
students are making the same mistakes.

A unique feature of Retina is that it also provides the
student with suggestions based on what has been observed
about that particular student, her classmates, and students
who took the class in previous semesters. One of Retina’s
suggestions is the amount of time that the student can ex-
pect to spend on an upcoming assignment. This is done by
considering the student’s past performance on previous as-
signments with respect to the class average (i.e. her average
ranking within the class), and then finding the time that it
took similarly-ranked students to complete the assignment
in previous semesters. This assumes that the assignment is
equally difficult across semesters, and that the student will
perform as she did in the past, but gives a good first esti-
mate in order to set the student’s expectations. Through
our own teaching experiences, we have observed that most
novice programmers have little ability to accurately predict
how long an assignment will take to complete, especially
as new topics are introduced and the assignments become

Figure 2: Retina Student View

more complex, so this information can be crucial to help-
ing a student know when to start the assignment so as to
avoid any last-minute rush caused by underestimating the
assignment’s difficulty.

Another suggestion made by Retina involves the types of
compiler errors that it feels the student is likely to make.
This is achieved by noting any errors that the student has
frequently made on previous assignments, especially those
that fall outside the list of most common errors across all
students in the class. Retina lists some of these errors, but
also makes suggestions as to how to avoid them in the future.
For instance, if the student’s most common error is “cannot
find symbol”, Retina will suggest “you are either misspelling
variable/method names or are forgetting to declare variables.
Keep in mind that you need to declare a variable before you
use it, and be careful about spelling and capitalization!”

3.4 Retina Recommendation Tool
Another important feature of Retina is the ability to pro-

duce immediate, real-time recommendations that can proac-
tively be sent to students based on their observed program-
ming activities. These recommendations are sent to the stu-
dents as they are programming and as their event logs are
being recorded on the server. Retina uses Instant Messaging
(IM) applications as the user interface for its recommenda-
tions, which has been shown to be an effective technique in
such situations [1] [18].

Using the JClaim [11] API, we have developed an IM
server bot that works with the Yahoo! Messenger, Windows
Live Messenger, and Google Talk chat networks. A student
initiates a chat session with Retina, and identifies herself via
a username (the same username that is associated with that
student’s collected data). When Retina determines that a
recommendation is in order, a message is sent to the stu-
dent so that she can get a better understanding of what to
do next. Of course, a feature like this must be wary of the
possibility of a “Clippy Effect” [6], in that unwanted or un-
warranted messages may prove to be more annoying than
helpful, but the student has the option of terminating the
chat session and thus disabling this feature. In the future,
we may also consider a user-configurable verbosity level to

give the student even more control.
The current implementation of the Retina Recommenda-

tion Tool is rule-based: when event logs are received, Retina
checks whether any of the rules have been met, and sends a
message accordingly. Retina currently checks for the follow-
ing situations:

1. High rate of errors per compilation. If the rate of
errors per compilation is higher than normal for that student
(e.g. twice the normal rate), Retina will recommend that
the student attempt to work in smaller intervals or address
compilation errors that are at the top of the list, which may
be causing other errors to appear.

2. Spending too long on the assignment. If the amount
of time the student has spent on the assignment is more
than twice the suggested time for that student (as described
above), Retina will recommend that the student is spending
too much time on it and should seek the assistance of a
member of the teaching staff for help.

3. Same error made multiple times. If the same error
occurs on the same line on more than four consecutive com-
pilation attempts, Retina will explain that error in simple
terms and recommend a possible way to fix it, using the
same suggestions as described above.

Note that all of the values described above can be config-
ured depending on the instructor’s preferences.

Retina also allows for on-demand recommendations. A
student may send an IM message of “recommend” and will
receive a listing of all recommendations previously made for
the current assignment. A student can also ask Retina to
explain a compilation or runtime error by using the keyword
“explain” and then the name or type of the error. The error
explanations are similar to those found at [10].

Students can also use the keyword “who” to see how many
students are currently working on the assignment, based on
recent activity (for privacy reasons, Retina does not cur-
rently display the other users’ names, just the total num-
ber). This allows the students to get a feeling that she is
not alone in working on the assignment.

Retina does not support fully free-text input commands,
but the complete listing of all valid commands is available by
typing “help”. Because of the use of a text-based interface,
though, Retina performs some processing on the typed in-
put, in case of any typing mistakes. The domain of valid in-
put commands is limited so it is possible to accurately guess
the user’s intention even if the commands are not spelled
correctly; we currently use custom-built code that employs
such techniques as comparing edit distance and considering
permutations. Thus, if a user types “expln”, Retina can still
detect that the user meant to type “explain”.

4. EVALUATION
In the Spring 2008 and Summer 2008 semesters, students

in our university’s CS1 course volunteered to allow Retina
to collect data about their compilation errors. In total, 21
students volunteered in the spring semester, and 27 did so in
the summer. Only the Retina Instructor View was complete
during the time of our trial, however.

4.1 Instructor Experience
The course instructors were able to use the data collected

by Retina to improve their interaction with the students.
Said one, “Retina was useful in the case where a student
was asking for one-on-one help, so that I could know in ad-

vance what difficulties that student had, could anticipate the
questions the student would ask, and could tailor the help
appropriately.” Said the other, “Retina allowed me to gauge
when granting an extension on an assignment was justified
by seeing how long a student had been working on it, and
when she started.”

As expected, Retina also helped increase the quality of the
lectures and of the course in general. One instructor said,
“I was surprised to see the students encountering runtime
errors [uncaught exceptions] on earlier programming assign-
ments. I really didn’t anticipate that, but by knowing that, I
could then talk about it earlier in the course.” The instruc-
tor went on to say, “By seeing what errors the students were
making as a whole, I could also warn the TAs what to look
out for, and discuss with them good ways to help the students
address those problems. Retina really helped us improve the
course and the way we worked with the students.”

4.2 Data Analysis
After the trials were complete, we also investigated whether

any of the data we collected correlate to academic perfor-
mance, in particular the grades received on individual as-
signments. Our hope was that any interesting findings might
prove or disprove assumptions about students’ programming
habits, and also could guide some of the suggestions that
would be made by the Retina Recommendation Tool. Al-
though we had a very small sample size, we did notice some
interesting trends. For instance, for a given assignment, we
did not find any correlation between time spent on the as-
signment and the grades, but when we considered the perfor-
mance over the entire the semester, we noticed that students
who spent less time on the assignments tended to do better
than students who spent more time. Intuitively this makes
sense, as students who “get it” finish the assignments more
quickly than those who require more time to work through
mistakes. We also noticed that, when considering semester-
long totals, students who made fewer compilation errors also
tended to receive higher scores, which indicates that stu-
dents who make many errors may also be struggling. There-
fore, it is reasonable to assume that students who spend an
inordinate amount of time on the assignments or get a very
high number of errors need extra attention from the teach-
ing staff, and Retina can be used to quickly identify these
students so that timely assistance can be given.

We also found that although most of the students were
working in the late afternoon and early evening, the major-
ity of errors were made between the hours of 8pm and 5am,
indicating that students were making more mistakes late at
night. We also found the highest rates of errors per com-
pilation occurred between 1am and 4am, with these values
being substantially higher than all other values for errors
per compilation per hour. We are able to see the trend
that while the majority of students work during the day-
time hours, those who work later at night and into the early
morning will tend to make more frequent mistakes. These
results inspired us to create the recommendation that ad-
vises students to prepare better for the assignment and not
wait until right before class to finish it, and also to focus
their working times during the daytime and early evening.

5. FUTURE WORK AND CONCLUSION
Further studies are required to demonstrate the effective-

ness of the tool and its measurable effects on students’ abil-

ities to improve as programmers. As pointed out in [19], it
may be unethical to conduct an empirical study in which
some students have access to the tool and others are prohib-
ited from using it, but we intend to investigate whether the
students make use of Retina’s suggestions, and their effect
on the students’ programming activities.

Additionally, there are clearly privacy concerns when it
comes to transparently collecting information about stu-
dents and sharing it with others. However, we found anec-
dotally that the students who participated in the trials were
not concerned about privacy, and in general would find this
acceptable as long as they could see what data is collected,
especially if they could then gain benefits from doing so.

In this paper, we have presented Retina, a tool for gather-
ing data about students’ programming activities, and then
using that data to allow instructors to understand more
about what their students are doing, and to allow students
to review their past actions, see how they relate to other stu-
dents, and get suggestions and recommendations about how
to go forward. We hope that this work will enable other ed-
ucators - and their students - to understand and learn from
students’ programming activities.

6. ACKNOWLEDGMENTS
We are proud to say that much of Retina was designed

and developed by undergraduate students, whose insight
and effort made this work possible: Diana Chang, Michelle
Forman, Tian He, Shreya Kedia, Henry Lau and Benjamin
Monnin (the third and fourth authors of this paper are
also undergraduates); a high school student, Jao-ke Chin-
Lee, contributed to this project as well. We would also
like to thank Aaron Fernandes (a Masters student in our
department), Adam Cannon (the instructor for the CS1
course), and all the students who participated in the user
studies and observations. Murphy and Kaiser are mem-
bers of the Programming Systems Lab, funded in part by
NSF CNS-0717544, CNS-0627473, CNS-0426623 and EIA-
0202063, and NIH 1 U54 CA121852-01A1.

7. REFERENCES
[1] S. Chan, B. Hill, and S. Yardi. Instant messaging bots:

accountability and peripheral participation for textual
user interfaces. In Proc of the 2005 international ACM
SIGGROUP conference on supporting group work,
pages 113–115, 2005.

[2] I. Coman and A. Sillitti. An empirical exploratory
study on inferring developers’ activities from low-level
data. In Proc of the nineteenth International
Conference on Software Engineering and Knowledge
Engineering (SEKE), 2007.

[3] D. Cubranic and M. A. D. Storey. Collaboration
support for novice team programming. In Proc of the
2005 international ACM SIGGROUP conference on
supporting group work, pages 136–139, 2005.

[4] S. H. Edwards and M. A. Perez-Quinones. Web-CAT:
automatically grading programming assignments. In
Proc of the 13th annual conference on Innovation and
technology in computer science education (ITiCSE),
pages 328–328, 2008.

[5] T. Flowers, C. Carver, and J. Jackson. Empowering
students and building confidence in novice
programmers through Gauntlet. In 34th ASEE/IEEE

Frontiers in Education Conference, pages T3H–10 –
T3H–13, Oct 2004.

[6] R. G. P. Galluccio. Humanizing CALL: The use of
pedagogical agents as language tutors. New England
Regional Association for Language Learning
Technology, Oct. 2006.

[7] R. Holmes, R. J. Walker, and G. C. Murphy.
Strathcona example recommendation tool. In Proc of
the 10th European software engineering conference,
pages 237–240, 2005.

[8] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting Java programming errors
for introductory computer science students. In Proc of
the 34th SIGCSE technical symposium on computer
science education, pages 153–156, Feb 2003.

[9] M. Jadud. A first look at novice compilation
behaviour using BlueJ. Computer Science Education,
15(1):25–40, March 2005.

[10] Java Glossary. Compile time error messages.
http://mindprod.com/jgloss/compileerrormessages.html.

[11] JClaim. Java compliant logging and auditing instant
messenger. http://www.itbsllc.com/jclaim/.

[12] P. M. Johnson, H. Kou, J. Agustin, C. Chan,
C. Moore, J. Miglani, S. Zhen, and W. E. J. Doane.
Beyond the personal software process: metrics
collection and analysis for the differently disciplined.
In Proc of the 25th International Conference on
Software Engineering (ICSE), pages 641–646, 2003.

[13] Y. Liu, E. Stroulia, K. Wong, and D. German. Using
CVS historical information to understand how
students develop software. In Proc of the 2004
international workshop on mining software
repositories, 2004.

[14] J. McKeogh and D. C. Exton. Eclipse plug-in to
monitor the programmer behaviour. In OOPSLA
Eclipse Technology eXchange Workshop, 2004.

[15] K. Mierle, K. Laven, S. Roweis, and G. Wilson.
Mining student CVS repositories for performance
indicators. In Proc of the 2005 international workshop
on mining software repositories, pages 1–5, 2005.

[16] C. Murphy, E. Kim, G. Kaiser, and A. Cannon.
Backstop: A tool for debugging runtime errors. In
Proc of the 39th SIGCSE technical symposium on
computer science education, pages 173–177, 2008.

[17] C. Norris, F. Barry, J. B. Fenwick Jr, K. Reid, and
J. Rountree. ClockIt: Collecting quantitative data on
how beginning software developers really work. In Proc
of the 13th conference on innovation and technology in
computer science education (ITiCSE), 2008.

[18] A. Ribak, M. Jacovi, and V. Soroka. “Ask before you
search”: peer support and community building with
reachout. In Proc of the 2002 ACM conference on
computer supported cooperative work (CSCW), pages
126–135, 2002.

[19] J. Spacco et al. Experiences with Marmoset: designing
and using an advanced submission and testing system
for programming courses. In Proc of the 11th annual
conference on Innovation and technology in computer
science education (ITiCSE), pages 13–17, 2006.

