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High-Performance Machine Learning (HPML) 
 
Instructor 

● Dr. Kaoutar El Maghraoui, Adjunct Professor of Computer Science and 
Principal Research Scientist, IBM T.J. Watson Research Center, NY 

 
Course Description  
During the past decades, the field of High-Performance Computing (HPC) has been about 
building supercomputers to solve some of the biggest challenges in science. HPC is where 
cutting-edge technology (GPUs, low latency interconnects, etc.) is applied to solve scientific and 
data-driven problems.  
One of the key ingredients to the current success of ML is the ability to perform computations on 
vast amounts of training data. Today, applying HPC techniques to ML algorithms is a 
fundamental driver for the progress of Artificial Intelligence.  
In this course, you will learn HPC techniques typically applied to supercomputing software and 
how they are applied to obtain the maximum performance from ML algorithms.  
 
You will also learn about techniques for building efficient ML systems. This is especially 
becoming more critical in the era of large foundation models such as GPT and LLAMA that 
require massive amounts of computational power and energy.  This course will introduce 
efficient AI computing techniques for both training and inference. Topics include model 
compression, pruning, quantization, knowledge distillation, neural architecture search, 
data/model parallelism, and distributed training. 
 
The course is based on PyTorch and CUDA programming.  
 
Objectives  
At the end of the course, you will be able to:  

● Use HPC techniques to find and solve performance bottlenecks 
● Do performance measurements and profiling of ML software 
● Evaluate the performance of different ML software stacks and hardware systems 
● Develop high-performance distributed ML algorithms for efficient training. 
● Use fast math libraries, CUDA, and C++ to accelerate High-Performance ML algorithms.  
● Model compression techniques such as quantization, pruning, and knowledge distillation. 
● Essential HPC techniques to handle large foundation models such as Large Language 

Models (LLMs) 
Prerequisites  

● General knowledge of computer architecture and operating systems 
● C/C++: intermediate programming skills 
● Python: intermediate programming skills. 
● Good understanding of Machine Learning concepts and Neural Network algorithms  

 
The course is focused on system performance rather than algorithms, and a high-level review of 
the algorithms will be part of it. However, it is strongly recommended that you come to the 
course with a good understanding of the following algorithms: logistic regression, feed-forward 
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(basic) neural networks, convolutional neural networks, recurrent neural networks, and 
transformer architectures. 
 
Course materials  
The course does not follow a specific textbook; however, some books can be used as 
learning support. Pointers to literature/web links will be provided in class.  
 
Introduction to High-Performance Computing for Scientists and Engineers  
Authors: Georg Hager, Gerhard Wellein Editor: CRC Press 
ISBN: 9781439811924  
 
Introduction to High-Performance Scientific Computing (ONLINE)  
Authors: Victor Eijkhout with Edmond Chow, Robert van de Geijn  
 
Computer Architecture 5th Edition - A Quantitative Approach  
Authors: John Hennessy, David Patterson Editor: Morgan Kaufmann 
ISBN: 9780123838728  
 
Efficient Processing of Deep Neural Networks 
Authors: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer 
Morgan & Claypool Publishers ISBN-13: 978-1681738352 
 
Topics covered 
ML/DL and PyTorch basics. 
PyTorch performance 
PyTorch performance profiling 
Performance optimization in PyTorch 
Parallel performance modeling 
Intro to CUDA 
Math libraries for ML (cuDNN) 
Intro to MPI 
Distributed ML 
Distributed PyTorch algorithms, parallel data loading, and ring reduction  
Hardware acceleration for ML and AI 
Quantization and model compression 
Neural Architecture Search 
In-Memory Computing 
 

Course Information 
● Instructor:  Dr. Kaoutar El Maghraoui  

 
● Grading: Homework (50%) + Final Project (30%) + Quizzes (15%) + Attendance & 

Participation (5%) 
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● Homework: There will be five to six homework assignments, mostly involving 
programming and experiments involving GPUs. Assignments will be based on C/C++, 
Python, and PyTorch. 

● Late Homework Policy:  
○ Quizzes and project submissions must be submitted on time. Zero credits will be 

given for late submissions.   
○ The lowest grade out of your quizzes and homework will be dropped.  

 
○ Throughout the semester, each student has an allocation of 6 'late days.' These can be 

used only for homework submissions, allowing flexibility without penalty. However, 
once your total allowance of 6 late days is depleted, the following late submission 
penalties will apply: 
• Original Due Time: Assignments must be submitted on time for full credit. 
• Counting Late Days: Late days are calculated daily, with a new late day 

commencing at 11:59 pm ET. 
• Penalty Post-Late Days Allowance: After exceeding the 6 late days allowance, 

20% of the total marks will be deducted per additional late day up to 5 days. 
Beyond that, the assignment will be given zero credits. 
 

● Course project 
○ Project proposals are due by the midterm. 
○ Final presentations of all projects towards the end of the course.  

 
Weekly Lesson Plan 

● Week-1: Introduction to HPC and ML 
Course introduction and organization; HPC and ML technology; ML/DL success drivers; 
HPC for ML; hardware overview: CPUs, accelerators, high-speed networks; software 
overview: algorithms, math libraries, frameworks 

● Week-2: ML performance optimization 
Factors affecting ML performance; software performance optimization for ML; 
Performance optimization methodology: measurement, analysis, optimization; 
Measurement: metrics, benchmarking workloads, time/resources, throughput, time to 
accuracy (TTA), profiling, tracing; Analysis: Amdahl’s law, critical path, bottleneck, data 
movement locality principle, Roofline model; Optimization concerning Roofline model. 

● Week-3: Gradient Descent Optimization Algorithms in PyTorch 
PyTorch basics: tensors, variables, computation graph, Autograd;  
PyTorch Optimizer: momentum, Nesterov momentum, Adagrad, Adadelta, Adam; 
PyTorch Multiprocessing: concurrency vs parallelism, forking, spawning, shared 
memory; PyTorch data loading: Dataloader class, data prefetching, disk I/O performance, 
PyTorch CUDA 

● Week-4: PyTorch Performance 
Python performance: interpreter inner workings, CPython, memory management, 
dynamic typing; PyTorch performance: computation graph evaluation approach, Just in 
Time compilation, profiling, benchmarking; Declarative vs imperative approach for 
computation graph; JIT compilation optimization; PyTorch profiling. 

● Week-5: CUDA Basics  
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Heterogeneous architectures motivations; NVIDIA GPUs and CUDA: compute 
capability; CUDA compilation and runtime: CUDA runtime, CUDA driver, AoT and JIT 
compilation; CUDA Programming Model: grid, block, thread 

● Week-6: CUDA Advanced Topics  
Unified Virtual Memory (UVM); CUDA block and warp scheduling; CUDA streams. 
CUDA memory access: global memory, shared memory, caches; Matrix multiplication: 
simple, tiled; NVIDIA deep learning SDK; cuDNN: APIs and descriptors. 

● Week-7: Distributed Deep Learning Algorithms and PyTorch  
Model, data, hybrid parallelism; Synchronous and asynchronous DDL; Stragglers and 
stale gradients; Centralized and decentralized DDL; PyTorch DDL: modules for single 
and multi-node distributed training, available collectives; All-Reduce algorithm; NCCL; 
Efficient transformers.  

● Week-8: Sparsity, Model Pruning/Compression 
Activation sparsity, weight sparsity, Compression, Sparse Dataflow; Low-rank 
approximation, Knowledge distillation; Distilled architectures in convolutional and 
recurrent networks 

● Week-9: Reduced Precision and Quantization  
Determining bit-width; Mixed and varying precision; Quantization: post-training 
quantization, static vs dynamic quantization, quantization aware training, graph mode 
quantization; hardware aware quantization. 

● Week-10: Knowledge Distillation 
Knowledge distillation, Distilled architectures in convolutional and recurrent networks, 
Knowledge distillation in vision transformers 

● Week 11: Efficient Transformers and LLMs  
Transformer basics, Encoder/Decoder architecture, KV Cache optimizations, Efficient 
inference algorithms for LLMs, FlashAttention, Switch Transformer, Efficient fine-
tuning for LLMs: LoRA, Adapter and Prompt tuning, Attention Sparsity, Mixture of 
Experts 

● Week 12: Efficient Vision Architectures and Implementations 
Efficient CNNs, Vision Transformer 

● Week 13: Designing Efficient DNNs with Neural Architecture Search 
Improving efficiency in manual network design, Neural architecture search (NAS), and 
hardware-aware NAS.  

● Week 14: In-Memory Computing 
Analog AI, near-memory or In-memory computing, Neuromorphic computing 

● Week 15-16: Final Project Presentations  
 


