Mathematics of Machine Learning and Signal Recognition
COMS E4995

Instructor:
Prof. Homayoon Beigi <beigi@recotechnologies.com> (hb87@columbia.edu)

Textbooks:

Required:

Reference Books:

Grading:

Homework (20%):
- Problems and coding assignments.

Midterm (20%):
- Coding assignment and Problems.

Project Proposal (10%):
- 2-page proposal, including state of the art and proposed methodology.

Final Project (50%):
35% - Test/report of the methodology and results.
15% - Code and Results.

Course Description:

Mathematics of Machine Learning and Signal Recognition provides the background mathematical background for addressing in-depth problems in machine learning, as well as the treatment of signals, especially time-dependent signals, specifically non-stationary time-dependent signals – although spatial signals such as images are also considered. The course will provide the essentials of several mathematical disciplines which are used in the formulation and solution of the problems in the above fields. These disciplines include Linear Algebra and Numerical Methods, Complex Variable Theory, Measure and Probability Theory (as well as statistics), Information Theory, Metrics and Divergences, Linear Ordinary and Separable Partial Differential Equations of Interest, Integral Transforms, Decision Theory, Transformations, Nonlinear Optimization Theory, and Neural Network Learning Theory. The requirements are Advanced Calculus and Linear Algebra. Knowledge of Differential Equations would be helpful.
Lectures:

Week 1
- Linear Algebra and Numerical Methods

 Basic Definitions
 Norms
 Gram-Schmidt Orthogonalization
 Ordinary Gram-Schmidt Orthogonalization
 Modified Gram-Schmidt Orthogonalization
 Sherman-Morrison Inversion Formula
 Vector Representation under a Set of Normal Conjugate Direction
 Stochastic Matrix
 Linear Equations

Week 2
- Complex Variable Theory

 Complex Variables
 Limits
 Continuity and Forms of Discontinuity
 Convexity and Concavity of Functions
 Odd, Even and Periodic Functions
 Differentiation
 Analyticity
 Integration
 Power Series Expansion of Functions
 Residues
 Relations Between Functions
 Convolution
 Correlation
 Orthogonality of Functions

Weeks 3 & 4
- Measure and Probability Theory and Statistics

 Set Theory
 Equivalence and Partitions
 R-Rough Sets (Rough Sets)
 Fuzzy Sets
 Measure Theory
 Measure
 Multiple Dimensional Spaces
 Metric Space
 Banach Space (Normed Vector Space)
 Inner Product Space (Dot Product Space)
 Infinite Dimensional Spaces (Pre-Hilbert and Hilbert)
 Probability Measure
 Integration
 Functions
 Probability Density Function
 Densities in the Cartesian Product Space
 Cumulative Distribution Function
 Function Spaces
 Transformations
Statistical Moments
Discrete Random Variables
 Combinations of Random Variables
 Convergence of a Sequence
Sufficient Statistics
Moment Estimation
 Estimating the Mean
 Law of Large Numbers (LLN)
 Different Types of Mean
 Estimating the Variance
Multi-Variate Normal Distribution

Weeks 5
- Information Theory

 Sources
 The Relation between Uncertainty and Choice
 Discrete Sources
 Entropy or Uncertainty
 Generalized Entropy
 Information
 The Relation between Information and Entropy
 Discrete Channels
 Continuous Sources
 Differential Entropy (Continuous Entropy)
 Relative Entropy
 Mutual Information
 Fisher Information

Weeks 6
- Metrics and Divergences
 Distance (Metric)
 Distance Between Sequences
 Distance Between Vectors and Sets of Vectors
 Hellinger Distance

 Divergences and Directed Divergences
 Kullback-Leibler’s Directed Divergence
 Jeffreys’ Divergence
 Bhattacharyya Divergence
 Matsushita Divergence
 F-Divergence
 δ -Divergence
 χ α Directed Divergence

Weeks 7 and 8
- Review of Linear Differential Equations (Ordinary and Separable Partial)

- Integral Transforms

 Integral Equations
 Kernel Functions
 Hilbert’s Expansion Theorem
 Eigenvalues and Eigenfunctions of the Kernel
 Fourier Series Expansion
 Convergence of the Fourier Series
Parseval’s Theorem
Wavelet Series Expansion
The Laplace Transform
 Inversion
Some Useful Transforms
Complex Fourier Transform (Fourier Integral Transform)
 Translation
 Scaling
Symmetry Table
 Time and Complex Scaling and Shifting
Convolution
Correlation
Parseval’s Theorem
Power Spectral Density
One-Sided Power Spectral Density
PSD-per-unit-time
Wiener-Khintchine Theorem
Discrete Fourier Transform (DFT)
 Inverse Discrete Fourier Transform (IDFT)
 Periodicity
 Plancherel and Parseval’s Theorem
 Power Spectral Density (PSD) Estimation
 Fast Fourier Transform (FFT)
Discrete-Time Fourier Transform (DTFT)
 Power Spectral Density (PSD) Estimation
 Complex Short-Time Fourier Transform (STFT)
 Discrete-Time Short-Time Fourier Transform DTSTFT
 Discrete Short-Time Fourier Transform DSTFT
Discrete Cosine Transform (DCT)
 Efficient DCT Computation

Week 9

- Difference Equations and The z-Transform
 Difference Equations
 z-Transform – Definition
Translation
Scaling
 Shifting – Time Lag
 Shifting – Time Lead
Complex Translation
 Initial Value Theorem
 Final Value Theorem
 Real Convolution Theorem
Inversion
- Cepstrum

Week 10

- Decision Theory
 Hypothesis Testing
 Bayesian Decision Theory
 Bayesian Classifier
 Decision Trees

- Unsupervised Clustering and Learning
Vector Quantization (VQ)
Basic Clustering Techniques
Estimation using Incomplete Data

- Parameter Estimation
 Maximum Likelihood Estimation (MLE, MLLR, fMLLR)
 Maximum A-Posteriori (MAP) Estimation
 Maximum Entropy Estimation
 Minimum Relative Entropy Estimation
 Maximum Mutual Information Estimation (MMIE)
 Model Selection (AIC and BIC)

Week 11

- Transformation
 Principal Component Analysis (PCA)
 Linear Discriminant Analysis (LDA)
 Factor Analysis (FA)
 Probabilistic Linear Discriminant Analysis (PLDA)

- Hidden Markov Modeling (HMM)
 Memoryless Models
 Discrete Markov Chains
 Markov Models
 Hidden Markov Models
 Model Design and States
 Training and Decoding
 Gaussian Mixture Models (GMM)
 Practical Issues

Week 12

- Nonlinear Optimization Theory
 Gradient-Based Optimization
 The Steepest Descent Technique
 Newton’s Minimization Technique
 Quasi-Newton or Large Step Gradient Techniques
 Conjugate Gradient Methods
 Gradient-Free Optimization
 Search Methods
 Gradient-Free Conjugate Direction Methods
 The Line Search Sub-Problem
 Practical Considerations
 Large-Scale Optimization
 Numerical Stability
 Nonsmooth Optimization
 Constrained Optimization
 The Lagrangian and Lagrange Multipliers
 Duality
 Global Convergence

Week 13

- Neural Network Learning
 Perceptron
 Feedforward Networks
 Time-Delay Neural Networks (TDNN)
 Convolutional Neural Networks (CNN)
Recurrent Neural Networks (RNN)
Long-Short Term Memory Networks (LSTM)
End-to-End Sequence (Encoder/Decoder) Neural Networks
Embeddings and Transfer Learning