Thursday, July 6 | 7:00pm | Jacobs Science Building, Room 121

Fillmore Professor

Prosodic Entrainment Across Cultures

Julia Hirschberg

Columbia University

Reception to follow at Boone Center

Prosodic Entrainment Across Cultures

LSA Summer Institute

July 6, 2017

Julia Hirschberg, Columbia University

Collaborators

- Rivka Levitan, Brooklyn College
- Zhihua Xia, Tongji University
- Agustín Gravano, University of Buenos Aires
- **Štefan Beňuš**, Constantine the Philosopher University
- Sarah Ita Levitan, Columbia University
- Nishmar Cestero, Columbia University

The Chameleon Effect

- Entrainment/Alignment/Adaptation
 - "In conversation, people tend to adapt their communicative behavior to that of their conversational partner." (Giles et al '87)
 - Chameleon Effect: Non-conscious mimicry of the postures, mannerisms, facial expressions, and other behaviors of one's interaction partners (Chartrand & Bargh 1999).
 - Perception-behavior link: the underlying mechanism for the Chameleon Effect --- "Unintentional, nonconscious effects of social perception on social behavior" (Chartrand, Maddux, & Lakin, 2005)

Entrainment in Multiple Dimensions

- Lexical and syntactic (Brennan '00, Reitter et al '07)
- Acoustic/Prosodic (Matarazzo et al '68, Jaffe & Feldstein '70, Natale '77, Cappella & Planalp '81, Street '84, Sherlom & La Riviere '87, Guitar & Marchinkoski '01)
- Phonological/Phonetic (Pardo '06)
- Socio-cultural (Azuma '97, Roth '05)
- Jokes and laughter (Bales '50, Raganath et al '11)
- Facial expression and gesture (Mauer & Tindall '83, Hale & Burgoon '84, Chartrand & Bargh '99)
- Posture (Condon & Ogston '67)

Why is Entrainment Important?

- Subjects who entrain
 - Perceived as more socially *attractive* (Putnam & Street '84, Bourhis et al '75)
 - Perceived as more *competent* (Street '84)
 - Conversation perceived as more *intimate* (Buller & Aune '88)
- Entrainment leads subjects to *like* their conversational partners (and their computers) more and to perceive interactions as *more successful* (Nass et al '95, Chartrand & Bargh '99)
- Long-term syntactic entrainment is a good predictor of actual *task success* in Map Task (Reitter et al '07)

The Columbia Games Corpus (Gravano)

- Initial goal: study prosody of given/new items
 - 12 spontaneous task-oriented dyadic conversations (9h 8m speech)
 - 2 subjects play series of computer games, no eye contact (45m 39s mean session time)
 - 2 sessions per subject, w/different partners
 - Multiple games and types
- Recorded on separate channels in soundproof booth, digitized and down-sampled to 16k
- Features extracted with Praat

The Cards Game

The Objects Game

Describer:

Follower:

Units of analysis

- Inter-pausal unit (IPU): Pause-free segment of speech (50ms or more) from a single speaker
- speech <silence> speech <silence> speech
- *Turn*: Sequence of speech from one speaker without intervening speech from the other speaker.
- **Session**: Complete interaction between two subjects on one task

Units of analysis

• *Inter-pausal unit* (IPU): Pause-free segment of speech (50ms or more) from a single speaker

- *Turn*: Sequence of speech from one speaker without intervening speech from the other speaker.
- **Session**: Complete interaction between two subjects on one task

Low Level Prosodic Features

- Intensity mean
- F0 max
- Intensity max
- F0 min
- Intensity min
- speaking rate

F0 mean

Forms of Entrainment (Levitan & Hirschberg '11)

Proximity ---- significant similarity of partner features

Convergence ----significant increase in similarity of partner features over time

Synchrony ---- correlated relative change in partner features

Similarity/Proximity

- Global or local?
- Exact or relative?
- Convergent or constant?

Synchrony

- Global or local?
- Exact or relative?
- Convergent or constant?

Convergence

- Global or local?
- Exact or relative?
- Convergent or constant?

Defining Global Pairwise Entrainment

Similarity

- Synchrony: positive correlation between partners
- Convergence: negative correlation between partners

Local Entrainment: Proximity

Local Entrainment: Synchrony, Convergence

Tongji Games Corpus (Xia)

- A Chinese linguistics PhD student contacts us and asks to visit our lab
 - She has recorded 115 spontaneous task-oriented sessions
 - 70 pairs of speakers (40 female, 30 male)
 - 12 hours of recorded dialogue
 - University students with a National Mandarin Test
 Certificate level 2, grade A or above
- Elicited using two games: Picture Ordering (role imbalance), Picture Classifying (cooperative)

Picture Ordering Game

Α

В

Picture Classifying Game

Α

Ŀ

Comparing Entrainment in Different Languages and Cultures

- Employed similar speech analyses and metrics to identify entrainment in the Chinese corpus
 - Standard American English (SAE) vs. Mandarin
 Chinese (MC)
 - Surprising similarities on multiple metrics

Results (Levitan '14, Xia et al '14)

			Local simila	Local similarity		Synchrony		Global convergence		Local convergence	
Feature	SAE	MC	SAE	MC	SAE	MC	SAE	MC	SAE	MC	
Intensity mean	11	1	1	1	0.35	0.63			0.08		
Intensity max	√ (√)	✓	1	1	0.33	0.55			0.08		
Pitch mean					0.07	0.66			0.08	0.22	
Pitch max		✓			0.04	0.61	1		0.10	0.24	
Jitter		_		_	0.15	_		_		_	
Shimmer		_		_	0.07	_		_	0.04	_	
NHR		_	1	_	0.12	_	1	_	0.03	_	
Speaking rate	1	1		1			✓			0.13	

Comparing Mandarin and Standard American English

- Similarity
 - Global: similar intensity, rate
 - Local: similar intensity
- Synchrony
 - Stronger synchrony for MC (intensity, pitch)
- Convergence
 - Global for SAE only (pitch, NHR, rate)
 - Stronger local convergence for MC (pitch)

Theories of Entrainment and Gender

- Dominance
 - Male Dominance Hypothesis
 - Communication Accommodation Theory
- Perception
 - Perception-Behavior Link
 - Female perceptual sensitivity

Predictions and Previous Work

Predictions

- In MF conversations, females should entrain more.
- There should be more entrainment in FF conversations than MM conversations.

Previous work

- Bilous and Krauss (1988)
- Namy et al. (2002)
- Pardo (2006)

Partner vs. Non-Partner Differences

$$ENT_p = -|speaker1_f - speaker2_f|$$

$$ENT_{x} = -\frac{\sum_{i} |\text{speaker1}_{f} - X_{i,f}|}{|X|}$$

X = set of speakers of the same gender and role as speaker1's partner who are never paired with speaker1.

Feature	F	FF		MM		^C M
	MC	SAE	MC	SAE	MC	SAE
Intensity mean	✓	1		1	1	1
Intensity max	✓	1		1	1	1
Intensity min						
F0 mean					1	✓
F0 max					1	✓
F0 min						
Speaking rate	✓	1	/	✓	1	✓

Feature	FF		M	<i>IM</i>	FM	
	MC	SAE	MC	SAE	MC	SAE
Intensity mean	1	1		1	1	1
Intensity max	1	1		1	1	1
Intensity min						
F0 mean					1	1
F0 max					✓	1
F0 min						
Speaking rate	1	1	1	1	1	✓

Feature	FF		MM		FM	
	MC	SAE	MC	SAE	MC	SAE
Intensity mean	1	1		1	1	1
Intensity max	1	✓		1	1	✓
Intensity min						
F0 mean					1	✓
F0 max					1	✓
F0 min						
Speaking rate	ſ	1	1	1	1	1

Feature	FF		MM		FM	
	MC	SAE	MC	SAE	MC	SAE
Intensity mean	1	1		1	✓	1
Intensity max	1	1		✓	✓	✓
Intensity min						
F0 mean					✓	/
F0 max					✓	/
F0 min						
Speaking rate	1	1	1	✓	1	✓

Conclusions

- MM << FF << MF
- Similar patterns for Mandarin Chinese and SAE

Social Dimensions of Entrainment (Levitan et al '12)

- Recall that subjects who entrain are
 - Perceived as more socially *attractive* (Putnam & Street '84, Bourhis et al '75)
 - Perceived as more *competent* (Street '84)
 - Speech perceived as more *intimate* (Buller & Aune '88)
- Entrainment leads subjects to *like* their conversational partners (and their computers) more and to perceive interactions as *more successful* (Nass et al '95, Chartrand & Bargh '99)
- Long-term syntactic entrainment a good predictor of actual *task success* in Map Task (Reitter et al '07)

Annotation of Social Variables

- Amazon Mechanical Turk workers labeled 168 Columbia Games Corpus object games
- Answered following questions about partners
 - Does s/he believe s/he is better than his/her partner?
 - Making it difficult for his/her partner to speak?
 - Seem engaged in the game?
 - Seem to dislike his/her partner?
 - Is s/he bored with the game?
 - Directing the conversation?
 - Frustrated with his/her partner?
 - Encouraging his/her partner?

- Trying to dominate the conversation?
- Making him/herself clear?
- Planning what s/he is going to say?
- Polite?
- Trying to be liked
- Questions about the conversation
 - Does it flow naturally or is it awkward?
 - Are the participants having trouble understanding each other?
 - Which person do you like more?
 - Who would you rather have as a partner?

Hypotheses

- Communication Accommodation Theory
 - Giving encouragement positively correlated with entrainment
 - Conversational awkwardness negatively
- Similarity-Attraction Theory
 - Trying to be liked should be positively correlated
- Dependency Over-Accommodation occurs when an interlocutor appears dependent on a speaker, giving the impression that the speaker is controlling the conversation (West & Turner, 2009).

7/9/17

Findings

- Based on Communication Accommodation Theory
 - Giving encouragement positively correlated with entrainment
 - Conversational awkwardness (weak positive correlation)
- Based on Similarity-Attraction Theory
 - Trying to be liked positively correlated
 - No correlation between perceived dominance and entrainment

7/9/17

Entrainment in Higher Level Prosodic Features (Gravano et al '14)

- ToBl annotation of Columbia Games Corpus
 - Three expert labelers using the ToBI conventions:
 - Tonal tier: targets in the F0 contour
 - Pitch accents: H*, L*, L+H*, L*+H, H*+L, downstep
 - Phrase accents: H-, L-, !H-
 - Boundary tones: H%, L%.
 - Orthographic tier: time-aligned words
 - Break index tier: degrees of juncture (0-4)
 - Misc tier: laughs, disfluencies, etc.

Entrainment on Pitch Contours and Social Variables (Gravano et al '14, '15)

- Measures of contour similarity between speakers: when I use contour X are you more likely to do the same?
 - Perplexity of language models of sequences trained on Speaker A and used to model prosodic sequences of Speaker B: low perplexity indicates greater similarity
 - Levenshtein distance of similar intonational phrase contours used by Speaker A and Speaker B: low values show similar contours are uttered closer together
 - Kullback-Leibler divergence between contours of Speaker
 A and Speaker B: low values show that one is a subset of the other
- How similar are Speaker A's contours are Speaker B's?

ε1 Measure: N-Gram Perplexity

- How well does a prosodic model trained on A predict B's prosody?
 - SpkrA: L* L-H% H* H-L% ...
 - SpkrB: H*!H* H-L* H-H% ...
 - TRAIN TRIGRAM
 - MODEL TEST $\varepsilon 1(A, B) = -(Perplexity of A's model on B's productions)$
 - Lower perplexity means more similar

ε2 Measure: Levenshtein Distance

How far away from B's production of contour c is A's production of the same contour?

 $L \leftarrow \text{new list}$

for each contour c_1 from B:

 $C \leftarrow \text{contours from } A \text{ at most } k \text{ seconds before/after } c_1$ append $\left(\max_{c_2 \in C} sim(c_1, c_2)\right)$ to L

$$\mathcal{E}_2(A,B) \leftarrow \operatorname{mean}(L)$$

ε3 Measure: Kullback-Leibler Divergence

$$D_{KL}(P || Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Assymetric measure of the difference between two probability distributions P and Q.

$$\mathcal{E}_3(A, B) = -D_{KL}(contours(B), contours(A))$$

Experiments

- Build a 24D vector with the value of **\varepsilon** if for each member of each speaker pair
- Build similar vector for each social variable v (e.g., bored-with-game) where Aj, Bj are the two speakers from the same session j
- Run Pearson's correlation tests between entrainment vectors and social variable vectors

Correlations for Different Similarity Metrics with Social Variables

Social Variable	Perplexity	Levenshtein Dist	KL Divergence
Making-self-clear	pos	pos	
Giving encouragement		pos	pos
Engaged-in-game	neg	pos	pos
Contributes-to-successful- task-completion	pos	pos	pos
Trying-to-be-liked			pos
Planning-what-to-say	pos	pos	
Dislikes-partner		neg	
Making-it-difficult-for- partner-to-speak		pos	pos
Bored-with-game	neg	neg	neg

Conclusions and Future Research

- 3 novel metrics of entrainment on intonational contours annotated within the ToBI framework.
- Findings: correlations of prosodic entrainment with perceived levels of
 - speaker engagement
 - positive partner-oriented features of social behavior (giving encouragement, making self clear, etc.)
- Future work: Automate computation of our measures using automatic prosodic labeling tools (e.g., AuToBI).

Entraining on Rate and Intensity to Users in Spoken Dialogue Systems (Levitan et al '16)

Go Fish: Do Users Prefer an Entraining System?

Go Fish Helpers

Ask for help

Method

- 19 participants:
 - 9 female, 10 male
 - Ages 20-35
- Each session: ~45 user turns (entraining + control)
 - -~9 minutes
 - Acoustic-prosodic features extracted by Praat
 - Advice logged

User Preferences for Entraining Helpers

- Trust
 - "Who gave better advice?" N.S.
 - Implicit trust (whose advice followed?) Entraining
- Liking
 - "Which advisor did you like better?" Entraining
- Voice
 - "Whose voice did you like better?" Entraining
 - "Strange" Non-Entraining
 - "Annoying" Non-Entraining

Entrainment in Porteño Spanish and Slovak GoFish-with-Helpers Games

- Differences from English:
 - System entrained only on speech rate not intensity
 - Different TTS systems, avatar gender (female),
 varied pitch range
 - No effect for entraining avatar
- Why?
 - Issues with identifying speech rate accurately from ASR...

Current and Future Research

Entrainment and trust:

- GoFish, NavGame (Harry Potter like adventure game),
 GuessWho (aka TwentyQuestions) games being
 developed and tested for Slovak and Spanish
- New research on entrainment and trust in tech
- Entrainment in deceptive speech (CxC corpus): significant evidence that speakers more similar to partner than to themselves: pitch, intensity, VQ, highfrequency words
- Entrainment in code-switching (Miami Bangor Corpus): significant evidence of entrainment

Thanks!

- This work has been supported by
 - NSF IIS-0803148
 - Humanities and Social Sciences Foundation of China Education Ministry (11YJA740113)
 - Air Force Office of Scientific Research, Air Force Material Command, USAF under Award No. FA9550-15-1-0055
 - UBACYT 20020120200025BA

Publications

- Implementing acoustic-prosodic entrainment in a conversational avatar. R. Levitan, S. Benus, R. H. Galvez, A. Gravano, F. Savoretti, M. Trnka, A. Weise and J. Hirschberg. Interspeech 2016.
- Entrainment and Turn-Taking in Human-Human Dialogue. R. Levitan, S. Benus, A. Gravano and J. Hirschberg. AAAI Spring Symposium on Turn-Taking and Coordination in Human-Machine Interaction 2015.
- Acoustic-Prosodic Entrainment in Slovak, Spanish, English and Chinese: A Cross-Linguistic Comparison. R. Levitan, S. Benus, A. Gravano and J. Hirschberg. SIGDIAL 2015.
- Backward mimicry and forward influence in prosodic contour choice in Standard American English, A. Gravano, S. Benus, R. Levitan, J. Hirschberg. Interspeech 2015.
- Prosodic entrainment in Mandarin and English: a cross-linguistic comparison. Z. Xia, R. Levitan, J. Hirschberg. Speech Prosody 2014. (Best Student Paper Award)
- Three ToBI-based measures of prosodic entrainment and their correlations with speaker engagement. A. Gravano, S. Benus, R. Levitan, J. Hirschberg, SLT 2014.
- Acoustic-Prosodic Entrainment in Human-Human and Human-Computer Dialogue,
 R. Levitan, PhD Thesis, Columbia University, 2014.

- Entrainment in Slovak Collaborative Dialogues, S. Benus, R. Levitan, J. Hirschberg, A. Gravano, S. Darjaa. 5th IEEE International Conference on Cognitive Infocommunications, 2014.
- Entrainment, Dominance and Alliance in Supreme Court Hearings. S. Benus, A. Gravano, R. Levitan, S. I. Levitan, L. Willson, J. Hirschberg. Journal of Knowledge-Based Systems 2014.
- Acoustic-prosodic entrainment and social behavior. R. Levitan, A. Gravano,
 L. Willson, S. Benus, J. Hirschberg, A. Nenkova. NAACL 2012.
- Entrainment in spontaneous speech: The case of filled pauses in Supreme Court hearings. S. Benus, R. Levitan, J. Hirschberg. CogInfoCom 2012.
- Measuring acoustic-prosodic entrainment with respect to multiple levels and dimensions. R. Levitan, J. Hirschberg. Interspeech 2011.
- Entrainment in speech preceding backchannels. R. Levitan, A. Gravano, J. Hirschberg. ACL 2011.
- Pitch similarity in the vicinity of backchannels. M. Heldner, J. Edlund, and J. Hirschberg. Interspeech 2010.
- High frequency word entrainment in spoken dialogue. A. Nenkova, A. Gravano, J. Hirschberg. ACL/HTL 2008.