Discriminative Phonotactics for Dialect Recognition Using Context-Dependent Phone Classifiers

Fadi Biadsy*, Hagen Soltau+, Lidia Mangu+, Jiri Navratil+, Julia Hirschberg*

> *Columbia University, NY, USA +IBM T. J. Watson Research Center, NY, USA

> > July 1st, 2010

Dialect Recognition

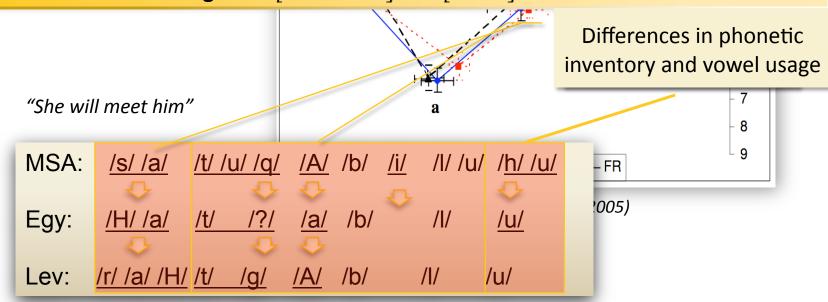
- Similar to language recognition, but use dialects/accents of the same language
- Dialects may differ in any dimension of the linguistic spectrum
 - Differences are likely to be more subtle across dialects than those across languages
 - Thus, more challenging problem than language recognition

Motivation: Why Study Dialect Recognition?

- Discover differences between dialects
- To improve Automatic Speech Recognition (ASR)
 - Model adaptation: Pronunciation, Acoustic, Morphological, Language models
- To infer speaker's regional origin for
 - Forensic speaker profiling
 - Speech to speech translation
 - Annotations for Broadcast News Monitoring
 - Spoken dialogue systems adapt TTS systems
 - Charismatic speech identification

Multiple cues that may distinguish dialects:

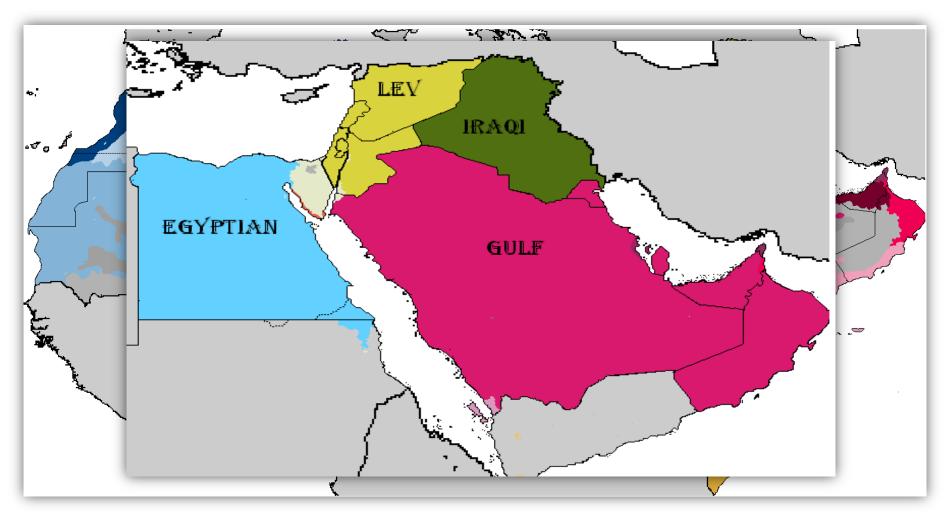
- Phonetic cues:
 - Differences in phonemic inventory
 - Phonemic differences
 Allophonic differences (confidential confidential confidential
- Ph Example: /r/
 Approximant in American English [a] modifies preceding vowels
 Trilled in Scottish English in [Consonant]—/r/—[Vowel] and in some other contexts



Outline

- Dialects and Corpora
- CD-Phone Recognizer
- Baselines
- Two Ideas:
 - GMM-UBM with fMLLR
 - Discriminative Phonotactics
- Results
- Conclusions and Future Work

Case Study: Arabic Dialects



(by Arab Atlas)

Corpora

Dialect	# Speakers	Test 20% – 30s* test cuts	Corpus
Gulf	976	801	(Appen Pty Ltd, 2006a)
Iraqi	478	477	(Appen Pty Ltd, 2006b)
Levantine	985	818	(Appen Pty Ltd, 2007)

- For testing:
 - (25% female mobile, 25% female landline, 25% male mobile, 25 % male landline)
- Egyptian: Training: CallHome Egyptian, Testing: CallFriend Egyptian

Dialect	# Training Speakers	# 120 speakers 30s* cuts	Corpora
Egyptian	280	1912	(Canavan and Zipperlen, 1996) (Canavan et al., 1997)

Outline

- Motivation
- Corpora
- CD-Phone Recognizer
- Baselines
- Two Ideas:
 - GMM-UBM with fMLLR
 - Discriminative Phonotactics
- Results
- Conclusions and Future Work

Context-Dependent (CD) Phone Recognizer

- HMM-triphone-based phone recognizer using IBM's Attila system
 - Trained on 50 hours of GALE broadcast news and conversations
- 230 CD-acoustic models and 20,000 Gaussians
- Front-End:
 - 13D PLP features per frame
 - Each frame is spliced together with four preceding and four succeeding frames followed by LDA → 40D
 - CMVN
- Speaker Adaptation:
 - fMLLR followed by MLLR
- Unigram phone language model trained on MSA

Outline

- Motivation
- Corpora
- CD-Phone Recognizer
- Baselines
- Two Ideas:
 - GMM-UBM with fMLLR
 - Discriminative Phonotactics
- Results
- Conclusions and Future Work

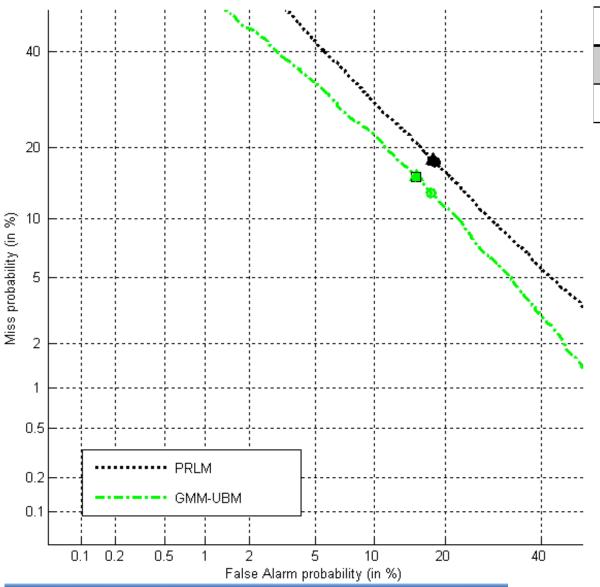
Baselines

• Standard PRLM: a trigram phonotactic model per dialect

Standard GMM-UBM:

- Front-End: Same as the front end of the phone recognizer
- 2048 Gaussians ML trained on equal number of frames from each dialect
- Dialect Models are MAP adapted with 5 iterations -- similar settings of the baseline in (Torres-Carrasquillo et al., 2008)

Results (DET curves of PRLM and GMM-UBM) – 30s Cuts



Approach	EER (%)	
PRLM	17.7	
GMM-UBM	15.3*	

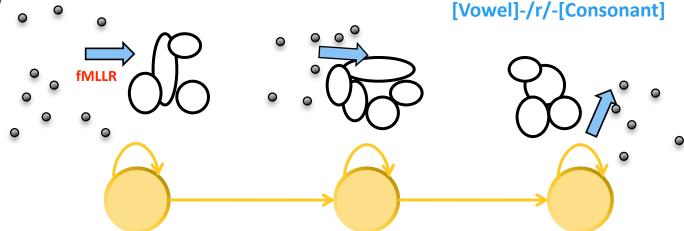
^{*}Comparable to GMM-UBM of (Torres-Carrasquillo et al., 2008) on 3 dialects

Outline

- Motivation
- Corpora
- CD-Phone Recognizer
- Baselines
- Two Ideas:
 - GMM-UBM with fMLLR
 - Discriminative Phonotactics
- Results
- Conclusions and Future Work

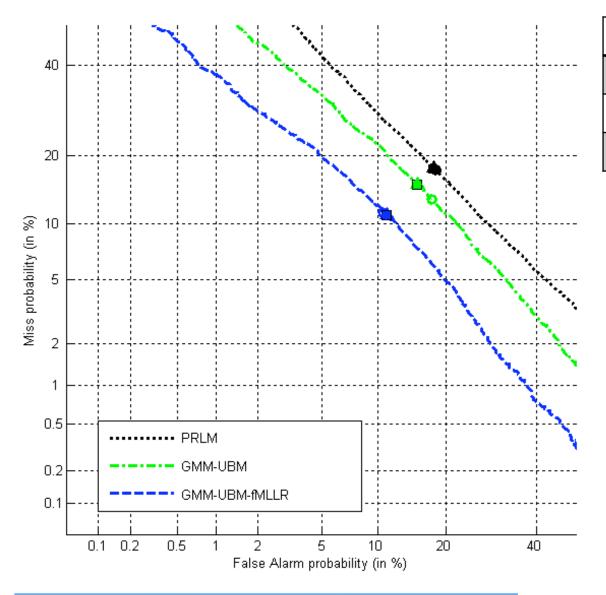
Our GMM-UBM Improved with fMLLR

- Motivation: Feature normalization (CMVN and VTLN) improve GMM-UBM for language and dialect recognition
 - (e.g., Wong and Sridharan, 2002; Torres-Carrasquillo et al., 2008)
- Our approach: Feature space Maximum Likelihood Linear Regression (fMLLR) adaptation
- Use a CD-phone recognizer to obtain CD-phone sequence: transform the features "towards" the corresponding acoustic model GMMs (a matrix for each speaker)



Same as GMM-UBM approach, but use transformed acoustic vectors instead

Results – GMM-UBM-fMLLR – 30s Cuts



Approach	EER (%)
PRLM	17.7
GMM-UBM	15.3
GMM-UBM-fMLLR	11.0%

Outline

- Motivation
- Corpora
- CD-Phone Recognizer
- Baselines
- Two Ideas:
 - GMM-UBM with fMLLR
 - Discriminative Phonotactics
- Results
- Conclusions and Future Work

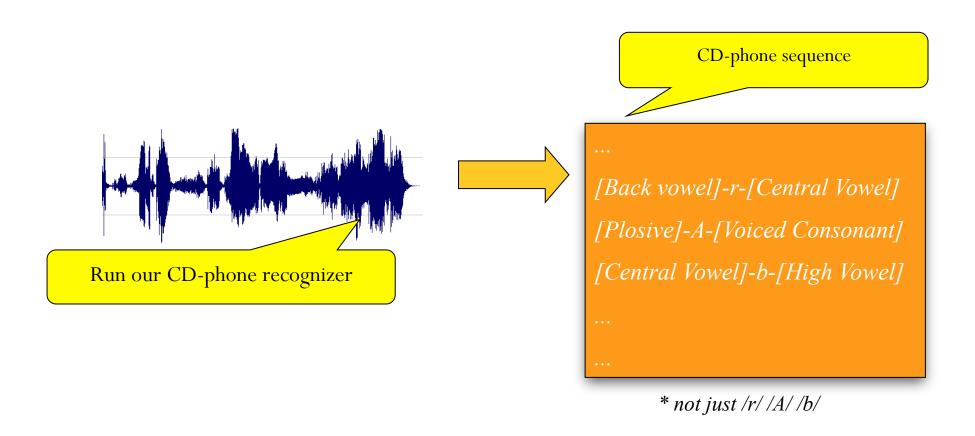
Discriminative Phonotactics

- Hypothesis: Dialects differ in their allophones (context-dependent phones) and their phonotactics
- <u>Idea</u>: Discriminate dialects first at the level of context-dependent (CD) phones and then phonotactics

/r/ is Approximant in American English [ι] and trilled in Scottish in [Consonant] – /r/ – [Vowel]

- Obtain CD-phones
- II. Extract acoustic features for each CD-phone
- III. Discriminate CD-phones across dialects
- IV. Augment the CD-phone sequences and extract phonotactic features
- v. Train a discriminative classifier to distinguish dialects

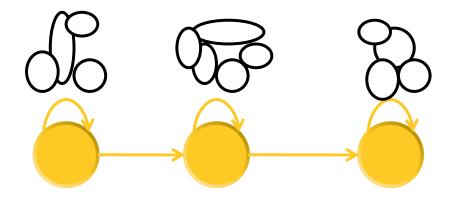
Obtaining CD-Phones



Do the above for all training data of all dialects

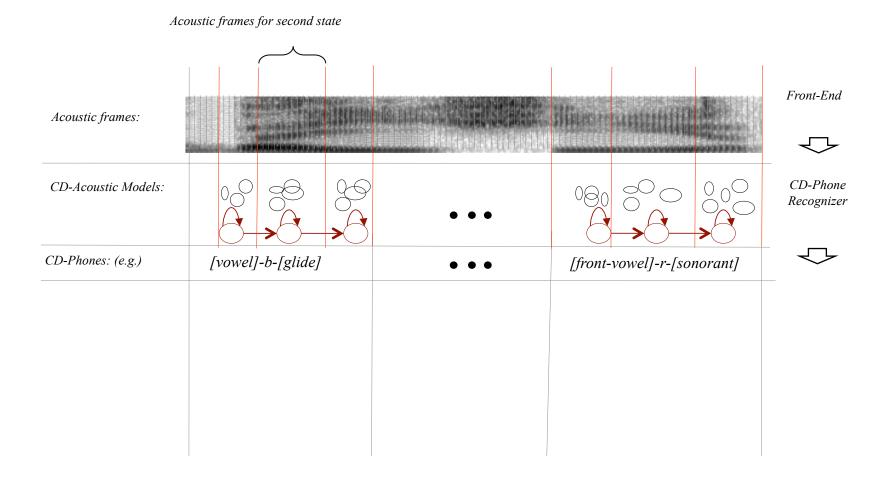
CD-Phone Universal Background Acoustic Model

Each CD phone type has an acoustic model:

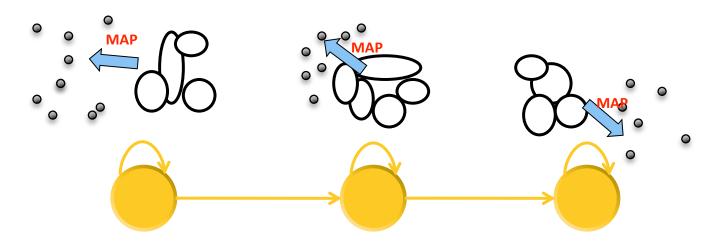


e.g., [Back vowel]-r-[Central Vowel]

Obtaining CD-Phones + Frame Alignment



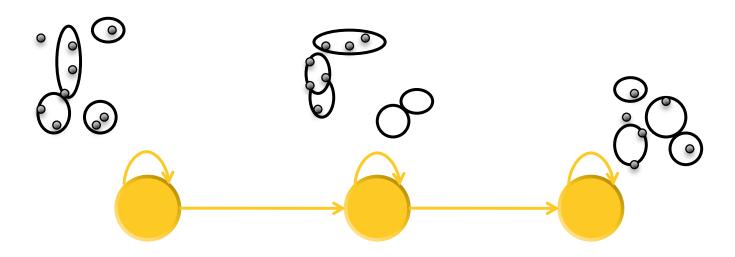
MAP Adaptation of each **CD-Phone Instance**



[Back Vowel]-r-[Central Vowel]

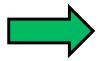
MAP adapt the CD-phone acoustic model GMMs to the corresponding frames (r=0.1)

MAP Adaptation of each **CD-Phone Instance**



[Back Vowel]-r-[Central Vowel]

MAP adapt the CD-phone acoustic model GMMs to the corresponding frames*

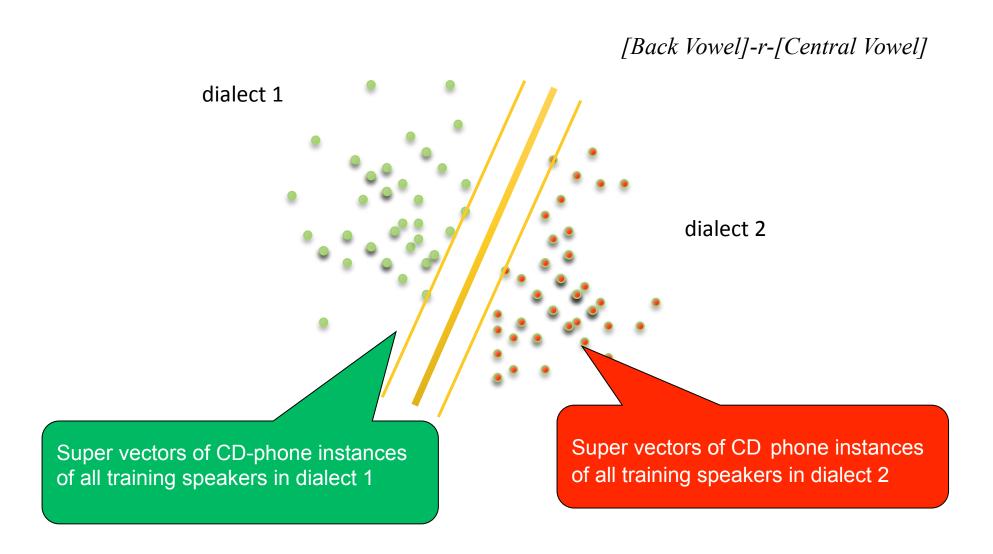


One Super Vector for each CD phone instance:

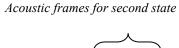
Stack all the Gaussian means and phone duration $V_k = [\mu_1, \mu_2,, \mu_N, duration]$ i.e., summarize the acoustic-phonetic features of each CD-phone in one vector

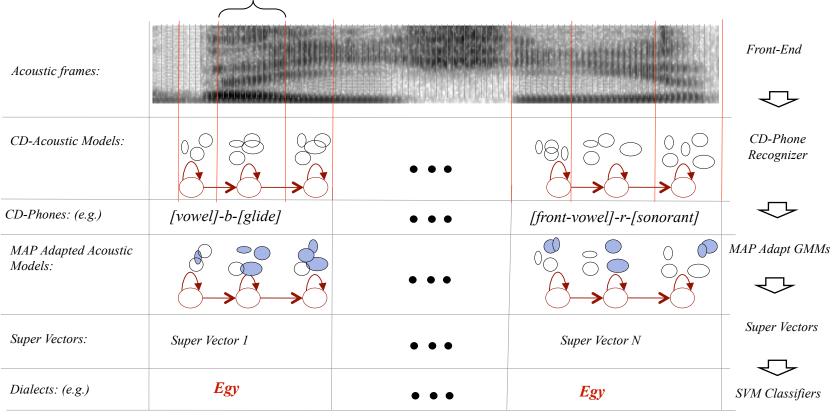
^{*}Similar to (Campbell et al., 2006) but at the level of CD-phone

SVM Classifier for each CD-Phone Type for each Pair of Dialects



Discriminative Phonotactics – CD-Phone Classification





CD-Phone Classifier Results

- Split the training data into two halves
- Train 227 (one for each CD-phone type) binary classifiers for each pair of dialects on 1st half and test on 2nd

Dialect Pair	Num. of * classifiers	Weighted accuracy (%)
Egyptian/Iraqi	195	70.9
Egyptian/Gulf	196	69.1
Egyptian/Levantine	199	68.6
Levantine/Iraqi	172	63.96
Gulf/Iraqi	166	61.77
Levantine/Gulf	179	61.53

^{*} performed significantly better than chance (50%)

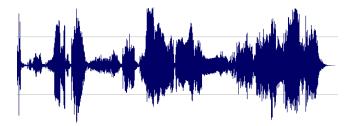
Extraction of Linguistic Knowledge

• Use the results of these classifiers to show which phones in what contexts distinguish dialects the most (chance is 50%)

CD-Phone ([l-context]—phone—[r-context]	Accuracy	#
[*]- sh - $[*]$	71.1	6302
[SIL]-a-[*]	70.3	3935
[SIL]-?-[Central Vowel]	68.7	1323
$\boxed{ [*]{-}j{-}[*]}$	68.5	3722
[! Central Vowel]-s-[! High Vowel]	68.5	1975
[Nasal] $-A$ $-[Anterior]$	68.1	5459
[!SIL & ! Central Vowel]- E -[!Central Vowel]	67.8	3687
[Central Vowel] $-m$ -[Central Vowel]	66.7	2639
[!Voiced Cons. & !Glottal & !Pharyngeal & !Nasal & !Trill &	66.4	11857
!w & !Emphatic] - A - [Anterior]		
[*]-k-[Central Vowel]	66.4	1433
[!SIL & !Central Vowel] - G - [!Central Vowel]	57.5	852
[!A]-h-[Back Vowel]	57.0	409
[!Vowel & !SIL] $-m$ -[!Central Vowel & !Back Vowel]	56.2	300

Levantine/Iraqi Dialects

Labeling Phone Sequences with Dialect Hypotheses



CD-phone recognizer

Run corresponding SVM classifier to get the dialect of each CD phone

[Back vowel]-r-[Central Vowel]
[Plosive]-A-[Voiced Consonant]
[Central Vowel]-b-[High Vowel]

•••

• • •

[Back vowel]-r-[Central Vowel] Egyptian
[Plosive]-A-[Voiced Consonant] Egyptian
[Central Vowel]-b-[High Vowel] Levantine

| ...

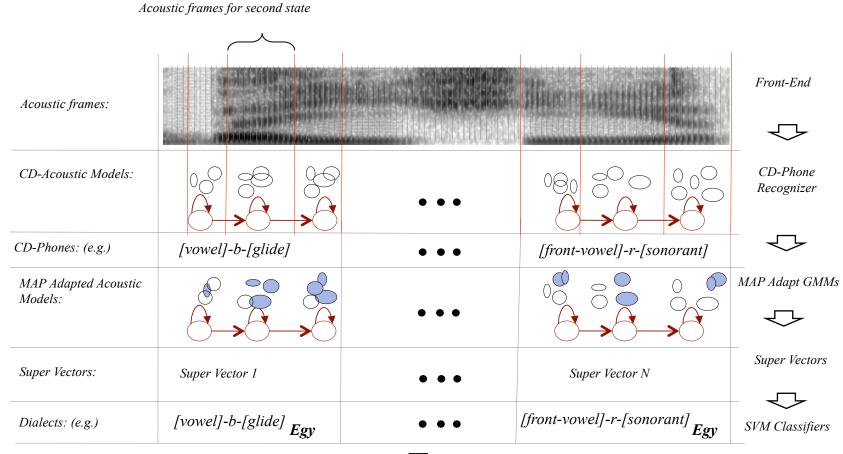
Textual Feature Extraction for Discriminative Phonotactics

- Extract the following textual features from each pair of dialects
 - Frequency of annotated CD-Phone bigrams, e.g., "[Nasal]-r-[Vowel] $_{Iraqi}$ [Voiced Cons.]-a-[Liquid] $_{Gulf}$ "
 - Frequency of bigrams with only one annotated CD-Phone, e.g., "[Nasal]-r-[Vowel] [Voiced Cons.]-a-[Liquid]_{Gulf}"
 - Frequency of annotated unigrams, e.g., [!Central Vowel]-*E*-[Central Vowel]_{Gulf}
 - Frequency of not annotated CD-Phone unigrams and bigrams, e.g., "[Nasal]-r-[Vowel] [Voiced Cons.]-a-[Liquid]"
 - Frequency of context *independent* phone *trigrams*, e.g., "s A l"
- Normalize vector by its norm
- Train a logistic regression with L2 regularizer

Experiments – Training Two Models

- Split training data into two halves
- Train SVM CD-phone classifiers using the first half
- Run these SVM classifiers to annotate the CD phones of the 2nd half
- Train the logistic classifier on the annotated sequences

Discriminative Phonotactics – Dialect Recognition



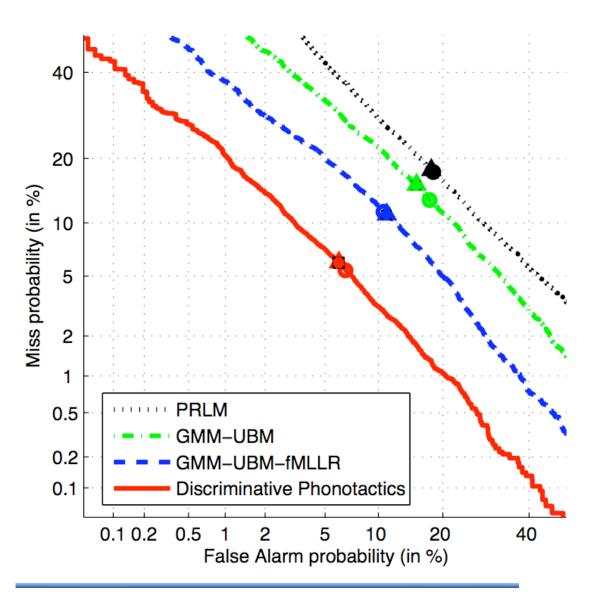
Logistic classifier

Egyptian

Baselines

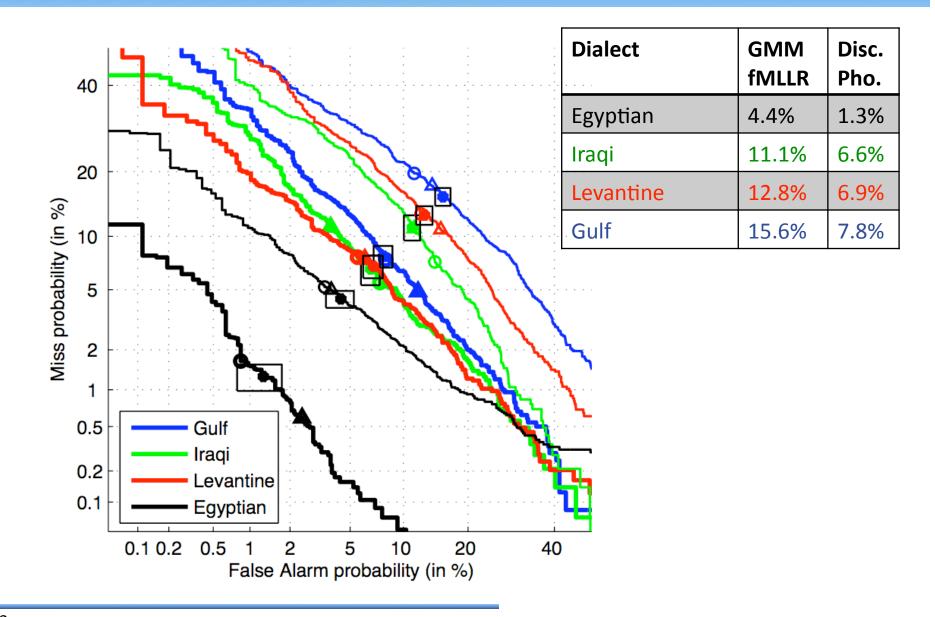
- Standard PRLM: a trigram phonotactic model per dialect
- Standard GMM-UBM:
 - Front-End:
 - 13D PLP features from 9 frames followed by LDA → 40D
 - CMVN
 - 2048 Gaussians ML trained on equal number of frames from each dialect
 - Dialect Models are MAP adapted with 5 iterations (similar to Torres-Carrasquillo et al., 2008)

Results – Discriminative Phonotactics



Approach	EER (%)
PRLM	17.7
GMM-UBM	15.3
GMM-UBM-fMLLR	11.0%
Disc. Phonotactics	6.0%

Results per Dialect



Conclusions

- fMLLR to transform the acoustic features significantly improve results for GMM-UBM approach
 - We still need to do more analyses
- The proposed method helps in understanding the linguistic differences between dialects
- Discriminative phonotactics outperforms GMM-UBM-fMLLR in 5% absolute EER.

Future Work

- New SVM Kernel to compute the similarity of all phone supervectors across two utterances → only one SVM classifier for each pair of dialects (IS2010; submitted)
- Test this approach on shorter utterances (3s and 10s)
- Try this approach on dialects/accents of other languages:
 - English accents (American English and Indian English)
 - American English Dialects
- Apply VTLN
- Testing with NAP (need to modify to accommodate for short context Supervectors)

Thank You!

- Acknowledgments:
 - Jason Pelecanos for useful discussions

Case Study: Arabic Dialects – Our Data

- Iraqi Arabic: Baghdadi, Northern, and Southern
- Gulf Arabic: Omani, UAE, and Saudi Arabic
- Levantine Arabic: Jordanian, Lebanese, Palestinian, and Syrian Arabic
- Egyptian Arabic: primarily Cairene Arabic