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Dialect Recognition

e Similar to language recognition, but use dialects/accents
of the same language

e Dialects may differ in any dimension of the linguistic
spectrum

e Differences are likely to be more subtle across dialects than
those across languages

e Thus, more challenging problem than language recognition




Motivation: Why Study Dialect Recognition?

o Discover differences between dialects
o To improve Automatic Speech Recognition (ASR)

° Model adaptation: Pronunciation, Acoustic, Morphological, Language models

o To infer speaker’s regional origin for

° Forensic speaker profiling

° Speech to speech translation

° Annotations for Broadcast News Monitoring
° Spoken dialogue systems — adapt TTS systems

° Charismatic speech identification




Multiple cues that may distinguish dialects:

e Phonetic cues:

e Differences in phonemic inventory

e Phonemic differen
onemic differences F2 Bark Acoustic vowel space in Syllable condition
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Corpora

Dialect # Speakers Test 20% — 30s* test Corpus
cuts

Gulf 976 801 (Appen Pty Ltd, 2006a)

|raQI 478 477 (Appen Pty Ltd, 2006b)

Levantine 985 818 (Appen Pty Ltd, 2007)

e For testing:
e (25% female — mobile, 25% female — landline, 25% male — mobile, 25 % male — landline)

e Egyptian: Training: CallHome Egyptian, Testing: CallFriend Egyptian

Dialect # Training Speakers # 120 speakers Corpora
30s* cuts

Egyptian 280 (Canavan and Zipperlen, 1996)

(Canavan et al., 1997)

7 *Exactly 30s
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Context-Dependent (CD) Phone Recognizer

e HMM-triphone-based phone recognizer using IBM’s Attila system

e Trained on 50 hours of GALE broadcast news and conversations
e 230 CD-acoustic models and 20,000 Gaussians

e Front-End:
e 13D PLP features per frame
e Each frame is spliced together with four preceding and four

succeeding frames followed by LDA = 40D
e CMVN

e Speaker Adaptation:
e fMLLR followed by MLLR

e Unigram phone language model trained on MSA
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Baselines

e Standard PRLM: a trigram phonotactic model per dialect

e Standard GMM-UBM:

e Front-End: Same as the front end of the phone recognizer

e 2048 Gaussians — ML trained on equal number of frames from
each dialect

e Dialect Models are MAP adapted with 5 iterations -- similar settings of
the baseline in (Torres-Carrasquillo et al., 2008)
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Results (DET curves of PRLM and GMM-UBM) — 30s Cuts
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Our GMM-UBM Improved with fMLLR

e Motivation: Feature normalization (CMVN and VTLN) improve GMM-UBM for
language and dialect recognition

e (e.g., Wong and Sridharan, 2002; Torres-Carrasquillo et al., 2008)

e Our approach: Feature space Maximum Likelihood Linear Regression (fMLLR)
adaptation

e Use a CD-phone recognizer to obtain CD-phone sequence: transform the
features “towards” the corresponding acoustic model GMMs (a matrix for each

speaker)
© e

8 B B
) B

[Vowel]-/r/-[Consonant]

~

e Same as GMM-UBM approach, but use transformed acoustic vectors instead
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Discriminative Phonotactics

e Hypothesis: Dialects differ in their allophones (context-dependent phones) and their
phonotactics

e Idea: Discriminate dialects first at the level of context-dependent (CD) phones and then
phonotactics

/r/ is Approximant in American English [4] and trilled in Scottish
in [Consonant] — /v/ — [Vowel]

Obtain CD-phones

Extract acoustic features for each CD-phone

Discriminate CD-phones across dialects

Augment the CD-phone sequences and extract phonotactic features
Train a discriminative classifier to distinguish dialects
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Obtaining CD-Phones

[ Run our CD—phone recognizer

;wne sequence J

[Back vowel]-r-[Central Vowel]
[Plosive]-A-[Voiced Consonant]

[Central Vowel]-b-[High Vowel]

* not just /r/ /A/ /b/

Do the above for all training data of all dialects
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CD-Phone Universal Background Acoustic Model

Each CD phone type has an acoustic model:

o & B

D00

e.g., [Back vowel]-r-[Central Vowel]
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Obtaining CD-Phones + Frame Alignment

Acoustic frames for second state

/_/R

Front-End
Acoustic frames: L4EEE +H .'i
<
- j : CD-Ph
CD-Acoustic Models: OOO 6@ ? 0 @ 0 8@ > % O% Recogmo-zri;
67 f % E%E ceoo >6
CD-Phones: (e.g.) [vowel]-b-[glide] e oo [front-vowel]-r-[sonorant] aSe
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MAP Adaptation of each CD-Phone Instance

R e -
R R )

[Back Vowel]-r-[Central Vowel]

MAP adapt the CD-phone acoustic model GMMs to the corresponding frames (r=0.1)
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[Back Vowel]-r-[Central Vowel]

MAP adapt the CD-phone acoustic model GMMs to the corresponding frames*

‘ One Super Vector for each CD phone instance:

Stack all the Gaussian means and phone duration V, =[u,, u,, My, duration]

I.e., summarize the acoustic-phonetic features of each CD-phone in one vector

22 *Similar to (Campbell et al., 2006) but at the level of CD-phone



SVM Classifier for each CD-Phone Type for each Pair of Dialects

[Back Vowel]-r-[Central Vowel]

dialect 1 O O

Q

@ €]

e L]
e .o - " )
G Q@ (] e o
o e 0 °

(7] ° .

o o o2 o® dialect 2

Super vectors of CD-phone instances Super vectors of CD phone instances
of all training speakers in dialect 1 of all training speakers in dialect 2
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Discriminative Phonotactics — CD-Phone Classification

Acoustic frames for second state

/_/R

T ’
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Acoustic frames: “ i
<
CD-Acoustic Models: O O O CD-Phone
coustic Models OO 6@ %@ O@O 8 O %OO Recognizer
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>

SVM Classifiers
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CD-Phone Classifier Results

e Split the training data into two halves

e Train 227 (one for each CD-phone type) binary classifiers for each pair of dialects
on 1t half and test on 2™

Dialect Pair Num. of * classifiers | Weighted accuracy (%)
Egyptian /Iraqi 195 70.9
Egyptian/Gulf 196 69.1
Egyptian/Levantine 199 68.6
Levantine/Iraqi 172 63.96
Gulf/Iraqi 166 61.77
Levantine/Gulf 179 61.53

25 * performed significantly better than chance (50%)



Extraction of Linguistic Knowledge

e

e Use the results of these classifiers to show which phones in what contexts

distinguish dialects the most (chance is 50%)

CD-Phone ([l-context]-phone—[r-context| Accuracy #
¥]—sh—[*] 1.1 6302
SIT]-a-[+] 70.3 3935
[SIL]—#2—[Central Vowel 68.7 1323
PEEM 68.5 3722
! Central Vowel|-s—[! High Vowel] 68.5 1975
[Nasal|-A—[Anterior] 68.1 5459
ISIL & ! Central Vowel|-E—[!Central Vowel] 67.8 3687
[Central Vowel|-m—[Central Vowel] 66.7 2639
'Voiced Cons. & !Glottal & 'Pharyngeal & 'Nasal & !Trill & 66.4 11857
'w & !Emphatic|-A—[Anterior|

[*]-k—[Central Vowel] 66.4 1433
[ISIL & !Central Vowel]-G—[!Central Vowel] 57.5 852
['A]-h—[Back Vowel] 57.0 409
['Vowel & !SIL]-m—[!Central Vowel & !Back Vowel] 56.2 300

Levantine/Iraqi Dialects
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Labeling Phone Sequences with Dialect Hypotheses

Run corresponding SVM classifier
@CD-phone recognizer to get the dialect of each CD phone

[Back vowel]-r-[Central Vowel] : [Back vowel]-r-[Central Vowel] Iy
[Plosive]-A-[Voiced Consonant] [Plosive]-A-[Voiced Consonant] i
[Central Vowel]-b-[High Vowel] [Central Vowel]-b-[High Vowel] ; .. ntine
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Textual Feature Extraction for Discriminative Phonotactics

e Extract the following textual features from each pair of dialects

e Frequency of annotated CD-Phone bigrams, e.g.,

“[Nasal]-r—[Vowel],.qqi [Voiced Cons.]-a—[Liquid]gys”

e EFrequency of bigrams with only one annotated CD-Phone, e.g.,
“[Nasal]-r—[Vowel] [Voiced Cons.|-a~[Liquid]g:f”

e Frequency of annotated unigrams, e.g.,
[!Central Vowel]-E—[Central Vowel] gy s

e Frequency of not annotated CD-Phone unigrams and bigrams, e.g.,
“[Nasal]-r—[Vowel] [Voiced Cons.]-a—[Liquid]”

e Erequency of context independent phone trigrams, e.g.,
“s A l”

e Normalize vector by its norm

e Train a logistic regression with L2 regularizer
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Experiments — Training Two Models

e Split training data into two halves
e Train SVM CD-phone classifiers using the first half
e Run these SVM classifiers to annotate the CD phones of the 2"¢ half

e Train the logistic classifier on the annotated sequences
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Discriminative Phonotactics — Dialect Recognition

Acoustic frames for second state

/_/R

E ’ - | Front-End
Acoustic frames: i '
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CD-Acoustic Models: O O 0 ~O CD-Phone
OO C@ %@ O@O O O :
Recognizer
LA LE o IGENG
CD-Phones: (e.g.) [vowel]-b-[glide] X [front-vowel]-r-[sonorant] aSe
MAP Adapted Acoustic & 0 O. P O 0 ' MAP Adapt GMMs
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o 060 f %E f % f % D
Super Vectors
Super Vectors: Super Vector 1 e oo Super Vector N
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Dialects: (e.g.) [vowel]-b-[glide] Egy e oo [front-vowel]-r-[sonorant] E SVM Classifiers

Logistic classifier

=

Egyptian
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Baselines

e Standard PRLM: a trigram phonotactic model per dialect

e Standard GMM-UBM:
e Front-End:
e 13D PLP features from 9 frames followed by LDA =» 40D
e CMVN

e 2048 Gaussians — ML trained on equal number of frames from
each dialect

e Dialect Models are MAP adapted with 5 iterations (similar to Torres-
Carrasquillo et al., 2008)

31



Results — Discriminative Phonotactics
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Approach EER (%)
PRLM 17.7
GMM-UBM 15.3
GMM-UBM-fMLLR | 11.0%
Disc. Phonotactics | 6.0%




Results per Dialect
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Conclusions

e fMLLR to transform the acoustic features significantly improve results for
GMM-UBM approach

e We still need to do more analyses

e The proposed method helps in understanding the linguistic differences
between dialects

e Discriminative phonotactics outperforms GMM-UBM-fMLLR in 5%
absolute EER.
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e New SVM Kernel to compute the similarity of all phone super-
vectors across two utterances =2 only one SVM classifier for
each pair of dialects (1S2010; submitted)

e Test this approach on shorter utterances (3s and 10s)

e Try this approach on dialects/accents of other languages:
e English accents (American English and Indian English)
e American English Dialects

e Apply VTLN

e Testing with NAP (need to modify to accommodate for short
context Supervectors)
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Case Study: Arabic Dialects — Our Data

e Iraqi Arabic: Baghdadi, Northern, and Southern
e Gulf Arabic: Omani, UAE, and Saudi Arabic
e Levantine Arabic: Jordanian, Lebanese, Palestinian, and Syrian Arabic

e Egyptian Arabic: primarily Cairene Arabic
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