Dialect Recognition Using a Phone-GMM-Supervector-Based SVM Kernel

Fadi Biadsy, Julia Hirschberg, Michael Collins

Columbia University, NY, USA

Sep 28st, 2010

Motivation: Why Study Dialect Recognition?

- To improve Automatic Speech Recognition (ASR)
 - Model adaptation: Pronunciation, Acoustic, Morphological, Language models
 - Build even a dialect-specific ASR
- Discover differences between dialects
- To infer speaker's regional origin for
 - Forensic speaker profiling
 - Speech to speech translation
 - Annotations for Broadcast News Monitoring
 - Spoken dialogue systems adapt TTS systems
 - Charismatic speech

Case Study: Arabic Dialects

(by Arab Atlas)

Corpora

Dialect	# Speakers	Test 20% – 30s* test cuts	Corpus
Gulf	976	801	(Appen Pty Ltd, 2006a)
Iraqi	478	477	(Appen Pty Ltd, 2006b)
Levantine	985	818	(Appen Pty Ltd, 2007)

- For testing:
 - (25% female mobile, 25% female landline, 25% male mobile, 25 % male landline)
- Egyptian: Training: CallHome Egyptian, Testing: CallFriend Egyptian

Dialect	# Training Speakers	# 120 speakers 30s* cuts	Corpora
Egyptian	280	1912	(Canavan and Zipperlen, 1996) (Canavan et al., 1997)

^{4 *}Exactly 30s

Baselines

. Standard PRLM

A trigram phonotactic model per dialect

II. Standard GMM-UBM:

- Front-End:
 - 13D PLP features per frame
 - Each frame is spliced together with four preceding and four succeeding frames followed by LDA → 40D
 - CMVN
- 2048 Gaussians ML trained on equal number of frames from each dialect
- Dialect Models are MAP adapted with 5 iterations (similar to Torres-Carrasquillo et al., 2008)

III. GMM-UBM with fMLLR (Biadsy et al., 2010)

Baselines

Approach	EER (%)
PRLM	17.7
GMM-UBM	15.3
GMM-UBM-fMLLR	11.0%

Hypothesis in current work

 Rely on the hypothesis that dialects differ in the realization of certain phonemes

(Al-Tamimi & Ferragne, 2005)

General Idea

Compare utterances at the phonetic level

Current Approach

- Build a GMM-UBM for each phone type
- Extract GMM-Supervectors at the level of phones
- Design a kernel function that computes similarity between pairs of utterances
- Train an SVM classifier for each pair of dialects

Current Approach

- Build a GMM-UBM for each phone type
- Extract GMM-Supervectors at the level of phones
- Design a kernel function that computes similarity between pairs of utterances
- Train an SVM classifier for each pair of dialects

Front-End

- Using IBM's Attila System (Soltau et al. 2009):
 - 13D PLP features per frame
 - Each frame is spliced together with four preceding and four succeeding frames followed by LDA → 40D
 - CMVN
 - fMLLR adaptation using hypothesized CD-phones

Phone GMM-UBM

- Run a phone recognizer on all data
- Extract frames aligned to each phone type
- Train a GMM-UBM for every phone type
 - Using frames from all dialects

Phone GMM-UBM

34 Arabic phones → 34 Phone GMM-UBMs

Current Approach

- Build a GMM-UBM for each phone type
- Extract GMM-Supervectors at the level of phones
- Design a kernel function that computes similarity between pairs of utterances
- Train an SVM classifier for each pair of dialects

Step 1

Given an utterance U:

Step 2 - MAP Adaptation of each **Phone Instance**

Given a phone instance acoustic frames:

- I. MAP adapt the phone GMM-UBM using the phone acoustic frames
- II. Stack all the Gaussian means and phone duration $V_k = [\mu_1, \mu_2, ..., \mu_N, duration]$ in one supervector

i.e., summarize the acoustic-phonetic characteristics of each phone in one vector

Steps

Given an utterance *U*:

Acoustic frames:				Front-End
Phones: (e.g.)	φ ₁ (e.g., /aa/)	• • •	ϕ_n	— Phone Recognizer
Phone GMM-UBMs:		• • •		ightharpoons
MAP adapted GMMs		• • •		MAP Adaptation
Phone GMM- Supervectors:	$ec{v}_1$	• • •	$ec{v}_n$	Phone GMM- Supervectors

Sequence of tuples:

$$S_U = \{(\vec{v}_i, \phi_i)\}_{i=1}^n$$

Classification Task

Distinguish between pairs of dialects given a sequence of tuples

- Classifier choice:
 - SVM has been shown to model well supervector-like representation (e.g., Campbell et al., 2006)
- ullet We need a kernel function that computes the similarity between a pair of utterances $\,U_a$ and $\,U_b$

Phone-GMM-Supervector-Based Kernel

- ullet Let S_{U_a} be the sequence of tuples of utterance U_a
- ullet Let S_{U_b} be the sequence of tuples of utterance U_b

$$K(S_{U_a}, S_{U_b}) = \sum_{i,j:\phi_i = \psi_j} e^{-\|\vec{v}_i - \vec{u}_j\|^2 / 2\sigma^2}$$

 Sum of RBF kernels between every pair of Supervectors of phone instances with the same type across the two utterances

Dialect Recognition

- Compute a kernel matrix using our kernel function for each pair of dialects
- Train an SVM classifier using this kernel matrix for the pair of dialects
- During testing, given an utterance U:
 - 1. Construct the sequence of tuples $\,S_{U}\,$
 - 2. Compute the kernel value with every support vector

$$f(S_U) = \sum_{i=1}^{N} \alpha_i y_i K(S_U, x_i) + b$$

3. The sign of this function is our hypothesized dialect class

Evaluation

- 34 phone GMM-UBMs are Maximum-Likelihood trained with 100 Gaussians each
- We segment the training speakers in our corpora to 30s cuts
- Using all training cuts, train an SVM classifier for each pair of the 4 dialects (6 classifiers)
 - Use SVMs that estimate posterior probabilities (Wu et al., 2004)
- Use the posterior as the detection score to plot DET curves

Results and Baseline comparison

Approach	EER (%)
PRLM	17.7
GMM-UBM	15.3
GMM-UBM-fMLLR	11.0%

Results and Baseline comparison

Approach	EER (%)
PRLM	17.7
GMM-UBM	15.3
GMM-UBM-fMLLR	11.0%
Kernel	4.9%

Comparison to (Torres-Carrasquillo et al., 2008)

- GMM-UBM-based model discriminatively trained with SDC features
- Eigen-channel compensation and VTLN
- Back-end classifier
 - → EER 7.0% on 3 Arabic dialects

- Our approach on exactly the same segments as in (Torres-Carrasquillo et al., 2008)
 - → EER 6.4%

Conclusions

- Modeling the differences between dialects at the phonetic level is very effective
- New Approach:
 - Supervector representation at the phone level
 - New Phone GMM-UBM-Supervector-based Kernel function
- Significantly outperforms: PRLM, GMM-UBM, GMM-UBM-fMIIR
- To our knowledge, represents new state-of-the-art performance for Arabic

Future Work

- Test this approach on shorter utterances (3s and 10s)
- Try this approach on dialects/accents of other languages:
 - English accents (American English and Indian English)
 - American English Dialects
 - Portuguese Dialects
- Missing components:
 - VTLN
 - NAP channel compensation (need to modify to accommodate for short context supervectors)

Thank You!

- Acknowledgments:
 - P. Torres-Carrasquillo and N. Chen for providing us with the segmentation
 - IBM T. J. Watson Speech Team