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Abstract
Automatic deception detection is an important problem with
far-reaching implications for many disciplines. We present a
series of experiments aimed at automatically detecting decep-
tion from speech. We use the Columbia X-Cultural Deception
(CXD) Corpus, a large-scale corpus of within-subject deceptive
and non-deceptive speech, for training and evaluating our mod-
els. We compare the use of spectral, acoustic-prosodic, and lex-
ical feature sets, using different machine learning models. Fi-
nally, we design a single hybrid deep model with both acoustic
and lexical features trained jointly that achieves state-of-the-art
results on the CXD corpus.
Index Terms: deception, deep learning, computational paralin-
guistics

1. Introduction
Automatic deception detection is an important problem with
implications for law enforcement, military, and intelligence
agencies. Researchers in a variety of disciplines, including psy-
chology, computer science, linguistics, and criminology, have
worked to develop automated deception detection technologies.
Despite many attempts spanning several modalities, there have
been few objective successes, highlighting the inherent diffi-
culty of this problem. In recent years the NLP and speech com-
munities have been increasingly interested in deception detec-
tion. Language cues are inexpensive and easy to collect, and
research examining text-based and speech-based cues to decep-
tion has been promising.

Previous work has examined text-based cues to deception
in various domains, including criminal testimonies [1, 2, 3], ho-
tel reviews [4], and opinions about controversial topics such as
abortion [5]. There has been limited work examining acoustic-
prosodic cues to deception, due to the lack of large, cleanly
recorded corpora for deception. Hirschberg et al. [6] cre-
ated the first large scale corpus of deceptive speech, compris-
ing about 7 hours of subject speech, and found that acoustic-
prosodic features are promising indicators of deception. In our
ongoing work on deception detection, we have created a much
larger corpus, the Columbia X-Cultural Deception (CXD) Cor-
pus [7], comprising over 120 hours of subject speech. We pre-
viously developed a system using simple acoustic-prosodic fea-
tures trained on a subset of the corpus and obtained about 3%
absolute increase in accuracy above baseline [7].

In this work, we systematically evaluate several approaches
to deception detection. We compare classification results for
different feature sets and machine learning approaches. While
prior work has focused on developing good features and used
standard statistical machine learning for classification, in this
work we explore deep learning approaches for deception detec-
tion for the first time. Deep learning has led to many advances
in speech processing, and has not yet been applied to deception
detection, possibly because of the lack of large training corpora.

Leveraging the large CXD corpus, we compare the performance
of several neural network architectures and features for this task.
We present a novel hybrid approach that combines acoustic and
lexical feature streams in a jointly trained deep neural network.
This hybrid approach achieves state-of-the-art results for the
CXD corpus (15% absolute improvement of F1-score over a
random baseline, and about 3% absolute improvement over the
LR trigram model), and our experiments varying the size of the
train set suggest that additional data can further improve perfor-
mance.

The remainder of the paper is organized as follows. Section
2 describes the corpus used, and Section 3 details the different
feature sets. In Section 4, we report on the results of our de-
ception classification experiments, including baseline statistical
machine learning approaches as well as several deep learning
systems. We conclude in Section 5 with a discussion and ideas
for future work.

2. CXD Corpus
The CXD corpus is a collection of within-subject deceptive and
non-deceptive speech from native speakers of Standard Amer-
ican English and Mandarin Chinese, all speaking in English.
The corpus contains 170 conversations between 340 subjects.
The corpus was collected using a fake resume paradigm, where
subjects alternated between interviewing their partner and be-
ing interviewed, using a set of 24 biographical questions. Sub-
jects were provided with financial incentive to lie effectively
and judge deceptive statements correctly. While answering the
questions, the interviewee pressed the T or F key on a keyboard,
labeling each utterance spoken as true or false.

All of the audio recordings were transcribed using Amazon
Mechanical Turk1, and the transcripts were force-aligned with
the audio. The speech was then automatically segmented into
inter-pausal units (IPUs; separated by at least 50 ms) using Praat
[8], and subsequently hand-corrected. The subject key-presses
were aligned with the speech as well.

In this work, we use a subset of the CXD corpus. Because
there is some ambiguity as to how to assign veracity labels to
discrete segments of speech (some segments do not align with
any key-presses, others align with both T and F key-presses),
we use a strict rule to assign veracity labels. We retrieve all
key-presses that lie between the current IPU start time and the
following IPU start time. If all of these have the same label
(all T or all F), we assign that label to the current IPU. Other-
wise, if the key-presses for an IPU are conflicting, or if there
are no available key-presses, we consider the IPU label to be
ambiguous and eliminate it from our experimental dataset. This
resulted in 49,106 IPUs, comprising 56.6% of all interviewee
IPUs in the corpus at the time of these experiments. We uti-
lize random under-sampling to balance the dataset, reducing it
to 37,870 IPUs. We perform a 76/4/20 percent split into train,

1https://www.mturk.com/mturk/



Feature Min Max Median Mean Stdv
Duration (s) .013 13.25 1.06 1.38 1.06
Num words 1 47 3.0 4.46 4.24

Table 1: IPU summary statistics

validation, and test sets, resulting in 30,296, 1514, and 7574
samples respectively. Summary statistics for the IPU segments
in this subset of the corpus can be found in Table 1.

3. Features
3.1. Acoustic-prosodic

We use the Interspeech 2013 (IS13) ComParE Challenge base-
line feature set, which contains 6373 features from the com-
putation of various functionals over low-level descriptor (LLD)
contours extracted from openSMILE [9]. The LLD features in-
clude pitch (fundamental frequency), intensity (energy), spec-
tral, cepstral (MFCC), duration, voice quality (jitter, shimmer,
and harmonics-to-noise ratio), spectral harmonicity, and psy-
choacoustic spectral sharpness. This standard feature set has
been successfully used for many computational paralinguistic
tasks, including emotion recognition, native language detection,
sincerity, and deception detection.

In addition to IS13, we use a smaller standard feature set
designed for emotion recognition: the Interspeech 2009 (IS09)
emotion challenge feature set. It contains 384 features extracted
using openSMILE. Because emotion features have been shown
to predict deception [10], we hypothesize that the IS09 emotion
feature set will be useful for deception detection.

We also extract Mel-Frequency Cepstral Coefficients
(MFCCs) using the python speech features [11] li-
brary, generating 13 cepstral coefficients per window of 256
frames, using a step of 100 frames.

3.2. Lexical

Ngrams Previous work has shown that a bag-of-words repre-
sentation is useful for domain specific deception detection [4].
To capture differences in word usage between deceptive and
truthful speech, we extract unigrams, bigrams, and trigrams
from the corpus transcriptions. Table 2 lists the most useful
ngrams for classifying deceptive and non-deceptive speech in
our corpus.
Embeddings We also obtain distributed representations of
words using GloVe [12] pre-trained word vectors. GloVe is
an unsupervised learning algorithm that uses a log-bilinear re-
gression model based on global word co-occurrence counts in a
training corpus. We use a model trained on 2 billion tweets to
produce 200-dimensional word vectors. Unlike ngram features,
word embeddings have been shown to capture semantic rela-
tionships between words and are therefore very useful features
for downstream NLP tasks.

4. Deception Classification Experiments
4.1. Baseline models

As a first step to building a classifier we trained two baseline
models: (1) a Logistic Regression (LR) classifier trained us-
ing ngrams features, and (2) a Random Forest (RF) classifier
trained using acoustic-prosodic features. For the LR model,
we explored various techniques such as varying the number of
ngrams, stopword removal, TF-IDF, and binary values. The best
model uses simple trigram features with no additional manipu-

Deceptive Non-deceptive
weight feature weight feature
-1.2922 yeah did 1.5245 columbia
-1.2706 they didn 1.3183 facebook
-1.2591 uh just 1.2948 uh um
-1.2144 broke 1.2695 social
-1.2034 uh at 1.1988 sophmore
-1.1790 but he 1.1838 there was
-1.1569 oh no no 1.1746 have like
-1.1400 fell 1.1596 were just
-1.3180 police 1.3082 correct

Table 2: Top N-gram features

rank feature avg weight
1 energy 5.2237

2-13 MFCC 1.6373
14 voiceProb 1.2417

15-20 MFCC 1.2065
Table 3: Top openSMILE IS09 features

lation, yielding an F1-score of 61.19%. Table 2 displays the
top 10 ngram features for both the deceptive and non-deceptive
classes. Although some of tokens are more corpus specific (”po-
lice”, ”columbia”) we see that the majority are function words
and fillers, which are corpus independent and should generalize
to other domains.

For the RF baseline model, we explore different values for
the number of estimators in the forest, and compare the two
openSMILE feature sets, as well as a feature selection method
based on the ANOVA F-value between label and features. Our
final RF model uses the openSMILE IS09 emotion feature set,
1000 estimators, and no feature selection, and it yields an F1
score of 59.54%. Table 3 displays the top IS09 feature groups
for the RF model, obtained using Gini importance. This tech-
nique calculates feature importance as the sum over the number
of splits across all trees that include a given feature, proportional
to the number of samples that it splits. We observe that features
representing functionals over MFCCs appear in 18 of the top 20
feature sets, suggesting usefulness in detecting deception.

Achieving 11.19% above a random baseline (50% since the
dataset is balanced deceptive/non-deceptive) using only lexi-
cal features, and 9.54% above the random baseline using only
acoustic-prosodic features, motivated us to design a model that
combines both acoustic and lexical features. We trained a model
on the entire feature set (openSMILE and ngrams) with RF
but did not see any improvement compared to the original RF
model.

Model Features Prec. Recall F1
LR Trigrams 58.67 63.95 61.19
RF OpenSMILE09 72.67 50.44 59.54
RF OpenSMILE09, Trigrams 76.11 46.99 58.10
DNN OpenSMILE13 63.65 58.03 60.71
DNN OpenSMILE09 65.87 59.84 62.71
BLSTM MFCC 54.19 55.10 54.64
BLSTM WE 60.46 60.45 60.46
Hybrid OpenSMILE09, WE 67.32 60.80 63.90

Table 4: Classification experiments results (WE=Word Embed-
dings)



Figure 1: Hybrid Acoustical Lexical Model Architecture, 4.2.5

4.2. Deep learning models

In this section, we explore deep learning applications to decep-
tion detection. We first describe the Bayesian hyper-parameter
optimization used to select the optimal hyper-parameters for our
models. We then present the design and classification results
of 4 deep learning models: lexical BLSTM, MFCC BLSTM,
DNN-openSMILE, and a hybrid approach which achieves the
best performance. The results of all these experiments, as well
as the 2 baseline models, are presented in Table 4.

4.2.1. Bayesian hyper-parameter optimization

Previous work has indicated that Bayesian hyper-parameter op-
timization [13] is more time-efficient than random search [14]
and far less computationally expensive than grid search [15];
therefore, in this experiment, we use the spearmint [16] li-
brary to perform such Bayesian optimization. Bayesian op-
timization operates on non-differentiable black-box functions
or those that are computationally difficult to evaluate; in our
case, this method was used to maximize the deep learning mod-
els’ F1 score on the development set, based on various hy-
per parameters including learning rate, number of hidden lay-
ers, hidden unit count per layer, batch size, activation function,
dropout rate, L2 regularization, batch normalization usage for
each layer, and dropout usage for each layer.

There are two key parts to Bayesian optimization: the prior
distribution function and the acquisition function. Upon each it-
eration of the optimization algorithm, the hyper-parameter vec-
tor x is evaluated and the prior distribution function, which
is initially assumed, is updated based on the results from x
to create a more accurate posterior distribution for use as the
prior in the next time step. More importantly, the proba-
bilistic acquisition function is maximized to determine which
hyper-parameters vector to be tested next; it is a function
a(x; {xn, yn}; θ) of the proposed next vector x, the previous
observation {xn, yn}, and the parameter vector of the prior
function θ.

4.2.2. Lexical BLSTM

Since ngram-based linear classifiers performed relatively well,
we designed an additional lexical model based on the bidirec-
tional long short-term memory (BLSTM) architecture. Recur-
rent models have been successful in related tasks of sentiment

classification [17], speech recognition [18] and emotion detec-
tion [19]. The BLSTM model [20] is a modification of the
original long short-term memory (LSTM) model [21] in that it
analyzes input simultaneously in the forward and reverse time
directions. Both models’ effectiveness stem from the LSTM
node’s capacity to retain memory of its prior values with an in-
ternal state, bridging long temporal gaps. For every node at a
given time-step t, with output gate yout, input gate yin, for-
get gate net, and differentiable activation functions g, h, out-
put is defined as y(t) = yout(t)h(s(t)) with internal state
s(t) = s(t − 1) + yin(t)g(net(t)) [21]. We used pre-trained
word embeddings described in 3.2 to compensate for the rel-
atively small number of training examples. These GloVe em-
beddings are used to initialize the weights but we allow back-
propagation to update embedding values during training. We
use a single softmax layer that operates on the final output and
state of the LSTM for prediction. Our final model uses a cell
size of 256 and achieves an F1 score of 60% (Table 4).

4.2.3. MFCC BLSTM

Mel-Frequency Cepstral Coefficients (MFCC) are widely used
for speech related tasks such as ASR, synthesis and speaker
recognition. MFCC features tries to model human hearing by
warping the frequencies output from the DFT onto a mel scale.
While this was shown to improve phoneme recognition it is not
clear if these features, in their raw form, are useful for decep-
tion detection. We train a BLSTM model as explained in 4.2.2
using the MFCC features described in section 3 with 512 hid-
den units. We use a sequence length of 750 windows which is
the 90% percentile of our sequences length. We trim longer se-
quences and pad shorter ones. Each frame contains 13 MFCC
values. Our MFCC model yields 54.64% F1 score after 300
epochs with a batch size of 128 (Table 4). The MFCC model
performed poorly on the test set and under-fitted on the train
set. We tried increasing the number of parameters (553, 473)
but could not devise a model that fitted the train set success-
fully.

4.2.4. DNN: openSMILE

Following our relative success with the openSMILE feature set
and a Random Forest classifier we designed a Deep Neural Net-
work model (MLP) based on the same feature set. Prior to train-
ing we normalize our features by removing the mean and scal-



ing to unit variance. Centering and scaling are done indepen-
dently on each feature. Our model consists of six fully con-
nected layers, each with 1095 hidden units followed by a ReLU
[22] activation. For prediction we use a softmax layer with two
outputs that corresponds to the two classes in our task. We use
categorical cross-entropy as our loss function. During training
the output of each layer is normalized using Batch Normaliza-
tion [23] and passed through a Dropout layer [24] with a 0.497
probability. Our model has many parameters and a high dropout
rate reduces the risk of over-fitting. Additionally, we add L2
regularization on the weights with a value of 0.2. We train our
model using stochastic gradient descent with a learning rate of
0.00134 that reduces by 50% for every 10 epochs with no im-
provement on training loss. The above hyper parameters were
obtained using the Bayesian Optimization method described in
section 4.2.1. Overall, we trained 528 different variations of
this model. Our best model yields an F1 score of 62.71% on the
IS09 openSMILE feature set and 60.71 % on the IS2013 feature
set (Table 4.

4.2.5. Hybrid: LSTM + DNN

In our final experiment we combine our models from section
4.2.2 and section 4.2.4. One of the advantages of neural net-
works is the ability to tailor the architecture to the task and
combine sequential and discrete features in a single model. Un-
like most ensemble methods our hybrid model is trained jointly
without explicit voting between the acoustic and lexical based
areas. The two models are merged by taking the output of the
last hidden layer in our DNN model training on IS09 features
and concatenating it with the output of LSTM. Although the tri-
gram model performed slightly better than the lexical BLSTM,
its use is problematic in the hybrid model approach. The di-
mension of the trigram feature vector is 230,559 and concate-
nating it to the output of the acoustic model with dimension of
1095 would require the weights corresponding to the acoustic
features to compensate for the dimension differences, which is
sub-optimal for gradient propagation.

As with previous models we use the softmax function to
normalize the last layer’s output and generate class probabili-
ties. We define this formally for clarity:

Pr(Y = i | x,Wn−1, bn−1) =
eWix+bi∑
j e

Wjx+bj

where n is the number of hidden layers and x is u_v, the
concatenation of the DNN and LSTM outputs. This architec-
ture failed to improve on the original DNN model yielding an
F1 score of 62.70%. This led us to the hypothesis that during
back propagation, the acoustic-based area of the network is be-
ing penalized more than the lexical area. To test our hypothesis,
we attached an auxiliary softmax prediction layer to the LSTM
output and used it to predict the test set. While the original
lexical LSTM model achieved a score of 60% this area of the
network only gave a score of 54%. This result confirmed our hy-
pothesis that although the overall loss seemed to converge, the
lexical area of the network was not optimized. Although it is
possible to freeze the weights of the acoustic area and continue
training the lexical area, that approach is not preferred due the
manual intervention required. Instead, we computed the loss of
the network twice: once for the main softmax and once for the
auxiliary softmax. Using a parameter λ we compute a weighted
sum of the two error matrices. This approach allows us to train
the network without user intervention and achieve an F1 score
of 63.90% (Table 4). We treated λ as a hyper-parameter and,

using Bayesian optimization, found an optimal value of 0.67,
doubling the significance of the loss computed from the auxil-
iary softmax relative to the main softmax. As shown in Table
4, this hybrid model achieves the highest F1-score of the 7 ap-
proaches described here. The architecture of this hybrid model
is shown in Figure 1.

4.3. Impact of training size

We experiment with varying the size of the train set to evalu-
ate the impact of amount of training data on classification per-
formance. Fig. 2 shows the F1-scores of the RF openSMILE
model, an LSTM-embeddings model, and the hybrid model,
trained on increasing subsets of the training data from 10% to
100%. All models were evaluated on a fixed test set. We ob-
serve that both neural network models (LSTM and hybrid) are
very sensitive to amount of training data, while the RF model
does not benefit as much from the increase in training data; thus,
this suggest that increasing the amount of training data improves
the performance of the hybrid model more rapidly than that of
ensemble classifiers or DNNs training on a single feature set.

Figure 2: Model performance w.r.t train set size

5. Conclusions and Future Work
We have evaluated the performance of several machine learn-
ing approaches to the critical problem of deception detection.
We developed a novel hybrid deep learning model that trains on
both acoustic and lexical features, achieving state-of-the-art re-
sults on the CXD corpus. Although this hybrid model achieved
the highest F1-score of 63.9%, the RF model trained on con-
catenated acoustic and lexical features achieved the highest pre-
cision of 76.11%. In this work we chose to optimize for F1-
score, since this a balance of precision and recall. However, the
choice of metric to optimize is largely dependent on the appli-
cation. It is possible that a high precision model would be use-
ful to practitioners in situations where classification precision is
more important than recall.

We show that increasing the amount of training data leads
to the most rapid increases in performance in the hybrid model.
However, we used only 56.6% of the IPUs in the CXD cor-
pus and are working to increase the amount of training data by
improving alignment approaches between IPUs and veracity la-
bels, so that we can test if a similar trajectory continues with ad-
ditional data. In addition, we plan to evaluate these approaches
on other deceptive speech corpora, in order to assess the robust-
ness of the various features and models in other domains. This
will also enable direct comparison of our methods with prior
work on detection of deceptive speech.
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