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Abstract
We have found that cognate words, defined as sets of words used
in multiple languages that share a common etymology, can in
fact elicit code-switching or language mixing between the lan-
guages. This paper focuses on how information about cognate
words can improve language modeling performance of code-
switched English-Spanish (EN-ES) language. We have found
that the degree of semantic, phonetic or lexical overlap between
a pair of cognate words is a useful feature in identifying code-
switching in language. We derive a set of spelling, phonetic and
semantic features from a list of of EN-ES cognates and run ex-
periments on a corpus of conversational code-switched EN-ES.
First, we show that there exists a strong statistical relationship
between these cognate-based features and code-switching in the
corpus. Secondly, we demonstrate that language models using
these features obtain similar performance improvements as do
other manually tagged features including language and part-of-
speech tags. We conclude that cognate features can be a useful
set of automatically-derived features that can be easily obtained
for any pair of languages.
Index Terms: language modeling, code-switching, cognates

1. Introduction
Code-switching (CS) is the alternate use of two or more lan-
guages during communication. CS can be intra-sentential, if it
happens within the boundaries of a sentence or utterance (e.g. “I
love baloncesto”), or inter-sentential otherwise (e.g. “I’m leav-
ing. Adios.”). In Natural Language Processing and Speech
Analysis, intra-sentential CS is of particular concern because
it often renders monolingual parsing, part-of-speech (POS) tag-
ging, machine translation, summarization, and speech recogni-
tion systems, among others, useless, since the language being
analyzed at any point in the process is unknown.

The most difficult challenge to developing new models
for identifying code-switched data is the lack of manually-
annotated resources for most language pairs, and hence, the lack
of knowledge of how and when CS is likely to occur. In particu-
lar, for the task of Language Modeling (LM), which consists of
predicting the next word given a sequence of words, the ques-
tion of how a code-switch is triggered becomes particularly im-
portant. While some linguistics literature on CS has proposed
that a) cognates, defined as words in two different languages
with the same etymology and similar spelling and meaning, are
more likely to precede a code-switch, and that b) there are syn-
tactic constraints to CS, there has been little research validating
these proposals empirically. On the NLP field, there has been
some prior research on the tasks of language modeling for CS
data using manually labeled language identification and syntac-
tic information. These features, while useful, are difficult to
obtain both in terms of expense and in the difficulty of training

annotators. In this paper, we propose a new set of spelling, pro-
nunciation and semantic features extracted from automatically-
extracted lists of cognate words, and compare their performance
to hand-labeled features. We find that the new set of cognate-
based features we propose does indeed add similar improve-
ments to our LMs compared to manually-labeled Language ID
(LID) tags and POS tags and are much easier to obtain. Better
LMs for code-switched data can thus be developed without the
need for large amounts of manually-labeled training data, thus
leading to improvements in speech and language processing of
CS in many more language pairs.

This paper is organized as follows. Section 2 provides an
overview of previous work on CS for LM and on cognate words
and their role in CS. Section 3 describes the corpus used in
this paper. Section 4 outlines the cognate-based features we
are proposing. Section 5 gives a short introduction to the Fac-
tored Language Model (FLM) approach we are using for our
experiments. Section 6 describes our experiments and Section
7 presents our conclusions and plans for future research.

2. Previous Work
In the last decade there has been increasing interest in tack-
ling the problem of modeling of code-switched language in
the computational linguistics community. Most efforts have
focused on applying machine learning methods to the task of
language modeling. The first example of a statistical language
model (SLM) applied to CS data was presented in [1], where
the authors trained 2-,3-,4- and 5-grams on a very small corpus
(unlabeled for language ID) obtaining perplexity values ranging
from 49.40 to 50.95. [2] is the first example of an SLM to in-
corporate a syntactical constraint (“the equivalence constraint”
[3] which states that “the order of constituents immediately ad-
jacent to the code-switching point must be the same in both
language’s grammars”) from the linguistics community. This
work achieved a word error rate of 35.2% and 45.9% in two
conversational speech corpora. In [4] the same authors incor-
porated the Functional Head Constraint [5] (which states that
code-switching cannot occur between a functional head and its
complement) and achieved further improvements in word error
rates of 33.70% and 43.58% on the same corpora.

[6] performed LM experiments using FLMs and RNNs on
the SEAME corpus of English and Mandarin code-switching.
They found that the RNNs achieved better results than FLMs
and demonstrated that LID and POS tags are useful features
for CS LM. However, their perplexity values were very high
(239.21 for the best single model and 192.08 for the best com-
bined model). In a similar vein as the work we present here,
[7] presented an analysis that shows that certain words and POS
tags are more likely to precede a code-switch; however their
proposed RNN model for LM ended up using only POS classes
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Table 1: Number of CS and monolingual utterances split by
utterances that contain a cognate or not.

Cognate
no yes

CS no 20,029 18,767
yes 1,037 1,937

Table 2: Number of CS and non-CS words split by cognate and
non cognate words.

Cognate
no yes

CS no 222,703 34,877
yes 3,740 453

and words as input, without any attempt to flag what type of
words were useful. [8] proposed that a multi-task learning ap-
proach to POS tagging and LM can help improve LM perfor-
mance and showed relative perplexity improvements of 9.7%
on the SEAME corpus. Similarly, [9] achieved some improve-
ments on the joint task of LID tagging and LM.

Work on cognates and their role in triggering CS by the
Australian linguist Michael Clyne [10, 11] [12], an expert on
bilingualism, proposed that cognate words can facilitate CS if
they occur immediately preceding or following a CS. A small
statistical analysis study in [13] confirmed that cognate words
do trigger a subsequent CS. In [14], we tested Clyne’s hypothe-
sis on the Miami Bangor corpus and proved with high statistical
significance that a) cognates and code-switches do tend to occur
in the same utterance; b) cognates are very likely to immediately
precede a code-switch, and c) there is a strong statistical rela-
tionship between code-switching and part-of-speech tags that
immediately precede or occur after a code-switch. In this paper,
we continue to investigate this relationship using cognate-based
features, POS tags and LID tags as input for the LM task.

3. The Miami Bangor Corpus
The Miami Bangor corpus is a conversational speech corpus
recorded from bilingual Spanish-English speakers living in Mi-
ami, FL. It includes 56 files of conversational speech from 84
speakers. The corpus consists of 242,475 transcribed words
(333,069 tokens included punctuation) and 35 hours of recorded
conversation. The manual transcripts include beginning and end
times of utterances and per word LID. Each token is tagged with
an LID label as English, Spanish, Ambiguous, Mixed, Punc-
tuation or Other. 53.48% of transcribed words are English,
27.28% Spanish, although this distribution is different for the
subset of CS utterances (38.98% and 46.12% tokens in English
and Spanish respectively). In [15], we crowdsourced part-of-
speech tags using the Universal POS Tagset [16] obtaining high
inter-annotator agreement (0.95).

The corpus, as normalized by us [17], has a total of 42,910
utterances of which 2,974 contain at least one code-switch
(7.12%) and 20,704 contain at least a cognate (49.57%). At the
word level, the corpus has a total of 4,193 code-switched words
(1.6%) and 35,330 cognate words (13.5%). The corpus can be
obtained from GitHub1. Tables 1 and 2 show contingency ta-
bles of the cognate and CS distribution across the corpus at the
utterance and word level respectively.

This dataset was split into train, development and test sets

1https://github.com/vsoto/crowdsourced_bangor

Table 3: Number of sentences and tokens in the full Miami Ban-
gor Corpus and each of its splits.

Split # Sents # Toks
Full 42.9K 321,630
Train 36,710 274,863
Dev 2,000 15,588
Test 4,200 31,179

for the experiments presented in Section 6. The size of each
split is detailed in Table 3.

4. Feature Engineering
4.1. Feature Extraction

In this paper we use the list L = {(ek, sk)} of English-Spanish
pairs of cognate words described in [14], which can be obtained
from Github2. Each entry in the list consists of an English word
ek and a Spanish word sk of the same cognate (e.g. “mathemat-
ics” and “matemáticas”). The list has a total of 3,423 cognate
word pairs, of which a total of 1,305 appear at least once in the
MB corpus. For each of these word pairs (ek, sk), we extract
the following set of features, fk

l = fl(e
k, sk) quantifying the

difference between cognate pairs in terms of spelling, pronun-
ciation, and meaning:

Spelling features: To compute these features we mea-
sured the distance or similarity between the sequence of let-
ters of the pair of cognates. Distances used include the Dam-
erau–Levenshtein (DLD), Hamming (HD), and Levenshtein
(LD) distance. We also computed the Jaro (JS) and Jaro-
Winkler (JWS) similarities. We also include a ‘perfect cognate’
feature which is 1 if the spelling is identical in Spanish and En-
glish (not accounting for tildes) and 0 otherwise. For exam-
ple for the cognate pairs “mathematics” and “matemáticas”, the
Levenshtein distance is 0.18.

Pronunciation features: These features reflect how differ-
ent the pronunciation between the pair of words is. We used the
CMU English pronunciation dictionary and Spanish pronuncia-
tion dictionary and trained a grapheme-to-phoneme system us-
ing the CMU Sphinx sequence-to-sequence system described
in [18]. Once all the pronunciations were obtained, we com-
puted the distance between both pronunciations using the Bi-
nary (BD), Hamming (HD), Jaccard (JD) and Levenshtein (LD)
distances.

Semantic features: These features are intended to reflect
how close in meaning the two words in each cognate pair are.
We used the MUSE bilingual word embeddings [19] and com-
puted the Euclidean (EUC) distance and the Cosine (COS) Sim-
ilarity between the cognate pairs. Only 15 cognate words that
appeared in the MB corpus were not covered by the bilingual
embeddings.

4.2. Feature Normalization

All the features not naturally bounded to [0, 1] were normalized
by the feature’s maximum possible value, which for most dis-
tances is the maximum sequence length of one of the cognates
in the pair. All the distance features were transformed into sim-
ilarities using a simple transformation sim = 1− dist.

2https://github.com/vsoto/cognates_en_es
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4.3. Statistical relationship between Code-switching and
Cognate Features

To analyze the relationship between CS and the cognate-based
features, and to determine if the features can be predictive of
code-switching behavior, we first looked at how similar the dis-
tribution of these features is when looking at the words sur-
rounding a code-switch and the rest of the utterance. To do
so, we ran the Kruskal-Wallis statistical test to compare the dis-
tribution of features with respect to their position relative to a
(labeled) code-switch. Kruskal-Wallis tests the null hypothesis
that the population medians for two or more groups are equal,
which can be rejected with a sufficiently small p-value. If the
distributions (medians) of two subgroups of feature values are
different enough, these features will be potentially usable for
code-switch detection and language modeling.

To run the statistical significance tests we assign feature val-
ues fl to every word wi in an utterance: If the word wi is a cog-
nate (ek, sk) present in the list of cognates, the word is given
the feature value fl(wi) = fl(e

k, sk); otherwise, the word is
assigned the minimum possible value for that feature, which
is zero. For example, for the phrase “very simpático”, where
“very” is not a cognate and “simpático” is a cognate in the list,
we would assign a zero to the first word and the pertinent fea-
ture value to the second word. We run the statistical test for each
feature described in Section 4.1 and in three different modalities
to compare the feature distributions of a) code-switched words
and the rest of words in an utterance; b) words that immediately
precede a code-switch and the rest of words in an utterance and
c) words that immediately follow a CS and the rest of the words
in the utterance.

Table 4: Statistical significance results of running the Kruskal-
Wallis test by ranks of all the features split into two groups.
Three pairs of groups are tested: words preceding a code-switch
and the rest of words, code-switched words and the rest of
words; and words following a code-switch and the rest. Check
marks Xindicate that there is a statistically significant differ-
ence between the distribution of the features values of the two
groups.

Group Feat. Prec CS After

Spelling

DL X X -
Hamming X X -

Jaro X X -
Jaro-Winkler X X -
Levenshtein X X -

Perfect X X -

Pron.

Binary - X -
Hamming X X -

Jaccard - X -
Levenshtein X X -

Semantic Cosine X X -
Euclidean X X -

Results of these tests are presented in Table 4. In this ta-
ble, each row contains the results from the Kruskal-Wallis test
for a given feature and each column specifies the distributions
that are being compared. Column 3 compares the feature distri-
butions of the words immediately preceding a code-switch and
the rest of the words in the corpus. Column 4 compares the
feature distributions of the code-switched words and the rest of
the words in the corpus; and column 5 compares the feature
distributions of the words immediately following a code-switch
and the rest of the words in the corpus. Check marks indicate
p-values p < 0.001.

Following the same trend that we observed in [14], the p-
values confirm that all engineered features values have different
median values when they precede a code-switch and when they
are code-switched; however, they do not present statistical dif-
ferences when they immediately follow a code-switch.

For the spelling features, all show significantly different
distributions when the word they are calculated from precedes
(10−19 < p < 10−15) or is itself a code-switch (10−20 < p <
10−8). Similarly for the pronunciation features, p-values range
from 10−22 < p < 10−10 for feature values of code-switched
words and 10−18 < p < 10−15 for feature values for words
immediately preceding a CS (Hamming and Levenshtein dis-
tance). Tests run on semantic features return smaller p-values
when focused on words preceding a switch (10−7 < p < 10−4)
but similar power on CS words (10−22 < p < 10−20). Over-
all, the largest differences were always found on the CS word
(perfect spelling, binary distance on pronunciation entries and
cosine similarity on word embeddings).

5. Factored Language Models
Factored Language Models (FLMs) [20] are language models
that encode each word wi in a sentence as a vector of k fac-
tors wi = (f1

i , . . . , f
k
i ) = f1:k

t = Fi, where each factor
can be a feature of the word, i.e. the language of the word or
its part-of-speech tag. An FLM is a directed graphical model
where p(Ft|Ft−l, . . . , Ft−1) can be factored into probabilities
of the form p(f |f1, . . . , fN ). An FLM is described by its back-
off graph, which shows the various backoff paths from the par-
ent node p(F |F1, . . . , FN ) to the child node P (F ). Given a
chosen backoff graph topology, FLMs can be trained using the
Generalized Parallel Backoff algorithm, which allows the lan-
guage model to back off on a single path or on multiple parallel
paths simultaneously during runtime.

For the experiments presented in this paper, we used the
FLM implementation in the SRILM toolkit [21, 22], which al-
lows for fast training and evaluation of FLMs. Some of the key
implementation issues when using FLMs are the choice of fac-
tors to use in the model and the design of the backoff graph.
Many factors go into the design of the backoff graph, includ-
ing: the topology of the graph (including the number of backoff
graph nodes, and the dependencies between them) and the dis-
counting, smoothing and combination options for each node.
Given all these design factors, finding the optimal FLM struc-
ture for a given corpus is a highly intractable problem. We use
GA-FLM [23], a genetic algorithm that searches over the space
of possible FLMs structures optimizing for development set per-
plexity. Specifically, for each of FLMs trained on the next sec-
tion, the GA-FLM was run on 10 generations, each one with a
population size of 100, with a cross-over probability of 0.9 and
a mutation probability of 0.01.

6. Experiments & Results
We start by training FLMs using exclusively word tokens and
the gold features we have on the MB corpus: LID and POS
tags. All FLMs are trained using features of two previous words
(3-grams). Table 5 shows the perplexity achieved by the base-
line tri-gram language models and by the same language mod-
els when adding the gold LID and POS features to the Bangor
Corpus. The addition of the LID and POS tags separately help
achieve similar improvements, from 73.57 down to 68.88 and
68.87 respectively. When used together the perplexity drops
much further to 59.28, proving that the two features are com-
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Table 5: Test set perplexity of FLMs trained on word trigrams
and LID and POS tags.

Model PP
W 73.57
W + LID 68.88
W + POS 68.87
W + LID + POS 59.28

plementary and equally useful for language modeling.
Table 6 shows the performance of a trigram FLM when

adding the cognate-based features. The top subtable shows the
LM performance when adding the cognate and perfect cognate
flags. In both cases perplexity improves with respect to the
73.57 baseline, but none of the features are as useful as LID or
POS tags for LM. The next three subtables show the perplexity
of the LM when adding just one of the spelling, pronunciation,
or semantic cognate-based features. For the lexical features, the
best performance is achieved when using the Jaro-Winkler dis-
tance between the English and Spanish cognates (65.35); for the
pronunciation features, the best performance is achieved when
using the Hamming distance (65.99); and for the semantic fea-
tures, both the cosine and euclidean distances perform similarly
(66.02). Comparing tables 5 and 6, the cognate-based features
can achieve better perplexity performance that the LID and POS
tags features when used separately. This is important because
LID and POS tags for this corpus were crowdsourced and ex-
pensive to obtain. However, no cognate-based feature helps
achieve similar performance as the combination of the manual
LID and POS tags.

Table 6: Test set perplexity of FLMs trained on word trigrams
and each of the cognate-based features.

Model PP
W + Cognate 70.17
W + Perfect Cognates 71.71
W + LEX(JWS) 65.35
W + LEX(LD) 65.88
W + LEX(DLD) 66.02
W + LEX(JS) 67.02
W + LEX(HD) 72.01
W + PRON(JD) 66.42
W + PRON(HD) 65.99
W + PRON(BD) 70.14
W + PRON(LD) 66.42
W + SEM(EUC) 66.02
W + SEM(COS) 66.02

Table 7 shows the perplexity performance of the FLM
models when adding a combination of the cognate-based fea-
tures. For each category (LEX, PRON and SEM) the best per-
forming feature from Table 6 was chosen. The table shows
that the combination of PRON+SEM, and the combination of
LEX+PRON+SEM helps improve the perplexity achieved by
the models shown in Table 6, although the gains are very small.
We hypothesize that the combination of LEX and PRON fea-
tures may not offer perplexity gains since the features are com-
puted very similarly (the first as the string distance and the sec-
ond as the distance between two phone sequences) whereas
adding the SEM feature always helps improve performance.
However, the addition of all cognate-based features does not

bring performance improvements comparable to the addition of
LID and POS tags (64.51 compared to 59.28).

Table 7: Test set perplexity of FLMs using a combination of two
or the three cognate-based features.

Model PP
W + LEX + PRON 66.23
W + LEX + SEM 65.90
W + PRON + SEM 64.95
W + LEX + PRON + SEM 64.51

We conclude the experiments by examining how much gain
we can obtain from adding the cognate-based features to the
LID and POS tags, which obtained a perplexity of 59.28 (see
table 5). We see that adding any subset of cognate features
adds value to the W+L+P model, with perplexity numbers rang-
ing from 58.30 to 59.17, although these improvements are very
small.

Table 8: Test set perplexity of FLMs using cognate flags, LID
and POS tags plus one set of one, two, or three cognate-based
features.

Model PP
W + C + L + P 58.85
W + C + L + P + PRON 58.32
W + C + L + P + SEM 58.32
W + C + L + P + LEX 58.75
W + C + L + P + LEX + PRON 58.30
W + C + L + P + LEX + SEM 59.17
W + C + L + P + PRON + SEM 60.01
W + C + L + P + LEX + PRON + SEM 58.84

7. Conclusions
In this paper, we have proposed a new set of features extracted
from lists of cognate words to improve CS detection. This set
of features describes the semantic, orthographic and phonetic
similarities across pairs of cognate words in English and Span-
ish. We first showed that there is a very high statistical relation-
ship between these features and CS, which signals their poten-
tial usefulness for CS language modeling. We then showed that
FLMs trained on these features achieve similar performance as
FLMs trained on gold features like LID and POS tags sepa-
rately. The three feature sets (semantic, orthographic and pho-
netic) do not appear to be very complementary and underper-
form when compared to the joint use of LID and POS tags,
however they are much simpler and less expensive to obtain.

For future work, we plan to develop apply our newly de-
veloped language models on automatic speech recognizers for
code-switched data.
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