Localized Error Detection Experiments Using Features Derived from ASR Hypotheses

Eli Pincus, Svetlana Stoyanchev, Julia Hirschberg

elipincus@gmail.com, sstoyanchev@cs.columbia.edu, julia@cs.columbia.edu

Columbia University Spoken Language Processing Lab

Introduction

- We investigate replacing generic clarification questions in automatic spoken dialog systems with targeted clarification questions.
- We conduct machine learning experiments to determine an optimal feature set for performing localized error detection.
- We experiment with lexical, positional, prosodic, semantic, and syntactic features.
- Current State of Dialog Systems: Ask generic clarification questions. Use recognizer's confidence for whole utterance.
- Goal of Localized Error Detection: Tokenize ASR hypothesis into correctly recognized segment(s) and incorrectly recognized segment(s) based on features derived from the hypotheses.
- Use correctly recognized segments to generate a targeted clarification question.

Data

- The DARPA TRANSTAC corpus is comprised of staged conversations between American military personnel and Arabic interviewees utilizing IraqComm speech-to-speech translation system.
- There are 3,952 total utterances and 25,333 total words in the corpus.

26.3 Incorrect ASR 93.6 Correct ASR 79.4 73.7 Wrds in err. Utts. All wrds. All utts.

Method & Feature Selection

- For all experiments we use a J48 decision tree classifier boosted with MultiBoostAB method.
- In order to derive optimal feature sets for incorrect utterance and incorrect word detection we perform 10-Fold cross validation classification experiments.
- We compare classification results from experiments using a baseline feature set to results from experiments using an expanded feature set.
- For utterance experiments, all utterances from the corpus are used. For word experiments, only words from incorrect utterances are used.

Baseline Utterance Feature Set

Average ASR confidence score for all words in utterance

Baseline Word Feature Set ASR confidence score for

current word

Optimal Feature Set for Utterance Misrecognition Prediction Avg ASR conf score for all words Utterance location within

- in utt
- Average word-length in utterance

Utterance length in words

- POS unigram & bigram count Ratio of function words to total words in utterance
- **Optimal Feature Set for Word Misrecognition Prediction**

Utterance length in words ASR conf score for current word

- Avg ASR conf score for current, previous, and next word if present
- Avg ASR conf score for all words in utt
- Word length in letters Frequency of longest word in
- utterance
- Utterance location within

corpus

- corpus Word distance from sentence start
- POS tag (curr, prev, next)
- Func/Content tag (curr, prev, next)
- Ratio of func words to total words in utterance

Features Experimented with but not Present in **Optimal Sets**

- Information associated with minimum-length word In utterance
- Fraction of words in utt with greater length than avg-length word in utt
- Syntactic features such as dependency tag of current word
- shimmer, pitch, and phrase information Semantic information obtained

Prosodic features such as jitter,

from a semantic role labeling of data

Utterance Feature Experiment Results (Precision Pecall E-Measure for Correct & Incorrectly Pecanized Litts)

(Precision, Recall, F-Ivieusure for Correct & Incorrectly Recognized Otts)				
Experiment	correct P-R-F	incorrect P-R-F	% F-Measure Incorrect Imp over ASR Only	
Baseline utt feature set	.893930911	.678571620	-	85.5%
Utt optimal feature set	.897941918	.719584644	3.9%	86.7%

Word Foature Experiment Deculte

vvora	reature Expe	riment kesuit	.S	
(Precision, Recall, F-Meas	sure for Correc	ct & Incorrect	y Recognized W	ords)
		:	% F-Measure	

, ,			<u>, </u>	
Experiment	correct P-R-F	incorrect P-R-F	% F-Measure Incorrect Imp over ASR Only	Accur.
Baseline word feature set	.845912877	.682531597	-	81.2%
Word optimal feature set	.851906878	.678555610	2.2%	83.3%

- To simulate actual performance we conduct 1-stage and 2-stage experiments by splitting up the data; 80% training, 20% test.
- For 1-stage Experiments, we classify each word in the corpus.
- For 2-stage experiments we first classify all utterances as correct or incorrect, and then only classify the words in the utterances classified as incorrect.

Experiment Results

• The 2-stage (no up-sampling) approach yields the highest precision for detection of word mis-recognition at 51%.

Localized Error Detection Results (Precision, Recall, F-Meas, for Correct & Incorr, Recognized Words)

(Precision, Recail, F-Ivieas. Jor Correct & Incorr. Recognized Words)			
	Correct P-R-F	Incorrect P-R-F	Accuracy
Majority baseline	.94-1.0097	0	94%
1-stage orig.	.979496	.395746	92%
1-stage (35% Up Sampling)	.989094	.317244	89%
2-stage orig.	.969897	.513441	94%
2-stage (35% Up Sampling)	.969696	.414643	93%

Conclusion & Future Work

- We have conducted feature selection experiments to find optimal feature sets to train classifiers for utterance and word mis-recognition prediction.
- We find that certain lexical, positional, and syntactic features improve classification results over a baseline feature set containing only ASR posterior score features.
- In future work we will experiment with additional corpora as well as further investigate the construction of reprise clarification questions by conducting mech. turk experiments.
- We will also experiment with new features derived from the word lattice result of the ASR.