
Internet Engineering Task Force MMUSIC WG
INTERNET-DRAFT Handley/Schulzrinne/Schooler/Rosenberg
draft-ietf-mmusic-sip-07.ps ISI/Columbia U./Caltech/Bell Labs.

July 16, 1998
Expires: December 1998

SIP: Session Initiation Protocol

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress”.

To learn the current status of any Internet-Draft, please check the “1id-abstracts.txt” listing contained
in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au
(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Distribution of this document is unlimited.

Copyright Notice

Copyright (c) The Internet Society (1998). All Rights Reserved.

Abstract

The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creat-
ing, modifying and terminating sessions with one or more participants. These sessions include Internet
multimedia conferences, Internet telephone calls and multimedia distribution. Members in a session can
communicate via multicast or via a mesh of unicast relations, or a combination of these.

SIP invitations used to create sessions carry session descriptions which allow participants to agree
on a set of compatible media types. It supports user mobility by proxying and redirecting requests to
the user’s current location. Users can register their current location. SIP is not tied to any particular
conference control protocol. SIP is designed to be independent of the lower-layer transport protocol and
can be extended with additional capabilities.

This document is a product of the Multi-party Multimedia Session Control (MMUSIC) working
group of the Internet Engineering Task Force. Comments are solicited and should be addressed to the
working group’s mailing list at confctrl@isi.edu and/or the authors.

Contents

1 Introduction 6
1.1 Overview of SIP Functionality. 6
1.2 Terminology . 7
1.3 Definitions . 7
1.4 Summary of SIP Operation . 9

1.4.1 SIP Addressing . 10
1.4.2 Locating a SIP Server . 10
1.4.3 SIP Transaction . 11
1.4.4 SIP Invitation . 12

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

1.4.5 Locating a User . 13
1.4.6 Changing an Existing Session . 14
1.4.7 Registration Services . 14

1.5 Protocol Properties. 14
1.5.1 Minimal State . 14
1.5.2 Lower-Layer-Protocol Neutral . 14
1.5.3 Text-Based . 15

2 SIP Uniform Resource Locators 15

3 SIP Message Overview 18

4 Request 20
4.1 Request-Line . 21
4.2 Methods. 21

4.2.1 INVITE . 21
4.2.2 ACK . 21
4.2.3 OPTIONS . 22
4.2.4 BYE . 22
4.2.5 CANCEL . 22
4.2.6 REGISTER . 23

4.3 Request-URI . 24
4.3.1 SIP Version . 24

4.4 Option Tags . 25
4.4.1 Registering New Option Tags with IANA . 25

5 Response 25
5.1 Status-Line . 26

5.1.1 Status Codes and Reason Phrases . 26

6 Header Field Definitions 27
6.1 General Header Fields . 30
6.2 Entity Header Fields . 30
6.3 Request Header Fields . 30
6.4 Response Header Fields 30
6.5 End-to-end and Hop-by-hop Headers . 30
6.6 Header Field Format . 31
6.7 Accept . 31
6.8 Accept-Encoding . 31
6.9 Accept-Language . 31
6.10 Allow . 32
6.11 Authorization . 32
6.12 Call-ID . 32
6.13 Content-Encoding . 33
6.14 Content-Length . 33
6.15 Content-Type . 33

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 2]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

6.16 CSeq . 34
6.17 Date . 34
6.18 Encryption . 35
6.19 Expires . 36
6.20 From . 36
6.21 Hide . 37
6.22 Location . 37
6.23 Max-Forwards . 39
6.24 Organization . 39
6.25 Priority . 39
6.26 Proxy-Authenticate . 40
6.27 Proxy-Authorization . 40
6.28 Proxy-Require . 40
6.29 Record-Route . 40
6.30 Require . 41
6.31 Response-Key . 42
6.32 Retry-After . 42
6.33 Route . 43
6.34 Server . 43
6.35 Subject . 43
6.36 Timestamp . 43
6.37 To . 43
6.38 Unsupported . 44
6.39 User-Agent . 44
6.40 Via . 44

6.40.1 Requests . 44
6.40.2 Receiver-taggedVia Fields . 45
6.40.3 Responses .. 45
6.40.4 Syntax . 45

6.41 Warning . 46
6.42 WWW-Authenticate . 48

7 Status Code Definitions 48
7.1 Informational 1xx . 48

7.1.1 100 Trying . 48
7.1.2 180 Ringing . 48
7.1.3 181 Call Is Being Forwarded . 49
7.1.4 182 Queued . 49

7.2 Successful 2xx . 49
7.2.1 200 OK . 49

7.3 Redirection 3xx . 49
7.3.1 300 Multiple Choices. 49
7.3.2 301 Moved Permanently . 50
7.3.3 302 Moved Temporarily. 50
7.3.4 380 Alternative Service . 50

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 3]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

7.4 Request Failure 4xx . 50
7.4.1 400 Bad Request . 50
7.4.2 401 Unauthorized . 50
7.4.3 402 Payment Required . 50
7.4.4 403 Forbidden . 51
7.4.5 404 Not Found 51
7.4.6 405 Method Not Allowed . 51
7.4.7 406 Not Acceptable .. 51
7.4.8 407 Proxy Authentication Required . 51
7.4.9 408 Request Timeout . 51
7.4.10 414 Request-URI Too Long . 51
7.4.11 415 Unsupported Media Type .. 51
7.4.12 420 Bad Extension . 51
7.4.13 480 Temporarily Unavailable . .. 52
7.4.14 481 Invalid Call-ID .. 52
7.4.15 482 Loop Detected . 52
7.4.16 483 Too Many Hops . 52
7.4.17 484 Address Incomplete . 52
7.4.18 485 Ambiguous 52

7.5 Server Failure 5xx . 53
7.5.1 500 Server Internal Error . 53
7.5.2 501 Not Implemented . 53
7.5.3 502 Bad Gateway . 53
7.5.4 503 Service Unavailable . 53
7.5.5 504 Gateway Timeout . 53
7.5.6 505 Version Not Supported 53

7.6 Global Failures 6xx . 53
7.6.1 600 Busy . 54
7.6.2 603 Decline . 54
7.6.3 604 Does Not Exist Anywhere . 54
7.6.4 606 Not Acceptable .. 54

8 SIP Message Body 54
8.1 Body Inclusion . 54
8.2 Message Body Type . 54
8.3 Message Body Length . 55

9 Compact Form 55

10 SIP Transport 56
10.1 General Remarks . 56

10.1.1 Requests . 56
10.1.2 Responses .. 56

10.2 Source Addresses, Destination Addresses and Connections 57
10.2.1 Unicast UDP . 57

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 4]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

10.2.2 Multicast UDP . 57
10.3 TCP . 57
10.4 Reliability forBYE, CANCEL, OPTIONS, REGISTER Requests 58

10.4.1 UDP . 58
10.4.2 TCP . 58

10.5 Reliability forACK Requests . 58
10.6 Reliability forINVITE Requests . 58

10.6.1 UDP . 59
10.6.2 TCP . 59

11 Behavior of SIP Servers 60
11.1 Redirect Server . 60
11.2 User Agent Server . 61
11.3 Stateless Proxy: Proxy Servers Issuing Single Unicast Requests. 61
11.4 Proxy Server Issuing Several Requests . 62

12 Security Considerations 66
12.1 Confidentiality and Privacy: Encryption. 66

12.1.1 End-to-End Encryption . 66
12.1.2 Privacy of SIP Responses. 68
12.1.3 Encryption by Proxies . 68
12.1.4 Hop-by-Hop Encryption . 68
12.1.5 Via field encryption . 68

12.2 Message Integrity and Access Control: Authentication 69
12.2.1 Trusting responses .. 70

12.3 Callee Privacy . 71
12.4 Known Security Problems .. 71

13 SIP Security Using PGP 71
13.1 PGP Authentication Scheme . 71

13.1.1 TheWWW-Authenticate Response Header. 72
13.1.2 TheAuthorization Request Header . 72

13.2 PGP Encryption Scheme . 73
13.3 Response-Key Header Field for PGP . 73

14 Examples 74
14.1 Registration . 74
14.2 Invitation to Multicast Conference . 75

14.2.1 Request . 75
14.2.2 Response .. 76

14.3 Two-party Call . 77
14.4 Terminating a Call . 78
14.5 Forking Proxy . 79
14.6 Redirects . 82
14.7 Alternative Services . 83
14.8 Negotiation . 84

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 5]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

14.9 OPTIONS Request . 84

A Minimal Implementation 85
A.1 Client . 85
A.2 Server . 85
A.3 Header Processing . 86

B Usage of SDP 86

C Summary of Augmented BNF 87

D IANA Considerations 88

E Changes in Version -07 88

F Acknowledgments 89

G Authors’ Addresses 89

1 Introduction

1.1 Overview of SIP Functionality

The Session Initiation Protocol (SIP) is an application-layer control protocol that can establish, modify and
terminate multimedia sessions or calls. These multimedia sessions include multimedia conferences, distance
learning, Internet telephony and similar applications. SIP can invite both persons and “robots”, such as a
media storage service. SIP can invite parties to both unicast and multicast sessions; the initiator does not
necessarily have to be a member of the session to which it is inviting. Media and participants can be added
to an existing session.

SIP can be used to initiate sessions as well as invite members to sessions that have been advertised and
established by other means. Sessions may be advertised using multicast protocols such as SAP, electronic
mail, news groups, web pages or directories (LDAP), among others.

SIP transparently supports name mapping and redirection services, allowing the implementation of
ISDN and Intelligent Network telephony subscriber services. These facilities also enablepersonal mobility.
In the parlance of telecommunications intelligent network services, this is defined as: “Personal mobility
is the ability of end users to originate and receive calls and access subscribed telecommunication services
on any terminal in any location, and the ability of the network to identify end users as they move. Personal
mobility is based on the use of a unique personal identity (i.e., ’personal number’).” [1, p. 44]. Personal
mobility complements terminal mobility, i.e., the ability to maintain communications when moving a single
end system from one subnet to another.

SIP supports five facets of establishing and terminating multimedia communications:

User location: determination of the end system to be used for communication;

User capabilities: determination of the media and media parameters to be used;

User availability: determination of the willingness of the called party to engage in communications;

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 6]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Call setup: “ringing”, establishment of call parameters at both called and calling party;

Call handling: including transfer and termination of calls.

SIP can also initiate multi-party calls using a multipoint control unit (MCU) or fully-meshed intercon-
nection instead of multicast. Internet telephony gateways that connect PSTN parties may also use SIP to set
up calls between them.

SIP is designed as part of the overall IETF multimedia data and control architecture currently incorporat-
ing protocols such as RSVP (RFC 2205 [2]) for reserving network resources, the real-time transport protocol
(RTP) (RFC 1889 [3]) for transporting real-time data and providing QOS feedback, the real-time streaming
protocol (RTSP) (RFC 2326 [4]) for controlling delivery of streaming media, the session announcement
protocol (SAP) for advertising multimedia sessions via multicast and the session description protocol (SDP)
(RFC 2327 [5]) for describing multimedia sessions. However, the functionality and operation of SIP does
not depend on any of these protocols.

SIP may also be used in conjunction with other call setup and signaling protocols. In that mode, an
end system uses SIP exchanges to determine the appropriate end system address and protocol from a given
address that is protocol-independent. For example, SIP could be used to determine that the party may
be reached via H.323, obtain the H.245 gateway and user address and then use H.225.0 to establish the
call. In another example, it may be used to determine that the callee is reachable via the public switched
telephone network (PSTN) and indicate the phone number to be called, possibly suggesting an Internet-to-
PSTN gateway to be used.

SIP does not offer conference control services such as floor control or voting and does not prescribe how
a conference is to be managed, but SIP can be used to introduce conference control protocols. SIP does not
allocate multicast addresses.

SIP can invite users to sessions with and without resource reservation. SIP does not reserve resources,
but may convey to the invited system the information necessary to do this. Quality-of-service guarantees, if
required, may depend on knowing the full membership of the session; this information may or may not be
known to the agent performing session invitation.

1.2 Terminology

In this document, the key words “MUST”, “ MUST NOT”, “ REQUIRED”, “ SHALL”, “ SHALL NOT”, “ SHOULD”,
“ SHOULD NOT”, “ RECOMMENDED”, “ MAY ”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [6] and indicate requirement levels for compliant SIP implementations.

1.3 Definitions

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
The definitions of client, server and proxy are similar to those used by the Hypertext Transport Protocol
(HTTP) (RFC 2068 [7]). The following terms have special significance for SIP.

Call: A call consists of all participants in a conference invited by a common source. A SIP call is identified
by a globally unique call-id (Section 6.12). Thus, if a user is, for example, invited to the same
multicast session by several people, each of these invitations will be a unique call. A point-to-point
Internet telephony conversation maps into a single SIP call. In a MCU-based call-in conference, each
participant uses a separate call to invite himself to the MCU.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 7]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Call leg: A call leg is identified by the combination ofCall-ID, To andFrom.

Client: An application program that establishes connections for the purpose of sending requests. Clients
may or may not interact directly with a human user.User agentsandproxiescontain clients (and
servers).

Conference: A multimedia session (see below), identified by a common session description. A conference
may have zero or more members and includes the cases of a multicast conference, a full-mesh confer-
ence and a two-party “telephone call”, as well as combinations of these. Any number of calls may be
used to create a conference.

Downstream: Requests sent in the direction from the caller to the callee.

Final response: A response that terminates a SIP transaction, as opposed to aprovisional responsethat
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Initiator, calling party, caller: The party initiating a conference invitation. Note that the calling party does
not have to be the same as the one creating the conference.

Invitation: A request sent to a user (or service) requesting participation in a session. A successful SIP
invitation consists of two transactions: anINVITE request followed by anACK request.

Invitee, invited user, called party, callee: The person or service that the calling party is trying to invite to
a conference.

Isomorphic request or response:Two requests or responses are defined to beisomorphicfor the purposes
of this document if they have the same values for theCall-ID, To, From andCSeq header fields. In
addition, requests have to have the sameRequest-URI.

Location server: Seelocation service.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about a
callee’s possible location(s). Location services are offered by location servers. Location servers may
be co-located with a SIP server, but the manner in which a SIP server requests location services is
beyond the scope of this document.

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiv-
ing an incoming request. Rather than issuing one request and then waiting for the final response before
issuing the next request as in asequential search, a parallel search issues requests without waiting for
the result of previous requests.

Provisional response:A response used by the server to indicate progress, but that does not terminate a SIP
transaction. 1xx responses are provisional, other responses are consideredfinal.

Proxy, proxy server: An intermediary program that acts as both a server and a client for the purpose of
making requests on behalf of other clients. Requests are serviced internally or by passing them on,
possibly after translation, to other servers. A proxy must interpret, and, if necessary, rewrite a request
message before forwarding it.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 8]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Redirect server: A redirect server is a server that accepts a SIP request, maps the address into zero or more
new addresses and returns these addresses to the client. Unlike aproxy server, it does not initiate its
own SIP request. Unlike auser agent server, it does not accept calls.

Registrar: A registrar is server that acceptsREGISTER requests. A registrar is typically co-located with
a proxy or redirect server and may offer location services.

Ringback: Ringback is the signaling tone produced by the calling client’s application indicating that a
called party is being alerted (ringing).

Server: A server is an application program that accepts requests in order to service requests and sends back
responses to those requests. Servers are either proxy, redirect or user agent servers or registrars.

Session: “A multimedia session is a set of multimedia senders and receivers and the data streams flowing
from senders to receivers. A multimedia conference is an example of a multimedia session.” (RFC
2327 [5]) (A session as defined for SDP may comprise one or more RTP sessions.) As defined, a
callee may be invited several times, by different calls, to the same session. If SDP is used, a session
is defined by the concatenation of theuser name, session id, network type, address typeandaddress
elements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client. A transaction is identified by theCSeq sequence number (Section 6.16) within a single
call leg. The ACK request has the sameCSeq number as the correspondingINVITE request, but
comprises a transaction of its own.

Upstream: Responses sent in the direction from the called client to the caller.

URL-encoded: A character string encoded according to RFC 1738, Section 2.2 [8].

User agent client (UAC), calling user agent:A user agent client is a client application that initiates the
SIP request.

User agent server (UAS), called user agent:A user agent server is a server application that contacts the
user when a SIP request is received and that returns a response on behalf of the user. The response
may accept, reject or redirect the request.

An application program may be capable of acting both as a client and a server. For example, a typical
multimedia conference control application would act as a user agent client to initiate calls or to invite others
to conferences and as a user agent server to accept invitations. The properties of the different SIP server
types are summarized in Table 1.

1.4 Summary of SIP Operation

This section explains the basic protocol functionality and operation. Callers and callees are identified by
SIP addresses, described in Section 1.4.1. When making a SIP call, a caller first locates the appropriate
server (Section 1.4.2) and then sends a SIP request (Section 1.4.3). The most common SIP operation is the
invitation (Section 1.4.4). Instead of directly reaching the intended callee, a SIP request may be redirected
or may trigger a chain of new SIP requests by proxies (Section 1.4.5). Users can register their location(s)
with SIP servers (Section 4.2.6).

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 9]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

property redirect proxy user agent registrar
server server server

also acts as a SIP client no yes no no
returns1xx status yes yes yes rare
returns2xx status no yes yes yes
returns3xx status yes yes yes yes
returns4xx status yes yes yes yes
returns5xx status yes yes yes yes
returns6xx status no yes yes no
insertsVia header no yes no no
acceptsACK yes yes yes no

Table 1: Properties of the different SIP server types

1.4.1 SIP Addressing

The “objects” addressed by SIP are users at hosts, identified by a SIP URL. The SIP URL takes the form
similar to a mailto or telnet URL, i.e.,user@host. Theuserpart is a user name, a civil name or a telephone
number. Thehostpart is either a domain name having a DNS SRV (RFC 2052 [9]), MX (RFC 974 [10],
CNAME or A record (RFC 1035 [11]), or a numeric network address.

A user’s SIP address can be obtained out-of-band, can be learned via existing media agents, can be
included in some mailers’ message headers, or can be recorded during previous invitation interactions. In
many cases, a user’s SIP URL can be guessed from his email address.

Examples of SIP URLs include:

sip:mjh@metro.isi.edu
sip:watson@bell-telephone.com
sip:root@193.175.132.42
sip:info@ietf.org

A SIP URL address can designate an individual (possibly located at one of several end systems),
the first available person from a group of individuals or a whole group. The form of the address, e.g.,
sip:sales@example.com , is not sufficient, in general, to determine the intent of the caller.

If a user or service chooses to be reachable at an address that is guessable from the person’s name and
organizational affiliation, the traditional method of ensuring privacy by having an unlisted “phone” number
is compromised. However, unlike traditional telephony, SIP offers authentication and access control mecha-
nisms and can avail itself of lower-layer security mechanisms, so that client software can reject unauthorized
or undesired call attempts.

1.4.2 Locating a SIP Server

A SIP clientMUST follow the following steps to resolve thehostpart of a callee address. If a client supports
only TCP or UDP, but not both, the client omits the respective address type. If the SIP address contains a
port number, that number is to be used, otherwise, the default port number 5060 is to be used. The default
port number is the same for UDP and TCP. In all cases, the client first attempts to contact the server using

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 10]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

UDP, then TCP.
A client SHOULD rely on ICMP “Port Unreachable” messages rather than time-outs to determine that a

server is not reachable at a particular address. (For socket-based programs: For TCP,connect() returns
ECONNREFUSEDif there is no server at the designated address; for UDP, the socket should be bound to the
destination address usingconnect() rather thansendto() or similar so that a secondwrite() fails
with ECONNREFUSED.)

If the SIP address contains a numeric IP address, the client contacts the SIP server at that address.
Otherwise, the client follows the steps below.

1. If there is a SRV DNS resource record (RFC 2052 [9]) of typesip.udp, contact the listed SIP servers
in the order of the preference values contained in those resource records, using UDP as a transport
protocol at the port number given in the URL or, if none provided, the one listed in the DNS resource
record.

2. If there is a SRV DNS resource record (RFC 2052 [9]) of typesip.tcp, contact the listed SIP servers
in the order of the preference value contained in those resource records, using TCP as a transport
protocol at the port number given in the URL or, if none provided, the one listed in the DNS resource
record.

3. If there is a DNS MX record (RFC 974 [10]), contact the hosts listed in their order of preference at
the port number listed in the URL or the default SIP port number if none. For each host listed, first
try to contact the SIP server using UDP, then TCP.

4. Finally, check if there is a DNS CNAME or A record for the givenhostand try to contact a SIP server
at the one or more addresses listed, again trying first UDP, then TCP.

If all of the above methods fail to locate a server, the callerMAY contact an SMTP server at the user’s
hostand use the SMTPEXPN command to obtain an alternate address and repeat the steps above. As a last
resort, a clientMAY choose to deliver the session description to the callee using electronic mail.

A client MAY cache the result of the reachability steps for a particular address and retry that host address
for the next call. If the client does not find a SIP server at the cached address, itMUST start the search at the
beginning of the sequence.

This sequence is modeled after that described for SMTP, where MX records are to be checked before A records
(RFC 1123 [12]).

1.4.3 SIP Transaction

Once thehostpart has been resolved to a SIP server, the client sends one or more SIP requests to that server
and receives one or more responses from the server. A request (and its retransmissions) together with the
responses triggered by that request make up a SIP transaction. TheACK request following anINVITE is
not part of the transaction since it may traverse a different set of hosts.

If TCP is used, request and responses within a single SIP transaction are carried over the same TCP
connection (see Section 10). Several SIP requests from the same client to the same server may use the same
TCP connection or may open a new connection for each request.

If the client sent the request via unicast UDP, the response is sent to the address contained in the nextVia
header field (Section 6.40) of the response. If the request is sent via multicast UDP, the response is directed

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 11]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

to the same multicast address and destination port. For UDP, reliability is achieved using retransmission
(Section 10).

The SIP message format and operation is independent of the transport protocol.

1.4.4 SIP Invitation

A successful SIP invitation consists of two requests,INVITE followed byACK. TheINVITE (Section 4.2.1)
request asks the callee to join a particular conference or establish a two-party conversation. After the callee
has agreed to participate in the call, the caller confirms that it has received that response by sending anACK
(Section 4.2.2) request. If the caller no longer wants to participate in the call, it sends aBYE request instead
of anACK.

TheINVITE request typically contains a session description, for example written in SDP (RFC 2327 [5])
format, that provides the called party with enough information to join the session. For multicast sessions,
the session description enumerates the media types and formats that may be distributed to that session. For
a unicast session, the session description enumerates the media types and formats that the caller is willing
to receive and where it wishes the media data to be sent. In either case, if the callee wishes to accept the
call, it responds to the invitation by returning a similar description listing the media it wishes to receive. For
a multicast session, the callee should only return a session description if it is unable to receive the media
indicated in the caller’s description or wants to receive data via unicast.

The protocol exchanges for theINVITE method are shown in Fig. 1 for a proxy server and in Fig. 2 for
a redirect server. (Note that the messages shown in the figures have been abbreviated slightly.) In Fig. 1,
the proxy server accepts theINVITE request (step 1), contacts the location service with all or parts of the
address (step 2) and obtains a more precise location (step 3). The proxy server then issues a SIPINVITE
request to the address(es) returned by the location service (step 4). The user agent server alerts the user (step
5) and returns a success indication to the proxy server (step 6). The proxy server then returns the success
result to the original caller (step 7). The receipt of this message is confirmed by the caller using anACK
request, which is forwarded to the callee (steps 8 and 9). All requests and responses have the sameCall-ID.

1

2

200 OK

From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

Call-ID: 19970827@lion.cs

ACK hgs@play

From: cz@cs.tu-berlin.de
200 OK

To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

From: cz@cs.tu-berlin.de

From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu

Call-ID: 19970827@lion.cs

INVITE henning@cs.columbia.edu
From: cz@cs.tu-berlin.de

Call-ID: 19970827@lion.cs

INVITE hgs@play

ACK henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

To: henning@cs.columbia.eduTo: henning@cs.columbia.edu

?

he
nn

in
g

hg
s@

pl
ay

cs.columbia.edu

tunelion

hgsplay

location server

3

cz@cs.tu-berlin.de

cs.tu-berlin.de

6

4
5

7

8 9

Figure 1: Example of SIP proxy server

The redirect server shown in Fig. 2 accepts theINVITE request (step 1), contacts the location service as
before (steps 2 and 3) and, instead of contacting the newly found address itself, returns the address to the

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 12]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

caller (step 4), which is then acknowledged via anACK request (step 5). The caller issues a new request,
with the samecall-ID but a higherCSeq, to the address returned by the first server (step 6). In the example,
the call succeeds (step 7). The caller and callee complete the handshake with anACK (step 8).

1 2 3

4

8

200 OK
From: cz@cs.tu-berlin.de
To: henning @cs.columbia.edu
Call-ID: 970827@lion.cs

7

INVITE hgs@play.cs.columbia.edu
From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 970827@lion.cs

5

6

cz@cs.tu-berlin

?

he
nn

in
g

pl
ay

.c
s.

co
lu

m
bi

a.
ed

u
play

hgs@play

cs.columbia.edu

tune

cs.tu-berlin.de

lion

Call-ID: 970827@lion.cs
To: henning @cs.columbia.edu
From: cz@cs.tu-berlin.de
Location: hgs@play.cs.columbia.edu
302 Moved temporarily

Call-ID: 970827@lion.cs
To: henning@cs.columbia.edu
From: cz@cs.tu-berlin.de
INVITE henning@cs.columbia.edu

location server

Call-ID: 970827@lion.cs
ACK hgs@play.cs.columbia.edu

ACK henning@cs.columbia.edu

Figure 2: Example of SIP redirect server

The next section discusses what happens if the location service returns more than one possible alterna-
tive.

1.4.5 Locating a User

A callee may move between a number of different end systems over time. These locations can be dy-
namically registered with the SIP server (Sections 1.4.7, 4.2.6). A location server may also use one or
more other protocols, such as finger (RFC 1288 [13]), rwhois (RFC 2167 [14]), LDAP (RFC 1777 [15]),
multicast-based protocols [16] or operating-system dependent mechanisms to actively determine the end
system where a user might be reachable. A location server may return several locations because the user is
logged in at several hosts simultaneously or because the location server has (temporarily) inaccurate infor-
mation. The SIP server combines the results to yield a list of a zero or more locations. It is recommended

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 13]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

that each location server sorts results according to the likelihood of success.
The action taken on receiving a list of locations varies with the type of SIP server. A SIP redirect server

returns the list to the client asLocation headers (Section 6.22). A SIP proxy server can sequentially or in
parallel try the addresses until the call is successful (2xx response) or the callee has declined the call (6xx
response). With sequential attempts, a proxy server can implement an “anycast” service.

If a proxy server forwards a SIP request, itMUST add itself to the end of the list of forwarders noted
in theVia (Section 6.40) headers. TheVia trace ensures that replies can take the same path back, ensuring
correct operation through compliant firewalls and avoiding request loops. On the response path, each host
MUST remove itsVia, so that routing internal information is hidden from the callee and outside networks.
When a multicast request is made, first the host making the request, then the multicast address itself are
added to the path. A proxy serverMUST check that it does not generate a request to a host listed in theVia
list. (Note: If a host has several names or network addresses, this may not always work. Thus, each host
also checks if it is part of theVia list.)

A SIP invitation may traverse more than one SIP proxy server. If one of these “forks” the request, i.e.,
issues more than one request in response to receiving the invitation request, it is possible that a client is
reached, independently, by more than one copy of the invitation request. Each of these copies bears the
sameCall-ID. The user agentMUST return the appropriate status response. Duplicate requests are not an
error.

1.4.6 Changing an Existing Session

In some circumstances, it may be necessary to change the parameters of an existing session. For example,
two parties may have been conversing and then want to add a third party, switching to multicast for efficiency.
One of the participants invites the third party with the new multicast address and simultaneously sends an
INVITE to the second party, with the new multicast session description, but with the old call identifier.

1.4.7 Registration Services

TheREGISTER request allows a client to let a proxy or redirect server know at which address(es) it may
be reached. A client may also use it to install call handling features at the server.

1.5 Protocol Properties

1.5.1 Minimal State

A single conference session or call may involve one or more SIP request-response transactions. Proxy
servers do not have to keep state for a particular call, however, theyMAY maintain state for a single SIP
transaction, as discussed in Section 11.

For efficiency, a server may cache the results of location service requests.

1.5.2 Lower-Layer-Protocol Neutral

SIP makes minimal assumptions about the underlying transport and network-layer protocols. The lower-
layer may provide either a packet or a byte stream service, with reliable or unreliable service.

In an Internet context, SIP is able to utilize both UDP and TCP as transport protocols, among others.
UDP allows the application to more carefully control the timing of messages and their retransmission, to
perform parallel searches without requiring TCP connection state for each outstanding request, and to use

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 14]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

multicast. Routers can more readily snoop SIP UDP packets. TCP allows easier passage through existing
firewalls, and given the similar protocol design, allows common servers for SIP, HTTP and the Real Time
Streaming Protocol (RTSP) (RFC 2326 [4]).

When TCP is used, SIP can use one or more connections to attempt to contact a user or to modify
parameters of an existing conference. Different SIP requests for the same SIP call may use different TCP
connections or a single persistent connection, as appropriate.

For concreteness, this document will only refer to Internet protocols. However, SIP may also be used
directly with protocols such as ATM AAL5, IPX, frame relay or X.25. The necessary naming conventions
are beyond the scope of this document. User agentsSHOULD implement both UDP and TCP transport,
proxy and redirect serversMUST.

1.5.3 Text-Based

SIP is text-based, using ISO 10646 in UTF-8 encoding throughout. This allows easy implementation in
languages such as Java, Tcl and Perl, allows easy debugging, and most importantly, makes SIP flexible
and extensible. As SIP is used for initiating multimedia conferences rather than delivering media data, it is
believed that the additional overhead of using a text-based protocol is not significant.

2 SIP Uniform Resource Locators

SIP URLs are used within SIP messages to indicate the originator (From), current destination (Request-
URI) and final recipient (To) of a SIP request, and to specify redirection addresses (Location). A SIP URL
can also be embedded in web pages or other hyperlinks to indicate that a user or service may be called.

Because interaction with some resources may require message headers or message bodies to be specified
as well as the SIP address, the SIP URL scheme is defined to allow setting SIPrequest-header fields and
the SIPmessage-body.

A SIP URL follows the guidelines of RFC 1630 [17], as revised [18], and has the syntax shown in Fig. 3.
Note thatreserved characters have to be escaped.

The URI character classes referenced above are described in Section C. The URI specification is cur-
rently being revised. It is anticipated that future versions of this specification will reference the revised
edition. Note that all URL reserved charactersMUST be encoded.

host: Themailto: URL and RFC 822 email addresses require that numeric host addresses (“host numbers”)
are enclosed in square brackets (presumably, since host names might be numeric), while host numbers
without brackets are used for all other URLs. The SIP URL requires the latter form, without brackets.

userinfo: The SIP schemeMAY use the format “user:password” in the userinfo field. The use of pass-
words in theuserinfo is NOT RECOMMENDED, because the passing of authentication information in
clear text (such as URIs) has proven to be a security risk in almost every case where it has been used.

If the host is an Internet telephony gateway, theuserinfo field can also encode a telephone number
using the notation oftelephone-subscriber (Fig. 4). The telephone number is a special case of a
user name and cannot be distinguished by a BNF. Thus, a URL parameter,user, is added to distin-
guish telephone numbers from user names. Thephone identifier is to be used when connecting to
a telephony gateway. Even without this parameter, recipients of SIP URLsMAY interpret the pre-@
part as a phone number if local restrictions on the name space for user name allow it.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 15]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

SIP-URL = ”sip:” [userinfo] ”@” hostport
url-parameters [headers]

userinfo = user [”:” password]
user = *(unreserved | escaped |

”;” | ”&” | ”=” | ”+” | ”$” | ”,”)
password = *(unreserved | escaped |

”;” | ”&” | ”=” | ”+” | ”$” | ”,”)
hostport = host [”:” port]
host = hostname | IPv4address
hostname = *(domainlabel ”.”) toplabel [”.”]
domainlabel = alphanum

| alphanum *(alphanum | ”-”) alphanum
toplabel = alpha | alpha *(alphanum | ”-”) alphanum
IPv4address = 1*digit ”.” 1*digit ”.” 1*digit ”.” 1*digit
port = *digit
url-parameters = *(”;” url-parameter)
url-parameter = transport-param | user-param

| ttl-param | maddr-param | tag-param
| other-param

transport-param = ”transport=” (”udp” | ”tcp”)
ttl-param = ”ttl=” ttl
ttl = 1*3DIGIT ; 0 to 255
maddr-param = ”maddr=” maddr
maddr = IPv4address ; multicast address
user-param = ”user=” (”phone”)
tag-param = ”tag=” UUID
other-param = *uric
headers = ”?” header *(”&” header)
header = hname ”=” hvalue
hname = *uric
hvalue = *uric
uric = reserved | unreserved | escaped
reserved = ”;” | ”/” | ”?” | ”:” | ”@” | ”&”

| ”=” | ”+” | ”$” | ”,”
digits = 1*DIGIT
UUID = 1*(hex | ”-”)

Figure 3: SIP URL syntax

If a server handles SIP addresses for another domain, itMUST URL-encode the “@” character (%40).

URL parameters: SIP URLs can define specific parameters of the request, including the transport mech-
anism (UDP or TCP) and the use of multicast to make a request. These parameters are added after
thehost and are separated by semi-colons. For example, to specify to callj.doe@big.com using

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 16]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

telephone-subscriber = global-phone-number | local-phone-number
global-phone-number = ”+” 1*phonedigit [isdn-subaddress]

[post-dial]
local-phone-number = 1*(phonedigit | dtmf-digit

| pause-character) [isdn-subaddress]
[post-dial]

isdn-subaddress = ”;isub=” 1*phonedigit
post-dial = ”;postd=” 1*(phonedigit | dtmf-digit

| pause-character)
phonedigit = DIGIT | visual-separator
visual-separator = ”-” | ”.”
pause-character = one-second-pause | wait-for-dial-tone
one-second-pause = ”p”
wait-for-dial-tone = ”w”
dtmf-digit = ”*” | ”#” | ”A” | ”B” | ”C” | ”D”

Figure 4: SIP URL syntax; telephone subscriber

multicast to 239.255.255.1 with a ttl of 15, the following URL would be used:

sip:j.doe@big.com;maddr=239.255.255.1;ttl=15

The transport protocol UDP is to be assumed when a multicast address is given.

Transport parametersMUST NOT be used in theFrom andTo header fields and theRequest-URI;
they are ignored if present.

Headers: Headers of the SIP request can be defined with the “?” mechanism within a SIP URL. The special
hname “body” indicates that the associatedhvalue is themessage-body of the SIPINVITE request.
HeadersMUST NOT be used in theFrom andTo header fields and theRequest-URI; they are ignored
if present.

Tag: The tag parameter allows several instances of a user that share the samehost andport values to be
distinguished from each other, for example, where thehost designates a firewall or proxy. Thetag
value is a random string consisting of hex digits. The use of version-1 (time-based) or version-4 (ran-
dom) UUID [19] isOPTIONAL. Thetag value is designed to be globally unique and cryptographically
random with at least 32 bits of randomness. ItSHOULD NOTbe included in long-lived SIP URLs, e.g.,
those found on web pages or user databases. A single user maintains the same tag throughout the call
identified by theCall-ID. The tag parameter inTo headers is ignored when matching responses to
requests that did not contain atag in their To header. (See Section 6.37.)

Table 2 summarizes where the components of the SIP URL can be used.
Examples of SIP URLs are:

sip:j.doe@big.com

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 17]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Request-URI To From Location external
user x x x x x
password x x x
host x x x x x
tag x x x x
headers x x
transport para. x x

Table 2: Use of URL elements for SIP headers,Request-URI and references

sip:j.doe:secret@big.com;transport=tcp
sip:j.doe@big.com?subject=project%20x&priority=urgent
sip:+1-212-555-1212:1234@gateway.com;user=phone
sip:1212@gateway.com
sip:alice@10.1.2.3
sip:alice@example.com;tag=f81d4fae-7dec-11d0-a765-00a0c91e6bf6
sip:alice%40example.com@gateway.com

Within a SIP message, URLs are used to indicate the source and intended destination of a request,
redirection addresses and the current destination of a request. Normally all these fields will contain SIP
URLs.

SIP URLs are case-insensitive, so that for example the two URLssip:j.doe@example.com and
SIP:J.Doe@Example.com are equivalent. All URL parameters are included when comparing SIP
URLs for equality.

In some circumstances a non-SIP URL may be used in a SIP message. An example might be making a
call from a telephone which is relayed by a gateway onto the internet as a SIP request. In such a case, the
source of the call is really the telephone number of the caller, and so a SIP URL is inappropriate and a phone
URL might be used instead. To allow for this flexibility, SIP headers that specify user addresses allow these
addresses to be SIP and non-SIP URLs.

Clearly not all URLs are appropriate to be used in a SIP message as a user address. The correct behavior
when an unknown scheme is encountered by a SIP server is defined in the context of each of the header
fields that use a SIP URL.

3 SIP Message Overview

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [20]).
Lines are terminated by CRLF, but receivers should be prepared to also interpret CR and LF by themselves
as line terminators.

Except for the above difference in character sets, much of the message syntax is identical to HTTP/1.1;
rather than repeating it here we use [HX.Y] to refer to Section X.Y of the current HTTP/1.1 specification
(RFC 2068 [7]). In addition, we describe SIP in both prose and an augmented Backus-Naur form (BNF)
[H2.1] described in detail in RFC 2234 [21].

Unlike HTTP, SIPMAY use UDP. When sent over TCP or UDP, multiple SIP transactions can be carried
in a single TCP connection or UDP datagram. UDP datagrams, including all headers, should not normally

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 18]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

be larger than the path maximum transmission unit (MTU) if the MTU is known, or 1400 bytes if the MTU
is unknown.

The 1400 bytes accommodates lower-layer packet headers within the “typical” MTU of around 1500 bytes.
Recent studies [22, p. 154] indicate that an MTU of 1500 bytes is a reasonable assumption. The next lower common
MTU values are 1006 bytes for SLIP and 296 for low-delay PPP (RFC 1191 [23]). Thus, another reasonable value
would be a message size of 950 bytes, to accommodate packet headers within the SLIP MTU without fragmentation.

A SIP message is either a request from a client to a server, or a response from a server to a client.

SIP-message = Request | Response

Both Request (section 4) andResponse (section 5) messages use thegeneric-message format of
RFC 822 [24] for transferring entities (the body of the message). Both types of messages consist of astart-
line, one or more header fields (also known as “headers”), an empty line (i.e., a line with nothing preceding
the carriage-return line-feed (CRLF)) indicating the end of the header fields, and an optionalmessage-
body. To avoid confusion with similar-named headers in HTTP, we refer to the header describing the
message body as entity headers. These components are described in detail in the upcoming sections.

generic-message = start-line
*message-header
CRLF
[message-body]

start-line = Request-Line | Section 4.1
Status-Line Section 5.1

message-header = *(general-header
| request-header
| response-header
| entity-header)

In the interest of robustness, any leading empty line(s)MUST be ignored. In other words, if theRequest
or Response message begins with aCRLF, CR, or LF, these characters should be ignored.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 19]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

general-header = Call-ID ; Section 6.12
| CSeq ; Section 6.16
| Date ; Section 6.17
| Encryption ; Section 6.18
| Expires ; Section 6.19
| From ; Section 6.20
| Record-Route ; Section 6.29
| Timestamp ; Section 6.36
| To ; Section 6.37
| Via ; Section 6.40

entity-header = Content-Encoding ; Section 6.13
| Content-Length ; Section 6.14
| Content-Type ; Section 6.15

request-header = Accept ; Section 6.7
| Accept-Encoding ; Section 6.8
| Accept-Language ; Section 6.9
| Authorization ; Section 6.11
| Hide ; Section 6.21
| Location ; Section 6.22
| Max-Forwards ; Section 6.23
| Organization ; Section 6.24
| Priority ; Section 6.25
| Proxy-Authorization ; Section 6.27
| Proxy-Require ; Section 6.28
| Route ; Section 6.33
| Require ; Section 6.30
| Response-Key ; Section 6.31
| Subject ; Section 6.35
| User-Agent ; Section 6.39

response-header = Allow ; Section 6.10
| Location ; Section 6.22
| Proxy-Authenticate ; Section 6.26
| Retry-After ; Section 6.32
| Server ; Section 6.34
| Unsupported ; Section 6.38
| Warning ; Section 6.41
| WWW-Authenticate ; Section 6.42

Table 3: SIP headers

4 Request

TheRequest message format is shown below:

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 20]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Request = Request-Line ; Section 4.1
*(general-header
| request-header
| entity-header)
CRLF
[message-body] ; Section 8

4.1 Request-Line

The Request-Line begins with a method token, followed by theRequest-URI and the protocol version,
and ending withCRLF. The elements are separated bySP characters. NoCR or LF are allowed except in
the finalCRLF sequence.

Request-Line = Method SP Request-URI SP SIP-Version CRLF

4.2 Methods

The methods are defined below. Methods that are not supported by a proxy or redirect server are treated by
that server as if they were anINVITE method and forwarded accordingly. Methods that are not supported
by a user agent server cause a 501 (Not Implemented) response to be returned (Section 7).

Method = ”ACK” | ”BYE” | ”CANCEL” | ”INVITE”
| ”OPTIONS” | ”REGISTER”

4.2.1 INVITE

TheINVITE method indicates that the user or service is being invited to participate in a session. The message
body contains a description of the session to which the callee is being invited. For two-party calls, the caller
indicates the type of media it is able to receive as well as their parameters such as network destination. If the
session description format allows this, it may also indicate “send-only” media. A success response indicates
in its message body which media the callee wishes to receive.

A serverMAY automatically respond to an invitation for a conference the user is already participating
in, identified either by the SIPCall-ID or a globally unique identifier within the session description, with a
200 (OK) response.

If a user agent receives anINVITE request for an existingCall-ID with a higherCSeq sequence number
than any previousINVITE for the sameCall-ID, it MUST check any version identifiers in the session de-
scription or, if there are no version identifiers, the content of the session description to see if it has changed.
It MUST also inspect any other header fields for changes and act accordingly. If the session description has
changed, the user agent serverMUST adjust the session parameters accordingly, possibly after asking the
user for confirmation. (Versioning of the session description may be used to accommodate the capabilities
of new arrivals to a conference, add or delete media or change from a unicast to a multicast conference.)

This methodMUST be supported by SIP proxy, redirect and user agent servers as well as clients.

4.2.2 ACK

TheACK request confirms that the client has received a final response to anINVITE request. (ACK is used
onlywith INVITE requests.) 2xx responses are acknowledged by client user agents, all other final responses

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 21]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

by the first proxy or client user agent to receive the response. TheVia is always initialized to the host that
originates theACK request, i.e., the client user agent after a 2xx response or the first proxy to receive a
non-2xx final response. TheACK request is forwarded as the correspondingINVITE request, based on its
Request-URI. See Section 10 for details.

TheACK requestMAY contain a message body with the final session description to be used by the callee.
If the ACK message body is empty, the callee uses the session description in theINVITE request.

This methodMUST be supported by SIP proxy, redirect and user agent servers as well as clients.

4.2.3 OPTIONS

The client is being queried as to its capabilities. A server that believes it can contact the user, such as a user
agent where the user is logged in and has been recently active,MAY respond to this request with a capability
set. A called user agentMAY return a status reflecting how it would have responded to an invitation, e.g.,
600 (Busy).

This methodMUST be supported by SIP proxy, redirect and user agent servers, registrars and clients.

4.2.4 BYE

The user agent client usesBYE to indicate to the server that it wishes to abort the call. ABYE request is
forwarded like anINVITE request. A callerSHOULD issue aBYE request before aborting a call (“hanging
up”). Note that aBYE request may also be issued by the callee.

If the INVITE request contained aLocation header, the callee sends theBYE request to that address
rather than theFrom address.

This methodMUST be supported by proxy servers andSHOULD be supported by redirect and user agent
SIP servers.

4.2.5 CANCEL

The CANCEL request cancels a pending request with the sameCall-ID, To, From andCSeq (sequence
number only) header values, but does not affect a completed request. (A request is considered completed if
the server has returned a final status response.)

A user agent client or proxy clientMAY issue aCANCEL request at any time. A proxy, in particular,
MAY choose to send aCANCEL to destinations that have not yet returned a final response after it has
received a 2xx or 6xx response for one or more of the parallel-search requests. A proxy that receives a
CANCEL request forwards the request to all destinations with pending requests. TheCall-ID, To andFrom
in theCANCEL request are identical to those contained in the request being canceled, but theVia header
field is initialized to the proxy issuing theCANCEL request. (Thus, responses to thisCANCEL request
only reach the issuing proxy.)

Once a user agent server has received aCANCEL, it MUST NOT issue a 2xx response for the cancelled
original request.

A redirect server or user agent server returns 200 (OK) if theCall-ID exists and 481 (Invalid Call-ID) if
not, but takes no further action. In particular, any existing call is unaffected.

The BYE request cannot be used to cancel branches of a parallel search, since several branches may, through
intermediate proxies, find the same user agent server and then terminate the call. To terminate a call instead of just
pending searches, the UAC must useBYE instead of or in addition toCANCEL. While CANCEL can terminate
any pending request other thanACK or CANCEL, it is typically useful only forINVITE. 200 responses toINVITE
and 200 responses toCANCEL are distinguished by the method in theCseq header field, so there is no ambiguity.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 22]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

This methodMUST be supported by proxy servers andSHOULD be supported by all other SIP server
types.

4.2.6 REGISTER

A client uses theREGISTER method to register the address listed in theTo header with a SIP server.
A user agentSHOULD register with a local server on startup by sending aREGISTER request to the

well-known “all SIP servers” multicast address, 224.0.1.75, with a time-to-live value of 1. SIP user agents
on the same subnetMAY listen to that address and use it to become aware of the location of other local users
[16]; however, they do not respond to the request.

TheREGISTER request-header fields are defined as follows. We define “address-of-record” as the SIP
address that the registry knows the registrand, typically of the form “user@domain” rather than “user@host”.
In third-party registration, the entity issuing the request is different from the entity being registered.

To: TheTo header field contains the address-of-record whose registration is to be created or updated.

From: TheFrom header field contains the address-of-record of the person responsible for the registration.
For first-party registration, it is identical to theTo header field value.

Request-URI: TheRequest-URI names the destination of the registration request, i.e., the domain of the
registrar. The user nameMUST be empty. Generally, the domains in theRequest-URI and theTo
header have the same value; however, it is possible to register as a “visitor”, while maintaining one’s
name. For example, a travellersip:alice@acme.com (To) may register under theRequest-URI
sip:@atlanta.ayh.org , with the former as theTo field and the latter as theRequest-URI. The
request is no longer forwarded once it reached the server whose authoritative domain is the one listed
in theRequest-URI.

Location: The requestMUST contain aLocation header field; requests for theRequest-URI will be di-
rected to the address(es) given. It isRECOMMENDED that user agents include SIP URLs with both
UDP and TCPtransport parameters in their registration. If the registration contains aLocation field
whose URL includes atransport parameter, future requests will use that protocol. Otherwise, re-
quests use the same transport protocol as used by the registration. However, a multicastREGISTER
request still causes future requests to be unicast unless themaddr URL parameter explicitly requests
otherwise. If theLocation header does not contain a port number, the default SIP port number is used
for future requests.

We cannot require that registration and subsequentINVITE requests use the same transport protocol, as
multicast registrations may be quite useful.

Registrations are additive, but all current locations must share the sameaction value. A proxy server
ignores theq parameter, while a redirect server simply returns the parameter in itsLocation header.

Having the proxy server interpret theq parameter is not sufficient to guide proxy behavior, as it is not clear,
for example, how long it should wait between trying addresses.

If the registration is changed while a user agent or proxy server processes an invitation, the new
information should be used.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 23]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

This allows a service known as “directed pick-up”.

A serverSHOULD silently drop the registration after one hour, unless refreshed by the client. A client
may request a lower or higher refresh interval through theExpires header (Section 6.19). Based on this
request and its configuration, the server chooses the expiration interval and indicates it through theExpires
header in the response. A single address (if host-independent) may be registered from several different
clients.

A client cancels an existing registration by sending aREGISTER request with an expiration time (Ex-
pires) of zero seconds for a particularLocation or the wildcardLocation designated by a “*” for all regis-
trations.

The serverSHOULD return the current list of registrations in the 200 response asLocation header fields.
It is particularly important thatREGISTER requests are authenticated since they allow to redirect future

requests.

Beyond its use as a simple location service, this method is needed if there are several SIP servers on a single
host. In that case, only one of the servers can use the default port number. Each server that cannot would register
with a server for the administrative domain. Since a client may not have easy access to the host address or port
number, using the source address and port from the request itself seems simpler.

Support of this method isRECOMMENDED.

4.3 Request-URI

The Request-URI field is a SIP URL as described in Section 2 or a general URI. It indicates the user
or service to which this request is being addressed. Unlike theTo field, theRequest-URI field may be
re-written by proxies.

The SIP-URL MUST NOT contain thetransport-param, maddr-param, ttl-param, or headers ele-
ments. A server that receives a SIP-URL with these elements removes them before further processing.

Typically, the UAC sets theRequest-URI andTo to the same SIP URL, presumed to remain unchanged over
long time periods. However, if the UAC has cached a more direct path to the callee, e.g., from theLocation header of
a response to a previous request, theTo would still contain the long-term, “public” address, while theRequest-URI
would be set to the cached address.

Proxy and redirect servers may use the information in theRequest-URI and request header fields to han-
dle the request and possibly rewrite theRequest-URI. For example, a request addressed to the generic address
sip:sales@acme.com might be proxied to the particular person, e.g.,sip:bob@ny.acme.com , with theTo
remaining assales@acme.com . At ny.acme.com , Bob may have designated Alice as the temporary substitute.

The host part of theRequest-URI typically agrees with one of the host names of the server. If it does
not, the serverSHOULD proxy the request to the address indicated or return a 404 (Not Found) response if
it is unwilling or unable to do so. For example, theRequest-URI and server host name may disagree in the
case of a firewall proxy that handles outgoing calls. This mode of operation similar to that of HTTP proxies.

If a SIP server receives a request with a URI indicating a scheme other than SIP which that server does
not understand, the serverMUST return a 400 (Bad Request) response. ItMUST do this even if theTo field
contains a scheme it does understand.

4.3.1 SIP Version

Both request and response messages include the version of SIP in use, and basically follow [H3.1], with
HTTP replaced by SIP. To be conditionally compliant with this specification, applications sending SIP mes-
sagesMUST include aSIP-Version of “SIP/2.0”.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 24]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

4.4 Option Tags

Option tags are unique identifiers used to designate new options in SIP. These tags are used inRequire
(Section 6.30) andUnsupported (Section 6.38) fields.
Syntax:

option-tag = 1*uric

The creator of a new SIP option should either prefix the option with a reverse domain name or register the
new option with the Internet Assigned Numbers Authority (IANA). For example, “com.foo.mynewfeature”
is an apt name for a feature whose inventor can be reached at “foo.com”. Options registered with IANA
have the prefix “org.ietf.sip.”, options described in RFCs have the prefix “org.ietf.rfc.N ”, whereN is the
RFC number. Option tags are case-insensitive.

4.4.1 Registering New Option Tags with IANA

When registering a new SIP option, the following information should be provided:

• Name and description of option. The name may be of any length, butSHOULD be no more than twenty
characters long. The nameMUST NOT contain any spaces, control characters or periods.

• Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other interna-
tional standardization bodies, a consortium or a particular company or group of companies);

• A reference to a further description, if available, for example (in order of preference) an RFC, a
published paper, a patent filing, a technical report, documented source code or a computer manual;

• For proprietary options, contact information (postal and email address);

Borrowed from RTSP and the RTP AVP.

5 Response

After receiving and interpreting a request message, the recipient responds with a SIP response message. The
response message format is shown below:

Response = Status-Line ; Section 5.1
*(general-header
| response-header
| entity-header)
CRLF
[message-body] ; Section 8

[H6] applies except thatHTTP-Version is replaced bySIP-Version. Also, SIP defines additional re-
sponse codes and does not use some HTTP codes.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 25]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

5.1 Status-Line

The first line of aResponse message is theStatus-Line, consisting of the protocol version (Section 4.3.1)
followed by a numericStatus-Code and its associated textual phrase, with each element separated by SP
characters. NoCR or LF is allowed except in the finalCRLF sequence.

Status-Line = SIP-version SP Status-Code SP Reason-Phrase CRLF

5.1.1 Status Codes and Reason Phrases

TheStatus-Code is a 3-digit integer result code that indicates the outcome of the attempt to understand and
satisfy the request. TheReason-Phrase is intended to give a short textual description of theStatus-Code.
TheStatus-Code is intended for use by automata, whereas theReason-Phrase is intended for the human
user. The client is not required to examine or display theReason-Phrase.

Status-Code = Informational Fig. 5
| Success Fig. 5
| Redirection Fig. 6
| Client-Error Fig. 7
| Server-Error Fig. 8
| Global-Failure Fig. 9
| extension-code

extension-code = 3DIGIT

Reason-Phrase = *<TEXT, excludingCR, LF>

We provide an overview of theStatus-Code below, and provide full definitions in Section 7. The first
digit of theStatus-Code defines the class of response. The last two digits do not have any categorization
role. SIP/2.0 allows 6 values for the first digit:

1xx: Informational – request received, continuing to process the request;

2xx: Success – the action was successfully received, understood, and accepted;

3xx: Redirection – further action must be taken in order to complete the request;

4xx: Client Error – the request contains bad syntax or cannot be fulfilled at this server;

5xx: Server Error – the server failed to fulfill an apparently valid request;

6xx: Global Failure – the request is invalid at any server.

Figures 5 through 9 present the individual values of the numeric response codes, and an example set
of corresponding reason phrases for SIP/2.0. These reason phrases are only recommended; they may be
replaced by local equivalents without affecting the protocol. Note that SIP adopts many HTTP/1.1 response
codes. SIP/2.0 adds response codes in the range starting at x80 to avoid conflicts with newly defined HTTP
response codes, and adds a new class, 6xx, of response codes.

SIP response codes are extensible. SIP applications are not required to understand the meaning of all
registered response codes, though such understanding is obviously desirable. However, applicationsMUST

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 26]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Informational = ”100” ; Trying
| ”180” ; Ringing
| ”181” ; Call Is Being Forwarded
| ”182” ; Queued

Success = ”200” ; OK

Figure 5: Informational and success status codes

Redirection = ”300” ; Multiple Choices
| ”301” ; Moved Permanently
| ”302” ; Moved Temporarily
| ”303” ; See Other
| ”305” ; Use Proxy
| ”380” ; Alternative Service

Figure 6: Redirection status codes

understand the class of any response code, as indicated by the first digit, and treat any unrecognized response
as being equivalent to the x00 response code of that class, with the exception that an unrecognized response
MUST NOT be cached. For example, if a client receives an unrecognized response code of 431, it can safely
assume that there was something wrong with its request and treat the response as if it had received a 400
(Bad Request) response code. In such cases, user agentsSHOULD present to the user the message body
returned with the response, since that message body is likely to include human-readable information which
will explain the unusual status.

6 Header Field Definitions

SIP header fields are similar to HTTP header fields in both syntax and semantics [H4.2, H14]. In general the
ordering of the header fields is not of importance (with the exception ofVia fields, see below), but proxies
MUST NOT reorder or otherwise modify header fields other than by adding a newVia or other hop-by-hop
field. ProxiesMUST NOT, for example, change how header fields are broken across lines. This allows an
authentication field to be added after theVia fields that will not be invalidated by proxies.

The header fields required, optional and not applicable for each method are listed in Table 4. The table
uses “o” to indicate optional, “m” mandatory and “-” for not applicable. A “*” indicates that the header
fields are needed only if message body is not empty: TheContent-Type andContent-Length headers are
required when there is a valid message body (of non-zero length) associated with the message (Section 8).

The “type” column describes the request and response types for which the header field may be used.
A numeric value indicates the status code for a response, while “R” refers to any request header, “r” to
any response header. “g” and “e” designate general (Section 6.1) and entity header (Section 6.2) fields,
respectively.

The “enc.” column describes whether this message header may be encrypted end-to-end. A “n” desig-
nates fields thatMUST NOT be encrypted, while “c” designates fields thatSHOULD be encrypted if encryption
is used.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 27]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Client-Error = ”400” ; Bad Request
| ”401” ; Unauthorized
| ”402” ; Payment Required
| ”403” ; Forbidden
| ”404” ; Not Found
| ”405” ; Method Not Allowed
| ”406” ; Not Acceptable
| ”407” ; Proxy Authentication Required
| ”408” ; Request Timeout
| ”409” ; Conflict
| ”410” ; Gone
| ”411” ; Length Required
| ”413” ; Request Message Body Too Large
| ”414” ; Request-URI Too Large
| ”415” ; Unsupported Media Type
| ”420” ; Bad Extension
| ”480” ; Temporarily not available
| ”481” ; Invalid Call-ID
| ”482” ; Loop Detected
| ”483” ; Too Many Hops
| ”484” ; Address Incomplete
| ”485” ; Ambiguous

Figure 7: Client error status codes

Server-Error = ”500” ; Internal Server Error
| ”501” ; Not Implemented
| ”502” ; Bad Gateway
| ”503” ; Service Unavailable
| ”504” ; Gateway Timeout
| ”505” ; SIP Version not supported

Figure 8: Server error status codes

The “e-e” column has a value of “e” for end-to-end and a value of “h” for hop-by-hop headers.
Other headers may be added as required; a serverMAY ignore optional headers that it does not under-

Global-Failure | ”600” ; Busy
| ”603” ; Decline
| ”604” ; Does not exist anywhere
| ”606” ; Not Acceptable

Figure 9: Global failure status codes

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 28]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

type enc. e-e ACK BYE CAN INV OPT REG
Accept R e - - - o o o
Accept-Encoding R e - - - o o o
Accept-Language R n e - o o o o o
Allow 405 e o o o o o o
Authorization R e o o o o o o
Call-ID g n e m m m m m m
Content-Encoding e e * - - * * *
Content-Length e e m - - m m m
Content-Type e e * - - * * *
CSeq g n e m m m m m o
Date g e o o o o o o
Encryption g n e o o o o o o
Expires g e - - - o o o
From g e m m m m m m
Hide R n h o o o o o o
Location R e o - - o - m
Location 2xx e - - - o o -
Location 3xx e - o - o o o
Location 485 e - o - o o o
Max-Forwards R n e o o o o o o
Organization R c e - - - o o o
Proxy-Authenticate 407 n h o o o o o o
Proxy-Authorization R n h o o o o o o
Proxy-Require R n h o o o o o o
Priority R c e - - - o - -
Require R n e o o o o o o
Retry-After R c e - - - - - o
Retry-After 600,603 c e - - - o - -
Response-Key R c e - o o o o o
Record-Route R h o o o o o o
Record-Route 2xx h o o o o o o
Route R h - o o o o o
Server r c e o o o o o o
Subject R c e - - - o - -
Timestamp g e o o o o o o
To g n e m m m m m m
Unsupported 420 e o o o o o o
User-Agent R c e o o o o o o
Via g n e m m m m m m
Warning r e o o o o o o
WWW-Authenticate 401 c e o o o o o o

Table 4: Summary of header fields

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 29]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

stand. A compact form of these header fields is also defined in Section 9 for use over UDP when the request
has to fit into a single packet and size is an issue.

Table 5 in Appendix A indicates which system components should be capable of parsing which header
fields.

6.1 General Header Fields

General header fields apply to both request and response messages. Thegeneral-header field names can be
extended reliably only in combination with a change in the protocol version. However, new or experimental
header fields may be given the semantics of general header fields if all parties in the communication recog-
nize them to begeneral-header fields. Unrecognized header fields are treated asentity-header fields.

6.2 Entity Header Fields

Theentity-header fields define meta-information about the message-body or, if no body is present, about
the resource identified by the request. The term “entity header” is an HTTP 1.1 term where the response
body may contain a transformed version of the message body. The original message body is referred to as
the “entity”. We retain the same terminology for header fields but usually refer to the “message body” rather
then the entity as the two are the same in SIP.

6.3 Request Header Fields

The request-header fields allow the client to pass additional information about the request, and about the
client itself, to the server. These fields act as request modifiers, with semantics equivalent to the parameters
of a programming language method invocation.

The request-header field names can be extended reliably only in combination with a change in the
protocol version. However, new or experimental header fieldsMAY be given the semantics ofrequest-
header fields if all parties in the communication recognize them to be request-header fields. Unrecognized
header fields are treated asentity-header fields.

6.4 Response Header Fields

The response-header fields allow the server to pass additional information about the response which
cannot be placed in theStatus-Line. These header fields give information about the server and about
further access to the resource identified by theRequest-URI.

Response-header field names can be extended reliably only in combination with a change in the proto-
col version. However, new or experimental header fieldsMAY be given the semantics ofresponse-header
fields if all parties in the communication recognize them to beresponse-header fields. Unrecognized
header fields are treated asentity-header fields.

6.5 End-to-end and Hop-by-hop Headers

End-to-end headers must be transmitted unmodified across all proxies, while hop-by-hop headers may be
modified or added by proxies.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 30]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

6.6 Header Field Format

Header fields (general-header, request-header, response-header, andentity-header) follow the same
generic header format as that given in Section 3.1 of RFC 822 [24]. Each header field consists of a name
followed by a colon (”:”) and the field value. Field names are case-insensitive. The field value may be
preceded by any amount of leading white space (LWS), though a single space (SP) is preferred. Header
fields can be extended over multiple lines by preceding each extra line with at least oneSP or horizontal tab
(HT). ApplicationsSHOULD follow HTTP “common form” when generating these constructs, since there
might exist some implementations that fail to accept anything beyond the common forms.

message-header = field-name ”:” [field-value] CRLF
field-name = token
field-value = *(field-content | LWS)
field-content = <theOCTETs making up the field-value

and consisting of either *TEXT
or combinations oftoken,
tspecials, andquoted-string>

The order in which header fields are received is not significant if the header fields have different field
names. Multiple header fields with the same field-name may be present in a message if and only if the entire
field-value for that header field is defined as a comma-separated list (i.e.,#(values)). It MUST be possible to
combine the multiple header fields into one “field-name: field-value” pair, without changing the semantics
of the message, by appending each subsequent field-value to the first, each separated by a comma. The order
in which header fields with the same field-name are received is therefore significant to the interpretation of
the combined field value, and thus a proxyMUST NOT change the order of these field values when a message
is forwarded.

Field names are not case-sensitive, although their values may be.

6.7 Accept

See [H14.1] for syntax. This request-header field is used only with theINVITE, OPTIONS andREGISTER
request methods to indicate what media types are acceptable in the response.

Example:

Accept: application/sdp;level=1, application/x-private, text/html

6.8 Accept-Encoding

TheAccept-Encoding request-header field is similar toAccept, but restricts the content-codings [H3.4.1]
that are acceptable in the response. See [H14.3].

6.9 Accept-Language

See [H14.4] for syntax. TheAccept-Language request header can be used to allow the client to indicate
to the server in which language it would prefer to receive reason phrases, session descriptions or status
responses carried as message bodies. A proxy may use this field to help select the destination for the call,
for example, a human operator conversant in a language spoken by the caller.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 31]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Example:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

6.10 Allow

See [H14.7]. TheAllow entity-header field lists the set of methods supported by the resource identified by
the Request-URI. The purpose of this field is strictly to inform the recipient of valid methods associated
with the resource. AnAllow header fieldMUST be present in a 405 (Method Not Allowed) response.

6.11 Authorization

See [H14.8]. A user agent that wishes to authenticate itself with a server – usually, but not necessarily, after
receiving a 401 response –MAY do so by including anAuthorization request-header field with the request.
TheAuthorization field value consists of credentials containing the authentication information of the user
agent for the realm of the resource being requested.

6.12 Call-ID

TheCall-ID general header uniquely identifies a particular invitation or all registrations of a particular client.
Note that a single multimedia conference may give rise to several calls with differentCall-IDs, e.g., if a user
invites a single individual several times to the same (long-running) conference.

For anINVITE request, a callee user agent serverSHOULD NOT alert the user if the user has responded
previously to theCall-ID in the INVITE request. If the user is already a member of the conference and
the conference parameters contained in the session description have not changed, a callee user agent server
MAY silently accept the call, regardless of theCall-ID. An invitation for an existingCall-ID or session may
change the parameters of the conference. A client applicationMAY decide to simply indicate to the user that
the conference parameters have been changed and accept the invitation automatically or itMAY require user
confirmation.

A user may be invited to the same conference or call using several differentCall-IDs. If desired, the
client may use identifiers within the session description to detect this duplication. For example, SDP contains
a session id and version number in the origin (o) field.

TheREGISTER andOPTIONS methods use theCall-ID value to unambiguously match requests and
responses. AllREGISTER requests issued by a single clientMUST use the sameCall-ID.

TheCall-ID may be any string consisting of the unreserved URI characters that can be guaranteed to be
globally unique for the duration of the request.Call-IDs are case-sensitive and arenot URL-encoded.

Since the Call-ID is generated by and for SIP, there is no reason to deal with the complexity of URL-encoding
and case-ignoring string comparison.

Call-ID = (”Call-ID” | ”i”) ”:” local-id ”@” host
local-id = *uric

host MUST be either a fully qualified domain name or a globally routable IP address, while thelocal-id
is a random identifier unique withinhost. The use of aUUID as local-id is OPTIONAL. TheUUID is a
version-4 (random) UUID [19].

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 32]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Using cryptographically random identifiers provides some protection against session hijacking.Call-ID, To and
From are needed to identify acall leg. The distinction between call and call leg matters in calls with third-party
control.

Example:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@foo.bar.com

6.13 Content-Encoding

TheContent-Encoding entity-header field is used as a modifier to themedia-type. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanismsMUST be applied in order to obtain the media-type referenced by theContent-Type header
field. Content-Encoding is primarily used to allow a document to be compressed without losing the identity
of its underlying media type. See [H14.12].

6.14 Content-Length

TheContent-Length entity-header field indicates the size of the message-body, in decimal number of octets,
sent to the recipient.

Content-Length = ”Content-Length” ”:” 1*DIGIT

An example is

Content-Length: 3495

ApplicationsMUST use this field to indicate the size of the message-body to be transferred, regardless
of the media type of the entity. AnyContent-Length greater than or equal to zero is a valid value. If no
body is present in a message, then theContent-Length headerMUST be set to zero. If a server receives a
message withoutContent-Length, it MUST assume it to be zero. Section 8 describes how to determine the
length of the message body.

6.15 Content-Type

TheContent-Type entity-header field indicates the media type of the message-body sent to the recipient.
Themedia-type element is defined in [H3.7].

Content-Type = ”Content-Type” ”:” media-type

Examples of this header field are

Content-Type: application/sdp
Content-Type: text/html; charset=ISO-8859-4

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 33]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

6.16 CSeq

ClientsMUST add theCSeq (command sequence) general-header field to every request. ACSeq request
header field contains a single decimal sequence number chosen by the requesting client, unique within a
single value ofCall-ID. The sequence numberMUST be expressible as a 32-bit unsigned integer. The initial
value of the sequence number is arbitrary, butMUST be less than 2**31.Consecutive requests that differ in
request method, headers or body, but have the sameCall-ID MUST contain strictly monotonically increasing
and contiguous sequence numbers; sequence numbers do not wrap around. Retransmissions of the same
request carry the same sequence number, but anINVITE with a different message body or different header
fields (a “re-invitation”) acquires a new, higher sequence number. A serverMUST echo theCSeq value from
the request in its response. If theMethod value is missing, the server fills it in appropriately.

The ACK andCANCEL requestsMUST contain the sameCSeq value as theINVITE request that it
refers to, while aBYE request cancelling an invitationMUST have a higher sequence number.

A user agent serverMUST remember the highest sequence number for anyINVITE request with the same
Call-ID value. The serverMUST respond to, but ignore anyINVITE request with a lower sequence number.

All requests spawned in a parallel search have the sameCSeq value as the request triggering the parallel
search.

CSeq = ”CSeq” ”:” 1*DIGIT Method

Strictly speaking,CSeq header fields are needed for any SIP request that can be cancelled by aBYE or CAN-
CEL request or where a client can issue several requests for the sameCall-ID in close succession. Without a
sequence number, the response to anINVITE could be mistaken for the response to the cancellation (BYE or CAN-
CEL). Also, if the network duplicates packets or if anACK is delayed until the server has sent an additional response,
the client could interpret an old response as the response to a re-invitation issued shortly thereafter. UsingCSeq
also makes it easy for the server to distinguish different versions of an invitation, without comparing the message
body.

TheMethod value allows the client to distinguish the response to anINVITE request from that of aCANCEL
response.CANCEL requests can be generated by proxies; if they were to increase the sequence number, it might
conflict with a later request issued by the user agent for the same call.

With a length of 32 bits, a server could generate, within a single call, one request a second for about 136 years
before needing to wrap around. The initial value of the sequence number is chosen so that subsequent requests
within the same call will not wrap around. A non-zero initial value allows to use a time-based initial sequence
number, which protects against ambiguities when clients are re-invited to the same call after rebooting. A client
could, for example, choose the 31 most significant bits of a 32-bit second clock as an initial sequence number.

Forked requests must have the sameCSeq as there would be ambiguity otherwise between these forked requests
and laterBYE issued by the client user agent.

Example:

CSeq: 4711 INVITE

6.17 Date

General header field. See [H14.19].

TheDate header field can be used by simple end systems without a battery-backed clock to acquire a notion of
current time.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 34]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

6.18 Encryption

TheEncryption general-header field specifies that the content has been encrypted. Section 12 describes the
overall SIP security architecture and algorithms. This header field is intended for end-to-end encryption of
requests and responses. Requests are encrypted with a public key belonging to the entity named in theTo
header field. Responses are encrypted with the public key conveyed in theResponse-Key header field.

SIP chose not to adopt HTTP’sContent-Transfer-Encoding header because the encrypted body may contain
additional SIP header fields as well as the body of the message.

For any encrypted message, at least the message body and possibly other message header fields are
encrypted. An application receiving a request or response containing anEncryption header field decrypts
the body and then concatenates the plaintext to the request line and headers of the original message. Message
headers in the decrypted part completely replace those with the same field name in the plaintext part. (Note:
If only the body of the message is to be encrypted, the body has to be prefixed with CRLF to allow proper
concatenation.) Note that the request method andRequest-URI cannot be encrypted.

Encryption only provides privacy; the recipient has no guarantee that the request or response came from the
party listed in theFrom message header, only that the sender used the recipients public key. However, proxies will
not be able to modify the request or response.

Encryption = ”Encryption” ”:” encryption-scheme 1*SP
#encryption-params

encryption-scheme = token
encryption-params = token ”=” (token | quoted-string)

The token indicates the form of encryption used; it is described in section 12.
The following example for a message encrypted with ASCII-armored PGP was generated by applying

“pgp -ea” to the payload to be encrypted.

INVITE sip:watson@boston.bell-telephone.com SIP/2.0
Via: SIP/2.0/UDP 169.130.12.5
From: <sip:a.g.bell@bell-telephone.com>
To: T. A. Watson <sip:watson@bell-telephone.com>
Call-ID: 187602141351@worcester.bell-telephone.com
Content-Length: 885
Encryption: PGP version=2.6.2,encoding=ascii

hQEMAxkp5GPd+j5xAQf/ZDIfGD/PDOM1wayvwdQAKgGgjmZWe+MTy9NEX8O25Red
h0/pyrd/+DV5C2BYs7yzSOSXaj1C/tTK/4do6rtjhP8QA3vbDdVdaFciwEVAcuXs
ODxlNAVqyDi1RqFC28BJIvQ5KfEkPuACKTK7WlRSBc7vNPEA3nyqZGBTwhxRSbIR
RuFEsHSVojdCam4htcqxGnFwD9sksqs6LIyCFaiTAhWtwcCaN437G7mUYzy2KLcA
zPVGq1VQg83b99zPzIxRdlZ+K7+bAnu8Rtu+ohOCMLV3TPXbyp+err1YiThCZHIu
X9dOVj3CMjCP66RSHa/ea0wYTRRNYA/G+kdP8DSUcqYAAAE/hZPX6nFIqk7AVnf6
IpWHUPTelNUJpzUp5Ou+q/5P7ZAsn+cSAuF2YWtVjCf+SQmBR13p2EYYWHoxlA2/
GgKADYe4M3JSwOtqwU8zUJF3FIfk7vsxmSqtUQrRQaiIhqNyG7KxJt4YjWnEjF5E
WUIPhvyGFMJaeQXIyGRYZAYvKKklyAJcm29zLACxU5alX4M25lHQd9FR9Zmq6Jed
wbWvia6cAIfsvlZ9JGocmQYF7pcuz5pnczqP+/yvRqFJtDGD/v3s++G2R+ViVYJO
z/lxGUZaM4IWBCf+4DUjNanZM0oxAE28NjaIZ0rrldDQmO8V9FtPKdHxkqA5iJP+

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 35]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

6vGOFti1Ak4kmEz0vM/Nsv7kkubTFhRl05OiJIGr9S1UhenlZv9l6RuXsOY/EwH2
z8X9N4MhMyXEVuC9rt8/AUhmVQ==
=bOW+

Since proxies may base their forwarding decision on any combination of SIP header fields, there is no
guarantee that an encrypted request “hiding” header fields will reach the same destination as an otherwise
identical un-encrypted request.

6.19 Expires

TheExpires entity-header field gives the date and time after which the message content expires.
This header field is currently defined only for theREGISTER andINVITE methods. ForREGISTER,

it is a request and response-header field and allows the client to indicate how long the registration is to be
valid; the server uses it to indicate when the client has to re-register the addresses contained in the request.
The server’s choice overrides that of the client. The serverMAY choose a shorter time interval than that
requested by the client, butSHOULD NOT choose a longer one.

For INVITE, it is a request and response-header field. In a request, the callee can limit the validity
of an invitation. For example, if a client wants to limit how long a search should take at most or when a
conference invitation is time-limited. A user interface may take this as a hint to leave the invitation window
on the screen even if the user is not currently at the workstation. This also limits the duration of a search. If
the request expires before the search completes, the proxy returns a 408 (Request Timeout) status. In a 302
(Moved Temporarily) response, a server can advise the client of the maximal duration of the redirection.

The value of this field can be either anHTTP-date or an integer number of seconds (in decimal),
measured from the receipt of the request. The latter approach is preferable for short durations, as it does not
depend on clients and servers sharing a synchronized clock.

Expires = ”Expires” ”:” (HTTP-date | delta-seconds)

Two examples of its use are

Expires: Thu, 01 Dec 1994 16:00:00 GMT
Expires: 5

6.20 From

Requests and responsesMUST contain aFrom general-header field, indicating the initiator of the request.
The server copies theTo andFrom header fields from the request to the response. The optionaldisplay-
name is meant to be rendered by a human-user interface.

The SIP-URL MUST NOT contain thetransport-param, maddr-param, ttl-param, or headers ele-
ments. A server that receives a SIP-URL with these elements removes them before further processing.

From = (”From” | ”f”) ”:” (name-addr | addr-spec)
name-addr = [display-name] ”<” addr-spec ”>”
addr-spec = SIP-URL | URI
display-name = *token | quoted-string

Examples:

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 36]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

From: A. G. Bell <sip:agb@bell-telephone.com>
From: sip:+12125551212@server.phone2net.com
From: Anonymous <sip:c8oqz84zk7z@privacy.org>

Call-ID, To andFrom are needed to identify acall leg. The distinction between call and call leg matters in calls
with third-party control. The format is similar to the equivalent RFC 822 [24] header, but with a URI instead of just
an email address.

6.21 Hide

The Hide request header field indicates that the path comprised of theVia header fields (Section 6.40)
should be hidden from subsequent proxies and user agents. It can take two forms:Hide: route andHide:
hop. Hide header fields are typically added by the client user agent, butMAY be added by any proxy along
the path.

If a request contains the “Hide: route” header field, all following proxiesSHOULD hide their previous
hop. If a request contains the “Hide: hop” header field, only the next proxySHOULD hide the previous hop
and then remove theHide option unless it also wants to remain anonymous.

A server hides the previous hop by encrypting thehost andport parts of the top-mostVia header with
an algorithm of its choice. ServersSHOULD add additional “salt” to thehost andport information prior to
encryption to prevent malicious downstream proxies from guessing earlier parts of the path based on seeing
identical encryptedVia headers. HiddenVia fields are marked with thehidden Via option, as described in
Section 6.40.

A server that is capable of hidingVia headersMUST attempt to decrypt allVia headers marked as
“hidden” to perform loop detection. Servers that are not capable of hiding can ignore hiddenVia fields in
their loop detection algorithm.

If hidden headers were not marked, a proxy would have to decrypt all headers to detect loops, just in case one
was encrypted, as theHide: Hop option may have been removed along the way.

A hostMUST NOT add such a “Hide: hop” header field unless it can guarantee it will only send a request
for this destination to the same next hop. The reason for this is that it is possible that the request will loop
back through this same hop from a downstream proxy. The loop will be detected by the next hop if the
choice of next hop is fixed, but could loop an arbitrary number of times otherwise.

A client requesting “Hide: route” can only rely on keeping the request path private if it sends the request
to a trusted proxy. Hiding the route of a SIP request may be of limited value if the request results in data
packets being exchanged directly between the calling and called user agent.

The use ofHide header fields is discouraged unless path privacy is truly needed;Hide fields impose
extra processing costs and restrictions for proxies and can cause requests to generate 482 (Loop Detected)
responses that could otherwise be avoided.

The encryption ofVia header fields is described in more detail in Section 12.
TheHide header field has the following syntax:

Hide = ”Hide” ”:” (”route” | ”hop”)

6.22 Location

TheLocation general-header field can appear in requests, 2xx responses and 3xx responses.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 37]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

REGISTER requests: REGISTER requestsMUST contain aLocation header field indicating at which
locations the user may be reachable. TheREGISTER request defines a wildcardLocation field, “*”,
which is only used withExpires: 0 to remove all registrations for a particular user.

INVITE and ACK requests: INVITE andACK requestsSHOULD containLocation headers indicating from
which location the request is originating. If the SIP address does not refer to the user agent server, the
SIP URLMUST contain atag parameter uniquely identifying the user agent. (The same person may
be logged on at several locations within the same domain served by the proxy.)

This allows the callee to send aBYE directly to the caller instead of through a series of proxies. TheVia
header is not sufficient since the desired address may be that of a proxy.

INVITE 2xx responses:A user agent server sending a definitive, positive response (2xx)MAY insert a
Location response header indicating the SIP address under which it is reachable most directly for
future SIP requests, such asACK. This may be the address of the server itself or that of a proxy, e.g.,
if the host is behind a firewall. If the SIP address does not refer to the user agent server, the SIP URL
MUST contain atag parameter uniquely identifying the user agent. (The same person may be logged
on at several locations within the same domain served by the proxy.) The value of thisLocation
header is copied into theRequest-URI of subsequent requests for this call.

REGISTER 2xx responses:Similarly, aREGISTER responseSHOULD return all locations at which the
user is currently reachable.

3xx responses:TheLocation response-header field can be used with a 3xx response codes to indicate one
or more addresses to try. It can appear in responses toBYE, INVITE andOPTIONS methods. The
Location header field contains URIs giving the new locations or user names to try, or may simply
specify additional transport parameters. A 301 (Moved Permanently) or 302 (Moved Temporarily)
responseSHOULD contain aLocation field containing URIs of new addressed to be tried. A 301 or
302 response may also give the same location and username that was being tried but specify additional
transport parameters such as a multicast address to try or a change of SIP transport from UDP to TCP
or vice versa.

Note that theLocation header may also refer to a different entity than the one originally called. For
example, a SIP call connected to GSTN gateway may need to deliver a special information announcement
such as “The number you have dialed has been changed.”

A Location response header may contain any suitable URI indicating where the called party may be
reached, not limited to SIP URLs. For example, it may contain a phone or fax amailto: (RFC 2368, [25])
or irc: URL.

The following parameters are defined. Additional parameters may be defined in other specifications.

q: The qvalue indicates the relative preference among the locations given.qvalue values are decimal
numbers from 0.0 to 1.0, with higher values indicating higher preference.

action: The action is only used when registering with theREGISTER request. It indicates whether the
client wishes that the server proxies or redirects future requests intended for the client. The action
taken if this parameter is not specified depends on server configuration. In its response, the registrar
SHOULD indicate the mode used. This parameter is ignored for other requests.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 38]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Location = (”Location” | ”m”) ”:”
(”*” | (1# ((SIP-URL | URI)
[LWS *(”;” location-params)]))

location-params = ”q” ”=” qvalue
| ”action” ”=” ”proxy” | ”redirect”
| extension-attribute

extension-attribute = extension-name [”=” extension-value]

Example:

Location: sip:watson@worcester.bell-telephone.com;tag=123
;q=0.7,
mailto:watson@bell-telephone.com ;q=0.1

6.23 Max-Forwards

TheMax-Forwards request-header field may be used with any SIP method to limit the number of proxies
or gateways that can forward the request to the next inbound server. This can also be useful when the client
is attempting to trace a request chain which appears to be failing or looping in mid-chain. [H14.31]

Max-Forwards = ”Max-Forwards” ”:” 1*DIGIT

The Max-Forwards value is a decimal integer indicating the remaining number of times this request
message may be forwarded.

Each proxy or gateway recipient of a request containing aMax-Forwards header fieldMUST check and
update its value prior to forwarding the request. If the received value is zero (0), the recipientMUST NOT

forward the request. Instead, for theOPTIONS andREGISTER methods, itMUST respond as the final
recipient. For all other methods, the server returns 483 (Too many hops).

If the receivedMax-Forwards value is greater than zero, then the forwarded messageMUST contain an
updated Max-Forwards field with a value decremented by one (1).

Example:

Max-Forwards: 6

6.24 Organization

TheOrganization request-header field conveys the name of the organization to which the callee belongs. It
may also be inserted by proxies at the boundary of an organization and may be used by client software to
filter calls.

Organization = ”Organization” ”:” *text

6.25 Priority

ThePriority request header signals the urgency of the call to the callee.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 39]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Priority = ”Priority” ”:” priority-value
priority-value = ”emergency” | ”urgent” | ”normal”

| ”non-urgent”

The value of “emergency” should only be used when life, limb or property are in imminent danger.
Examples:

Subject: A tornado is heading our way!
Priority: emergency

Subject: Weekend plans
Priority: non-urgent

These are the values of RFC 2076 [26], with the addition of “emergency”.

6.26 Proxy-Authenticate

The Proxy-Authenticate response-header fieldMUST be included as part of a 407 (Proxy Authentication
Required) response. The field value consists of a challenge that indicates the authentication scheme and
parameters applicable to the proxy for thisRequest-URI. See [H14.33] for further details.

A client SHOULD cache the credentials used for a particular proxy server and realm for the next request
to that server. Credentials are, in general, valid for a specific value of theRequest-URI at a particular proxy
server. If a client contacts a proxy server that has required authentication in the past, but the client does not
have credentials for the particularRequest-URI, it MAY attempt to use the most-recently used credential.
The server responds with 401 (Unauthorized) if the client guessed wrong.

This suggested caching behavior is motivated by proxies restricting phone calls to authenticated users. It seems
likely that in most cases, all destinations require the same password. Note that end-to-end authentication is likely to
be destination-specific.

6.27 Proxy-Authorization

The Proxy-Authorization request-header field allows the client to identify itself (or its user) to a proxy
which requires authentication. TheProxy-Authorization field value consists of credentials containing the
authentication information of the user agent for the proxy and/or realm of the resource being requested. See
[H14.34] for further details.

6.28 Proxy-Require

TheProxy-Require header is used to indicate proxy-sensitive features thatMUST be supported by the proxy.
Any Proxy-Require header features that are not supported by the proxyMUST be negatively acknowledged
by the proxy to the client if not supported. Servers treat this field identically to theRequire field.

See Section 6.30 for more details on the mechanics of this message and a usage example.

6.29 Record-Route

The Record-Route request and response header field is added to anINVITE request by any proxy that
insists on being in the path of subsequentACK andBYE requests for the same call. It contains a globally

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 40]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

reachableRequest-URI that identifies the proxy server. Each proxy server adds itsRequest-URI to the
beginning of the list.

The server copies theRecord-Route header unchanged into the response. (Record-Route is only
relevant for 2xx responses.)

The calling user agent client copies theRecord-Route header into aRoute header of subsequent re-
quests,reversingthe order of requests, so that the first entry is closest to the caller. If the response contained
a Location header field, the calling user agent adds its content as the lastRoute header. Unless this would
cause a loop, any clientMUST send any subsequent requests for thisCall-ID to the firstRequest-URI in the
Route request header and remove that entry.

Some proxies, such as those controlling firewalls or in an automatic call distribution (ACD) system, need to
maintain call state and thus need to receive anyBYE andACK packets for the call.

TheRecord-Route header field has the following syntax:

Record-Route = ”Record-Route” ”:” 1# request-uri

Example for a request that has traversed the hostsieee.org andbell-telephone.com , in that
order:

Record-Route: sip:a.g.bell@bell-telephone.com, sip:a.bell@ieee.org

6.30 Require

TheRequire request header is used by clients to tell user agent servers about options that the client expects
the server to support in order to properly process the request. If a server does not understand the option, it
MUST respond by returning status code 420 (Bad Extension) and list those options it does not understand in
theUnsupported header.

Require = ”Require” ”:” 1#option-tag

Example:

C->S: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: com.example.billing
Payment: sheep_skins, conch_shells

S->C: SIP/2.0 420 Bad Extension
Unsupported: com.example.billing

This is to make sure that the client-server interaction will proceed without delay when all options are understood
by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

Proxy and redirect serversMUST ignore features that are not understood. If a particular extension re-
quires that intermediate devices support it, the extension should be tagged in theProxy-Require field instead
(see Section 6.28).

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 41]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

6.31 Response-Key

TheResponse-Key request header field can be used by a client to request the key that the called user agent
SHOULD use to encrypt the response with. The syntax is:

Response-Key = ”Response-Key” ”:” key-scheme 1*SP #key-param
key-scheme = token
key-param = token ”=” (token | quoted-string)

Thekey-scheme gives the type of encryption to be used for the response. Section 12 describes security
schemes.

If the client insists that the server return an encrypted response, it includes a

Require: org.ietf.sip.encrypt-response

header field in its request. If the client cannot encrypt for whatever reason, itMUST follow normalRequire
header field procedures and return a 420 (Bad Extension) response. If thisRequire header is not present, a
client SHOULD still encrypt, butMAY return an unencrypted response if unable to.

6.32 Retry-After

The Retry-After response header field can be used with a 503 (Service Unavailable) response to indicate
how long the service is expected to be unavailable to the requesting client and with a 404 (Not Found), 600
(Busy), or 603 (Decline) response to indicate when the called party may be available again. The value of this
field can be either an HTTP-date or an integer number of seconds (in decimal) after the time of the response.

A REGISTER request may include this header field when deleting registrations withLocation: *;
Expires: 0. TheRetry-After value then indicates when the user might again be reachable. The registrar
MAY then include this information in responses to future calls.

An optional comment can be used to indicate additional information about the time of callback. An
optionalduration parameter indicates how long the called party will be reachable starting at the initial time
of availability. If no duration parameter is given, the service is assumed to be available indefinitely.

Retry-After = ”Retry-After” ”:” (HTTP-date | delta-seconds)
[comment] [”;duration” ”=” delta-seconds]

Examples of its use are

Retry-After: Mon, 21 Jul 1997 18:48:34 GMT (I’m in a meeting)
Retry-After: Mon, 1 Jan 9999 00:00:00 GMT

(Dear John: Don’t call me back, ever)
Retry-After: Fri, 26 Sep 1997 21:00:00 GMT;duration=3600
Retry-After: 120

In the third example, the callee is reachable for one hour starting at 21:00 GMT. In the last example, the
delay is 2 minutes.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 42]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

6.33 Route

TheRoute request header determines the route taken by a request. Each host removes the first entry and
then proxies the request to the host listed in that entry, also using it as theRequest-URI. The operation is
further described in Section 6.29.

TheRoute header field has the following syntax:

Route = ”Route” ”:” 1# request-uri

6.34 Server

TheServer response-header field contains information about the software used by the user agent server to
handle the request. See [H14.39].

6.35 Subject

This is intended to provide a summary, or to indicate the nature, of the call, allowing call filtering without
having to parse the session description. (Also, the session description may not necessarily use the same
subject indication as the invitation.)

Subject = (”Subject” | ”s”) ”:” *text

Example:

Subject: Tune in - they are talking about your work!

6.36 Timestamp

The timestamp general header describes when the client sent the request to the server. The value of the
timestamp is of significance only to the client and may use any timescale. The serverMUST echo the exact
same value andMAY , if it has accurate information about this, add a floating point number indicating the
number of seconds that have elapsed since it has received the request. The timestamp is used by the client
to compute the round-trip time to the server so that it can adjust the timeout value for retransmissions.

Timestamp = ”Timestamp” ”:” *(DIGIT) [”.” *(DIGIT)] [delay]
delay = *(DIGIT) [”.” *(DIGIT)]

6.37 To

TheTo general-header field specifies recipient of the request, with the same SIP URL syntax as theFrom
field.

To = (”To” | ”t”) ”:” (name-addr | addr-spec)

The UAS copies theTo header into its response, butSHOULD add atag parameter if not already present.
It MAY forego adding thetag parameter if there is no chance that another UAS responds to the same request.

A SIP server returns a 400 (Bad Request) response if it receives a request with aTo header field con-
taining a URI with a scheme it does not recognize.

Example:

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 43]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

To: The Operator <sip:operator@cs.columbia.edu>
To: sip:+12125551212@server.phone2net.com

Call-ID, To andFrom are needed to identify acall leg. The distinction between call and call leg matters in calls
with third-party control. Thetag is added to theTo header in the response to allow forking of future requests for the
same call by proxies, while addressing only one of the possibly several responding user agent servers. It also allows
several instances of the callee to send requests that can be distinguished.

6.38 Unsupported

The Unsupported response header lists the features not supported by the server. See Section 6.30 for a
usage example and motivation.

6.39 User-Agent

The User-Agent request-header field contains information about the client user agent originating the re-
quest. See [H14.42].

6.40 Via

TheVia field indicates the path taken by the request so far. This prevents request looping and ensures replies
take the same path as the requests, which assists in firewall traversal and other unusual routing situations.

6.40.1 Requests

The client originating the requestMUST insert into the request aVia field containing its host name or network
address and, if not the default port number, the port number at which it wishes to receive responses. (Note
that this port number may differ from the UDP source port number of the request.) A fully-qualified domain
name isRECOMMENDED. Each subsequent proxy server that sends the request onwardsMUST add its own
additionalVia field before any existingVia fields. A proxy that receives a redirection (3xx) response and
then searches recursively,MUST use the sameVia headers as on the original request.

A proxy SHOULD check the top-mostVia header to ensure that it contains the sender’s correct network
address, as seen from that proxy. If the sender’s address is incorrect, the proxy should add an additional
received attribute, as described 6.40.2.

A host behind a network address translator (NAT) or firewall may not be able to insert a network address into
theVia header that can be reached by the next hop beyond the NAT. Hosts behind NATs or NAPTs should insert the
local port number of the outgoing socket, rather than the port number for incoming requests, as NAPTs assume that
responses return with reversed source and destination ports.

Additionally, if the message goes to a multicast address, an extraVia field is added by the sender before
all the otherVia fields giving the multicast address and TTL.

If a proxy server receives a request which contains its own address, itMUST respond with a 482 (Loop
Detected) status code.

This prevents a malfunctioning proxy server from causing loops. Also, it cannot be guaranteed that a proxy
server can always detect that the address returned by a location service refers to a host listed in theVia list, as a
single host may have aliases or several network interfaces.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 44]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

6.40.2 Receiver-taggedVia Fields

Normally, every host that sends or forwards a SIP message adds aVia field indicating the path traversed.
However, it is possible that Network Address Translators (NAT) may change the source address of the
request (e.g., from net-10 to a globally routable address), in which case theVia field cannot be relied on
to route replies. To prevent this, a proxySHOULD check the top-mostVia header to ensure that it contains
the sender’s correct network address, as seen from that proxy. If the sender’s address is incorrect, the proxy
should add areceived tag to theVia field inserted by the previous hop. Such a modifiedVia field is known
as a receiver-taggedVia field. An example is:

Via: SIP/2.0/UDP erlang.bell-telephone.com:5060
Via: SIP/2.0/UDP 10.0.0.1:5060 ;received=199.172.136.3

In this example, the message originated from 10.0.0.1 and traversed a NAT with the external address
border.ieee.org (199.172.136.3) to reacherlang.bell-telephone.com . The latter noticed
the mismatch, and tagged the previous hop’sVia field with the address that it actually came from.

6.40.3 Responses

In the return path,Via fields are processed by a proxy or client according to the following rules:

1. The firstVia field should indicate the proxy or client processing this message. If it does not, discard
the message. Otherwise, remove thisVia field.

2. If the secondVia field is a receiver-tagged field (Section 6.40.2), send the message to the address in
thereceived tag. Otherwise, if theVia header contains amaddr multicast address, send the response
to that multicast address, using the value of thettl parameter if given. Otherwise, send the message to
the address indicated in thesent-by parameter.

3. If there is no secondVia field, this response is destined for this client.

These rules ensure that a client only has to check the firstVia field in a response to see if it needs
processing.

A user agent server or redirect server returns the response to the network address where the request came
from. (Since these servers do not forward the request, they do not add aVia header field orreceived tag.)

6.40.4 Syntax

The format for aVia header is shown in Fig. 10.
The defaults for “protocol-name” and “transport” are “SIP” and “UDP”, respectively. The “maddr”

parameter, designating the multicast address, and the “ttl” parameter, designating the time-to-live (TTL)
value, are included only if the request was sent via multicast. The “received” parameter is added only for
receiver-addedVia fields (Section 6.40.2). For reasons of privacy, a client or proxy may wish to hide its
Via information by encrypting it (see Section 6.21). The “hidden” parameter is included if this header was
hidden by the upstream proxy (see 6.21).

The “branch” parameter is included by every forking proxy. The token uniquely identifies a branch of
a particular search. The identifier has to be unique only within a set of isomorphic requests.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 45]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Via = (”Via” | ”v”) ”:” 1#(sent-protocol sent-by
*(”;” via-params) [comment])

via-params = via-hidden | via-ttl | via-maddr
| via-received | via-branch

via-hidden = ”hidden”
via-ttl = ”ttl” ”=” ttl
via-maddr = ”maddr” ”=” maddr
via-received = ”received” ”=” host
via-branch = ”branch” ”=” token
sent-protocol = [protocol-name ”/”] protocol-version

[”/” transport]
protocol-name = ”SIP” | token
protocol-version = token
transport = ”UDP” | ”TCP” | token
sent-by = (host [”:” port]) | (concealed-host)
concealed-host = token
ttl = 1*3DIGIT ; 0 to 255

Figure 10: Syntax ofVia header field

Note that privacy of the proxy relies on the cooperation of the next hop, as the next-hop proxy will, by
necessity, know the IP address and port number of the source host.

Via: SIP/2.0/UDP first.example.com:4000;ttl=16
;maddr=224.2.0.1 (Example)

Via: SIP/2.0/UDP adk8%20.8x%fe%03 ;hidden

6.41 Warning

TheWarning response-header field is used to carry additional information about the status of a response.
Warning headers are sent with responses and have the following format:

Warning = ”Warning” ”:” 1#warning-value
warning-value = warn-code SP warn-agent SP warn-text
warn-code = 3DIGIT
warn-agent = (host [”:” port]) | pseudonym

; the name or pseudonym of the server adding
; the Warning header, for use in debugging

warn-text = quoted-string

A response may carry more than oneWarning header.
The warn-text should be in a natural language that is most likely to be intelligible to the human user

receiving the response. This decision may be based on any available knowledge, such as the location of the
cache or user, theAccept-Language field in a request, theContent-Language field in a response, etc.
The default language is English.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 46]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Any server may addWarning headers to a response. Proxy serversMUST place additionalWarning
headers before anyAuthorization headers. Within that constraint,Warning headersMUST be added after
any existingWarning headers not covered by a signature. A proxy serverMUST NOT delete anyWarning
header that it received with a response.

When multipleWarning headers are attached to a response, the user agentSHOULD display as many
of them as possible, in the order that they appear in the response. If it is not possible to display all of the
warnings, the user agent first displays warnings that appear early in the response. Systems that generate
multiple Warning headers should order them with this user agent behavior in mind.

The warn-code consists of three digits. The first digit indicates the significance of the warning, with
3xx indicating a warning that did not cause the request to fail and 4xx indicating a fatal error condition that
contributed to the failure of the request.

This is a list of the currently-definedwarn-codes, each with a recommended warn-text in English, and a
description of its meaning. Additionalwarn-codes may be defined through IANA. Note that these warnings
describe failures induced by the session description.

x01 Insufficient bandwidth: The bandwidth specified in the session description or defined by the media
exceeds that known to be available.

x02 Incompatible transport protocol: One or more transport protocols described in the request are not
available.

x03 Incompatible network protocol: One or more network protocols described in the request are not
available.

x04 Incompatible network address formats: One or more network address formats described in the re-
quest are not available.

x05 Incompatible media format: One or more media formats described in the request are not available.

x06 Incompatible bandwidth description: One or more bandwidth descriptions contained in the request
were not understood.

x07 Multicast not available: The site where the user is located does not support multicast.

x08 Unicast not available: The site where the user is located does not support unicast communication (usu-
ally due to the presence of a firewall).

x09 Media type not available: One or more media types contained in the request are not available.

x10 Attribute not understood: One or more of the media attributes in the request are not supported.

x09 Session description parameter not understood:A parameter other than those listed above was not
understood.

x99 Miscellaneous warning: The warning text may include arbitrary information to be presented to a hu-
man user, or logged. A system receiving this warningMUST NOT take any automated action.

1xx and 2xx have been taken by HTTP/1.1.

Examples:

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 47]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Warning: 309 isi.edu "Session parameter ’foo’ not understood"
Warning: 404 isi.edu "Incompatible network address type ’E.164’"

6.42 WWW-Authenticate

The WWW-Authenticate response-header fieldMUST be included in 401 (Unauthorized) response mes-
sages. The field value consists of at least one challenge that indicates the authentication scheme(s) and
parameters applicable to theRequest-URI. See [H14.46] and [27].

The content of therealm parameterSHOULD be displayed to the user. A user agentSHOULD cache the
authorization credentials for a given value of the destination (To header) andrealm and attempt to re-use
these values on the next request for that destination.

In addition to the “basic” and “digest” authentication schemes defined in the specifications cited above,
SIP defines a new scheme, PGP (RFC 2015, [28]), Section 13. Other schemes, such as S-MIME, are for
further study.

7 Status Code Definitions

The response codes are consistent with, and extend, HTTP/1.1 response codes. Not all HTTP/1.1 response
codes are appropriate, and only those that are appropriate are given here. Other HTTP/1.1 response codes
should not be used. Response codes not defined by HTTP/1.1 have codes x80 upwards to avoid clashes
with future HTTP response codes. Also, SIP defines a new class, 6xx. The default behavior for unknown
response codes is given for each category of codes.

7.1 Informational 1xx

Informational responses indicate that the server or proxy contacted is performing some further action and
does not yet have a definitive response. The clientSHOULD wait for a further response from the server,
and the serverSHOULD send such a response without further prompting. Typically a server should send
a 1xx response if it expects to take more than 200 ms to obtain a final response. A server can issue zero
or more 1xx responses, with no restriction on their ordering or uniqueness. Note that 1xx responses are
not transmitted reliably, that is, they do not cause the client to send anACK. Servers are free to retransmit
informational responses and clients can inquire about the current state of call processing by re-sending the
request.

7.1.1 100 Trying

Some unspecified action is being taken on behalf of this call (e.g., a database is being consulted), but the
user has not yet been located.

7.1.2 180 Ringing

The called user agent has located a possible location where the user has registered recently and is trying to
alert the user.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 48]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

7.1.3 181 Call Is Being Forwarded

A proxy serverMAY use this status code to indicate that the call is being forwarded to a different set of
destinations. The new destinations are listed inLocation headers. ProxiesSHOULD be configurable not to
reveal this information.

7.1.4 182 Queued

The called party is temporarily unavailable, but the callee has decided to queue the call rather than reject it.
When the callee becomes available, it will return the appropriate final status response. The reason phrase
MAY give further details about the status of the call, e.g., “5 calls queued; expected waiting time is 15
minutes”. The serverMAY issue several 182 responses to update the caller about the status of the queued
call.

7.2 Successful 2xx

The request was successful andMUST terminate a search.

7.2.1 200 OK

The request has succeeded. The information returned with the response depends on the method used in the
request, for example:

BYE: The call has been terminated. The message body is empty.

CANCEL: The search has been cancelled. The message body is empty.

INVITE: The callee has agreed to participate; the message body indicates the callee’s capabilities.

OPTIONS: The callee has agreed to share its capabilities, included in the message body.

REGISTER: The registration has succeeded. The client treats the message body according to itsContent-
Type.

7.3 Redirection 3xx

3xx responses give information about the user’s new location, or about alternative services that may be able
to satisfy the call. TheySHOULD terminate an existing search, andMAY cause the initiator to begin a new
search if appropriate.

Any redirection (3xx) responseMUST NOT suggest any of the addresses in theVia (Section 6.40) path
of the request in theLocation header field. (Addresses match if their host and port number match.)

To avoid forwarding loops, a user agent client or proxyMUST check whether the address returned by a
redirect server equals an address tried earlier.

7.3.1 300 Multiple Choices

The address in the request resolved to several choices, each with its own specific location, and the user (or
user agent) can select a preferred communication end point and redirect its request to that location.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 49]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

The responseSHOULD include an entity containing a list of resource characteristics and location(s) from
which the user or user agent can choose the one most appropriate, if allowed by theAccept request header.
The entity format is specified by the media type given in theContent-Type header field. The choices
SHOULD also be listed asLocation fields (Section 6.22). Unlike HTTP, the SIP response may contain
severalLocation fields or a list of addresses in aLocation field. User agentsMAY use theLocation field
value for automatic redirection orMAY ask the user to confirm a choice. However, this specification does
not define any standard for such automatic selection.

This header is appropriate if the callee can be reached at several different locations and the server cannot or
prefers not to proxy the request.

7.3.2 301 Moved Permanently

The user can no longer be found at the address in theRequest-URI and the requesting client should retry
at the new address given by theLocation header field (Section 6.22). The callerSHOULD update any local
directories, address books and user location caches with this new value and redirect future requests to the
address(es) listed.

7.3.3 302 Moved Temporarily

The requesting client should retry the request at the new address(es) given by theLocation header field
(Section 6.22). The duration of the redirection can be indicated through anExpires (Section 6.19) header.

7.3.4 380 Alternative Service

The call was not successful, but alternative services are possible. The alternative services are described in
the message body of the response.

7.4 Request Failure 4xx

4xx responses are definite failure responses from a particular server. The clientSHOULD NOT retry the
same request without modification (e.g., adding appropriate authorization). However, the same request to a
different server may be successful.

7.4.1 400 Bad Request

The request could not be understood due to malformed syntax.

7.4.2 401 Unauthorized

The request requires user authentication.

7.4.3 402 Payment Required

Reserved for future use.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 50]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

7.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help, and the request
should not be repeated.

7.4.5 404 Not Found

The server has definitive information that the user does not exist at the domain specified in theRequest-
URI. This status is also returned if the domain in theRequest-URI does not match any of the domains
handled by the recipient of the request.

7.4.6 405 Method Not Allowed

The method specified in theRequest-Line is not allowed for the address identified by theRequest-URI.
The responseMUST include anAllow header containing a list of valid methods for the indicated address.

7.4.7 406 Not Acceptable

The resource identified by the request is only capable of generating response entities which have content
characteristics not acceptable according to the accept headers sent in the request.

7.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the clientMUST first authenticate itself with
the proxy. The proxyMUST return aProxy-Authenticate header field (section 6.26) containing a challenge
applicable to the proxy for the requested resource. The clientMAY repeat the request with a suitable Proxy-
Authorization header field (section 6.27). SIP access authentication is explained in section 12.2 and [H11].

This status code should be used for applications where access to the communication channel (e.g., a
telephony gateway) rather than the callee herself requires authentication.

7.4.9 408 Request Timeout

The server could not produce a response, e.g., a user location, within the time indicated in theExpires
request-header field. The clientMAY repeat the request without modifications at any later time.

7.4.10 414 Request-URI Too Long

The server is refusing to service the request because the Request-URI is longer than the server is willing to
interpret.

7.4.11 415 Unsupported Media Type

The server is refusing to service the request because the message body of the request is in a format not
supported by the requested resource for the requested method.

7.4.12 420 Bad Extension

The server did not understand the protocol extension specified in aRequire (Section 6.30) header field.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 51]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

7.4.13 480 Temporarily Unavailable

The callee’s end system was contacted successfully but the callee is currently unavailable (e.g., not logged
in or logged in in such a manner as to preclude communication with the callee). The response may indicate
a better time to call in theRetry-After header. The user may also be available elsewhere (unbeknownst to
this host), thus, this response does not terminate any searches. The reason phraseSHOULD indicate a more
precise cause as to why the callee is unavailable. This valueSHOULD be setable by the user agent.

7.4.14 481 Invalid Call-ID

The server received aBYE or CANCEL request with aCall-ID (Section 6.12) value it does not recognize.
(A server simply discards anACK with an invalidCall-ID.)

7.4.15 482 Loop Detected

The server received a request with aVia (Section 6.40) path containing itself.

7.4.16 483 Too Many Hops

The server received a request that contains moreVia entries (hops) (Section 6.40) than allowed by the
Max-Forwards (Section 6.23) header field.

7.4.17 484 Address Incomplete

The server received a request with aTo (Section 6.37) address orRequest-URI that was incomplete. Addi-
tional information should be provided.

This status code allows overlapped dialing. With overlapped dialing, the client does not know the length of the
dialing string. It sends strings of increasing lengths, prompting the user for more input, until it no longer receives a
484 status response.

7.4.18 485 Ambiguous

The callee address provided in the request was ambiguous. The responseMAY contain a listing of possible
unambiguous addresses inLocation headers.

Revealing alternatives may infringe on privacy concerns of the user or the organization. ItMUST be
possible to configure a server to respond with status 404 (Not Found) or to suppress the listing of possible
choices if the request address was ambiguous.

Example response to a request with the URLlee@example.com :

485 Ambiguous SIP/2.0
Location: sip:carol.lee@example.com (Carol Lee)
Location: sip:p.lee@example.com (Ping Lee)
Location: sip:lee.foote@example.com (Lee M. Foote)

Some email and voice mail systems provide this functionality. A status code separate from 3xx is used since
the semantics are different: for 300, it is assumed that the same person or service will be reached by the choices
provided. While an automated choice or sequential search makes sense for a 3xx response, user intervention is
required for a 485 response.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 52]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

7.5 Server Failure 5xx

5xx responses are failure responses given when a server itself has erred. They are not definitive failures, and
MUST NOT terminate a search if other possible locations remain untried.

7.5.1 500 Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

7.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response
when the server does not recognize the request method and is not capable of supporting it for any user.

7.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the downstream server it
accessed in attempting to fulfill the request.

7.5.4 503 Service Unavailable

The server is currently unable to handle the request due to a temporary overloading or maintenance of the
server. The implication is that this is a temporary condition which will be alleviated after some delay. If
known, the length of the delay may be indicated in aRetry-After header. If noRetry-After is given, the
client MUST handle the response as it would for a 500 response.

Note: The existence of the 503 status code does not imply that a server has to use it when becoming
overloaded. Some servers may wish to simply refuse the connection.

7.5.5 504 Gateway Timeout

The server, while acting as a gateway, did not receive a timely response from the server (e.g., a location
server) it accessed in attempting to complete the request.

7.5.6 505 Version Not Supported

The server does not support, or refuses to support, the SIP protocol version that was used in the request
message. The server is indicating that it is unable or unwilling to complete the request using the same major
version as the client, other than with this error message. The responseSHOULD contain an entity describing
why that version is not supported and what other protocols are supported by that server.

7.6 Global Failures 6xx

6xx responses indicate that a server has definitive information about a particular user, not just the particular
instance indicated in theRequest-URI. All further searches for this user are doomed to failure and pending
searchesSHOULD be terminated.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 53]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

7.6.1 600 Busy

The callee’s end system was contacted successfully but the callee is busy and does not wish to take the call
at this time. The response may indicate a better time to call in theRetry-After header. If the callee does not
wish to reveal the reason for declining the call, the callee should use status code 603 (Decline) instead.

7.6.2 603 Decline

The callee’s machine was successfully contacted but the user explicitly does not wish to or cannot partici-
pate. The response may indicate a better time to call in theRetry-After header.

7.6.3 604 Does Not Exist Anywhere

The server has authoritative information that the user indicated in theTo request field does not exist any-
where. Searching for the user elsewhere will not yield any results.

7.6.4 606 Not Acceptable

The user’s agent was contacted successfully but some aspects of the session description such as the requested
media, bandwidth, or addressing style were not acceptable.

A 606 (Not Acceptable) response means that the user wishes to communicate, but cannot adequately
support the session described. The 606 (Not Acceptable) responseMAY contain a list of reasons in aWarn-
ing header or headers describing why the session described cannot be supported. Reasons are listed in
Section 6.41. It is hoped that negotiation will not frequently be needed, and when a new user is being
invited to join an already existing conference, negotiation may not be possible. It is up to the invitation
initiator to decide whether or not to act on a 606 (Not Acceptable) response.

8 SIP Message Body

8.1 Body Inclusion

For a request message, the presence of a body is signaled by the inclusion of aContent-Length header. Only
ACK, INVITE, OPTIONS andREGISTER requests may contain message bodies. ForACK, INVITE and
OPTIONS, the message body is always a session description. The use of message bodies forREGISTER
requests is for further study.

For response messages, whether or not a body is included is dependent on both the request method
and the response message’s response code. All responsesMAY include a body, although it may be of zero
length. Message bodies for 1xx responses contain advisory information about the progress of the request.
2xx responses contain session descriptions. For responses with status 300 or greater, the messaage body
MAY contain additional, human-readable information about the reasons for failure. It isRECOMMENDED

that information in 1xx and 300 and greater responses be of typetext/plain or text/html .

8.2 Message Body Type

The Internet media type of the message bodyMUST be given by theContent-Type header field, If the body
has undergone any encoding (such as compression) then thisMUST be indicated by theContent-Encoding

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 54]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

header field, otherwiseContent-Encoding MUST be omitted. If applicable, the character set of the message
body is indicated as part of theContent-Type header-field value.

8.3 Message Body Length

The body length in bytesMUST be given by theContent-Length header field. If no body is present in
a message, then theContent-Length headerMUST set to zero. If a server receives a message without
Content-Length, it MUST assume it to be zero.

The “chunked” transfer encoding of HTTP/1.1MUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

9 Compact Form

When SIP is carried over UDP with authentication and a complex session description, it may be possible
that the size of a request or response is larger than the MTU. To reduce this problem, a more compact form
of SIP is also defined by using alternative names for common header fields. These short forms are NOT
abbreviations, they are field names. No other header field abbreviations are allowed.

short field name long field name note
c Content-Type
e Content-Encoding
f From
i Call-ID
l Content-Length
m Location from “moved”
s Subject
t To
v Via

Thus, the header in section 14.2 could also be written:

INVITE sip:schooler@vlsi.caltech.edu SIP/2.0
v:SIP/2.0/UDP 131.215.131.131;maddr=239.128.16.254;ttl=16
v:SIP/2.0/UDP 128.16.64.19
f:sip:mjh@isi.edu
t:sip:schooler@cs.caltech.edu
i:62729-27@128.16.64.19
c:application/sdp
CSeq: 4711 INVITE
l:187

v=0
o=user1 53655765 2353687637 IN IP4 128.3.4.5
s=Mbone Audio
i=Discussion of Mbone Engineering Issues

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 55]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

e=mbone@somewhere.com
c=IN IP4 224.2.0.1/127
t=0 0
m=audio 3456 RTP/AVP 0

Mixing short field names and long field names is allowed, but not recommended. ServersMUST accept
both short and long field names for requests. ProxiesMUST NOT translate a request between short and long
forms if authentication fields are present.

10 SIP Transport

10.1 General Remarks

SIP is defined so it can use either UDP (unicast or multicast) or TCP as a transport protocol; it provides its
own reliability mechanism.

10.1.1 Requests

Servers ignore isomorphic requests, but retransmit the appropriate response. (SIP requests are said to be
idempotent, i.e., receiving more than one copy of a request does not change the server state.)

After receiving aCANCEL request from an upstream client, a stateful proxy serverSHOULD send a
CANCEL on all branches where it has not yet received a final response.

If the To header user and host information does not match an address supported by the server, the server
returns a 404 (Not Found) error response. Otherwise, it searches for theCall-ID value.

If the Call-ID was found, it compares the tag value ofTo with the user’s tag and rejects the request if
the two do not match. If theFrom header, including any tag value, matches the value for an existing call
leg, the server compares theCSeq header value. If less than or equal to the current sequence number, the
request is a retransmission. Otherwise, it is a new request. If theFrom header does not match an existing
call leg, a new call leg is created.

If the Call-ID was not found, a new call leg is created, with entries for theTo, From andCall-ID headers.
In this case, theTo header should not have contained a tag. The server returns a response containing the
sameTo value, but with a unique tag added. The tagMAY be omitted if theTo refers to a fully qualified host
name.

10.1.2 Responses

A serverMAY issue one or more provisional responses at any time before sending a final response. If a
stateful proxy, user agent server, redirect server or registrar cannot respond to a request with a final response
within 200 ms, itMUST issue a provisional (1xx) response as soon as possible. Stateless proxiesMUST NOT

issue provisional responses on their own.
Responses are mapped to requests by the matchingTo, From, Call-ID, CSeq headers and thebranch

parameter of the firstVia header. Responses terminate request retransmissions even if they haveVia headers
that cause them to be delivered to an upstream client.

A stateful proxy may receive a response that it does not have state for, that is, where it has no a record
of an isomorphic request. If theVia header field indicates that the upstream server used TCP, the proxy

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 56]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

actively opens a TCP connection to that address. Thus, proxies have to be prepared to receive responses
on the incoming side of passive TCP connections, even though most responses will arrive on the incoming
side of an active connection. (An active connection is a TCP connection initiated by the proxy, a passive
connection is one accepted by the proxy, but initiated by another entity.)

100 responses are not forwarded, other 1xx responsesMAY be forwarded, possibly after the server
eliminates responses with status codes that had already been sent earlier. 2xx responses are forwarded
according to theVia header. Once a stateful proxy has received a 2xx response, itMUST NOT forward non-
2xx final responses. Responses with status 300 and higher are retransmitted by each stateful proxy until the
next upstream proxy sends anACK (see below for timing details) orCANCEL.

A stateful proxy can remove state for a call attempt and close any connections 20 seconds after receiving
the first final response.

The 20 second window is given by the maximum retransmission duration of 200 responses (10 timesT4), in
case theACK is lost somewhere on the way to the called user agent or the next stateful proxy.

10.2 Source Addresses, Destination Addresses and Connections

10.2.1 Unicast UDP

UDP packetsMUST have a source address that is valid as a destination for requests and responses. Responses
are returned to the address listed in theVia header field (Section 6.40),not the source address of the request.

10.2.2 Multicast UDP

Requests may be multicast; multicast requests likely feature a host-independentRequest-URI. Multicast
requestsSHOULD have a time-to-live value of no greater than one, i.e., be restricted to the local network.

A client receiving a multicast query does not have to check whether thehostpart of theRequest-URI
matches its own host or domain name. If the request was received via multicast, the response is also returned
via multicast. Responses to multicast requests are multicast with the same TTL as the request, where the
TTL is derived from thettl parameter in theVia header (Section 6.40).

To avoid response implosion, serversMUST NOT answer multicast requests with a status code other than
2xx or 6xx. Servers only return 6xx responses if theTo represents a single individual rather than a group of
people. The server delays its response by a random interval between zero and one second. ServersSHOULD

suppress responses if they hear a lower-numbered or 6xx response from another group member prior to
sending. Servers do not respond toCANCEL requests received via multicast to avoid request implosion.

10.3 TCP

A single TCP connection can serve one or more SIP transactions. A transaction contains zero or more
provisional responses followed by one or more final responses. (Typically, transactions contain exactly one
final response, but there are exceptional circumstances, where, for example, multiple 200 responses may be
generated.)

The clientMAY close the connection at any time, butSHOULD keep the connection open at least until
the first final response arrives. The serverSHOULD NOT close the TCP connection until it has sent its final
response, at which point itMAY close the TCP connection if it wishes to. However, normally it is the client’s
responsibility to close the connection.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 57]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

If the server leaves the connection open, and if the client so desires it may re-use the connection for
further SIP requests or for requests from the same family of protocols (such as HTTP or stream control
commands).

If a client closes a connection or the connection is reset (e.g., because the client has crashed and re-
booted), the server treats this as equivalent to having received aCANCEL request.

If a server needs to return a response to a client and no longer has a connection open to that client, itMAY

open a connection to the address listed in theVia header. Thus, a proxy or user agentMUST be prepared to
receive both requests and responses on a “passive” connection.

10.4 Reliability for BYE, CANCEL, OPTIONS, REGISTER Requests

10.4.1 UDP

A SIP clientusing UDPSHOULD retransmit aBYE, CANCEL, OPTIONS, or REGISTER request pe-
riodically with timer T1 until it receives a response, or until it has reached a set limit on the number of
retransmissions. If the response is provisional, the client continues to retransmit the request, albeit less
frequently, using timerT2. The default values of timerT1 andT2 are 1 and 5 seconds, respectively. The
default retransmit limit is 20 times. After the server sends a final response, it cannot be sure the client has
received the response, and thusSHOULD cache the results for at least 100 seconds to avoid having to, for
example, contact the user or location server again upon receiving a retransmission.

Each server in a proxy chain generates its own final response to aCANCEL request;BYE andOP-
TIONS final responses are generated by redirect and user agent servers;REGISTER final responses are
generated by registrars. Note that responses to these commands arenot acknowledged viaACK.

The value of the initial retransmission timer is smaller than that that for TCP since it is expected that network
paths suitable for interactive communications have round-trip times smaller than 1 second. To avoid flooding the
network with packets every second even if the destination network is unreachable, the retransmission count has to be
bounded. Given that most transactions should consist of one request and a few responses, round-trip time estimation
is not likely to be very useful. If RTT estimation is desired to more quickly discover a missing final response, each
request retransmission needs to be labeled with its ownTimestamp (Section 6.36), returned in the response. The
server caches the result until it can be sure that the client will not retransmit the same request again.

10.4.2 TCP

Clients using TCP donot need to retransmit requests.

10.5 Reliability for ACK Requests

TheACK request does not generate responses. It is only retransmitted when a response to anINVITE request
arrives. This behavior is independent of the transport protocol.

10.6 Reliability for INVITE Requests

Special considerations apply for theINVITE method.

1. After receiving an invitation, considerable time may elapse before the server can determine the out-
come. For example, the called party may be “rung” or extensive searches may be performed, so
delays between the request and a definitive response can reach several tens of seconds. If either

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 58]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

caller or callee are automated servers not directly controlled by a human being, a call attempt may be
unbounded in time.

2. If a telephony user interface is modeled or if we need to interface to the PSTN, the caller’s user
interface will provide “ringback”, a signal that the callee is being alerted. (The status response 180
(Ringing) may be used to initiate ringback.) Once the callee picks up, the caller needs to know so that
it can enable the voice path and stop ringback. The callee’s response to the invitation could get lost.
Unless the response is transmitted reliably, the caller will continue to hear ringback while the callee
assumes that the call exists.

3. The client has to be able to terminate an on-going request, e.g., because it is no longer willing to
wait for the connection or search to succeed. The server will have to wait several round-trip times to
interpret the lack of request retransmissions as the end of a call. If the call succeeds shortly after the
caller has given up, the callee will “pick up the phone” and not be “connected”.

10.6.1 UDP

For UDP, A SIP clientSHOULD retransmits a SIPINVITE request periodically with timerT1 until it receives
a response. If the client receives no response, it ceases retransmission after 20 attempts. If the response is
provisional, the client continues to retransmit the request, albeit less frequently, using timerT3. The default
values of timerT1 andT3 are 1 and 30 seconds, respectively.

The value ofT3 was chosen so that for most normal phone calls, only oneINVITE request will be issued.
Typically, a phone switches to an answering machine or voice mail after about 20–22 seconds. The number of
retransmissions after receiving a provisional response is unlimited to allow call queueing. Clients may limit the
number of invitations sent for each call attempt.

For 2xx final responses, only the user agent client generates anACK. If the response contained aLo-
cation header, theACK is sent to the address listed in thatLocation header field. If the response did not
contain aLocation header, the client uses the sameTo header field andRequest-URI as for theINVITE
request and sends theACK to the same destination as the originalINVITE request.ACKs for final responses
other than 2xx are sent to the source of the response by each client.

The server retransmits the final response at intervals ofT4 (default value ofT4 = 2 seconds) until
it receives anACK request for the sameCall-ID and CSeq from the sameFrom source or until it has
retransmitted the final response 10 times. TheACK requestMUST NOT be acknowledged to prevent a
response-ACK feedback loop.

Fig. 11 and 12 show the client and server state diagram for invitations.

The mechanism in Sec. 10.4 would not work well forINVITE because of the long delays betweenINVITE and a
final response. If the 200 response were to get lost, the callee would believe the call to exist, but the voice path would
be dead since the caller does not know that the callee has picked up. Thus, theINVITE retransmission interval would
have to be on the order of a second or two to limit the duration of this state confusion. Retransmitting the response
a fixed number of times increases the probability of success, but at the cost of significantly higher processing and
network load.

10.6.2 TCP

A client using TCPMUST NOT retransmit requests, but uses the same algorithm as for UDP (Section 10.6.1)
to retransmit responses until it receives anACK. (An implementation can simply setT1 andT3 to infinity
and otherwise maintain the same state diagram.)

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 59]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

-

INVITE
T1

ACK
status

ACK
status

event
request sent

BYE
give up

BYE
give up

Calling

Initial

INVITE

1xx
ACK
status

1xx

Completed

Call proceedingINVITE
T3

10*T4

Figure 11: State transition diagram of client forINVITE method

It is necessary to retransmit 2xx responses as their reliability is assured end-to-end only. If the chain of proxies
has a UDP link in the middle, it could lose the response, with no possibility of recovery. For simplicity, we also
retransmit non-2xx responses, although that is not strictly necessary.

11 Behavior of SIP Servers

This section describes behavior of a SIP server in detail. Servers can operate in proxy or redirect mode.
Proxy servers can “fork” connections, i.e., a single incoming request spawns several outgoing (client) re-
quests.

A proxy server always inserts aVia header field containing its own address into those requests that are
caused by an incoming request. Each proxyMUST insert a “branch” parameter (Section 6.40). To prevent
loops, a serverMUST check if its own address is already contained in theVia header of the incoming request.

A proxy serverMAY convert a version-x SIP request or response to a version-y request or response,
wherex may be larger, smaller or equal toy.

This rule allows a proxy to serve as a go-between between two servers that have no version of the protocol in
common.

11.1 Redirect Server

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 60]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

1xx
INVITE

1xx
INVITE

event
message sent

callee picks up
200

failure
>= 300

200
CANCEL

200
BYE

INVITE
statusstatus

Confirmed

Final Status

Call proceeding

Initial

ACK

ACK
-

-

T4

10*T4
-

1xx
status change

Figure 12: State transition diagram of server forINVITE method

A redirect server does not issue any SIP requests of its own. After receiving a request, the server gathers the
list of alternative locations and returns a final response of class 3xx or it refuses the request. ForCANCEL
requests, it may also return a 2xx response. This response ends the SIP transaction. The redirect server
maintains transaction state for the whole SIP transaction. It is up to the client to detect forwarding loops
between redirect servers.

11.2 User Agent Server

User agent servers behave similarly to redirect servers, except that they may also accept requests and return
a response of class 2xx.

11.3 Stateless Proxy: Proxy Servers Issuing Single Unicast Requests

Proxies in this category issue at most a single unicast request for each incoming SIP request, that is, they do
not “fork” requests. However, servers may choose to always operate in a mode that allows issuing of several
requests, as described in Section 11.4.

The server can forward the request and any responses. It does not have to maintain any state for the SIP
transaction. Reliability is assured by the next redirect or stateful proxy server in the server chain.

A proxy serverSHOULD cache the result of any address translations and the response to speed forward-
ing of retransmissions. After the cache entry has been expired, the server cannot tell whether an incoming

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 61]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

request is actually a retransmission of an older request. The server will treat it as a new request and com-
mence another search.

11.4 Proxy Server Issuing Several Requests

The serverMUST respond to the request immediately with a 100 (Trying) response.
All outgoing requests carry the sameCall-ID, To, From andCSeq headers as the request received. Each

of the requests has a different (host-dependent)Request-URI.
Successful responses to anINVITE requestSHOULD contain aLocation header so that the following

ACK or BYE bypasses the proxy search mechanism. If the proxy requires future requests to be routed
through it, it adds aRecord-Route header to the request (Section 6.29).

The following pseudo-code describes the behavior of a proxy server issuing several requests in response
to an incomingINVITE request. The functionrequest(r, a, b) sends a SIP request of typer to ad-
dressa, with branch idb. await response() waits until a response is received and returns the response.
close(a) closes the TCP connection to client with addressa. response(r) sends a response to the
client. ismulticast() returns 1 if the location is a multicast address and zero otherwise. The variable
timeleft indicates the amount of time left until the maximum response time has expired. The variable
recurse indicates whether the server will recursively try addresses returned through a 3xx response. A
serverMAY decide to recursively try only certain addresses, e.g., those which are within the same domain as
the proxy server. Thus, an initial multicast request may trigger additional unicast requests.

/* request type */
typedef enum {INVITE, ACK, BYE, OPTIONS, CANCEL, REGISTER} Method;

process_request(Method R, int N, address_t address[])
{

struct {
address_t address; /* address */
int branch; /* branch id */
int done; /* has responded */

} outgoing[];
int done[]; /* address has responded */
char *location[]; /* list of locations */
int heard = 0; /* number of sites heard from */
int class; /* class of status code */
int timeleft = 120; /* sample timeout value */
int loc = 0; /* number of locations */
struct { /* response */

int status; /* response: BYE=-2; CANCEL=-1 */
int locations; /* number of redirect locations */
char *location[]; /* redirect locations */
address_t a; /* address of respondent */
int branch; /* branch identifier */

} r, best; /* response, best response */
int i;

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 62]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

best.status = 1000;
for (i = 0; i < N; i++) {

request(R, address[i], i);
outgoing[i].done = 0;
outgoing[i].branch = i;

}

while (timeleft > 0 && heard < N) {
r = await_response();
class = r.status / 100;

if (r.status < 0) {
break;

}

/* If final response, mark branch as done. */
if (class >= 2) {

heard++;
for (i = 0; i < N; i++) {

if (r.branch == outgoing[i].branch) {
outgoing[i].done = 1;
break;

}
}

}

if (class == 2) {
best = r;
break;

}
else if (class == 3) {

/* A server may optionally recurse. The server MUST check
* whether it has tried this location before and whether the
* location is part of the Via path of the incoming request.
* This check is omitted here for brevity. Multicast locations
* MUST NOT be returned to the client if the server is not
* recursing.

*/
if (recurse) {

multicast = 0;
N += r.locations;
for (i = 0; i < r.locations; i++) {

request(R, r.location[i]);
}

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 63]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

} else if (!ismulticast(r.location)) {
best = r;

}
if (R == INVITE} request(ACK, r.a, r.branch);

}
else if (class == 4) {

if (R == INVITE} request(ACK, r.a, r.branch);
if (best.status >= 400) best = r;

}
else if (class == 5) {

if (R == INVITE} request(ACK, r.a, r.branch);
if (best.status >= 500) best = r;

}
else if (class == 6) {

if (R == INVITE} request(ACK, r.a, r.branch);
best = r;
break;

}
}

/* CANCEL */
if (r.status == -1) {

best.status = 200;
response(best);

}
/* BYE */
else if (r.status == -2) {

for (i = 0; i < N; i++) {
request(BYE, address[i], i);

}
}
/* INVITE */
else {

/* We haven’t heard anything useful from anybody. */
if (best.status == 1000) {

best.status = 404;
}
if (best.status/100 != 3) loc = 0;
response(best);

}

/*
* If complete or CANCELed, close the other pending transactions by
* sending CANCEL.

*/

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 64]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

if (r.status > 0 || r.status == -1) {
for (i = 0; i < N; i++) {

if (!outgoing[i].done) {
request(CANCEL, address[i], outgoing[i].branch);
if (tcp) close(a);

}
}

}
}

Responses are processed as follows. The process completes (and state can be freed) when all requests
have been answered by final status responses (for unicast) or 60 seconds have elapsed (for multicast). A
proxy MAY send aCANCEL to all branches and return a 408 (Timeout) to the client after 60 seconds or
more.

1xx: The proxyMAY forward the response upstream towards the client.

2xx: The proxyMUST forward the response upstream towards the client, without sending anACK down-
stream. After receiving a 2xx, the serverSHOULD terminate all other pending requests by sending a
CANCEL request and closing the TCP connection, if applicable. (Terminating pending requests is
advisable as searches consume resources. Also,INVITE requests may “ring” on a number of work-
stations if the callee is currently logged in more than once.)

3xx: The proxyMUST send anACK and MAY recurse on the listedLocation addresses. Otherwise, the
lowest-numbered response is returned if there were no 2xx responses.

Location lists are not merged as that would prevent forwarding of authenticated responses. Also, some
responses may have message bodies, so that merging is not feasible.

4xx, 5xx: The proxyMUST send anACK and remember the response if it has a lower status code than any
previous 4xx and 5xx responses. On completion, the lowest-numbered response is returned if there
were no 2xx or 3xx responses.

6xx: The proxyMUST forward the response to the client and send anACK. Other pending requestsSHOULD

be terminated withCANCEL as described for 2xx responses.

When operating in this mode, a proxy serverMUST ignore any responses received forCall-IDs for
which it does not have a pending transaction. (If server were to forward responses not belonging to a current
transaction using theVia field, the requesting client would get confused if it has just issued another request
using the sameCall-ID.)

If a proxy server receives aBYE request for a pending search, the proxyMUST terminate all pending
requests by sending aBYE request.

Special considerations apply for choosing forwarding destinations forACK andBYE requests. In most
cases, these requests will bypass proxies and reach the desired party directly, keeping proxies from having
to make forwarding decisions.

User agent clients respond toACK andBYE requests with unknownCall-ID with status code 481 (In-
valid Call-ID).

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 65]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

A proxy MAY maintain call state for a period of its choosing. If a proxy still has list of destinations that it
forwarded the lastINVITE to, it SHOULD directACK requests only to those downstream servers. ItSHOULD

direct BYE to only those servers that had previously responded with 2xx or have not yet responded to the
last INVITE. If the proxy has no call state for a particularCall-ID andTo destination, it forks the request as
it would for anINVITE request.

12 Security Considerations

12.1 Confidentiality and Privacy: Encryption

12.1.1 End-to-End Encryption

SIP requests and responses can contain sensitive information about the communication patterns and com-
munication content of individuals and thus should be protected against eavesdropping. The SIP message
body may also contain encryption keys for the session itself.

SIP supports three complementary forms of encryption to protect privacy:

• End-to-end encryption of the SIP message body and certain sensitive header fields;

• hop-by-hop encryption to prevent eavesdropping that tracks who is calling whom;

• hop-by-hop encryption ofVia fields to hide the route a request has taken.

Not all of the SIP request or response can be encrypted end-to-end because header fields such asTo and
Via need to be visible to proxies so that the SIP request can be routed correctly. Hop-by-hop encryption
encrypts the entire SIP request or response on the wire (the request may already have been end-to-end
encrypted) so that packet sniffers or other eavesdroppers cannot see who is calling whom. Note that proxies
can still see who is calling whom, and this information may also be deducible by performing a network
traffic analysis, so this provides a very limited but still worthwhile degree of protection.

SIPVia fields are used to route a response back along the path taken by the request and to prevent infinite
request loops. However, the information given by them may also provide useful information to an attacker.
Section 6.21 describes how a sender can request that Via fields be encrypted by cooperating proxies without
compromising the purpose of the Via field.

End-to-end encryption relies on keys shared by the two user agents involved in the request. Typically,
the message is sent encrypted with the public key of the recipient, so that only that recipient can read the
message. SIP does not limit the security mechanisms that may be used, but all implementationsSHOULD

support PGP-based encryption.
A SIP request (or response) is end-to-end encrypted by splitting the message to be sent into a part to be

encrypted and a short header that will remain in the clear. Some parts of the SIP message, namely the request
line, the response line and certain header fields marked with “n” in the “enc.” column in Table 4 need to be
read and returned by proxies and thusMUST NOT be encrypted end-to-end. Possibly sensitive information
that needs to be made available as plaintext include destination address (To) and the forwarding path (Via) of
the call. TheAuthorization headerMUST remain in the clear if it contains a digital signature as the signature
is generated after encryption, butMAY be encrypted if it contains “basic” or “digest” authentication. The
From header fieldSHOULD normally remain in the clear, butMAY be encrypted if required, in which case
some proxiesMAY return a 401 (Unauthorized) status if they require aFrom field.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 66]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Other header fieldsMAY be encrypted orMAY travel in the clear as desired by the sender. TheSub-
ject, Allow, Call-ID, andContent-Type header fields will typically be encrypted. TheAccept, Accept-
Language, Date, Expires, Priority, Require, Cseq, andTimestamp header fields will remain in the
clear.

All fields that will remain in the clearMUST precede those that will be encrypted. The message is
encrypted starting with the first character of the first header field that will be encrypted and continuing
through to the end of the message body. If no header fields are to be encrypted, encrypting starts with the
second CRLF pair after the last header field, as shown below. Carriage return and line feed characters have
been made visible as “$”, and the encrypted part of the message is outlined.

INVITE sip:watson@boston.bell-telephone.com SIP/2.0$
Via: SIP/2.0/UDP 169.130.12.5$
To: T. A. Watson <sip:watson@bell-telephone.com>$
From: A. Bell <sip:a.g.bell@bell-telephone.com>$
Encryption: PGP version=5.0$
Content-Length: 224$
CSeq: 488$
$

* Call-ID: 187602141351@worcester.bell-telephone.com$ *
* Subject: Mr. Watson, come here.$ *
* Content-Type: application/sdp$ *
* $ *
* v=0$ *
* o=bell 53655765 2353687637 IN IP4 128.3.4.5$ *
* c=IN IP4 135.180.144.94$ *
* m=audio 3456 RTP/AVP 0 3 4 5$ *

An Encryption header fieldMUST be added to indicate the encryption mechanism used. AContent-
Length field is added that indicates the length of the encrypted body. The encrypted body is preceded by a
blank line as a normal SIP message body would be.

Upon receipt by the called user agent possessing the correct decryption key, the message body as indi-
cated by theContent-Length field is decrypted, and the now-decrypted body is appended to the clear-text
header fields. There is no need for an additionalContent-Length header field within the encrypted body
because the length of the actual message body is unambiguous after decryption.

Had no SIP header fields required encryption, the message would have been as below. Note that the
encrypted body must then include a blank line (start with CRLF) to disambiguate between any possible SIP
header fields that might have been present and the SIP message body.

INVITE sip:watson@boston.bell-telephone.com SIP/2.0$
Via: SIP/2.0/UDP 169.130.12.5$
To: T. A. Watson <sip:watson@bell-telephone.com>$
From: A. Bell <a.g.bell@bell-telephone.com>$
Encryption: PGP version=5.0$

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 67]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Content-Type: application/sdp$
Content-Length: 107$
$

* $ *
* v=0$ *
* o=bell 53655765 2353687637 IN IP4 128.3.4.5$ *
* c=IN IP4 135.180.144.94$ *
* m=audio 3456 RTP/AVP 0 3 4 5$ *

12.1.2 Privacy of SIP Responses

SIP requests may be sent securely using end-to-end encryption and authentication to a called user agent that
sends an insecure response. This is allowed by the SIP security model, but is not a good idea. However,
unless the correct behaviour is explicit, it would not always be possible for the called user agent to infer
what a reasonable behaviour was. Thus when end-to-end encryption is used by the request originator, the
encryption key to be used for the responseSHOULD be specified in the request. If this were not done, it might
be possible for the called user agent to incorrectly infer an appropriate key to use in the response. Thus,
to prevent key-guessing becoming an acceptable strategy, we specify that a called user agent receiving a
request that does not specify a key to be used for the responseSHOULD send that response unencrypted.

Any SIP header fields that were encrypted in a request should also be encrypted in an encrypted response.
Location response fieldsMAY be encrypted if the information they contain is sensitive, orMAY be left in
the clear to permit proxies more scope for localized searches.

12.1.3 Encryption by Proxies

Normally, proxies are not allowed to alter end-to-end header fields and message bodies. ProxiesMAY ,
however, encrypt an unsigned request or response with the key of the call recipient.

Proxies may need to encrypt a SIP request if the end system cannot perform encryption or to enforce organiza-
tional security policies.

12.1.4 Hop-by-Hop Encryption

It is RECOMMENDED that SIP requests and responses are also protected by security mechanisms at the
transport and network layer.

12.1.5 Via field encryption

WhenVia fields are to be hidden, a proxy that receives a request containing an appropriate “Hide: hop”
header field (as specified in section 6.21)SHOULD encrypt the header field. As only the proxy that encrypts
the field will decrypt it, the algorithm chosen is entirely up to the proxy implementor. Two methods satisfy
these requirements:

• The server keeps a cache ofVia fields and the associatedTo field, and replaces theVia field with an
index into the cache. On the reverse path, take theVia field from the cache rather than the message.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 68]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

This is insufficient to prevent message looping, and so an additional ID must be added so that the
proxy can detect loops. This should not normally be the address of the proxy as the goal is to hide the
route, so instead a sufficiently large random number should be used by the proxy and maintained in
the cache. Obtaining sufficiently much randomness to give sufficient protection against clashes may
be hard.

It may also be possible for replies to get directed to the wrong originator if the cache entry gets reused,
so great care must be taken to ensure this does not happen.

• The server may use a secret key to encrypt theVia field, a timestamp and an appropriate checksum
in any such message with the same secret key. The checksum is needed to detect whether successful
decoding has occurred, and the timestamp is required to prevent possible response attacks and to
ensure that no two requests from the same previous hop have the same encryptedVia field.

The latter is the preferred solution, although proxy developers may devise other methods that might also
satisfy the requirements.

12.2 Message Integrity and Access Control: Authentication

An active attacker may be able to modify and replay SIP requests and responses unless protective measures
are taken. In practice, the same cryptographic measures that are used to ensure the authenticity of the SIP
message also serve to authenticate the originator of the message.

Transport-layer or network-layer authentication may be used for hop-by-hop authentication. SIP also
extends the HTTPWWW-Authenticate (Section 6.42) andAuthorization (Section 6.11) header and their
Proxy- counterparts to include cryptographically strong signatures. SIP also supports the HTTP “basic”
authentication scheme that offers a very rudimentary mechanism of ascertaining the identity of the caller.

Since SIP requests are often sent to parties with which no prior communication relationship has existed, we do
not specify authentication based on shared secrets.

SIP requests may be authenticated using theAuthorization header field to include a digital signature of
certain header fields, the request method and version number and the payload, none of which are modified
between client and called user agent. TheAuthorization header field may be used in requests to end-to-end
authenticate the request originator to proxies and the called user agent, and in responses to authenticate the
called user agent or proxies returning their own failure codes. It does not provide hop-by-hop authentication,
which may be provided if required using the IPSEC Authentication Header.

SIP does not dictate which digital signature scheme is used for authentication, but does define how to
provide authentication using PGP in Section 13.

To sign a SIP request, the order of the SIP header fields is important.Via header fieldsMUST precede
all other SIP header fields as these are modified in transit. When anAuthorization header field is present,
it indicates that all the header fields following theAuthorization header field have been included in the
signature. To sign a request, a client removes all of the SIP header from before where theAuthorization
field will be added. It then prepends the request method (in upper case) followed by the SIP version number
field (in upper case) directly to the start of the message with no whitespace, CR or LF characters inserted.
This extended message is what is signed.

For example, if the SIP request is to be:

INVITE sip:watson@boston.bell-telephone.com SIP/2.0

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 69]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Via: SIP/2.0/UDP 169.130.12.5
Authorization: PGP version=5.0, signature=...
From: A. Bell <sip:a.g.bell@bell-telephone.com>
To: T. A. Watson <sip:watson@bell-telephone.com>
Call-ID: 187602141351@worcester.bell-telephone.com
Subject: Mr. Watson, come here.
Content-Type: application/sdp
Content-Length: ...

v=0
o=bell 53655765 2353687637 IN IP4 128.3.4.5
c=IN IP4 135.180.144.94
m=audio 3456 RTP/AVP 0 3 4 5

Then the data block that is signed is:

INVITESIP/2.0From: A. Bell <sip:a.g.bell@bell-telephone.com>
To: T. A. Watson <sip:watson@bell-telephone.com>
Call-ID: 187602141351@worcester.bell-telephone.com
Subject: Mr. Watson, come here.
Content-Type: application/sdp
Content-Length: ...

v=0
o=bell 53655765 2353687637 IN IP4 128.3.4.5
c=IN IP4 135.180.144.94
m=audio 3456 RTP/AVP 0 3 4 5

Note that if a message is encrypted and authenticated using a digital signature, when the message is
generated encryption is performed before the digital signature is generated. On receipt, the digital signature
is checked before decryption.

A client MAY require that a server sign its response by including aRequire: org.ietf.sip.signed-
response request header field. The client indicates the desired authentication method via theWWW-
Authenticate header.

The correct behaviour in handling unauthenticated responses to a request that requires authenticated
responses is described in section 12.2.1.

12.2.1 Trusting responses

It may be possible for an eavesdropper to listen to requests and to inject unauthenticated responses that would
terminate, redirect or otherwise interfere with a call. (Even encrypted requests contain enough information
to fake a response.)

Client should be particularly careful with 3xx redirection responses. Thus a client receiving, for exam-
ple, a 301 (Moved Permanently) which was not authenticated when the public key of the called user agent
is known to the client, and authentication was requested in the requestSHOULD be treated as suspicious.
The correct behaviour in such a case would be for the called-user to form a dated response containing the

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 70]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Location field to be used, to sign it, and give this signed stub response to the proxy that will provide the
redirection. Thus the response can be authenticated correctly. There may be circumstances where such
unauthenticated responses are unavoidable, but a clientSHOULD NOT automatically redirect such a request
to the new location without alerting the user to the authentication failure before doing so.

Another problem might be responses such as 6xx failure responses which would simply terminate a
search, or “4xx” and “5xx” response failures.

If TCP is being used, a proxySHOULD treat 4xx and 5xx responses as valid, as they will not terminate
a search. However, 6xx responses from a rogue proxy may terminate a search incorrectly. 6xx responses
SHOULD be authenticated if requested by the client, and failure to do soSHOULD cause such a client to
ignore the 6xx response and continue a search.

With UDP, the same problem with 6xx responses exists, but also an active eavesdropper can generate
4xx and 5xx responses that might cause a proxy or client to believe a failure occurred when in fact it did not.
Typically 4xx and 5xx responses will not be signed by the called user agent, and so there is no simple way
to detect these rogue responses. This problem is best prevented by using hop-by-hop encryption of the SIP
request, which removes any additional problems that UDP might have over TCP.

These attacks are prevented by having the client require response authentication and dropping unau-
thenticated responses. A server user agent that cannot perform response authentication responds using the
normalRequire response of 420 (Bad Extension).

12.3 Callee Privacy

User location and SIP-initiated calls may violate a callee’s privacy. An implementationSHOULD be able to
restrict, on a per-user basis, what kind of location and availability information is given out to certain classes
of callers.

12.4 Known Security Problems

With either TCP or UDP, a denial of service attack exists by a rogue proxy sending 6xx responses. Although
a client SHOULD choose to ignore such responses if it requested authentication, a proxy cannot do so. It
is obliged to forward the 6xx response back to the client. The client can then ignore the response, but if it
repeats the request it will probably reach the same rogue proxy again, and the process will repeat.

13 SIP Security Using PGP

13.1 PGP Authentication Scheme

The “pgp” authentication scheme is based on the model that the client must authenticate itself with a request
signed with the client’s private key. The server can then ascertain the origin of the request if it has access to
the public key, preferably signed by a trusted third party.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 71]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

13.1.1 TheWWW-Authenticate Response Header

WWW-Authenticate = ”WWW-Authenticate” ”:” ”pgp” pgp-challenge
pgp-challenge = 1# (realm | pgp-version | pgp-algorithm)
realm = ”realm” ”=” realm-value
realm-value = quoted-string
pgp-version = ”version” ”=” digit *(”.” digit) *letter
pgp-algorithm = ”algorithm” ”=” (”md5” | ”sha1” | token)

The meanings of the values of the parameters used above are as follows:

realm: A string to be displayed to users so they know which identity to use. This string should con-
tain at least the name of the host performing the authentication and might additionally indicate the
collection of users who might have access. An example might be “Users with call-out
privileges ”.

pgp-algorithm: A string indicating the PGP message integrity check (MIC) to be used to produce the
signature. If this not present it is assumed to be ”md5”. The currently defined values are ”md5” for
the MD5 checksum, and ”sha1” for the SHA.1 algorithm.

pgp-version: The version of PGP that the client MUST use. Common values are “2.6.2” and “5.0”. The
default is 5.0.

Example:

WWW-Authenticate: pgp version="5.0",
realm="Your Startrek identity, please", algorithm="md5"

13.1.2 TheAuthorization Request Header

The client is expected to retry the request, passing anAuthorization header line, which is defined as follows.

Authorization = ”Authorization” ”:” ”pgp” pgp-response
pgp-response = 1# (realm | pgp-version | pgp-signature | signed-by)
pgp-signature = ”signature” ”=” quoted-string
signed-by = ”signed-by” ”=” URI

The signatureMUST correspond to theFrom header of the request unless thesigned-by parameter is
provided.

pgp-signature: The PGP ASCII-armored signature, as it appears between the “BEGIN PGP MESSAGE”
and “END PGP MESSAGE” delimiters, without the version indication. The signature is included
without any linebreaks.

The signature is computed across the request method, request version and header fields following the
Authorization header and the message body, in the same order as they appear in the message. The
request method and version are prepended to the header fields without any white space. The signature
is computed across the headers as sent, including any folding and the terminating CRLF. The CRLF
following theAuthorization header is NOT included in the signature.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 72]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Using the ASCII-armored version is about 25% less space-efficient than including the binary signature, but
it is significantly easier for the receiver to piece together. Versions of the PGP program always include the full
(compressed) signed text in their output unless ASCII-armored mode (-sta) is specified. Typical signatures
are about 200 bytes long. – The PGP signature mechanism allows the client to simply pass the request to an
external PGP program. This relies on the requirement that proxy servers are not allowed to reorder or change
header fields.

realm: Therealm is copied from the correspondingWWW-Authenticate header field parameter.

signed-by: If and only if the request was not signed by the entity listed in theFrom header, thesigned-by
header indicates the name of the signing entity, expressed as a URI.

Receivers of signed SIP messagesSHOULD discard any end-to-end header fields above theAuthoriza-
tion header, as they may have been maliciously added en route by a proxy.

Example:

Authorization: pgp version="5.0",
realm="Your Startrek identity, please",
signature="iQB1AwUBNNJiUaYBnHmiiQh1AQFYsgL/Wt3dk6TWK81/b0gcNDf
VAUGU4rhEBW972IPxFSOZ94L1qhCLInTPaqhHFw1cb3lB01rA0RhpV4t5yCdUt
SRYBSkOK29o5e1KlFeW23EzYPVUm2TlDAhbcjbMdfC+KLFX
=aIrx"

13.2 PGP Encryption Scheme

The PGP encryption scheme uses the following syntax:

Encryption = ”Encryption” ”:” ”pgp” pgp-eparams
pgp-eparams = 1# (pgp-version | pgp-encoding)
pgp-encoding = ”encoding” ”=” ”ascii” | token

encoding: Describes the encoding or “armor” used by PGP. The value ”ascii” refers to the standard PGP
ASCII armor, without the lines containing “BEGIN PGP MESSAGE” and “END PGP MESSAGE”
and without the version identifier. By default, the encrypted part is included as binary.

Example:

Encryption: pgp version="2.6.2", encoding="ascii"

13.3 Response-Key Header Field for PGP

Response-Key = ”Response-Key” ”:” ”pgp” pgp-eparams
pgp-eparams = 1# (pgp-version | pgp-encoding | pgp-key)
pgp-key = ”key” ”=” quoted-string

If ASCII encoding has been requested via theencoding parameter, thekey parameter contains the user’s
public key as extracted with the “pgp -kxauser”.

Example:

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 73]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Response-Key: pgp version="2.6.2", encoding="ascii",
key="mQBtAzNWHNYAAAEDAL7QvAdK2utY05wuUG+ItYK5tCF8HNJM60sU4rLaV+eUnkMk
mOmJWtc2wXcZx1XaXb2lkydTQOesrUR75IwNXBuZXPEIMThEa5WLsT7VLme7njnx
sE86SgWmAZx5ookIdQAFEbQxSGVubmluZyBTY2h1bHpyaW5uZSA8c2NodWx6cmlu
bmVAY3MuY29sdW1iaWEuZWR1Pg==
=+y19"

14 Examples

14.1 Registration

A user at hostsaturn.bell-tel.com registers on start-up, via multicast, with the local SIP server
namedsip.bell-tel.com . In the example, the user agent onsaturn expects to receive SIP requests
on UDP port 3890.

C->S: REGISTER sip:@sip.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP 128.16.64.19
From: sip:watson@bell-tel.com
To: sip:watson@bell-tel.com
Location: sip:saturn.bell-tel.com:3890;transport=udp
Call-ID: 123@saturn.bell-tel.com
Expires: 7200
CSeq: 1 REGISTER

The registration expires after two hours. Any future invitations forwatson@bell-tel.com arriv-
ing atsip.bell-tel.com will now be redirected towatson@saturn.bell-tel.com , UDP port
3890.

If Watson wants to be reached elsewhere, say, an on-line service he uses while traveling, he updates his
reservation after first cancelling any existing locations:

C->S: REGISTER sip:@bell-tel.com SIP/2.0
Via: SIP/2.0/UDP 128.16.64.19
From: sip:watson@bell-tel.com
To: sip:watson@bell-tel.com
Call-ID: 1234@saturn.bell-tel.com
Expire: 0
Location: *

C->S: REGISTER sip:@bell-tel.com SIP/2.0
Via: SIP/2.0/UDP 128.16.64.19
From: sip:watson@bell-tel.com
To: sip:watson@bell-tel.com
Call-ID: 1235@saturn.bell-tel.com
Location: sip:tawatson@example.com

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 74]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Now, the server will forward any request for Watson to the server atexample.com , using theRequest-
URI tawatson@example.com .

It is possible to use third-party registration. Here, the secretaryjon.diligent registers his boss:

C->S: REGISTER sip:@bell-tel.com SIP/2.0
Via: SIP/2.0/UDP 128.16.64.19
From: sip:jon.diligent@bell-tel.com
To: sip:watson@bell-tel.com
Location: sip:tawatson@example.com
Call-ID: 1236@saturn.bell-tel.com

The request could be send to either the registrar atbell-tel.com or the server atexample.com .
In the latter case, the server atexample.com would proxy the request to the address indicated in the
Request-URI. Then,Max-Forwards header could be used to restrict the registration to that server.

14.2 Invitation to Multicast Conference

The first example invitesschooler@vlsi.cs.caltech.edu to a multicast session. All examples use
the Session Description Protocol (SDP) (RFC 2327 [5]) as the session description format.

14.2.1 Request

C->S: INVITE sip:schooler@vlsi.cs.caltech.edu SIP/2.0
Via: SIP/2.0/UDP 131.215.131.131;maddr=239.128.16.254;ttl=16
Via: SIP/2.0/UDP 128.16.64.19
From: Mark Handley <sip:mjh@isi.edu>
To: Eve Schooler <sip:schooler@caltech.edu>
Subject: SIP will be discussed, too
Call-ID: 42100bb8-1dd2-11b2-8d70-c91e31477491@oregon.isi.edu
Content-Type: application/sdp
CSeq: 4711 INVITE
Content-Length: 187

v=0
o=user1 53655765 2353687637 IN IP4 128.3.4.5
s=Mbone Audio
i=Discussion of Mbone Engineering Issues
e=mbone@somewhere.com
c=IN IP4 224.2.0.1/127
t=0 0
m=audio 3456 RTP/AVP 0

TheVia fields list the hosts along the path from invitation initiator (the last element of the list) towards
the invitee. In the example above, the message was last multicast to the administratively scoped group
239.128.16.254 with a ttl of 16 from the host131.215.131.131 .

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 75]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

The request header above states that the request was initiated bymjh@isi.edu . TheVia header indi-
cates that is was initiated from the host128.16.64.19 . schooler@caltech.edu is being invited;
the message is currently being routed toschooler@vlsi.cs.caltech.edu .

In this case, the session description is using the Session Description Protocol (SDP), as stated in the
Content-Type header.

The header is terminated by an empty line and is followed by a message body containing the session
description.

14.2.2 Response

The called user agent, directly or indirectly through proxy servers, indicates that it is alerting (“ringing”) the
called party:

S->C: SIP/2.0 180 Ringing
Via: SIP/2.0/UDP csvax.cs.caltech.edu;branch=8348;

;maddr=239.128.16.254;ttl=16
Via: SIP/2.0/UDP north.east.isi.edu
To: Eve Schooler <sip:schooler@caltech.edu>
From: Mark Handley <sip:mjh@isi.edu>
Call-ID: 42100bb8-1dd2-11b2-8d70-c91e31477491@north.east.isi.edu
Location: sip:es@jove.cs.caltech.edu
CSeq: 4711 INVITE

A sample response to the invitation is given below. The first line of the response states the SIP version
number, that it is a 200 (OK) response, which means the request was successful. TheVia headers are taken
from the request, and entries are removed hop by hop as the response retraces the path of the request. A new
authentication fieldMAY be added by the invited user’s agent if required. TheCall-ID is taken directly from
the original request, along with the remaining fields of the request message. The original sense ofFrom
field is preserved (i.e., it is the session initiator).

In addition, theLocation header gives details of the host where the user was located, or alternatively the
relevant proxy contact point which should be reachable from the caller’s host.

S->C: SIP/2.0 200 OK
Via: SIP/2.0/UDP csvax.cs.caltech.edu;branch=8348

maddr=239.128.16.254 16;ttl=16
Via: SIP/2.0/UDP north.east.isi.edu
From: sip:mjh@isi.edu
To: sip:schooler@cs.caltech.edu
Call-ID: 42100bb8-1dd2-11b2-8d70-c91e31477491@oregon.isi.edu
Location: sip:es@jove.cs.caltech.edu
CSeq: 4711 INVITE

The caller confirms the invitation by sending a request to the location named in theLocation header:

C->S: ACK sip:es@jove.cs.caltech.edu SIP/2.0

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 76]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

From: sip:mjh@isi.edu
To: sip:schooler@cs.caltech.edu
Call-ID: 42100bb8-1dd2-11b2-8d70-c91e31477491@oregon.isi.edu
CSeq: 4711 ACK

14.3 Two-party Call

For two-party Internet phone calls, the response must contain a description of where to send the data. In
the example below, Bell calls Watson. Bell indicates that he can receive RTP audio codings 0 (PCMU), 3
(GSM), 4 (G.723) and 5 (DVI4).

C->S: INVITE sip:watson@boston.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP 169.130.12.5
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:watson@bell-tel.com>
Call-ID: 2d978243-b270-33dc-a261-d1fe3e2aa05a@kton.bell-tel.com
Subject: Mr. Watson, come here.
CSeq: 17 INVITE
Content-Type: application/sdp
Content-Length: ...

v=0
o=bell 53655765 2353687637 IN IP4 128.3.4.5
c=IN IP4 135.180.144.94
m=audio 3456 RTP/AVP 0 3 4 5

S->C: SIP/2.0 100 Trying
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:watson@bell-tel.com>
Call-ID: 2d978243-b270-33dc-a261-d1fe3e2aa05a@kton.bell-tel.com
Content-Length: 0

S->C: SIP/2.0 180 Ringing
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:watson@bell-tel.com>
Call-ID: 2d978243-b270-33dc-a261-d1fe3e2aa05a@kton.bell-tel.com
Content-Length: 0

S->C: SIP/2.0 182 Queued, 2 callers ahead
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:watson@bell-tel.com>
Call-ID: 2d978243-b270-33dc-a261-d1fe3e2aa05a@kton.bell-tel.com
Content-Length: 0

S->C: SIP/2.0 182 Queued, 1 caller ahead

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 77]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:watson@bell-tel.com>
Call-ID: 2d978243-b270-33dc-a261-d1fe3e2aa05a@kton.bell-tel.com
Content-Length: 0

S->C: SIP/2.0 200 OK
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: sip:watson@bell-tel.com
Call-ID: 2d978243-b270-33dc-a261-d1fe3e2aa05a@kton.bell-tel.com
CSeq: 17 INVITE
Location: sip:watson@boston.bell-tel.com
Content-Length: ...

v=0
o=watson 4858949 4858949 IN IP4 192.1.2.3
c=IN IP4 135.180.161.25
m=audio 5004 RTP/AVP 0 3

The example illustrates the use of informational status responses. Here, the reception of the call is
confirmed immediately (100), then, possibly after some database mapping delay, the call rings (180) and is
then queued, with periodic status updates.

Watson can only receive PCMU and GSM. Note that Watson’s list of codecs may or may not be a subset
of the one offered by Bell, as each party indicates the data types it is willing to receive. Watson will send
audio data to port 3456 at 135.180.144.94, Bell will send to port 5004 at 135.180.161.25.

By default, the media session is one RTP session. Watson will receive RTCP packets on port 5005, while
Bell will receive them on port 3457.

Since the two sides have agree on the set of media, Watson confirms the call without enclosing another
session description:

C->S: ACK sip:watson@boston.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP 169.130.12.5
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:watson@bell-tel.com>
Call-ID: 2d978243-b270-33dc-a261-d1fe3e2aa05a@kton.bell-tel.com
CSeq: 17 ACK
Content-Length: 0

14.4 Terminating a Call

To terminate a call, caller or callee can send aBYE request:

C->S: BYE sip:watson@boston.bell-tel.com SIP/2.0
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. A. Watson <sip:watson@bell-tel.com>
Call-ID: 1985853074@kton.bell-tel.com

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 78]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

CSeq: 18 BYE

If the callee wants to abort the call, it simply reverses theTo andFrom fields. Note that it is unlikely
that anBYE from the callee will traverse the same proxies as the originalINVITE.

14.5 Forking Proxy

In this example, Bell (a.g.bell@bell-tel.com) (C), currently seated at hostc.bell-tel.com
wants to call Watson (t.watson@ieee.org). At the time of the call, Watson is logged in at two work-
stations,watson@x.bell-tel.com (X) and watson@y.bell-tel.com (Y), and has registered
with the IEEE proxy server (P) calledproxy.ieee.org . The IEEE server also has a registration for
the home machine of Watson, atwatson@h.bell-tel.com (H), as well as a permanent registration at
watson@acm.org (A). For brevity, the examples omit the session description.

Watson’s user agent sends the invitation to the SIP server for theieee.org domain:

C->P: INVITE sip:watson@ieee.org SIP/2.0
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@kton.bell-tel.com
CSeq: 19 INVITE
Via: SIP/2.0/UDP c.bell-tel.com

The SIP server tries the four addresses in parallel. It sends the following message to the home machine:

P->H: INVITE sip:watson@h.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP proxy.ieee.org ;branch=1
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@kton.bell-tel.com
CSeq: 19 INVITE

This request immediately yields a 404 (Not Found) response, since Watson is not currently logged in at
home:

H->P: SIP/2.0 404 Not Found
Via: SIP/2.0/UDP proxy.ieee.org ;branch=1
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 INVITE

The proxyACKs the response so that host H can stop retransmitting it:

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 79]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

P->H: ACK sip:watson@h.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP proxy.ieee.org ;branch=1
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 ACK

Also, P attempts to reach Watson through the ACM server:

P->A: INVITE sip:watson@acm.org SIP/2.0
Via: SIP/2.0/UDP proxy.ieee.org ;branch=2
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 INVITE

In parallel, the next attempt proceeds, with anINVITE to X and Y:

P->X: INVITE sip:watson@x.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP proxy.ieee.org ;branch=3
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 INVITE

P->Y: INVITE sip:watson@y.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP proxy.ieee.org ;branch=4
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 INVITE

As it happens, both Watson at X and a colleague in the other lab at host Y hear the phones ringing and
pick up. Both X and Y return 200s via the proxy to Bell. Thetag URI parameter is not strictly necessary
here, since theLocation header is unambiguous.

X->P: SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.ieee.org ;branch=3
Via: SIP/2.0/UDP c.bell-tel.com
Location: sip:t.watson@x.bell-tel.com;tag=1620
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 80]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 INVITE

Y->P: SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.ieee.org ;branch=4
Via: SIP/2.0/UDP c.bell-tel.com
Location: sip:t.watson@y.bell-tel.com;tag=2016
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 INVITE

Both responses are forwarded to Bell, using theVia information. At this point, the ACM server is still
searching its database. P can now cancel this attempt:

P->A: CANCEL sip:watson@acm.org SIP/2.0
Via: SIP/2.0/UDP proxy.ieee.org ;branch=2
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 CANCEL

The ACM server gladly stops its neural-network database search and responds with a 200. The 200 will
not travel any further, since P is the lastVia stop.

A->P: SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.ieee.org ;branch=3
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 CANCEL

Bell gets the two 200 responses from X and Y in short order. Bell’s reaction now depends on his
software. He can either send anACK to both if human intelligence is needed to determine who he wants
to talk to or he can automatically reject one of the two calls. Here, he acknowledges both, separately and
directly to the final destination:

C->X: ACK sip:watson@x.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 ACK

C->Y: ACK sip:watson@y.bell-tel.com SIP/2.0

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 81]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 19 ACK

After a brief discussion between the three, it becomes clear that Watson is at X, thus Bell sends aBYE
to Y, which is replied to:

C->Y: BYE sip:watson@y.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 20 BYE

Y->C: SIP/2.0 200 OK
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 88323b2a-0a09-3888-88b4-2f93ee7808ea@c.bell-tel.com
CSeq: 20 BYE

14.6 Redirects

Replies with status codes 301 (Moved Permanently) or 302 (Moved Temporarily) specify another location
using theLocation field:

S->C: SIP/2.0 302 Moved temporarily
Via: SIP/2.0/UDP csvax.cs.caltech.edu ;branch=8348
Via: SIP/2.0/UDP 128.16.64.19
From: sip:mjh@isi.edu
To: sip:schooler@cs.caltech.edu
Call-ID: 46842902-e7b0-3583-ae6a-bee550833c34@oregon.isi.edu
Location: sip:@239.128.16.254;ttl=16;transport=udp
CSeq: 19 INVITE
Content-Length: 0

In this example, the proxy located atcsvax.cs.caltech.edu is being advised to contact the mul-
ticast group239.128.16.254 with a ttl of 16 and UDP transport. In normal situations, a server would
not suggest a redirect to a local multicast group unless, as in the above situation, it knows that the previous
proxy or client is within the scope of the local group. If the request is redirected to a multicast group, a proxy
serverSHOULD query the multicast address itself rather than sending the redirect back towards the client as
multicast may be scoped; this allows a proxy within the appropriate scope regions to make the query.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 82]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

14.7 Alternative Services

An example of a 350 (Alternative Service) response is:

S->C: SIP/2.0 350 Alternative Service
Via: SIP/2.0/UDP 131.215.131.131
Via: SIP/2.0/UDP 128.16.64.19
From: sip:mjh@isi.edu
To: sip:schooler@cs.caltech.edu
Call-ID: 46842902-e7b0-3583-ae6a-bee550833c34oregon.isi.edu
Location: sip:recorder@131.215.131.131
CSeq: 19 INVITE
Content-Type: application/sdp
Content-Length: 146

v=0
o=mm-server 2523535 0 IN IP4 131.215.131.131
s=Answering Machine
i=Leave an audio message
c=IN IP4 131.215.131.131
t=0 0
m=audio 12345 RTP/AVP 0

In this case, the answering server provides a session description that describes an “answering machine”.
If the invitation initiator decides to take advantage of this service, it should send an invitation request to the
answering machine at131.215.131.131 with the session description provided (modified as appropriate
for a unicast session to contain the appropriate local address and port for the invitation initiator). This request
SHOULD contain a differentCall-ID from the one in the original request. An example would be:

C->S: INVITE sip:recorder@131.215.131.131 SIP/2.0
Via: SIP/2.0/UDP 128.16.64.19
From: sip:mjh@isi.edu
To: sip:schooler@cs.caltech.edu
Call-ID: 9469f230-70e0-3216-8482-fe1a2a150386@128.16.64.19
CSeq: 20 INVITE
Content-Type: application/sdp
Content-Length: 146

v=0
o=mm-server 2523535 0 IN IP4 131.215.131.131
s=Answering Machine
i=Leave an audio message
c=IN IP4 128.16.64.19
t=0 0
m=audio 26472 RTP/AVP 0

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 83]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Invitation initiatorsMAY choose to treat a 350 (Alternative Service) response as a failure if they wish to
do so.

14.8 Negotiation

An example of a 606 (Not Acceptable) response is:

S->C: SIP/2.0 606 Not Acceptable
From: sip:mjh@isi.edu
To: sip:schooler@cs.caltech.edu
Call-ID: 9469f230-70e0-3216-8482-fe1a2a150386@128.16.64.19
Location: sip:mjh@131.215.131.131
Warning: 606.1 Insufficient bandwidth (only have ISDN),

606.3 Incompatible format,
606.4 Multicast not available

Content-Type: application/sdp
Content-Length: 50

v=0
s=Lets talk
b=CT:128
c=IN IP4 131.215.131.131
m=audio 3456 RTP/AVP 7 0 13
m=video 2232 RTP/AVP 31

In this example, the original request specified 256 kb/s total bandwidth, and the response states that only
128 kb/s is available. The original request specified GSM audio, H.261 video, and WB whiteboard. The
audio coding and whiteboard are not available, but the response states that DVI, PCM or LPC audio could
be supported in order of preference. The response also states that multicast is not available. In such a case,
it might be appropriate to set up a transcoding gateway and re-invite the user.

14.9 OPTIONS Request

A caller Alice can use anOPTIONS request to find out the capabilities of a potential callee Bob, without
“ringing” the designated address. Bob returns a description indicating that he is capable of receiving audio
and video, with a list of supported encodings.

C->S: OPTIONS sip:bob@example.com SIP/2.0
From: Alice <sip:alice@anywhere.org>
To: Bob <sip:bob@example.com>
Call-ID: 45869@host.anywhere.org
Accept: application/sdp

S->C: SIP/2.0 200 OK
From: Alice <sip:alice@anywhere.org>

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 84]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

To: Bob <sip:bob@example.com>
Call-ID: 45869@host.anywhere.org
Content-Length: 81
Content-Type: application/sdp

v=0
m=audio 0 RTP/AVP 0 1 3 99
m=video 0 RTP/AVP 29 30
a=rtpmap:99 SX7300/8000

A Minimal Implementation

A.1 Client

All clients MUST be able to generate theINVITE and ACK requests. ClientsMUST generate and parse
theCall-ID, Content-Length, Content-Type, CSeq, From andTo headers. ClientsMUST also parse the
Require header. A minimal implementationMUST understand SDP (RFC 2327, [5]). ItMUST be able to
recognize the status code classes 1 through 6 and act accordingly.

The following capability sets build on top of the minimal implementation described in the previous
paragraph:

Basic: A basic implementation adds support for theBYE method to allow the interruption of a pending call
attempt. It includes aUser-Agent header in its requests and indicate its preferred language in the
Accept-Language header.

Redirection: To support call forwarding, a client needs to be able to understand theLocation header, but
only theSIP-URL part, not the parameters.

Negotiation: A client MUST be able to request theOPTIONS method and understand the 380 (Alterna-
tive Service) status and theLocation parameters to participate in terminal and media negotiation. It
SHOULD be able to parse theWarning response header to provide useful feedback to the caller.

Authentication: If a client wishes to invite callees that require caller authentication, it must be able to
recognize the 401 (Unauthorized) status code, must be able to generate theAuthorization request
header andMUST understand theWWW-Authenticate response header.

If a client wishes to use proxies that require caller authentication, itMUST be able to recognize the
407 (Proxy Authentication Required) status code,MUST be able to generate theProxy-Authorization
request header and understand theProxy-Authenticate response header.

A.2 Server

A minimally compliant server implementationMUST understand theINVITE, ACK, OPTIONS andBYE
requests. A proxy serverMUST also understandCANCEL. It MUST parse and generate, as appropriate, the
Call-ID, Content-Length, Content-Type, CSeq, Expires, From, Max-Forwards, Require, To andVia
headers. ItMUST echo theCSeq andTimestamp headers in the response. ItSHOULD include theServer
header in its responses.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 85]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

A.3 Header Processing

Table 5 lists the headers that different implementations support. UAC refers to a user-agent client (calling
user agent), UAS to a user-agent server (called user-agent).

type UAC proxy UAS registrar
Accept R - o o -
Accept-Language R - b b b
Allow 405 o - - -
Authorization R a o a a
Call-ID g m m m m
Content-Length g m m m m
Content-Type g m - m m
CSeq g o m m m
Encryption g e - e e
Expires g - o o m
From R m o m m
Location R - - - m
Location r r r - -
Max-Forwards R - b - -
Proxy-Authenticate 407 a - - -
Proxy-Authorization R - a - -
Proxy-Require R - m - -
Require R m - m m
Response-Key R - - e e
Timestamp g o o m m
To g m m m m
Unsupported r b b - -
Via g - m m m
WWW-Authenticate 401 a - - -

Table 5: This table indicates which systems should be able to parse which response header fields. Type
is as in Table 4. “-” indicates the field is not meaningful to this system (although it might be generated
by it). “m” indicates the field MUST be understood. “b” indicates the fieldSHOULD be understood by a
Basic implementation. “r” indicates the fieldSHOULD be understood if the system claims to understand
redirection. “a” indicates the fieldSHOULD be understood if the system claims to support authentication.
“e” indicates the fieldSHOULD be understood if the system claims to support encryption. “o” indicates
support of the field is purely optional. Headers whose support is optional for all implementations are not
shown.

B Usage of SDP

By default, thenth media session in a unicastINVITE request will become a single RTP session with thenth
media session in the response. Thus, the callee should be careful to order media descriptions appropriately.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 86]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

It is assumed that if caller or callee include a particular media type, they want to both send and receive
media data. If the callee does not want tosenda particular media type, it should mark the media entry as
recvonly. If the callee does not want toreceivea particular media type, it may mark it assendonly. If the
callee wants to neither receive nor send a particular media type, it should set the port to zero. (RTCP ports
are not needed in this case.)

The caller should include all media types that it is willing to send so that the receiver can provide
matching media descriptions.

The callee should set the port to zero if callee and caller only want to receive a media type.

C Summary of Augmented BNF

In this specification we use the Augmented Backus-Naur Form notation described in RFC 2234 [21]. For
quick reference, the following is a brief summary of the main features of this ABNF.

”abc”
The case-insensitive string of characters “abc” (or “Abc”, “aBC”, etc.);

%d32
The character with ASCII code decimal 32 (space);

*term
zero of more instances ofterm;

3*term
three or more instances ofterm;

2*4term
two, three or four instances ofterm;

[term]
term is optional;

{ term1 term2 term3 }
set notation:term1, term2 andterm3 must all appear but their order is unimportant;

term1 | term2
eitherterm1 or term2 may appear but not both;

#term
a comma separated list ofterm;

2#term
a comma separated list ofterm containing at least 2 items;

2#4term
a comma separated list ofterm containing 2 to 4 items.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 87]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

Common Tokens

Certain tokens are used frequently in the BNF of this document, and not defined elsewhere. Their meaning
is well understood but we include it here for completeness.

CR = %d13 ; carriage return character
LF = %d10 ; line feed character
CRLF = CR LF ; typically the end of a line
SP = %d32 ; space character
TAB = %d09 ; tab character
LWS = *(SP | TAB) ; linear whitespace
DIGIT = ”0” .. ”9” ; a single decimal digit

unreserved = alphanum | mark
mark = ”-” | ” ” | ”.” | ”!” | ”˜” | ”*” | ”’”

| ”(” | ”)”
escaped = ”%” hex hex
hex = digit | ”A” | ”B” | ”C” | ”D” | ”E” | ”F” |

”a” | ”b” | ”c” | ”d” | ”e” | ”f”
alphanum = alpha | digit
alpha = lowalpha | upalpha
lowalpha = ”a” | ”b” | ”c” | ”d” | ”e” | ”f” | ”g” | ”h” | ”i” |

”j” | ”k” | ”l” | ”m” | ”n” | ”o” | ”p” | ”q” | ”r” |
”s” | ”t” | ”u” | ”v” | ”w” | ”x” | ”y” | ”z”

upalpha = ”A” | ”B” | ”C” | ”D” | ”E” | ”F” | ”G” | ”H” | ”I” |
”J” | ”K” | ”L” | ”M” | ”N” | ”O” | ”P” | ”Q” | ”R” |
”S” | ”T” | ”U” | ”V” | ”W” | ”X” | ”Y” | ”Z”

digit = ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” |
”8” | ”9”

D IANA Considerations

Section 4.4 describes a name space and mechanism for registering SIP options.
Section 6.41 describes the name space for registering SIPwarn-codes.

E Changes in Version -07

Since version -06, the following changes have been made.

• Removed references to Internet Drafts.

• Expanded URI definition to be independent of I-Ds.

• Clarified redirect behavior for BYE.

• Call-ID mandatory for all requests to allow to match requests with responses.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 88]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

• Clarified thatINVITE retransmit limit only applies if there has been no provisional response. Other-
wise, call queueing is not possible.

• Removed open issues list.

• RemovedREGISTER as special case of reliability mechanism.

• Split out large syntax diagrams into figures to avoid empty space.

• Abstract rewritten to reflect current protocol functionality.

• Reorganized “SIP Transport” chapter to more clearly reflect behavior for UDP and TCP.

• Modified syntax forVia to include multicast address as a parameter.

• “Ambiguous” status code moved from 381 to 485, to give precedence to other, more definitive 3xx
responses. Also, 381 was the only 3xx response that a proxy could not automatically recurse on.

• Response merging made stricter, to avoid difficulties with merging bodies and non-standard headers
of 3xx responses.

• REGISTER MUST haveLocation header.

• ResponsesSHOULD add a tag to theTo header to allow requests (e.g.,BYE) from several instances to
be distinguished.

• REGISTER examples were missingVia headers.

F Acknowledgments

We wish to thank the members of the IETF MMUSIC WG for their comments and suggestions. Detailed
comments were provided by Dave Devanathan, Yaron Goland, Christian Huitema, Jonathan Lennox, Moshe
J. Sambol, and Eric Tremblay.

This work is based, inter alia, on [29, 30].

G Authors’ Addresses

Mark Handley
USC Information Sciences Institute
c/o MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139
USA
electronic mail:mjh@isi.edu

Henning Schulzrinne
Dept. of Computer Science
Columbia University

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 89]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

1214 Amsterdam Avenue
New York, NY 10027
USA
electronic mail:schulzrinne@cs.columbia.edu

Eve Schooler
Computer Science Department 256-80
California Institute of Technology
Pasadena, CA 91125
USA
electronic mail:schooler@cs.caltech.edu

Jonathan Rosenberg
Lucent Technologies, Bell Laboratories
Rm. 4C-526
101 Crawfords Corner Road
Holmdel, NJ 07733
USA
electronic mail:jdrosen@bell-labs.com

References

[1] R. Pandya, “Emerging mobile and personal communication systems,”IEEE Communications Maga-
zine, vol. 33, pp. 44–52, June 1995.

[2] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation protocol (RSVP) –
version 1 functional specification,” RFC 2205, Internet Engineering Task Force, Oct. 1997.

[3] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
applications,” RFC 1889, Internet Engineering Task Force, Jan. 1996.

[4] H. Schulzrinne, R. Lanphier, and A. Rao, “Real time streaming protocol (RTSP),” RFC 2326, Internet
Engineering Task Force, Apr. 1998.

[5] M. Handley and V. Jacobson, “SDP: session description protocol,” RFC 2327, Internet Engineering
Task Force, Apr. 1998.

[6] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” RFC 2119, Internet Engineer-
ing Task Force, Mar. 1997.

[7] R. Fielding, J. Gettys, J. Mogul, H. Nielsen, and T. Berners-Lee, “Hypertext transfer protocol –
HTTP/1.1,” RFC 2068, Internet Engineering Task Force, Jan. 1997.

[8] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource locators (URL),” RFC 1738, Internet
Engineering Task Force, Dec. 1994.

[9] A. Gulbrandsen and P. Vixie, “A DNS RR for specifying the location of services (DNS SRV),” RFC
2052, Internet Engineering Task Force, Oct. 1996.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 90]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

[10] C. Partridge, “Mail routing and the domain system,” RFC STD 14, 974, Internet Engineering Task
Force, Jan. 1986.

[11] P. Mockapetris, “Domain names - implementation and specification,” RFC STD 13, 1035, Internet
Engineering Task Force, Nov. 1987.

[12] B. Braden, “Requirements for internet hosts - application and support,” RFC STD 3, 1123, Internet
Engineering Task Force, Oct. 1989.

[13] D. Zimmerman, “The finger user information protocol,” RFC 1288, Internet Engineering Task Force,
Dec. 1991.

[14] S. Williamson, M. Kosters, D. Blacka, J. Singh, and K. Zeilstra, “Referral whois (rwhois) protocol
V1.5,” RFC 2167, Internet Engineering Task Force, June 1997.

[15] W. Yeong, T. Howes, and S. Kille, “Lightweight directory access protocol,” RFC 1777, Internet Engi-
neering Task Force, Mar. 1995.

[16] E. M. Schooler, “A multicast user directory service for synchronous rendezvous,” Master’s Thesis CS-
TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California,
Aug. 1996.

[17] T. Berners-Lee, “Universal resource identifiers in WWW: a unifying syntax for the expression of names
and addresses of objects on the network as used in the world-wide web,” RFC 1630, Internet Engineer-
ing Task Force, June 1994.

[18] T. Berners-Lee, L. Masinter, and R. Fielding, “Uniform resource identifiers (URI): generic syntax,”
Internet Draft, Internet Engineering Task Force, Mar. 1998. Work in progress.

[19] P. Leach and R. Salz, “UUIDs and GUIDs,” Internet Draft, Internet Engineering Task Force, Feb. 1998.
Work in progress.

[20] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” RFC 2279, Internet Engineering Task
Force, Jan. 1998.

[21] D. Crocker and P. Overell, “Augmented BNF for syntax specifications: ABNF,” RFC 2234, Internet
Engineering Task Force, Nov. 1997.

[22] W. R. Stevens,TCP/IP illustrated: the protocols, vol. 1. Reading, Massachusetts: Addison-Wesley,
1994.

[23] J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191, Internet Engineering Task Force, Nov.
1990.

[24] D. Crocker, “Standard for the format of ARPA internet text messages,” RFC STD 11, 822, Internet
Engineering Task Force, Aug. 1982.

[25] P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” RFC 2368, Internet Engineering
Task Force, July 1998.

[26] J. Palme, “Common internet message headers,” RFC 2076, Internet Engineering Task Force, Feb. 1997.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 91]

INTERNET-DRAFT draft-ietf-mmusic-sip-07.ps July 16, 1998

[27] J. Mogul, T. Berners-Lee, L. Masinter, P. Leach, R. Fielding, H. Nielsen, and J. Gettys, “Hypertext
transfer protocol – HTTP/1.1,” Internet Draft, Internet Engineering Task Force, Mar. 1998. Work in
progress.

[28] M. Elkins, “MIME security with pretty good privacy (PGP),” RFC 2015, Internet Engineering Task
Force, Oct. 1996.

[29] E. M. Schooler, “Case study: multimedia conference control in a packet-switched teleconferencing
system,”Journal of Internetworking: Research and Experience, vol. 4, pp. 99–120, June 1993. ISI
reprint series ISI/RS-93-359.

[30] H. Schulzrinne, “Personal mobility for multimedia services in the Internet,” inEuropean Workshop on
Interactive Distributed Multimedia Systems and Services (IDMS), (Berlin, Germany), Mar. 1996.

Full Copyright Statement

Copyright (c) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an ”AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Handley/Schulzrinne/Schooler/Rosenberg Expires December 1998 [Page 92]

