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Abstract. We propose an optimization and generalization of OT ex-
tension of Ishai et al. of Crypto 2003. For computational security pa-
rameter k, our OT extension for short secrets offers O(log k) factor per-
formance improvement in communication and computation, compared
to prior work. In concrete terms, for today’s security parameters, this
means approx. factor 2-3 improvement.
This results in corresponding improvements in applications relying on
such OT. In particular, for two-party semi-honest SFE, this results in
O(log k) factor improvement in communication over state of the art Yao
Garbled Circuit, and has the same asymptotic complexity as the recent
multi-round construction of Kolesnikov and Kumaresan of SCN 2012.
For multi-party semi-honest SFE, where their construction is inapplica-
ble, our construction implies O(log k) factor communication and compu-
tation improvement over best previous constructions. As with our OT
extension, for today’s security parameters, this means approximately fac-
tor 2 improvement in semi-honest multi-party SFE.
Our building block of independent interest is a novel IKNP-based frame-
work for 1-out-of-n OT extension, which offers O(logn) factor perfor-
mance improvement over previous work (for n ≤ k), and concrete factor
improvement of up to 5 for today’s security parameters (n=k=128).
Our protocol is the first practical OT with communication/computation
cost sublinear in the security parameter (prior sublinear constructions
Ishai et al. [15, 16] are not efficient in concrete terms).
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1 Introduction

Our main contribution is an asymptotic and concrete efficiency improvement of
Oblivious Transfer (OT) extension of Ishai et al. [14]. Our improvement applies to
OT transfers of short secrets. In this Introduction we first motivate the problem,
and then give intuition behind our approach.

Oblivious Transfer (OT) is a fundamental cryptographic primitive that is
used as a building block in a variety of cryptographic protocols. It is a critical



piece in general secure computation [29, 10, 18], as well as in a number of tai-
lored solutions to specific problems of interest, such as contract signing [7]. OT
performance improvement directly translates into that of secure function evalu-
ation (SFE). In turn, SFE performance is the subject of major research effort in
cryptography [14, 22, 20, 6, 12, 25]. Our work can be plugged into several exist-
ing candidate solutions, resulting in factor 2-3 performance improvement, which
is a major step forward in the state of the art of secure computation.

1.1 Secure Computation

SFE allows two (or more) parties to evaluate any function on their respective
inputs x and y, while maintaining privacy of both x and y. SFE is justifiably
a subject of an immense amount of research. Efficient SFE algorithms enable a
variety of electronic transactions, previously impossible due to mutual mistrust
of participants. Examples include auctions, contract signing, set intersection,
etc. As computation and communication resources have increased, SFE of many
useful functions has become practical for common use. Still, SFE of many of to-
day’s functions of interest carries costs sufficient to deter would-be adopters, who
instead choose stronger trust models, entice users to give up their privacy with
incentives, or use similar crypto-workarounds. We believe that truly practical
efficiency is required for SFE to see use in real-life applications.

The current state of the art of SFE research is quite sophisticated. Particu-
larly in the semi-honest model, there have been very few asymptotic/qualitative
improvements since the original protocols of Yao [29] and Goldreich et al. [9].
Possibly the most important development in the area of SFE since the 1980’s
was the very efficient OT extension technique of Ishai et al. [14], which allowed
to evaluate an arbitrarily large number of OTs by executing a small (security
parameter) number of (possibly inefficient) “bootstrapping” OT instances, and
a number of symmetric key primitives. This possibility of cheap OTs made a
dramatic difference for securely computing functions with large inputs relative
to the size of the function, as well as for GMW-like approaches, where OTs are
performed in each level of the circiut.

As secure computation moves from theory to practice, even “small” improve-
ments can have a significant effect. Today, even small factor performance im-
provements to state-of-the-art algorithms are quite hard to achieve, and are most
welcome. This is especially true about the semi-honest model protocols, where
the space for improvement appears to be much smaller than in the malicious
model.

In this work, we propose an improvement to OT extension of Ishai et al. [14],
for the case of OT of short secrets. As we will describe below, this will result in a
new multi-party SFE protocol, which is approximately factor 2 (asymptotically
factor O(log k)) more efficient than state of the art. Our constructions also im-
prove on standard two-party garbled circuit protocols in asymptotic (O(log k))
and concrete terms, and offer performance in line with the recent work of [19].



1.2 Secure Computation and OT Efficiency Considerations

The efficiency of OT plays a critical role in the overall efficiency of secure com-
putation. It is so to the point that OT performance determines which is the
most efficient approach. Until recently, in the semi-honest model, Yao’s Garbled
Circuit was a clear winner. With the work of [19], which can be seen as a hy-
brid between GMW and Yao, and our improved OT extension technique, the
GMW approach will outperform Yao with a factor of ≈ 2 for today’s security
parameters. Asymptotically, the performance improvement is logarithmic in the
security parameter, as compared to GC-based SFE.

On the cost of SFE rounds. One common consideration in SFE protocol
design is the number of rounds. Indeed, in some scenarios the latency associated
with the communication rounds can more than double the total execution time.
This holds, e.g., when the evaluated circuit is small; with the GMW evaluation,
where we need a round of communication per layer of the circuit, the latency
may be costly for deep and narrow circuits. This may cause somewhat increased
latency of an individual computation – a possible inconvenience to the user of
interactive applications.

At the same time, many SFE protocols allow for significant precomputation
and streaming, where message transmission may begin (and even a response may
be received) before the sender completes the computation and transmission of the
message. Thus, round-related latency will usually not be a wasted time and will
not cause extra delays. Most importantly, with the speed of the CPU advancing
faster than that of communication, the true bottleneck for SFE already is the
channel transmission capacity, even for high-speed gigabit LAN.

Thus, we argue that in many scenarios, the number of communication rounds
in SFE often plays an insignificant role in practice, and round-related latency
either has no impact on performance, or it can be tolerated in exchange of
achieving higher throughput.

1.3 Our Contributions

Our main contribution is an asymptotic and concrete efficiency improvement of
Oblivious Transfer (OT) extension of Ishai et al. [14]. Our improvement applies
to OT transfers of short secrets.

1-out of-2 OT extension. For a security parameter k, our O(log k) asymp-
totic improvement results in concrete efficiency improvement of about factor up
to 2 for today’s security parameters. This yields corresponding asymptotic and
concrete improvements in multi-party computation in the semi-honest setting,
when applied to state of the art solutions based on GMW protocols.

Our new 1-out of-n OT extension protocol offers O(log n) factor perfor-
mance improvement over previous work (for n < k and constant secret length),
and concrete factor improvement of up to 5 for today’s security parameters.

Further, our protocol is the first OT sublinear in the security parameter other
than the non-black-box construction of Ishai et al. [15], and is the only practical
OT with this property. Our resulting secure computation protocols can also



be viewed as a significant improvement of the technique of [19], which offered
logarithmic in k improvement over state-of-the-art Yao’s GC, but, in particular,
did not extend to multiparty setting. We work in the (non-programmable) RO
model, but, like in [14], we can also use a variant of correlation-robust hash
functions.

We also present a new simple trick for OT extension (compatible with ours as
well as with[14]), which, in particular, allows to futher cut in half the cost of OT
of 1-bit secrets and reduce by 25% the cost OT of k-bit secrets. This optimization
is described in Section 6 and Appendix A. To clearly state the performance
improvement of our main OT extension protocol, the numbers elsewhere do not
reflect this optimization.

Applications and Practical Performance Impact. As noted above, our 1-
out of-2 OT construction immediately offers approximately factor 2 improvement
in nearly all multi-party protocols – GMW and its variants.

In two-party computation, a similar, but more limited in scope, improvement
was recently achieved [19]. In particular, [19] didn’t work well on very shallow
circuits, such as inner product computation. For such circuits, we have O(log k)
improvement over 2PC state of the art, including [19].

More importantly, there is growing evidence that new GMW optimizations
will often allow (multiround) GMW-based SFE protocols to outperform (con-
stant round) Yao GC based SFE in practice, despite the round-related laten-
cies. For example, a recent work of Schneider and Zohner [28] introduces and
implements several optimizations to mitigate latency impact. It demonstrates
performance improvement of factor up to 100 of GMW over a recent Yao-based
implementation of secure face matching even in high-latency (100ms round-trip,
intercontinental) network. We expect that future SFE research and CPU-vs-
network evolution will further improve GMW relative to Yao.

In sum, our work improves state of the art of 2PC computation for a signifi-
cant class of problems where GMW protocols outperform Yao.

As noted, our 1-out of-n OT gives logarithmic performance improvement in
transferring one in n random secret keys. However, in some cases, where the
OT of specific secrets is required, the improvement factor may be smaller due to
the fact that all n secrets encrypted with the n keys need to be transferred. In
this case, logarithmic improvement applies only to the offline phase, where the
secrets are not available.

Another application which immediately benefits from this work is string-
selection OT (SOT), a variant of 1-out of-n OT and a building block of [19]. In
SOT, the receiver selects one of the sender’s two secrets based on his log n-bit
selection string.

1.4 Related Work

OT is a critical and heavily used component in much of cryptography, and in
particular in secure computation protocols. Naturally, a lot of effort went into



optimizing its performance. Unfortunately, there are fundamental limits to OT
efficiency. Impagliazzo and Rudich [13] showed that a black-box reduction from
oblivious transfer to a one-way function or a one-way permutation would imply
P 6= NP. It is further not known whether such non-black-box reductions exist.

Beaver [3] was the first to propose OT extension, a non-black-box scheme
where a large number of OTs can be obtained from a small number of OTs
(possibly executed by using public-key primitives) and one-way functions. Lindell
and Zarosim [21] recently showed that one-way functions are in fact needed for
OT extension.

Ishai, Kilian, Nissim, and Petrank [14], in their breakthrough work showed
a truly practical black-box OT extension. Its cost, in addition to the security
parameter number of base OTs, is only two random oracle (RO) evaluations and
output transfers. By dramatically changing the cost structure of two-party SFE,
especially in the semi-honest model, this work enabled greatly improved SFE for
functions with large inputs, previously considered too costly due to the need of a
large number of public key operations. It also started a rise in the study of GMW-
based SFE protocols, where an OT is needed per multiplicative node. Indeed,
recent (yet unoptimized) GMW-based and multiple-round protocols began to
outperform traditional GC protocols. In particular, [25] outperforms state-of-the-
art GC protocols in the malicious model, and [19] outperforms state-of-the-art
GC protocols in the semi-honest model. In addition to considering the semi-
honest model, [14] presents a construction secure against malicious participants.
In a few follow-up works [24, 11, 17], the performance of the malicious setting of
the IKNP OT extension was substantially improved. We present the high-level
idea of the basic IKNP construction in Section 3.2.

By employing a more efficient pseudorandom generator in Beaver’s non-
black-box OT extension protocol, Ishai, Kushilevitz, Ostrovsky, and Sahai [15]
obtained an asymptotically more efficient (but expensive in concrete terms) con-
struction for oblivious transfer extension, and consequently for secure compu-
tation. In fact, their protocol enjoys a constant computational/communication
overhead over an insecure evaluation of the function to be evaluated. In order to
obtain these strong efficiency results, Ishai et al. [15] make strong complexity-
theoretic assumptions on pseudorandom generators. Specifically, they assume
that there exists an (arbitrary stretch) pseudorandom generator in NC0 [2, 1].

In this work, we show logarithmic in the security parameter improvement for
black-box OT extension transfer of short secrets. In other words, we improve ef-
ficiency of the black-box OT extension protocol of Ishai et al. [14] asymptotically
by a log(k/`) factor when the length of the transferred secrets is `. This has im-
portant practical applications for secure computation solutions in the semihonest
model, such as GMW, that require precisely 1-out-of-2 OT of 1-bit secrets. We
calculate both asymptotic and concrete performance of the resulting protocols.
Our constructions are presented in the semi-honest model.

We stress that in contrast to the non-black-box techniques of Ishai et al. [15],
our extension protocol makes only black-box use of a (non-programmable) ran-
dom oracle. Also, unlike [15] who mainly focus on asymptotic complexity, we



calculate also the concrete efficiency of our construction, and demonstrate a
factor of approximately 2 improvement over state-of-the-art protocols [14, 6].

Finally, we mention PIR work (e.g., [16]) that construct communication effi-
cient 1-out of-n OT protocols but perform O(n) computationally intensive (e.g.,
public-key operations) per instance. In contrast, we perform a fixed number of
public-key operations independent of the number of OT instances.

2 Overview of Our Approach

We give a high-level overview of our solution prior to presenting its technical
details in Section 4. We aim that the reader somewhat familiar with the IKNP
construction [14] should understand the main idea of our construction from this
overview.

Consider the random m × k matrix designed by [14], which is transferred
column-wise via k 1-out-of-2 base OTs from the receiver R to the sender S.
In [14], each row of this matrix is used to implement a 1-out-of-2 OT, as it has
the randomness from which a random OT can be constructed.

Our main observation is that, for the same communication cost, each row
of this matrix can be instead used to perform a 1-out-of-n OT, but of shorter
secrets. Further, a 1-out-of-n OT of log n-bit long secrets can be trivially used
to construct log n instances of 1-out-of-2 1-bit OTs, which is precisely the kind
of OT needed in the GMW protocol and its variants. Thus, effectively, we trade
the length of the OT-transferred secrets for the number of OTs, which results
in significant gain for MPC applications.

The intuition for our 1-out-of-n OT is as follows. First, recall that in IKNP,
for each column of the m× k matrix, S randomly selects (via OT), whether he
receives the random column, or the random column XORed with the m-bit long
input of R. Viewed row-wise, this effectively means that for each row j, S either
receives (via OT) the j-th row of the randomly chosen m×k matrix (if R’s j-th
selection bit is 0), or that row XORed with his k-bit selection vector to the OT
(if R’s j-th selection bit is 1). Then S masks each of his two j-th input secrets
with (RO hashes of) vector received as output from OT and the same vector
XORed with its k-bit selection vector respectively and sends both to R, who is
able to take the mask off exactly one of the two messages. The other masked
message remains hidden since R does not learn the selection vector provided by
S.

In the following, let C denote a binary code, and let rj denote the input of
R to the j-th instance of 1-out-of-n OT. In our 1-out-of-n OT, we modify the
scheme presented above such that for each row j, S receives (via OT) the actual
j-th row of the m × k matrix XORed with a vector that is the result of the
rj-th codeword in C bitwise-ANDed with the k-bit selection vector. This allows
S to generate n random pads from each row of the matrix—the i-th such pad
being the j-th row it received (via OT) XORed with a vector that is the result
of the i-th codeword in C bitwise-ANDed with the k-bit selection vector. These
n random pads may then be used by S to carry out a 1-out-of-n OT with R.



The security of this construction naturally depends on the underlying code. The
exact property that we need is that C must contain at least n codewords, each
of length at most k, such that the codewords in C are spaced as far apart as
possible from each other. This, combined with the fact that R does not learn
the selection vector provided by S, will ensure that R can efficiently recover only
one of the n pads used by S. The above is presented in detail in Section 4.

Using Walsh-Hadamard code for C gives a 1-out-of-n OT for n equal to the
security parameter k. This OT is suitable for generation of log n instances of 1-
out-of-2 OTs (Section 5.1). Using a higher-rate code with high distance results
in 1-out-of-n OT for any n polynomial in k (Section 5.3).

3 Preliminaries and Notation

3.1 Notation

We use the notation OTm` to denote m instances of 1-out-of-2 string-OT where
the string is ` bits long. Let S denote the sender, and let R denote the receiver.
In 1-out-of-2 OT, the sender’s input is {(xj,0, xj,1)}j∈[m], i.e., m pairs of strings,
each of length `, and the receiver holds input {rj}j∈[m], where each rj is an inte-
ger which is either 0 or 1. Note that if S provides input {(xj,0, xj,1)}j∈[m] to OTm` ,
and if R provides input {rj}j∈[m] to OTm` , then R receives back {xj,rj}j∈[m],
while S receives nothing.

In Section 4, we construct protocols for 1-out-of-n OT, which is a straightfor-
ward generalization of 1-out-of-2 OT. We explain this further. We use the nota-
tion

(
n
1

)
-OTm` to denote m instances of 1-out-of-n string-OT where the string is

` bits long. In 1-out-of-n OT, the sender’s input is {(xj,0, . . . , xj,n−1)}j∈[m], and
the receiver holds input {rj}j∈[m], where each rj is an integer which between 0

and n − 1. Note that if S provides input {(xj,0, . . . , xj,n−1)}j∈[m] to
(
n
1

)
-OTm` ,

and if R provides input {rj}j∈[m] to
(
n
1

)
-OTm` , then R receives back {xj,rj}j∈[m],

while S receives nothing.
Following the convention in IKNP, we denote vectors in bold, and matrices

in capitals. For a matrix A, we let aj denote the j-th row of A, and ai denote
the i-th column of A. If a = a1‖ · · · ‖ap and b = b1‖ · · · ‖bp are two vectors, then
we define ⊕ and � operations as follows. We use the notation a⊕b to denote the
vector (a1⊕b1)‖ · · · ‖(ap⊕bp). Similarly, the notation a � b denotes the vector
(a1 · b1)‖ · · · ‖(ap · bp). Finally, suppose c ∈ {0, 1}, then c · a denotes the vector
(c · a1)‖ · · · ‖(c · ap).

Our constructions assume the existence of a random oracle H. We denote
the security parameter by k, and assume (without loss of generality) that it is a
power of 2.

3.2 IKNP OT Extension

In this section, we present the OT extension protocol of Ishai, Kilian, Nissim, and
Petrank [14]. The protocol will reduce OTm` to OTkm. This implies a reduction



(via use of a PRG) to OTkk with some additional cost. The security of the protocol
holds as long as the receiver is semi-honest. (Note: the sender may be malicious.)

We now describe the protocol that realizes OTm` given ideal access to OTkm.

Input of S: m pairs (xj,0, xj,1) of `-bit strings, 1 ≤ j ≤ m.
Input of R: m selection bits r = (r1, . . . , rm).
Common Input: a security parameter k.
Oracle: a random oracle H : [m]× {0, 1}k → {0, 1}`.
Cryptographic Primitive: an ideal OTkm primitive.

1. S chooses s← {0, 1}k at random. Let si denote the i-th bit of s.

2. R forms m× k matrices T0, T1 in the following way:

– Choose tj,0, tj,1 ← {0, 1}k at random such that tj,0⊕tj,1 = (rj‖ · · · ‖rj).
Let ti0, t

i
1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTkm in the following way:

– S acts as receiver with input {si}i∈[k].
– R acts as sender with input {ti0, ti1}i∈[k].
– S receives output {qi}i∈[k].
S forms m×k matrix Q such that the i-th column of Q is the vector qi. (Note
qi = tisi .) Let qj denote the j-th row of Q. (Note qj = ((tj,0⊕tj,1)�s)⊕tj,0.
Simplifying, qj⊕tj,0 = rj · s.)

4. For j ∈ [m], S sends yj,0 = xj,0⊕H(j,qj) and yj,1 = xj,1⊕H(j,qj⊕s).

5. For j ∈ [m], R recovers zj = yj,rj⊕H(j, tj,0).

Efficiency. The protocol makes a single call to OTkm. The cost of OTkm is the
cost of OTkk (which is independent of m) plus a generation of 2k pseudorandom
strings each of length m. Other than this call to OTkm, each party evaluates at
most 2m times (an implementation of) a random oracle. It is easy to see that the
total communication cost of OTm` is the communication cost of implementing
OTkm plus 2m` bits transferred between S and R in Step 4. Thus we conclude
that the communication cost of OTm` is 2mk + 2m` bits. Note that the total
computational cost of the protocol is proportional to its communication cost.

3.3 Walsh-Hadamard (WH) Codes

For α ∈ {0, 1}q, let WH(α) = (〈α, x〉)x∈{0,1}q , where the inner product between
the two vectors is taken modulo 2. That is, WH(α), also known as the Walsh-
Hadamard encoding of α, is the 2q-bit string consisting of inner products of each
q-bit string with α. For each k, Walsh-Hadamard codes, denoted by CkWH, are
simply defined as the set {WH(α)}α∈{0,1}log k . Note that CkWHcontains k strings
(or, codewords) each of length k bits. In our constructions, we will use the well-
known fact that the relative distance of CkWH is 1/2 when k is a power of 2.



4 Extending 1-out-of-n OT

Recall, k is a security parameter. We present a natural generalization of 1-out-
of-2 OT extension protocol given in [14]. We consider 1-out-of-n OT for any
n ≤ k.3 First, recall that it is easy to construct a 1-out-of-n OT protocol from
O(log n) instances of a 1-out-of-2 OT protocol in the semi-honest setting. The
communication cost of m instances of 1-out-of-n OT on `-bit strings would be
the cost of OTmlogn

k plus the cost required to transmit at most mn masked
secrets each of length `. Thus, the communication cost of obtaining m instances
of 1-out-of-n OT on `-bit strings is at most O(m(klog n+ n`)) bits. Further, its
computational cost is proportional to the communication cost.

Our main contribution, formally presented in this section, is showing how
to generalize IKNP’s technique to directly obtain (i.e., without going via a con-
struction for 1-out-of-2 OT) an extension protocol for 1-out-of-n OT when n ≤ k.
For the same security parameter and the same size of setup matrix at IKNP, the
concrete security of our construction corresponds to that provided by security
parameter kIKNP ≈ k/2 . If exactly same concrete security as IKNP is desired,
this can be achieved by setting our security parameter k ≈ 2kIKNP, which results
in a multiplicative factor 2 overhead compared to IKNP. However, because we
do 1-out-of-n OT at this cost, our construction will still result in asymptotic and
concrete performance improvement of 1-out-of-n OT.

Let
(
n
1

)
-OTm` denote m instances of 1-out-of-n OT on `-bit strings. As in [14],

we will reduce
(
n
1

)
-OTm` to OTkm(which can be trivially efficiently reduced to

OTkk). As the [14] basic protocol, our protocol is secure against a malicious
sender and semi-honest receiver. Our protocol will use Walsh-Hadamard codes,
denoted by CkWH = (c0, . . . , ck−1).

We now describe our protocol that realizes
(
n
1

)
-OTm` given ideal access to

OTkm.

Construction 1 (1-out-of-n OT Extension)
Input of S: m tuples (xj,0, . . . , xj,n−1) of `-bit strings, 1 ≤ j ≤ m.
Input of R: m selection integers r = (r1, . . . , rm) such that 0 ≤ rj < n for
1 ≤ j ≤ m.
Common Input: a security parameter k such that k ≥ n, and Walsh-Hadamard
codes CkWH = (c0, . . . , ck−1).
Oracle: a random oracle H : [m]× {0, 1}k → {0, 1}`.
Cryptographic Primitive: an ideal OTkm primitive.

1. S chooses s← {0, 1}k at random. Let si denote the i-th bit of s.
2. R forms m× k matrices T0, T1 in the following way:

– Choose tj,0, tj,1 ← {0, 1}k at random such that tj,0⊕tj,1 = crj .
Let ti0, t

i
1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTkm in the following way:
– S acts as receiver with input {si}i∈[k].

3 We discuss how to extend 1-out-of-n OT for n = poly(k) in Section 5.3.



– R acts as sender with input {ti0, ti1}i∈[k].
– S receives output {qi}i∈[k].
S forms m×k matrix Q such that the i-th column of Q is the vector qi. (Note
qi = tisi .) Let qj denote the j-th row of Q. (Note qj = ((tj,0⊕tj,1)�s)⊕tj,0.
Simplifying, qj⊕tj,0 = crj � s.)

4. For j ∈ [m] and for every 0 ≤ r < n, S sends yj,r = xj,r⊕H(j,qj⊕(cr� s)).
5. For j ∈ [m], R recovers zj = yj,rj⊕H(j, tj,0).

This concludes the description of the protocol. It is easy to verify that the
protocol’s outputs are correct (i.e., zj = xj,rj ) when both parties follow the
protocol.

Efficiency. The protocol makes a single call to OTkm. The cost of OTkm is the
cost of OTkk (which is independent of m) plus a generation of 2k pseudorandom
strings each of length m. Other than this call to OTkm, each party evaluates at
most mn times (an implementation of) a random oracle. It is easy to see that the
total communication cost of OTm` is the communication cost of implementing
OTkm plus mn` bits transferred between S and R in Step 4. Thus we conclude
that the communication cost of OTm` is O(m(k + n`)) bits. Note that the total
computational cost of the protocol is proportional to its communication cost.
Recall that n ≤ k, and thus when ` = 1, the asymptotic cost of our

(
n
1

)
-OTm`

protocol is O(mk) which is the same as the asymptotic cost of Ishai et al.’s
OTm` protocol described in Section 3.2. In terms of concrete performance, as
mentioned above, we need to use a security parameter k ≈ 2kIKNP, resulting
in a factor 2 overhead compared to IKNP’s OTm` execution. Because we are
performing the more powerful

(
n
1

)
-OTm` , this corresponds to asymptotic (and

concrete!) performance improvement.

Theorem 1. Construction 1 is a secure protocol for evaluating
(
n
1

)
-OTm` in the

semi-honest model.

The proof of security of Theorem 1 appears in the full version.

Remarks. In Construction 1, one can replace CkWH with an encoding map enc :
{0, 1}logn → {0, 1}k that has the property that for r, r′ ∈ {0, 1}logn with r 6= r′,
the Hamming distance between enc(r) and enc(r′) is at least Ω(k). It is instruc-
tive to see that when n = 2 and when enc is the k-bit repetition encoding of the
input bit, i.e., enc(r) = (r, . . . , r) ∈ {0, 1}k, then we get exactly the IKNP con-
struction. Note that for r 6= r′, the Hamming distance between enc(r) and enc(r′)
is exactly k. As we saw in Construction 1, using the encoding map enc(r) = cr,
where cr is the r-th Walsh-Hadamard codeword, gives us an log k efficiency im-
provement. Since the Walsh-Hadamard code is a low-rate code, the maximum
value of n is restricted to be less than or equal to k. A natural question that
arises is whether a code with a better rate enables us to remove this restriction.
Indeed, in Section 5.3, by using more sophisticated codes (cf. Claim 5.3) we
show an improvement in the (offline) communication complexity of 1-out-of-n
OT extension for arbitrary n = poly(k).



5 Resulting Efficiency Improvements

We evaluate performance improvements of Construction 1, and corresponding
two- and multi-party SFE improvements. Recall that in the semi-honest model,
a single instance of 1-out-of-n OT may be used to generate log n instances of 1-
out-of-2 OT over slightly shorter strings with no additional cost. More precisely,

the cost of OTm` is exactly equal to the cost of
(
n
1

)
-OT

m/logn
`logn . This observation

will allow us to leverage our efficient construction of
(
n
1

)
-OTm` to obtain improved

efficiency for 1-out-of-2 OT, and consequently for secure computation.

5.1 Efficiency Improvements for 1-out-of-2 OT

In this section, we demonstrate a log k asymptotic improvement in the efficiency
of 1-out-of-2 OT when sender’s secrets are just bits (i.e., length of sender’s
secrets, ` = 1). As observed previously, we do this by constructing 1-out-of-2
OTs via 1-out-of-n OTs.

Recall that the cost of our
(
n
1

)
-OTm` protocol described in Section 4 is

O(m(k + n`)). Using the fact that the cost of OTm` is exactly equal to the

cost of
(
n
1

)
-OT

m/logn
`logn , we conclude that OTm` may be reduced to OTkk while

incurring an additional cost at most O((m/log n) · (k + n`log n)). By choosing
n such that nlog n = k/`, we see that this additional cost is asymptotically
O(mk/ log(k/`)). In summary, we have shown a reduction from OTm` to OTkk
with cost O(mk/ log(k/`)).

Contrast our result above with the result of [14], where the cost of the re-
duction from OTm` to OTkk was O(m(k + `)). Observe that for the important
case when ` = 1, our construction offers a logarithmic factor improvement in the
efficiency of the reduction.

As noted in Section 4, to achieve concrete security equal to that of IKNP, we
need a security parameter approximately twice theirs, which results in a factor 2
overhead of our protocol. Even with this efficiency loss we have both asymptotic
and concrete performance advantage over IKNP.

Concrete Efficiency. We begin with a concrete cost analysis of
(
n
1

)
-OTm` . Recall

that the exact cost of reduction from OTkm to OTkk involves sending 2mk bits.
Then, in Step 4 of Construction 1, S transmits mn` bits toR. Thus, the concrete
cost of

(
n
1

)
-OTm` is m(2k+n`). Using the fact that the cost of our OTm` is exactly

equal to the cost of
(
n
1

)
-OT

m/logn
`logn , we conclude that OTm` may be reduced to

OTkk with cost (m/log n) · (2k + n`log n) bits. The minimum cost can then be
obtained by choosing a suitable value of n.

In contrast, the concrete communication cost of IKNP’s construction of OTm`
is 2m(k + `) bits. As described earlier, there’s a small gap between the security
guarantees between our consruction and IKNP’s. We take that into account in
our cost calculation, and present the results in Table 1.



level of security our cost IKNP cost

50 74 102
112 130 226
238 227 478

Table 1. Comparison of (amortized) communication cost (measured in bits) of 1-out-
of-2 bit OT for a given security level. The costs are computed assuming parties are semi-
honest. The performance improvement ratio betwen our work and IKNP represents the
resulting improvement factor for MPC protocols based on the GMW approach.

5.2 Efficiency Improvements for Secure Computation

In this section, we will discuss applications of our OTm` protocol to secure two-
party and multi-party computation. As pointed out in the Introduction, efficient
OT forms a criticial component of secure computation protocols, and improve-
ments in the efficiency of OT translates to an improvement in the efficiency of
secure computation protocols built on top of OT.

In the previous section, we saw how our construction asymptotically out-
performs the extension protocol of [14] by a factor of O(log(k/`)). Clearly, this
improvement factor is maximized when ` = 1, i.e., for 1-bit OT. Thus, our
construction has maximum benefit for secure computation protocols that exten-
sively rely on 1-bit OTs. One such example is the well known GMW protocol [9]
where each AND gate of the circuit is evaluated using (two invocations of) 1-bit
OTs (and negligible additional cost). Until now, efficient implementations of the
GMW protocol in the semi-honest setting (e.g., [6]) relied on the OT extension
protocol of [14]. Because OT costs dominate the protocol costs, simply by us-
ing our extension protocol (instead of [14]), the semi-honest GMW protocol will
enjoy an asymptotic log k efficiency improvement (and improvement in concrete
terms as well).

Secure Two-Party Computation. As discussed in Section 1.3, a large class of
2PC problems is solved more efficiently with GMW than Yao. For problems in
this class, our OT extension improvement results in corresponding 2PC improve-
ment. For other problems, where Yao is faster, the relative performance of the
approaches is discussed next.

The concrete improvements for the specific case of two-party computation are
shown in Table 2. From the table, it is evident that our protocol begins to out-
perform state-of-the-art constant round protocols (e.g., [26]) for reasonable levels
of security. However, for practical values of the security parameter, it performs
worse, in concrete terms, when compared to the best-case performance of [19],
a non-constant round protocol that generalizes both Yao garbled circuits and
GMW. (We note that the communication cost of our protocol is asymptotically
the same as the communication cost of [19].) In more detail, the performance
of [19] is highly sensitive to the topology of the circuit. Their best performance,
as noted in Table 2, is for the case of constant width circuits. In contrast, our
improvements are independent of the topology of the circuit being evaluated. We



point out that the approach of [19] can be viewed as somewhat related to ours
(but more narrow; in particular, it is not applicable to multiparty comptuation).
Furthermore, our OT extension protocol can improve the performance of [19] for
circuits with low depth.

level of security our cost per gate [26] cost per gate [19] cost per gate

50 148 100 66
112 260 224 112
238 454 476 196

Table 2. Comparison of (amortized) communication cost (measured in bits) per gate of
the circuit for various semi-honest secure two-party protocols. We note that protocols
of [19] do not extend to multi-party setting, while ours do.

Secure Multi-Party Computation. Today, practical protocols for secure multi-
party computation are based on the GMW approach (e.g., [25, 6]).4 GMW-based
secure computation protocols for t parties, in the semi-honest setting, operate in
almost the same way as in the two-party case except that now parties compute
pairwise OTs (more precisely, a total of 2t2 OTs) to securely evaluate each
AND gate. That is, for each AND gate of the circuit parties evaluate a total of
2t2 1-bit OTs (with negligible additional cost). Therefore, simply by using our
extension protocol (instead of [14]), we will improve the asymptotic complexity
by a log k factor. Concrete improvements in this setting are the same as those
found in Table 1. Specifically, for “50-bit security” we obtain an improvement of
102/74 = 1.378 in the communication cost. Similarly, we obtain an improvement
factor of > 2 for “238-bit security”.

5.3 Efficiency Improvements for 1-out-of-n OT

Recall that the cost of extending 1-out-of-n OT from [14] is O(m(k log n+ n`))
bits. Our main construction of 1-out-of-n OT described in Section 4 reduces the
cost of 1-out-of-n OT extension to m(2k + n`) bits. As described in Section 4,
for the same guarantee as in IKNP, our security parameter should be set as
k ≈ 2kIKNP. Previous solutions [23, 14] cost (4mkIKNP log n+mn`) bits. Hence
for kIKNP = 128, with n = k and ` = 1, our solution improves upon existing
solutions by a factor ≈ 5.39.

Note that the above improvement holds only when n ≤ k. In this section,
we show how to modify Construction 1 to support n = poly(k). In the resulting
protocol, the (offline) communication cost of the generating 1-out-of-n OT cor-
relations will be O(mk) bits, i.e., completely independent of n. This improves

4 Yao GC-based approach does not seem to map naturally into the multiparty setting.
This is true even for the three party semi-honest setting. A more complicated solution
is possible [4], but much less practical than GMW-based approaches [6].



over the best known offline communication complexity (which was O(mk log n)
bits).

The total complexity (i.e., both online and offline) of our construction will
asymptotically outperform existing constructions only for n ≤ ck where c is
an arbitrary constant. For n = ω(k), the online cost of our protocol O(mn`)
dominates the total cost, but is still as efficient as existing constructions.

The main idea of our construction is to replace CkWH with a code from a family
of linear error correcting codes with the following special properties. (Our claim
below is taken verbatim from [16].)

Claim ([16, 5, 8]). There exists a finite field F of characteristic 2 and an efficiently
constructible family of linear error-correcting codes CK : FK → FNK with the
following properties: (1)NK = O(K); (2) The dual distance of CK is δK = Ω(K);
(3) The linear code C ′K spanned by all pointwise-products of pairs of codewords
in CK has minimal distance ∆K = Ω(K) and supports efficient decoding of up
to µK = Ω(K) errors. (The pointwise product of (c1, . . . , cN ) and (c′1, . . . , c

′
N )

is (c1c
′
1, . . . , cNc

′
N ).)

The last property implies that CK also has minimal distance dK = Ω(K).
Setting NK = k and K ≥ log n is enough to provide the desired improve-

ments stated above. The security level provided by this construction will be
log(2dK/n2) = Ω(k) for n polynomial in k.

6 Optimizing the Reduction from
(
n

1

)
-OTm

` to OTk
k

In our OT extension protocol, the OTkm primitive is reduced to OTkk. Further,
the roles of R and S are reversed in our application of the reduction in our
protocol. We provide an optimization that exploits this fact. This optimization
was independently discovered by us and by Schneider and Zohner [27].

The main idea of the optimization is that inside the OT extension protocol of
IKNP (as well as our protocol) 1-out of-2 OT of very long (m-bit long) random-
looking correlated strings is executed. We cut the communication almost in half
by OT-sending a PRG seed used to generate the strings. In other words, we
obtain efficiency improvements by employing pseudorandom additive sharing
instead of a completely random additive sharing. Because the strings need to be
correlated in a specific way, a “correction” string needs to be sent so that exactly
the right secret is recovered.

Note that this technique can also be applied to the IKNP construction. Such
an application would reduce the IKNP cost of OTm` from m(2k+2`) to m(k+2`).
Observe that the reduced costs also have an impact on the oblivious key transfer
phase (by constant factor 4/3) of Yao-based constructions where ` = k.

For the case of 1-out-of-2 1-bit OT extension with 160-bit security, we get
an improvement factor of ≈ 3.15 over the protocol of [14], and an improvement
factor of ≈ 1.5 over the optimized IKNP protocol. See Appendix A for a detailed
description of the protocol. We stress that Tables 1 and 2 do not take into account
the optimizations described in this section.
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A Optimizing the Reduction from
(
n

1

)
-OTm

` to OTk
k

Construction 2 (Optimized 1-out-of-n OT Extension)
Input of S: m tuples (xj,0, . . . , xj,n−1) of `-bit strings, 1 ≤ j ≤ m.
Input of R: m selection integers r = (r1, . . . , rm) such that 0 ≤ rj < n for
1 ≤ j ≤ m.
Common Input: a security parameter k such that k ≥ n, and Walsh-Hadamard
codes CkWH = (c0, . . . , ck−1).
Oracle: random oracles H : [m]×{0, 1}k → {0, 1}`, and G : {0, 1}k → {0, 1}m.
Cryptographic Primitive: an ideal OTkm primitive.

1. S chooses s← {0, 1}k at random. Let si denote the i-th bit of s.
2. R forms a (m × k) matrix D by setting dj = crj . R then forms m × k

matrices T0, T1 in the following way:
– Set ti1 = G(vi) for a randomly chosen vi ← {0, 1}k.
– Set ti0 = di⊕ti1.

In the above, ti0, t
i
1 denotes the i-th column of matrices T0, T1 respectively.

(Note that T0, T1 form a pseudorandom sharing of the matrix D.)
3. S and R interact with OTkk in the following way:

– S acts as receiver with input {si}i∈[k].
– R acts as sender with inputs {ui, vi}i∈[k], where each ui is chosen uni-

formly at random from {0, 1}k. (Note vi was already chosen by R in
Step 2.)

– S receives output {ai}i∈[k].
S forms k × k matrix A such that the i-th column of A is the vector ai.

4. For each i ∈ [k], R sends wi = G(ui)⊕ti0.
5. S forms m× k matrix Q such that

– if si = 0, then qi = wi⊕G(ai),
– else if si = 1, then qi = G(ai).

Let qj denote the j-th row of Q. (Note qi = tisi . Note qj = ((tj,0⊕tj,1) �
s)⊕tj,0. Simplifying, qj⊕tj,0 = crj � s.)

6. For j ∈ [m] and for every 0 ≤ r < n, S sends yj,r = xj,r⊕H(j,qj⊕(cr� s)).
7. For j ∈ [m], R recovers zj = yj,rj⊕H(j, tj,0).

The amortized cost per instance of the
(
n
1

)
-OTm` protocol above is (k + n`).

This yields a OTm` protocol whose amortized concrete cost per instance is n`+
(k/ log n) bits.


