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Abstract

Learning Constraint-based Grammars from Representative Examples: Theory and

Applications

Smaranda Muresan

Computationally efficient models for natural language understanding can
have a wide variety of applications starting from text mining and question an-
swering, to natural language interfaces to databases. Constraint-based grammar
formalisms have been widely used for deep language understanding. Yet, one seri-
ous obstacle for their use in real world applications is that these formalisms have
overlooked an important requirement: learnability. Currently, there is a poor match
between these grammar formalisms and existing learning methods.

This dissertation defines a new type of constraint-based grammars, Lexical-
ized Well-Founded Grammars (LWFGs), which allow deep language understanding
and are learnable. These grammars model both syntax and semantics and have
constraints at the rule level for semantic composition and semantic interpretation.
The interpretation constraints allow access to meaning during language processing.
They establish links between linguistic expressions and the entities they refer to

in the real world. We use an ontology-based interpretation, proposing a semantic



representation that can be conceived as an ontology query language. This repre-
sentation is sufficiently expressive to represent many aspects of language and yet
sufficiently restrictive to support learning and tractable inferences.

In this thesis, we propose a new relational learning model for LWFG induc-
tion. The learner is presented with a small set of positive representative examples,
which consist of utterances paired with their semantic representations. We have
proved that the search space for grammar induction is a complete grammar lattice,
which allows the construction and generalization of the hypotheses and guarantees
the uniqueness of the solution, regardless of the order of learning. We have proved
a learnability theorem and have provided polynomial algorithms for LWFG induc-
tion, proving their soundness. The learnability theorem extends significantly the
class of problems learnable by Inductive Logic Programming methods.

In this dissertation, we have implemented a system that represents an exper-
imental platform for all the theoretical algorithms. The system has the practical
advantage of implementing sound grammar revision and grammar merging, which
allow an incremental coverage of natural language fragments. We have provided
qualitative evaluations that cover the following issues: coverage of diverse and
complex linguistic phenomena; terminological knowledge acquisition from natural
language definitions; and handling of both precise and vague questions with precise

answers at the concept level.
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Chapter 1

Introduction

The question “What does it mean to learn language?” is one of the greatest topics
of scientific inquiry. The problem has attracted many researchers in linguistics,
computer science, and cognitive science, and attempts to answer this question vary
greatly from discipline to discipline.

In this dissertation, we consider language learning as the problem of learning
grammars which capture syntax and semantics and which allow access to meaning
during language processing (i.e., parsing and generation). In addition, we are inter-
ested to investigate whether computers can learn such grammars for deep language
understanding. For this, we need to provide a computationally efficient learning
model.

In order to build such a model for language learning, we need to address the

following questions:

e What representation is appropriate to provide a deep semantic analysis of

natural language and to allow learning and tractable inferences at the same



time

e What properties should the grammar have to include semantics and to be

learnable?

e What learning paradigm is needed?

In order to ewvaluate the utility of the learning model, we need to address
the following question: What applications does our language learning model have?
Figure 1.1 presents some scenarios that can be used to answer this question. The
immediate application that comes to mind is a grammar development framework.
Linguists are usually concerned with particular linguistic phenomena, such as rais-
ing and control, long-distance dependencies, or the predicative and equative mean-
ing of the copula to be (Figure 1.1(a)). The second possible application is the
acquisition of knowledge from text. In Figure 1.1(b) we present the task of acquir-
ing terminological knowledge from a set of definitions in a particular domain (i.e.,
medical domain). The third possible application is a question-answering type of
task, where both precise and vague questions can be asked w.r.t. an utterance or
a set of utterances, and precise answers at the concept level are required (Figure
1.1(c)).

As can be seen from Figure 1.1, the issues in all these scenarios are inter-
leaved: interpretation of copula to be appears in definitions, long-distance depen-
dencies might appear in questions, and real-world applications need ways to deal
with various linguistic phenomena that might be particular for a domain or task.
Thus, our model should be expressive enough and extendible so that different phe-

nomena can be investigated and modeled. Another important aspect is grammar



RAISING/CONTROL CONSTRUCTIONS
Skeptics continue to question your hypothesis.
Reporters tried to interview the candidate.

LONG-DISTANCE DEPENDENCIES
What does the president seem to try to get __ from the farmers?

COPULA “To be”

A. Predicative

Pat is smart.

Pat is a graduate student.

B. Equative
Pat is the mayor.

(a) Linguistic Analysis

enlargement.

that tends to persist in the blood serum.

Hepatitis is a disease caused by infectious or toxic
agents and characterized by jaundice, fever and liver

Hepatitis B is an acute viral hepatitis caused by a virus

Terminological

Hepatitis A is an acute but benign viral hepatitis caused —-
by a virus that does not persist in the blood serum. K nowl edg €

(b) Terminological knowledge acquisition from definitions

Q1: What is characterized by jaundice and
liver enlargement?
A1: hepatitis

Q2: What is caused by a virus that persists
in the blood serum?
A2: Hepatitis B

Q3: What is caused by something that
does not persist in the blood serum?
A3: Hepatitis A (something=virus)

Monsanto’s president who seems to try to
get royalties from the farmers who grew
genetically modified soya illegally will be
giving a briefing for the Brazilian media
tomorrow at noon .

Q: What does the president seem to try to
get from the farmers?
A: royalties

(c) Precise/vague questions and precise answers at the concept level

Figure 1.1: Scenarios for evaluating the utility of the learning model




merging: how can different grammars be merged in a sound way? This is useful
when different aspects of the grammar are developed/learned separately.

In the next section we present the main assumptions we made in building
the grammar learning model. In Section 1.2 we give an overview of the research
solutions for answering the questions posed in this section. Section 1.3 describes
the contributions of this thesis and Section 1.4 is a guide to the remainder of this

dissertation.

1.1 Basic Assumptions

Throughout this dissertation we make several basic assumptions.

Ontology as repository of meanings. In order to provide access to meaning
during parsing, we assume that the meaning is encoded by an ontology, which will
be connected to the grammar through a set of constraints. The focus on ontology is
motivated by the need to interpret language in terms of the language-independent
concepts of some underlying domain of discourse. Using an ontology to represent
meaning has been widely considered in the AI community and in computational
linguistics as well (Bateman, 1992; Gruber, 1993; Chaudhri et al., 1998; McDonald,

2001).

A Priori Categories. The second assumption made in this dissertation is
that the learner has knowledge about utterance categories. We use both categories
that represent the form of the constituents (e.g., Noun, Verb, Noun Phrases, Verb
Phrase, etc.) and functional categories of constituents (e.g., Subject, Object, Ad-

junct) together with a priori knowledge about agreement among categories. How-



ever, establishing the exact nature of what categories are needed is outside the
scope of this dissertation, and we hope that the learning system can be used by

linguists to experiment with different types of categories.

Robust parser as innate inference engine. We assume that the learner has
access to a robust, active chart parser (Kay, 1973), during the grammar induction.
At the initial state, the background knowledge contains the rules corresponding
to preterminals (i.e., these are not learned). The parser is used both during the
generation of candidate hypotheses (grammar rules), and during their evaluation in
order to choose the best performing one. The robust parser provides all the chunks
of an utterance needed to build the candidate hypotheses. We will return to the

role of the parser when we talk about our learning paradigm, in the next section.

No noisy data for learning. In this dissertation, we use the “no noisy data”
assumption, since the learning is done from a small number of positive annotated
examples. This is similar to the assumptions made by other learning frameworks,
such as the initial PAC-learning model (Valiant, 1984) and Gold model (Gold,

1967).

1.2 Overview of the Research Results

In this dissertation, we propose a new computationally efficient model for grammar
learning, called Grammar Approzimation by Representative Sublanguage (GARS).
In this model, the language is taken to be a set of strings together with their
syntactico-semantic representations. The learner is presented with a set of positive

representative examples of the target language, and a set of positive examples used



for generalization, which we refer to as a representative sublanguage. The repre-
sentative sublanguage is conformal with respect to the grammar and includes the
representative examples. The task of the learner is to induce a grammar that gen-
erates the target language. This dissertation defines a new type of constraint-based
grammars, Lezicalized Well-Founded Grammars (LWFGs), which allow deep lan-
guage understanding and are always learnable under the GARS model, that is, the
learning always converges to the target grammar. We show that the search space
is a grammar lattice and we provide polynomial algorithms for grammar induction
and prove they are correct.

In the remainder of this section we describe our new syntactic-semantic rep-
resentation, our grammar formalism, and our learning paradigm and sketch the

utility of the learning model.

1.2.1 Representation of Natural Language

This section summarizes the answers to the question “What representation is ap-
propriate to provide a deep semantic analysis of natural language and to allow
learning and tractable inferences at the same time?”

In this dissertation, we introduce a new representation for natural language
strings, semantic molecule. The semantic molecule is a type of feature structure,
(%), where: h (head) encodes the information required for composition, and b (body)
is the actual semantic representation of the string.

Figure 1.2 shows examples of semantic molecules for an adjective, a noun and
a noun phrase. The representations associated with the lexical items are called ele-

mentary semantic molecules (I), while the representations built by the combination



I. Elementary Semantic Molecules

cat adj
head X;
(major/adj)’ = p, Lmod  X>
1
b <X1.isa = major, X2.Y:X1>
1
cat noun
nr sg
(damage/noun)’ = ,.Lhead X3
3

X3.isa = damage
bk )

II. Derived Semantic Molecule

cat n
nr sg
(major damage)’ = ,Lhead X

b<X1.isa = major, X.Y=X1, X.isa:damage>

Figure 1.2: Examples of two elementary semantic molecules (I) for an adjective,
(major)', and a noun, (damage)’, and a derived semantic molecule (II) obtained
by combining them, (major damage)'.

of others are called derived semantic molecules (II).

The head, h, of a semantic molecule is represented as a one-level feature
structure (i.e., feature values are atomic). In Figure 1.2 the heads are shown as
attribute-value matrices (AVMs). Each molecule has at least two attributes encod-
ing the syntactic category of the associated string, cat, and the semantic head of
the string, head. For adjectives, for example, besides these two attributes, there is
an attribute, mod, which specifies the semantic index of the modified noun. This
information is necessary for combining an adjective and a noun to obtain a noun
phrase (e.g., major damage). For nouns, we can have other syntactic information
(e.g., nr) used for agreement (i.e., number agreement between the subject and the
main verb of a sentence). All these sets of attributes are finite and known a priori

for each syntactic category. Being a one-level feature structure, no recursive or



embedded structures are allowed, which makes this representation appealing for a
learning framework. The recursion is obtained through the recursive grammar rules
and the composition constraint, which are described in the next section.

The body, b, of a semantic molecule is a flat representation (i.e., no embedding
of predicates is allowed), as in Minimal Recursion Semantics (Copestake et al.,
1999)), called OntoSeR (Ontology-based Semantic Representation). It is a logical
form built using a set of atomic predicates (APs) based on the concept of attribute-

value pair:

(OntoSeR) = (AP) | (OntoSeR) A (OntoSeR)
(AP) &f (conceptID) . (attr) = (concept)
(concept) & (conceptID) | (conceptName)

(attr) & (attrID) | (attrName)

where, (conceptID) is a variable denoting a frame in the ontology, (conceptName) is
the name of a frame in the ontology, (attrID) is a variable denoting a slot of a frame,
while (attrName) is the name of a slot of a frame in the ontology. The slot is either
a property or a relation. As seen in Figure 1.2 (I), our semantic representation is
influenced by the ontology-based approach to semantic interpretation. For example,
in our framework, the meaning of a noun is the corresponding basic concept in
the ontology (Xs.isa = damage). The meaning of an adjective is the concept
corresponding to a value of a property (slot) of another concept denoted by a noun
(X1.1sa = major, X5.Y = X7), where X5 will be bound to the head of the modified
noun after the composition operation (e.g., Xo will be the same as the head X3 of

the noun damage after the composition that derives major damage). The variable



Y will be instantiated during the semantic interpretation on the ontology (e.g., for
the noun phrase major damage, Y = degree).
In this dissertation, we argue that our computational semantics framework

has several properties:

1. Expressive adequacy. Our representation correctly expresses diverse and
complex linguistic phenomena (e.g., coordination, noun-noun compounds,
nominalizations, raising/control, long-distance dependencies). The actual se-

mantic representation, OntoSeR, is an ontology query language.

2. Grammar compatibility. Semantic representations must be linked to other
kinds of grammatical information. The modular design of the semantic molecules
allows us to connect them to a constraint-based grammar formalism, where
the semantic composition and the semantic interpretation are encoded as
grammar constraints. Thus the semantic representation is cleanly linked to

syntax, assuring grammar compatibility.

3. Computational tractability. Computational tractability requires efficient
means to process meanings and to check semantic equivalences, as well as
straightforwardly expressing relationships between semantic representations.
We use a semantic interpreter which guarantees the soundness and complete-

ness of concept identification.

4. Reversibility. The semantic representation, OntoSeR, should contain the in-
formation that allows grammar reversibility. The filtering of the information
that is not necessary (e.g., for a particular task) is done at the interpretation

level. The reversibility is possible giving to the generator only the seman-
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tic representation (OntoSeR), without the information from the head of the

semantic molecule.

5. Uniform Representation. The semantic representation, OntoSeR, must
be independent of the knowledge level where the assertion takes place (ter-
minology, factual, discourse). In this way, our semantic interpreter allows the

interface with different Knowledge Representation Systems.

6. Learnability. Efficient learning requires simple representational devices.
Both the head and the body of the semantic molecule are flat representations.
Moreover, the modular design and the use of a constraint-based grammar for-
malism allow the learning of both the grammar rules and the compositional

constraints.

The first three criteria are the object of most ongoing research in compu-
tational semantics, the tradeoff between expressive adequacy and computational
tractability being one of the major issues in semantic-based applications (Copestake
et al., 1999). In our work, we are not only interested in computational tractability
but also in the learnability of the computational semantics framework. Reversibility
and uniform representation preserve the entire meaning of utterances at the level
of OntoSeR, emphasizing the view of natural language as problem formulation,
and not problem solving. Filtering and reasoning can take place at the level of
knowledge representation. In other words, at the OntoSeR level we have the entire

utterance meaning and nothing more.
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1.2.2 Grammar Formalism

This section summarizes the answers to the question “What properties should the
grammar have to include semantics and to be learnable?”

Constraint-based grammar frameworks have been widely used to capture
both aspects of syntax and semantics. In particular, the Definite Clause Grammar
formalism (Pereira and Warren, 1980) extends the Context-Free Grammars in three
important ways: 1) it allows for context-dependency in a grammar; 2) it allows us
to build arbitrary structures during parsing, in a way that is not constrained by the
recursive structure of the grammar (such structures can provide the meaning of the
string); and 3) it allows extra conditions to be included in the grammar rules, which
can be seen as constraints for parsing. The first and second mechanism are provided
in the DCG formalism by augmenting the nonterminals with extra arguments.

However, it is known that classical DCGs are Turing equivalent, and thus un-
decidable. In this dissertation, we introduce a particular type of DCGs, called Lez-
calized Well-Founded Grammars which are decidable and learnable. The LWFGs

have the following main properties:

e augment the nonterminals with pairs of natural language strings and their

semantic molecules;

e have two types of constraints at the grammar rule level — one for semantic
composition (defines how the meaning of a natural language expression is
composed from the meaning of its parts) and one for ontology-based semantic

interpretation (validates the semantic constructions at the rule level);

e introduce a partial ordering among nonterminals, which allows the ordering of
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grammar rules. This partial ordering motivates the naming of our grammar

formalism as “well-founded.”

The first two properties, facilitated by the DCG-like formalism, allow us to
have a grammar that integrates both syntax and semantics. The language gener-
ated by the grammar consists of pairs of natural language strings and their semantic
molecules. We call these units derived by the grammar syntagmas. The composi-
tional constraints are learned together with the grammar rules. The ontology-based
constraints are used during parsing to provide access to meaning.

The third property allows the bottom-up learning of LWFGs from a set
of ordered representative examples. The representative examples are the simplest
syntagmas generated by a LWFG. The ordering of examples allows for an efficient
bottom-up relational learning of the grammar rules and their compositional se-
mantic constraints. Besides efficiency, a practical advantage of the representative
example set is its small size, equal to the cardinality of the grammar rule set.

In Figure 1.3 we show the parse tree for the derived syntagma associated with
the string major damage (see also Figure 1.2). It can be seen that each nonterminal
is augmented with a syntagma (i.e., pair of a string and its semantic molecule).

The general form a LWFG rule is given below:!
A(w, (3)) = Bi(wi, (31)), -5 Ba(wn, (37)): Peomp(hy ha, - - 1), Ponto(b)
where:

e A By,...,B, are grammar nonterminals, which represent syntactic categories
that are given in the head of the semantic molecules (A = h.cat, B; = h;.cat).

In Figure 1.3 we have N, Adj, Noun as nonterminals.

1For the clarity of the presentation we keep the notation below, and not the DCG notation.
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cat n
nr sg
N (major damage, Lhead X

b<X1.isa = major, X.Y=X7, X.isa:damage>

cat  adj [cat n
head X3 nr Sg
Adj (major, p Lmod X ) N ( damage, pLhead Xs

<X1.isa = major, X2.Y:X1> <X3.isa = damage>

1 b2

cat noun
nr sg
Noun (damage, , |head X )
3

b <X3.isa = damage>
3

(a)

N(w, (3)) = Adj(wy, (}')), N(wz, (52)) © Reomp(h h1,h2), Ponto(D)

( h.cat = n,
h.head = h1.mod,
h.head = ho.head,
h.nr = ho.nr,
hi.cat = adj,

\ ho.cat =n

(I)comp(ha hla h2) = <

-~

7/

(b)

Figure 1.3: Parse tree for syntagma associated with the string major damage
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w,wy, . . ., Wy, are variables for natural language strings. In the sample deriva-
tion given in Figure 1.3 they are instantiated with major damage, major, and

damage, respectively (n=2).

By (hi hn . .

(b), (bl)’ ceny (bn) are the semantic molecules corresponding to the natural
language strings w, wy, . .., w,, respectively.

: is a delimiter for constraints.

@ omp is a semantic composition constraint, which shows how the meaning

of the whole is composed from the meaning of its parts. The composition
constraint is applied only to the heads of the semantic molecules, the bod-
ies being just concatenated. ®.,,, is a system of equations, and is learned
together with the grammar rules. An example is given in Figure 1.3 and a
full description is given in Chapter 4. As a consequence of variable bind-
ings due to head composition, some variables from the bodies of the semantic
molecules are bound as well (e.g., the variables X, and X3 in Figure 1.3 are

bound). At this point the variable Y is still not instantiated.

D10 18 the ontology-based semantic interpretation constraint applied only
to the body of the semantic molecule corresponding to the left-hand side
nonterminal. Thus, access to meaning is provided at the grammar rule level,
which is a source for disambiguation. The ontology-based interpretation is not
done during the composition operation, but afterwards. Thus, for example,
the head of the noun phrase major damage (Figure 1.3) does not need to store
the slot Y, a fact that allows us to use flat feature structures to represent the

head of the semantic molecule. When ®,,,;, is applied, the variable Y becomes
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instantiated with values taken from the ontology (e.g., degree).

Thus, semantic composition and semantic interpretation are constraints at
the grammar rule level. Moreover, the semantic compositional constraints are
learned together with the grammar rules. This is possible due to the determi-
nacy property of these constraints. On the one hand, ®.,,, and the syntagmas
corresponding to the nonterminals from the right-hand side of the grammar rule,
(w;, (2“)), completely determine the syntagma corresponding to the left-hand side

. h h hi
nonterminal, (w, (})). On the other hand, (w, (})) and (w;, (bl)) completely deter-

mine ®.,,p. The latter is relevant when learning ®,,,,,, together with the grammar

rule.

Unambiguous language. In our framework, the language generated by the gram-
mar consists of syntagmas (i.e., pairs of strings and their semantic molecules). Thus,
when we talk about unambiguity we refer to the syntagmas. Let us consider the
classical example of prepositional phrase ambiguity. The utterance I saw the man
with the telescope has at least two derivations: one where the PP with the telescope
modifies man, and one where it modifies saw. In our framework, since the language
is formed by syntagmas, these ambiguities are eliminated. The utterance I saw the
man with the telescope has two associated semantic molecules: one where the PP
is attached to the verb saw, and one where it is attached to the noun man. Thus,
we have two syntagmas which are unambiguous.

From the learning perspective, unambiguity is an assumption. Both the
representative examples set and the sublanguage used for generalization must be
unambiguous. Since these two sets of examples are in fact syntagmas (pairs of utter-

ances and their semantic molecules), the unambiguity requirement can be fulfilled.
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We will describe this issue in detail in Chapter 5.

In Chapter 3 we present the Lexicalized Well-Founded Grammars and we
define their denotational and operational semantics, the derivation operation, the
parsing/generation mechanism, the representative examples and the representative

sublanguage.

1.2.3 Learning Model

This section summarizes the answers to the question “What learning paradigm is
needed?”

Inductive Logic Programming (ILP) is a class of relational learning methods
which is concerned with inducing first-order Horn clauses from examples and back-
ground knowledge. Kietz and Dzeroski (1994) describe formally the ILP-problem
and relate it to Gold (1967) and PAC-learnability (Valiant, 1984) frameworks. They
show that the ILP-problem and Gold’s identification in the limit are not strongly
connected, but they define PAC-learnability for the ILP setting. We briefly present
the ILP learning problem and then discuss how our grammar induction problem is

framed in this approach.

The ILP Learning Problem

Given:
e a correct provability relation F for a first-order language L,
e a background knowledge B in language LB: B € LB C L,
e positive and negative examples £ = E* U E~ in language LE C L, and

e a hypothesis language LH C L.
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Find a hypothesis H € LH such that:

e H A B explains the positive examples E*, and H A B does not explain the

negative examples E~.

The tuple (+, LB, LE, LH) is called the ILP-learning problem. The general
ILP-learning problem (=, Horn clauses, ground atoms, Horn clauses) is undecid-
able. Thus, it is neither consistently identifiable in the limit, nor PAC-learnable.
The question is what subclasses of first-order logic are efficiently learnable. Pos-
sible choices to restrict the ILP-learning problem are: the provability relation,
(also called the generalization model), the background knowledge and the hypoth-
esis language. Research in ILP has presented positive results only for very limited
subclasses of first-order logic (Kietz and Dzeroski, 1994; Cohen, 1995), which are

not appropriate to model natural language grammars.

The LWFG Induction Problem in the ILP-setting
Our grammar induction problem can be formulated as an ILP-learning problem

(+, LB, LE, LH), where:

e The provability relation, I, is given by the robust parsing, and we denote it by
F.p. We use the “parsing as deduction” technique (Pereira and Warren, 1983;
Shieber, Schabes, and Pereira, 1995). Using this technique, for all syntagmas
we can say in polynomial time whether they belong or not to the grammar
language. Thus, using the I, as generalization model, our LWFG induction

problem is decidable.

e The language of background knowledge, LB, is the set of LWFG rules (a

type of DCG rules) that are already learned, together with the elementary
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syntagmas (i.e., corresponding to the lexicon), which are ground atoms (the

variables are made constants).

e The language of examples, LE are syntagmas of the representative sublan-

guage, which are ground atoms. We only have positive examples.

e The hypothesis language, LH, is a LWFG lattice whose top element is a con-

formal grammar, and which preserves the parsing of representative examples.

That is, our LWFG induction problem can be formulated as (+,,, LWFG
rules (type of DCG rules) + elementary syntagmas (ground atoms), representative

sublanguage (ground atoms), LWFG rules (type of DCG rules) ).

Grammar Induction Model
We have formulated the LWFG induction problem in the ILP-setting. The theoreti-
cal learning model is called Grammar Approzimation by Representative Sublanguage

(GARS), and can be formulated as follows:

Given:

e a representative example set Eg, lexically consistent (allows the construction

of the grammar lattice bottom element, 1)

e a finite sublanguage E,, conformal and thus unambiguous, which includes
the representative example set, E, O FExr. We call this sublanguage the

Representative Sublanguge

Learn a grammar (G, using the ILP-learning setting outlined above, such that G is

unique and E, C L,(G).
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In this dissertation we prove that the search space for LWFG learning is
a complete grammar lattice, and we give a learnability theorem for LWFG learn-
ing. This learnability result significantly extends the class of problems learnable
by ILP methods, with a particular type of DCGs (our Lexicalized Well-Founded

Grammars).

1.2.4 Applications of the LWFG Learning Model

This section summarizes the answers to the question “What applications does our
language learning model have?”

Our learning model has the advantage of learning a grammar from a small set
of semantically annotated examples. However, a quantitative evaluation would re-
quire a large semantically annotated treebank (OntoSeR annotation), which would
require considerable human effort. Thus, in this dissertation we focus on qualitative
evaluations that show the potential applications of our LWFG learning model. For
this, we have implemented a general LWFG learning system which fully covers the
theoretical GARS model. In addition, we have implemented a particular semantic
interpreter for the qualitative evaluation of our learned grammar.

The qualitative evaluations cover the following issues:

e Coverage of diverse and difficult linguistic phenomena such as raising and
control constructions, long-distance dependencies, noun compounds, nominal-
ization, coordination, verbal constructions (including tense, aspect, modals,

negation), complex noun phrases, and relative clauses.

e Terminological knowledge acquisition from natural language definitions (in

the medical domain).
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e Handling both precise and vague questions w.r.t. an utterance or set of ut-
terances and obtaining precise answers at the concept level. Since we are
concerned only with the evaluation of the grammar learning model, the an-

swers should be explicitly stated in text (i.e., no reasoning).

Since in these applications we do not always deal only with utterances at the

grammar level, we need to define two additional levels of representations:

e Text Knowledge Representation (TKR) — the representation of utterance(s)
after assertion. TKR is an asserted form of OntoSeR, and it is a representa-
tion of the entire text. We still have at this level the reversibility property
(i.e., from this representation we can directly obtain the text through our

parser/generator).

e Ontology-level Knowledge Representation (OKR) — From TKR we can ob-
tain the OKR representation through filtering and by introducing the concept
identity principle, which establishes a bijection between a concept and a ref-
erent. We define the OKR as a directed acyclic graph (DAG), where vertices
are concepts or instances of concepts, and edges are semantic roles (including
properties). In this dissertation we only define and implement a weak concept

identity principle.

In order to illustrate the applications that our LWFG learning model has,
we give an example of knowledge acquisition/query for constructing a hierarchy of
concepts. For this, we used our learned grammar and the implemented semantic
interpreter. The definitions and the OKR of these definitions are presented in

Figure 1.4. The questions and answers related to this OKR are given in Figure 1.5,
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where we give the answer concept together with its defining subDAG. The answer
is obtained though a DAG matching algorithm, where the wh-word matches the
answer concept.

The acquisition of knowledge can be done directly. We consider both con-
cepts (#hepatitis, #blood) and instances of concepts (F#virus25,#virus33) in our
OKR representation.

The defined term (definiendum) is always a concept, and it is part of the
sub hierarchy (the inverse of the is_a hierarchy). The concepts in the sub hier-
archy are presented with double square boxes in Figure 1.4. All the definitional
properties of the concepts are directly linked to the concept vertex (facilitated by
our interpretation of copula be-predicative). As we can see, linguistic phenomena
of theoretical interest to linguists become important in applications. Besides the
concepts that are defined, we can also have concepts that are referred (i.e., they
are part of the definiens), if they do not have any modification (e.g., #blood in
definition of Hepatitis A, and Hepatitis B).

If a referred concept has modifications, it is represented as an instance of a
concept in the OKR. As a consequence, different verbalizations of concept properties
can be differentiated in OKR, allowing us to obtain direct answers that are specific
to each verbalization. For example, the term virus appears in the definition of both
Hepatitis A and Hepatitis B. In OKR, they are two different instances of a concept,
#virus2b and #virus33, since they have different modifications: persists in the
blood serum, does not persists in the blood serum, respectively. These modifications
are an essential part of the differentia of concepts #HepatitisA and #HepatitisB,

making the distinction between the two. When we ask the question What is caused



1. Hepatitis is a disease caused by infectious or toxic agents and characterized by jaundice, fever and liver enlargement.

2. Hepatitis A is an acute but benign viral hepatitis caused by a virus that does not persist in the blood serum.
3. Hepatitis B is an acute viral hepatitis caused by a virus that tends to persist in the blood serum.

ficanse?q suO| foncept ” | fenlargement1? | | fiinflame3 | | mend34| | persist?e |

sub dy| part prdp nEY  thy,dint

Hiver fpersist3s ¥ fivitus 25 | {anse32 |

fitanses ittharatterize12|

syb locLint t
ﬂagents?| |[itjaundite,’,’,itfeuer,and,ﬂenlargemenn?] | ’-ﬂhepatitis fisarum27 fivirus33
typg_ofkind_of
fiinfectious | | fitoxic | #blood
benignity duration ki f duratfon king_of
{ibenign facute {iviral

Figure 1.4: OKR for the definitions given in Figure 1.1(b)

GG
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by a virus that persists in the blood serum? (Q3 in Figure 1.5), we obtain only
the correct answer #HepatitisB (A3 in Figure 1.5). Our representation facilitates
vague questions as well, such as, What is caused by something that does not persist
in the blood serum? (Q2 in Figure 1.5). This is obtained by considering something
as a variable concept that matches a vertex in the OKR. A practical advantage
is that we can obtain all the concepts that are in a particular relation with other
concepts, or that have particular properties.

Another important aspect that contributes to the adequacy of our represen-
tation for acquisition and query is the OKR-equivalences that we obtain for different
syntactic forms. They are related mainly to verbal constructions. Since we deal
with terminology, temporal reasoning is not important, and thus we ignore tense
and aspect information (they are filtered at the OKR level). For terminology, how-
ever, modals and negation need to be taken into account. For example, negation
is essential for differentiating Hepatitis A and Hepatitis B. Thus, we do represent
negation (#persist26 has the negation represented). Among OKR-equivalences we
have: 1) active and passive constructions; 2) -ed and -ing verb forms in reduced
relative clauses are equivalent to passive/active verbal constructions (e.g., the ques-
tion can be formulated in present tense, active voice What causes hepatitis? (Q1
in Figure 1.5), while the answer is obtained from a definitional statement involving
the reduced relative clause hepatitis is a disease caused by infectious or toric agents

. (Al in Figure 1.5)); 3) constructions involving raising verbs, where we can take
advantage that the controller is not the semantic argument of the raising verb (e.g.,
in the definition of Hepatitis B we have ... caused by a virus that tends to persist

in the blood serum, while the question can be asked without the raising verb What
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Q1: What causes hepatitis?

fiwhat I fthepatitis

Al: #agents7

| flagents? I | #thepatitis |

typg_of kind_of

Q2: What is caused by something that does Q3: What is caused by a virus that
not persist in the blood serum? persists in the blood serum?
[wwersist| | #cause |
ney loclint lecfint th R
|1kserum | | #tsomething | |1twhat I |1rserum | | 1virus | |irwhat I
off of
v v

A2: ff'HepatitisA’ A3: #'HepatitisB’
|1thepatitis | | jicanse32 | | 1tpersist35|
| Hthapatitis | | fHause 24 | | {persist2e |
syb locint
sub loctint n
¥
‘F_ . 5 {FHepatitise’ I | ivirus3s | | f#sarum27 |
{FHepatitisA’ I | #virus2s | | #Iserum2? |
durpfion benrgnity ki of ! duratitkind,_of of
¥

h
| {facute | | {tbenign | Tacmte m #iblagd

Figure 1.5: OKR for questions and answers
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is caused by a virus that persists in the blood serum?).

The ample qualitative evaluations done in this dissertation, some of which
we sketched above, are useful in order to develop, in future work, quantitative eval-
uations of our grammar learning model without a large annotated treebank (at the
OntoSeR level), which would require considerable human effort. The application of
directly acquiring terminological knowledge from text can be used in the future to
enhance OKR with probabilities. This probabilistic enhancement only at the con-
ceptual level bears similarity to Pinker’s theory of child language acquisition that
there is “a formal and nearly exceptionless grammatical linkage between syntax
and semantics, and a more probabilistic cognitive correlation between semantics
in parental speech and childlike concepts” (Pinker, 1989, page 364). Our current
system requires manual validation of the obtained OKR since the level of ambigu-
ity is still fairly high (see Section 8.4). Adding probabilities at the OKR, level will
eliminate the need for manual validation, and thus will allow a future quantitative
evaluation of our grammar learning model based on question-answering-like exper-
iments on a large set of unannotated utterances. This corpus of utterances used for
LWEFG learning evaluation should contain precise answers explicitly stated in the

text (i.e., without reasoning).

1.3 Contributions

While the research in this dissertation spans several topics, the common thread we
follow is the learnability issue. We have grouped our contributions in two categories:

theoretical and application-oriented.
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Theoretical Contributions

1. Semantic molecule: a new representation of natural language for
learning. We introduce a new representation that is expressive enough to
model complex aspects of natural language and simple enough to be effi-
ciently used in a relational learning framework. The semantic representation,
OntoSeR, is directly interpretable on the ontology, it is independent on the
knowledge level where the assertion takes place, it ensures learnability, and
it is used alone as input to our generator. The semantic composition is en-
coded as grammar constraints that are learned together with the grammar
rules. The semantic interpretation is encoded as grammar constraints as well,

providing access to meaning during parsing.

2. Lexicalized Well-Founded Grammars: a new type of learnable constraint-
based grammars. LWFGs are a learnable type of Definite Clause Gram-
mars. They model syntax and semantics and have constraints at the rule level
for semantic composition and semantic interpretation. LWFGs introduce a
partial ordering among grammar nonterminals, which allows their bottom-up
induction from a set of representative examples and a representative sub-
language. We give the definition of the representative examples set and we
provide an efficient algorithm for generating this set, given a grammar and a

sublanguage.

3. Grammar Approximation by Representative Sublanguage: a new
computationally efficient model for grammar learning. In this disser-

tation we prove that LWFGs are always learnable under the GARS model,



27

i.e., the learning always converges to the target grammar. We show that
the search space is a complete grammar lattice and we provide polynomial
algorithms for grammar induction proving their soundness. The learnability
theorem extends significantly the class of problems learnable by ILP methods.
This class is a class of constraint-based grammars which capture syntax and

semantics (LWFG) and which are learnable by relational learning methods.

Application-oriented Contributions

1. Framework for Grammar Learning and Merging. In this dissertation,
we have implemented a system that represents an experimental platform for
all the theoretical algorithms. This system consists of: 1) an Inductive Logic
Programming system that learns only from positive examples, uses back-
ground knowledge and has a dual mode of operation: learns both from ordered
and unordered representative examples; and 2) a robust parser/generator. We
have learned an experimental grammar that covers diverse and complex lin-
guistic phenomena, such as raising and control, long-distance dependencies,
relative clauses, noun compounds, nominalizations, coordinations, complex
verbal constructions. This framework has the practical advantage of imple-
menting sound grammar revision and grammar merging, which allow an in-

cremental coverage of natural language fragments.

2. Semantic Interpreter For Text-to-Knowledge Acquisition. We have
built a semantic interpreter based on a weak semantic context. Using this
interpreter, we have provided qualitative evaluations that show that our se-

mantic representation OntoSeR, and its derived forms TKR and OKR, are
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expressive enough to represent all the above-mentioned linguistic phenom-
ena covered by our learned experimental grammar, and are useful for direct
terminological knowledge acquisition and querying (concept-level answers to
questions). The semantic interpreter implements the weak concept identity

principle for terminological knowledge.

The overall scientific finding;:

If natural language can be captured by LWFGs, and the set of represen-
tative examples and the representative sublanguage used for generaliza-
tion can be given based on linguistic knowledge, then natural language

can be learned.

In this dissertation, we have shown that several fragments of natural language
can be represented by LWFGs, but only future research can answer the question:

Can LWFGs capture all of natural language?

1.4 Dissertation Guide

In addition to this introductory chapter, the dissertation includes eight chapters
and three appendices. Chapter 2 presents an overview of the related work. The
rest of the chapters are organized in two parts.

Part I covers the theoretical aspects of our grammar learning model.

e Chapter 3 defines the Lexicalized-Well Founded Grammars (LWFGs). We
formally define the semantics of LWFGs and give the definition of representa-

tive examples, providing an efficient algorithm for generating this set, given a
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grammar and a sublanguage. This chapter also gives the definition of robust

parsing/generation as deduction.

e Chapter 4 presents the semantic composition and semantic interpretation as
grammar constraints. We describe the properties and principles of our seman-
tic molecule representation. The chapter gives the algorithms for learning the

compositional semantic constraints, and presents the semantic interpreter.

e Chapter 5 describes our theoretical LWFG learning model. We first give
the algorithms for grammar learning from ordered and unordered represen-
tative examples. We then present how grammar merging can be done in our
approach. We give the foundation of the hypothesis search space as Boolean
algebra / complete grammar lattice, together with the learnability theorem.
Chapter 5 concludes with the presentation of the LWFG induction in the ILP-
setting and the description of our Grammar Approximation by Representative

Sublanguage (GARS) model.

Part II covers the application-oriented aspects of our grammar learning

model.

e Chapter 6 shows the expressiveness of our semantic representation OntoSeR.
We first give the definition of OntoSeR and present the additional levels of
representation TKR and OKR. The expressiveness of our representation is
shown starting from lexical categories up to complex linguistic phenomena,
such as raising and control, wh-questions and relative clauses. We discuss

briefly the issue of ambiguity as well. This chapter is one of the qualitative
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evaluations of our grammar learning model, as all the presented examples are

covered by our learned grammar described in Chapter 7.

e Chapter 7 presents the general LWFG learning system that implements all
the theoretical aspects presented in Part I, in order to learn an experimental
grammar whose coverage was discussed in Chapter 6. We present the training

data, the overall results and a set of controlled experiments.

e Chapter 8 shows the usefulness of OntoSeR for direct knowledge acquisi-
tion from text, constituting the second qualitative evaluation of our grammar
learning model. For this we define rigorously the OKR representation and
we introduce the weak concept identity principle. We focus on terminological
knowledge acquisition from definitions in the medical domain. We present
our implemented semantic interpreter and describe a pilot experiment for the

acquisition and querying of a small OKR-annotated treebank.

Chapter 9 gives a summary of the main contributions of this dissertation,
discusses the open problems and limitations, and proposes directions for future

work.
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Chapter 2
Related Work

The general problem of text interpretation involves the determination of the se-
mantic relations among entities and the events they participate in, answering to
questions, such as “who” did “what” to “whom”, “when”, “where”, “how” and
“why”. Work in this area has relied on manually created semantic grammars and
other resources for supporting text interpretation (Hirst, 1987; Pustejovsky, 1995;
Copestake and Flickinger, 2000). This research has allowed deep language un-
derstanding, but has the disadvantage of requiring intensive manual labor, being
often restricted to narrow domains. Recently, the compilation of large corpora an-
notated with semantic roles, such as PropBank (Palmer, Gildea, and Kingsbury,
2005), NomBank (Meyers et al., 2004), and FrameNet (Baker, Fillmore, and Lowe,
1998), has enabled the development of statistical methods for the shallower task
of semantic role labeling, especially for labeling of the arguments and adjuncts
of verbs (Gildea and Jurafsky, 2002; Chen and Rambow, 2003; Xue and Palmer,
2004; Carreras and Marquez, 2004). The representation introduced in this dis-
sertation, OntoSeR, is an ontology-based semantic representation appropriate for

semantic role labeling involving not only verbs and their arguments, but also nouns
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and their modifiers, and prepositions and their arguments. The practical use of
this representation would have required us to rewrite existing grammars by hand,
which is acknowledged to be a daunting task. As a consequence, we define a new
type of grammar suitable for language understanding, which is learnable using re-
lational learning methods. Thus, we eliminate the need of rewriting hand-crafted
grammars.

In this chapter, we present the work most closely related to the technical
aspects of this dissertation, which can be divided into three categories: (1) grammar
formalism, (2) natural language representation, and (3) language learning. We
focus on discussing the key parts of our framework and how they relate to previous

research.

2.1 Grammar Formalism

Constraint-based grammar formalisms' have been widely used for natural language
understanding and generation. These formalisms include linguistic theories, such
as Lexical Functional Grammar (Kaplan and Bresnan, 1982), Generalized Phrase
Structure Grammar (GPSG) (Gazdar et al., 1985), and Head-driven Phrase Struc-
ture Grammar (HPSG) (Pollard and Sag, 1994), as well as theory-neutral? gram-
mar formalisms which have been developed as computational tools, such as Func-
tional Unification Grammars (FUG) (Kay, 1979), Definite Clause Grammars (DCG)

(Pereira and Warren, 1980) and PATR-II (Shieber et al., 1983).

1We take the notion of constraint-based from Shieber (1992) where “we characterize the class
of formalisms by focusing on their particular use of information and constraints thereon as an
organizing basis. (The formalisms are thus more aptly referred to as information- or constraint-
based rather than unification-based).”

2By theory-neutral we mean linguistic theory-neutral.
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Our Lexicalized Well-Founded Grammars (LWFGs) belong to the second
class, being a type of DCGs. An advantage of having a general-purpose formalism is
that it allows the linguist to rapidly prototype new linguistic theories and test their
behavior computationally. For instance, Shieber (1986) shows how to implement
aspects of both LFG and GPSG in the PATR-II formalism. Besides this advantage
and unlike DCGs and PATR-II, our LWFGs are learnable, which is an important
feature for linguists interested in language acquisition, as well as comprehension
and production.

As we mentioned before, LWFGs are defined as a particular type of Def-
inite Clause Grammars (Pereira and Warren, 1980), where the nonterminals are
augmented with syntagmas and where we have two types of constraints: one for
semantic composition, another for semantic interpretation.

Syntagmas are pairs of strings and their semantic molecules. Seen as form-
meaning pairs, syntagmas are similar to the notion of “sign” in HPSG and “con-
struct” in Fluid Construction Grammars?® (Steels, 2004; Steels, Beule, and Neubauer,
2005). However, the representation is slightly different. Only the head of the se-
mantic molecule is a feature structure. Moreover, our feature structures are flat
(i.e., feature values are atomic). The body, which is the string actual semantic
representation, OntoSeR, is a flat logic-based representation, where the variables
represent concept or attribute identifiers in an ontology. Thus, we have an ontology-
based semantics. An important architectural difference between our formalism and

both HPSG and FCG, is that we have a context-free “backbone” of rules, and thus

3Fluid Construction Grammars are a class of construction grammars. We choose FCG since
they have computational implementations, they are reversible, and work has been done in trying
to address the issue of learning these types of grammars (Steels, 2004).
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we keep the concept of derivation. In both HPSG and FCG there are no rules, but
rather a hierarchy/collection of ’constructions’, and they do not really have the no-
tion of derivation. In our formalism, the derivation (ground syntagma derivation)
allows us to formally define the LWFG semantics.

The semantic composition constraints ®..m,, applied to the head of the se-
mantic molecule form a system of equations that is a simplified version of “path
equations” (Shieber et al., 1983; van Noord, 1993), as we only deal with flat feature
structures. Thus, semantic structures are composed through constraint solving,
rather than functional application, which has been used in approaches based on
Montague’s theory of grammar (Montague, 1973). We have the string concatena-
tion as in PATR II (Shieber et al., 1983) and DCGs, and in addition we have a
concatenation of the semantic representations, followed by a variable substitution
resulting from the application of the semantic composition constraint ® ;.

The main novel feature of our formalism is the partial ordering among non-

terminals, i.e., the “well-foundedness,”

which together with our flat representation,
makes our formalism decidable and learnable. The learnability property sets our
formalism apart from most of the constraint-based formalisms mentioned above.
Research on Fluid Construction Grammars has considered the issue of grammar
learning, but the setting is completely different: a constructivist approach to lan-
guage learning through “situated language games played by embodied artificial
agents... semantic and syntactic categories as well as the way they are used in
constructions is built up in a gradual development process, starting from quite

specific verb-island constructions” (Steels, 2004). In our framework the categories

are a-priori given, and we learn the grammar rules and the semantic composition



35

constraints from representative examples using Inductive Logic Programming.

Lexicalized Well-Founded Grammars are reversible and we define parsing
and generation as “deduction” (Pereira and Warren, 1983; Shieber, Schabes, and
Pereira, 1995). We show that our parser/generator is “efficiently r-reversible” (Neu-
mann and van Noord, 1994).

As we mentioned before, our formalism is a computational formalism and
not a linguistic theory. However, concepts and principles from linguistic theories,
such as HPSG (Pollard and Sag, 1994), can be incorporated. For example, in this
dissertation, we adapted principles of HPSG to formulate the properties and princi-
ples of our semantic molecule representation and compositional constraints ®qpm,.
It is our hope that in the future linguists will use this formalism to prototype their
theories. In Part II of this dissertation we have shown how some of the linguistic
phenomena that are usually considered as benchmarks for linguistic theories can be

modeled in our framework (e.g., long-distance dependencies, raising and control).

2.2 Natural Language Representation

Our semantic molecule is a flat representation. The head is a one-level feature
structure (i.e., feature values are atomic). This is different from the feature struc-
tures used in other constraint-based formalisms, such as HPSG and LFG (Kaplan
and Bresnan, 1982; Bresnan, 2001). The flat feature structure is used by the com-
positional constraints, ®.omp, Which are learned together with the grammar rules.
The body of our semantic molecule, OntoSeR, is also a flat representation. In this
regard, it is similar to other flat semantic representations, such as Hobbs’s logical

form (Hobbs, 1985), Minimal Recursion Semantics (Copestake et al., 1999; Copes-
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take et al., 2001), and Logical Form (Moldovan and Rus, 2001; Rus, 2002). Unlike
these representations, OntoSeR is an ontology-query language where the variables
are either concept (frame) or attribute (slot) identifiers in an ontology. It allows
a direct transformation into an ontological representation similar to conceptual
graphs (Sowa, 1999). OntoSeR alone, without the information from the head of the
semantic molecules, is used as input to the generator, in order to obtain natural
language strings. The main feature of our semantic molecule representation (both

the head and the body OntoSeR) is that it is suitable for learning.

2.3 Grammar Learning

There are two separate lines of research in language learning that our work relates
to. First, there is the work in formal grammar induction which aims at prov-
ing the learnability of classes of languages (most notably regular and context-free
languages) (Angluin, 1982; Sakakibara, 1992; Brazma, 1993; Dupont, Miclet, and
Vidal, 1994; Sakakibara, 1997; Seki and Kobayashi, 2004). In this dissertation, we
prove the learnability of LWFGs, which extend the class of Context-Free Grammars,
opening the way for studying the learnability of more complex classes of grammars.
In formal grammar learning theory it has been shown that learning from “good

examples,”

or representative examples, is more powerful than learning from all the
examples (Brazma, 1993; Freivalds, Kinber, and Wiehagen, 1993; Lange, Nessel,
and Wiehage, 1998). In this dissertation, we formally define the representative ex-
amples of a Lexicalized Well-Founded Grammar and propose a model of learning

LWEFGs from representative examples and a representative sublanguage, which we

call the Grammar Approximation by Representative Sublanguage (GARS).
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Second, there is the work in learning grammatical aspects of natural lan-
guage. Most research has been focused on syntax (Collins, 1999; Hwa, 1999; Os-
borne, 1999; Clark, 2001; Klein and Manning, 2001), but recently, there is a growing
interest in learning semantics beyond lexical semantics, such as semantic role la-
beling (Gildea and Jurafsky, 2002; Chen and Rambow, 2003; Xue and Palmer,
2004; Carreras and Marquez, 2004), or learning to map from text to logical forms
for natural language interfaces to databases (Zelle and Mooney, 1993; Tang and
Mooney, 2000; Zettlemoyer and Collins, 2005). In our work, we are interested in
learning grammars that interleave syntax and semantics, and use an ontology to
provide access to meaning during parsing. As we mentioned before, we learn from
a set of representative examples, which is a different type of training data. First,
the representative examples are not only entire sentences, but they contain smaller
units corresponding to words, phrases, clauses or sentences. Second, the type of
annotation (i.e., our semantic molecule) is different from the ones used in the pre-
viously mentioned learning methods. Unlike Penn Treebank (Marcus, Santorini,
and Marcinkiewicz, 1994) and PropBank (Palmer, Gildea, and Kingsbury, 2005),
we do not have the entire syntactic derivation present in the annotation. Unlike the
logical form annotation used for NLIDB (Tang and Mooney, 2000; Zettlemoyer and
Collins, 2005), we have both the semantic representation (the body of the semantic
molecules) and information about categories (the head of the semantic molecules).

In this dissertation, we use a relational learning method for our grammar in-
duction, based on Inductive Logic Programming (ILP). Kietz and Dzeroski (1994)
describe formally the ILP-problem and relate it to Gold (1967) and PAC-learnability

(Valiant, 1984) frameworks. Research in ILP has presented positive results only for
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very limited subclasses of first-order logic (Kietz and Dzeroski, 1994; Cohen, 1995),
which are not appropriate to model natural language grammars. In this disserta-
tion, we have defined the LWFG learning as a decidable Inductive Logic Program-
ming problem. The decidability of ILP is a consequence of LWFG decidability,
which is guaranteed by the fact that we chose as provability relation of ILP, the
robust parsing provability. We use a particular type of ILP method, called Inverse
Entailment (Muggleton, 1995). Unlike Muggleton, our GARS model does not learn
from random examples, but from representative examples (positive only), using as
performance criteria the reduced semantics to a representative sublanguage. Unlike
other ILP methods, including Muggleton’s Inverse Entailment, we prove that for
LWFG learning the search space is a complete grammar lattice/Boolean algebra,
which guarantees the uniqueness of the solution, and allows us to provide polyno-
mial learning algorithms. The learnability theorem that we give in this dissertation

extends significantly the class of problems learnable by ILP methods.
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Chapter 3

Lexicalized Well-Founded
Grammars

In this chapter we introduce our new type of constraint-based grammars, Lezicalized-
Well Founded Grammars (LWFGs). The research presented in this chapter is based
on our papers (Muresan, 2004; Muresan, Muresan, and Klavans, 2004; Muresan,
Muresan, and Klavans, 2005). LWFGs are a type of Definite Clause Grammars

(Pereira and Warren, 1980), where

e the Context-Free Grammar backbone is extended by introducing a partial

ordering relation among nonterminals (Well-Founded Grammars);

e the nonterminals are augmented with syntagmas (i.e., pairs of strings and

their semantic molecules);

e grammar rules have two types of constraints — one for semantic composition

and one for semantic interpretation.

In Section 3.1 we define the Well-Founded Grammars, and give an algorithm

to verify if a CFG is a WFG. In Section 3.2 we show how Well-Founded Grammars
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are augmented with semantics, and we give the definition of the Lexicalized Well-
Founded Grammars. Section 3.3 presents the derivation in LWFGs and Section
3.4 defines the operational and denotational semantics of LWFGs. In Section 3.5
we give the definition of robust parsing/generation as deduction. We conclude this

chapter by defining the representative examples and representative sublanguage.

3.1 Well-Founded Grammars

Well-Founded Grammars extend the Context-Free Grammars by introducing a par-
tial ordering relation among the nonterminals. This allows the ordering of the
strings derived from the grammar and thus an ordering of the grammar rules. This
property is meant to facilitate the bottom-up induction of these grammars.

Definition 1. A Well-Founded Grammar (WFG) is a 5-tuple G = (3, Ng, Rg, Pg, S)
where

(i) ¥ is a finite set of terminal symbols.
(ii) Ng is a finite set of nonterminal symbols, Ng N2 = ().}

(i1i) Rg is a partial ordering relation among the nonterminals (we use the notation
).

(iv) Pg is a set of production rules, where each rule is an element of Ng x {Ng U
Y}t . The rule (A, (By,...,By)) is written A — By,...,B,. Sometimes,
for brevity, we denote a rule by A — 3, where B = By,...,B, . The set of
production rules has the following characteristics:

e There are three types of rules: ordered non-recursive rules, ordered re-
cursive rules, and non-ordered rules. We call a rule (A — By,...,By,) €
Pg, an ordered rule, if VB;, we have A > B;.

e Fuvery nonterminal symbol is a left-hand side in at least one ordered non-
recursive rule.

e The empty string cannot be derived from any nonterminal symbol.

(v) S € Ng is the start nonterminal symbol and VA € Ng, S = A2
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Definition 2. Given a Well-Founded Grammar G = (X, Ng, Rg, Pg, S), the ground
derivation,®=, is defined as:

ﬁz“’ (if A is a grammar preterminal, i.e., w € 3), and
w
BiZw;, i=1,... A—=Bi1,..,B
= Wiy 1=y A2 B1eenln - yhere w = wy - - - Wy
A=w

The language of a grammar G is L(G) = {w|w € £+, S = w}. The set of
all strings generated by a grammar G is L,(G) = {w|lw € £*,34 € Ng, A = w}.
We have that L(G) C Ly(G). Extending the notation, given a grammar G, the
set of strings generated by a nonterminal A of the grammar G is L;(A) = {w|w €
¥*t,A € Ng,A = w}, and the set of strings generated by a rule A — j of the
grammar G is Ly(A — ) = {w|w € =, (A — ) = w}.

Every Context-Free Grammar, G = (X, Ng, Pg, S) can be efficiently tested
to see whether it is a Well-Founded Grammar, by Algorithm 1. This algorithm
assigns one and only one level | to every nonterminal A, A € N}, and returns
the set of partial ordered pairs of nonterminals, Rg. We denote by N the set of
nonterminals assigned to the level [, with [ > 1. The set of terminals are assigned
to level 0, denoted by N2 to keep an analogous notation. The complexity of the
algorithm is O(|Pg|? x |3])."

A nonterminal is assigned to a level when it appears on the left-hand side
of an ordered non-recursive rule (Figure 3.1). The algorithm guarantees that if
A€ NL, B e Né, i > 7, and if there exists a direct relation between A and B,

then this relation is A > B. This property states that if a direct relation exists, the

'We use lower-case letters for terminal symbols and upper-case letters for nonterminal symbols.

2We used the same notation for the reflexive, transitive closure of >.

3The ground derivation (“reduction” in (Wintner, 1999)) can be viewed as the bottom-up
counterpart of the usual derivation.

4We use the notation (A — ) = w to denote the derivation A = w obtained using the rule
A — [ in the last derivation step.

SWe use the same notation | - | for the number of set elements and for the string length.
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Algorithm 1: Well Founded Grammar(G = (X, Ng, Pg, S))

R+ 0, NQ« S, P« Pg, V<« 0,01+ 0

while P # () and N}, # 0 do
V<« VUNL L+ 1+1, N;+ 0
foreach (A — p) € P and € V' do
P+ P—{A—p}
if A¢V then

NL + NLu{A}

foreach (B € Ng and B € () do

L ngRGu{AtB}

else
foreach (B € Ng and B € ) and not(A = B or B = A) do
if A€ N} and B € N}, and i > j then
L Rg(—RGu{AEB}
else
L ngRGu{BtA}

if P = () then return R else return ()

nonterminals on the “upper” levels are bigger than the nonterminals on the “lower”
levels. For the nonterminals on the same level i, A, B,C € N§, the partial ordering

relation, if it exists, depends on the order of processing the grammar rules.

Lemma 1. A Contezt-Free Grammar G = (X, Ng, Pg, S) is a Well-Founded Gram-
mar G = (X, Ng, Rg, Pg, S) iff Rg # 0 is returned by Algorithm 1.

Proof. The proof is immediate. O

Example. Figure 3.1 gives an example of a small grammar for noun phrases and
the iterative steps of Algorithm 1. As can be seen, in this grammar, A1 — Adj,
N1 — Noun, N2 — Det N1 are examples of ordered non-recursive rules; N1 —
Al N1 is an example of an ordered recursive rule, while N2 — N2 Rcl is a
non-ordered rule, since Rel is a bigger nonterminal than N2, i.e., Rel = N2 (see
Figure 3.1(b)). We use Rec to denote relative clauses.

Based on this partial ordering relation and applying a topological sorting
algorithm we obtain a total ordering among the grammar nonterminals. We use

the same notation > for the total ordering relation. In Section 3.6 we show that
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Pg l NL R¢
grammar rules level | nonterminal partial ordering
set relation

Al — Adj 1 {Adj, Noun,Tv,
N1 — Noun Det, Rpro}
N1— A1 N1 Al — Adj Al = Adj
N2 — Det N1 N1 — Noun 2 {A1,N1,V1} N1 > Noun
N2 — N2 Rel V1—>Tv V1x=Tv
V1i—-Tov N1— A1 N1 N1>» A1,N1 > N1
Rcl — Rpro V1 N2 N2 — Det N1 3 {N2} N2 > Det,N2 > N1

Rcl — Rpro V1 N2 | 4 {Rcl} Rcl = Rpro,

Rcl > V1,Rcl > N2
N2 — N2 Rcl N2> N2

(a) (b)
Figure 3.1: (a) Grammar, Gj (b) Iterative steps for the Well_ Founded_Grammar(G)
algorithm
this order among nonterminals in Well-Founded Grammars provides a total ordering

among the strings derived by these grammars.

3.2 Augmenting Well-Founded Grammars with
Semantics

Augmenting a grammar with semantics requires an adequate semantic representa-
tion, and an adequate grammar formalism that allows us to associate structures to
nonterminals and to add constraints at the grammar rule level.

In this section we present our new syntactic-semantic representation, our
approach for encoding the semantic composition and the semantic interpretation
as constraints at the grammar rule level, and our new type of Definite Clause

Grammars, Lexicalized Well-Founded Grammars.
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3.2.1 Semantic Molecule

The underlying design criteria for our representation are the need to: 1) explicitly
encode the information for semantic composition (i.e., how the meaning of the whole
is derived from the meaning of its parts), 2) capture the semantics of a natural
language expression, so that it is suitable for an ontology-based interpretation, 3)
use simple representation devices so that they can be integrated in a relational
learning algorithm, and 4) link the semantic construction to other grammatical
aspects, most notably syntax. We introduce a new representation, called semantic
molecule, which satisfies the above considerations.

Definition 3. A semantic molecule associated with a natural language string w, is

a syntactic-semantic representation, w' = (’bl), where:

e h (head) encodes syntactic/compositional information, acting as valence for
molecule composition.

e b (body) is the actual semantic representation of the string w.

Figure 3.2 shows examples of semantic molecules for an adjective (I-1), a
noun (I-2) and a noun phrase (II). The representations associated with the lexical
items w € ¥ are called elementary semantic molecules (1), while the representa-
tions built by the combination of others are called derived semantic molecules (IT).°
We will describe the composition operation, o, which combines several semantic
molecules to form a derived semantic molecule in the next section.

The head, h, of a semantic molecule is represented as a one-level feature
structure (i.e., feature values are atomic). In Figure 3.2 the heads are shown as

attribute-value matrices (AVMs). Let A, be the set of attributes of a molecule

6For readability reasons, we sometimes use in figures, or in the running text, the notation
h > b to exemplify the semantic molecules, instead of (';) notation. For example, the molecules
in Figure 3.2 are the same as the ones presented in Introduction in Figure 1.2 (page 7).
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I. Elementary Semantic Molecules

I-1 (major/adj) = hy<by hi.cat = adj
cat adj hi.head = X3
= |head X;| = (Xj.isa =major,X3.Y = X1)
mod Xo hy1.mod = X3

Ap, = {cat, head, mod}
var(hy) = {X1, X0}
var(bh) = {X1,X2,Y}

I-2 (damage/noun)’ = hs < by ha.cat =n
cat n ha.nr = sg
= | nr sg| =(Xs.isa = damage)
head X3 h2.head = X3

Ap, = {cat,nr, head}
var(hz) = {X3},var(by) = {X3}

II. Derived Semantic Molecule

(major damage)' = h < b= (major)' o (damage)’ h.cat =n
cat n hnr = sg
= | nr sg| = (Xi.4sa = major, X.Y = X, X.isa = damage) bhohead — X
head X ) a
Ap, = {cat,nr, head}
var(h) = {X},

var(b) = {X1,X,Y}
ITI1. Constraint Grammar Rule Associated with the Derived Semantic Molecule

N(w,h > b) — Adj(wl,hl > bl), N(’U)Q,hz > bz) :
w = wiwz, b= [by,b2]v, Beomp(h, b1, ha), Ponto(b)

h.cat = n,

h.head = hi.mod,
h.head = hs.head,
h.nr = ha.nr,
hi.cat = adj,
ha.cat =n

(I)wmp(h, hl, hg) = (h Uhi U hg)ul/ =

V= {X2/X,X3/.X}

u={hnr = sg/hnr = X4, ha.nr = sg/ha.nr = X4}

Figure 3.2: Augmenting WFG with semantics. Examples of two elementary semantic molecules for an adjective
(I-1: (magjor)’') and a noun (I-2: (damage)’), and a derived semantic molecule obtained by combining them (II:
(major damage)’). In (III) is given the constraint grammar rule used to derive the string w = major damage
together with its semantic representation w’ = (major damage)’'. The compositional semantic constraint, ®comp,
together with the variable and contextual constant substitutions, v, and u, are also shown.
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head, h. Each molecule has at least two attributes, one encoding the syntactic
category of the associated string, cat, and the other encoding the semantic head
of the string, head. For adjectives, for example, besides these two attributes, there
is an attribute, mod, which specifies the index of the modified noun (I-1). This
information is necessary for combining an adjective and a noun to obtain a noun
phrase (e.g., major damage). For nouns, we can have other syntactic information
(e.g., nr) that will be used for agreement (e.g., number agreement between the
subject and the main verb of a sentence). All these sets of attributes are finite and
are known a priori for each syntactic category. The elements of h are denoted as
h.a = val, where a € A}, and val is either a constant or a logical variable (see I-1
and I-2). For example, h.cat = adj, and h.cat = n denote the syntactic categories
of the semantic molecules for major (adjective) and damage (noun), respectively.
The set of logical variables of the head, h, is denoted by var(h). Being a one-level
feature structure, no recursive or embedded structures are allowed, which makes
this representation appealing for a learning framework. Recursion in the grammar
is obtained through the recursive grammar rules and the composition constraint,
which are described in the next section.

The body, b, of a semantic molecule is a flat representation, called OntoSeR
(Ontology-based Semantic Representation). No embedding of predicates is allowed,
as in Minimal Recursion Semantics (Copestake et al., 1999). It is a logical form
built using a set of atomic predicates (APs) based on the concept of attribute-value

pair:
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(3.1) (OntoSeR) = (AP)| (OntoSeR) (lop) (OntoSeR)
(AP) oo (conceptID) . (attr) = (concept)
(concept) & (conceptID) | (conceptName)

(attry = (attrID) | (attrName)

where, lop is the logical operator, which we consider in this dissertation to be the
logical conjunction (A); (conceptID) is a variable denoting a frame in the ontology;
(conceptName) is the name of a frame in the ontology; (attrID) is a variable de-
noting a slot of a frame; and (attrName) is the name of a slot of a frame in the
ontology. The slot is either a property or a relation. The full definition of OntoSeR
is given in Chapter 6. As seen in Figure 3.2 (I), our semantic representation is
influenced by the ontology-based approach to semantic interpretation. For exam-
ple, in our framework, the meaning of a noun is the corresponding basic concept
in the ontology (X3.isa = damage). The meaning of an adjective is the concept
corresponding to a value of a property (slot) of another concept denoted by a noun
(X1.isa = major, X5.Y = Xi). The set of logical variables of the body, b, are
denoted by var(b). For adjective, var(b) = {X1, Xs, Y}, where X, will be bound to
the head of the modified noun after the composition operation (e.g., X will be the
same as the head X3 of the noun damage after the composition that derives major
damage), while the variable Y will be instantiated during the semantic interpreta-
tion on the ontology (e.g., for the noun phrase major damage, Y = degree).

The semantic composition and the semantic interpretation are introduced in

the next section and discussed at length in Chapter 4.
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3.2.2 Semantic Composition and Semantic Interpretation
as Grammar Constraints
A requirement for computational semantic frameworks, besides linguistic adequacy
and computational tractability, is grammar compatibility (Copestake et al., 1999).
This refers to the ability of the semantic construction to be connected to other gram-
matical aspects, mainly syntax. Constraint-based grammar frameworks have been
widely use to capture both aspects of syntax and semantics. In particular, the Def-
inite Clause Grammar formalism (Pereira and Warren, 1980) extends the Context-
Free Grammars in three important ways: 1) it allows for context-dependency in a
grammar; 2) it allows us to build arbitrary structures during parsing, in a way that
is not constrained by the recursive structure of the grammar (such structures can
provide the meaning of the string); and 3) it allows extra conditions to be included
in the grammar rules, that can be seen as constraints for parsing. The first and
second mechanism are provided in the DCG formalism by augmenting the nonter-
minals with extra arguments. Thus, DCG is a suitable formalism for our purpose,
since it allows us to augment the nonterminals with pairs of strings and their seman-
tic molecules, and to introduce two types of constraints at the grammar rule level
— one for semantic composition (defines how the meaning of a natural language
expression is composed from the meaning of its parts) and one for ontology-based

semantic interpretation (validates the semantic constructions at the rule level).

Definition 4. A generalized syntagma, o = (w,w'), is a pair of a natural language
string and its semantic molecule. It refers to words, phrases, clauses and sentences.

The nonterminals of a constraint grammar rule are augmented with gener-

alized syntagmas, the grammar rules having the following form:’

"For the clarity of the presentation we use the notation below and not the DCG notation.
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!
w wy w.

5\ Ty h
A(w> ) — Bl(wla ! )a ---aBn(wna " ):
b by by,
W= Wy~ --Wnp, b= [bla R bn]l/, (I)comp(h': hl: seey h’n)a (Donto(b)

! = 0---0w!
w' =wj o---owy,

where:

e A By,...,B, are grammar nonterminals, which represent syntactic categories

(A = h.cat, B; = h;.cat).

® w,wy,...,w, are variables for natural language strings.
1 _ (h 1 (h 1 _ (hn : :
o v = (b),w1 = (bl)’ C Wy, = (bn) are semantic molecules corresponding to

the natural language strings w, wy, ..., and wy,, respectively.

e : is the delimiter for constraints.

e o is the composition of semantic molecules: b = [by, ..., b, |V, Peomp (b, b1, ..., By),
where
b=1bi,...,by] is the concatenation of semantic molecule bodies

Deomp(hy b1y hy) =[(RU U hi)plv (see Chapter 4).

1<i<n

e v, are variable and contextual constant substitutions (see Chapter 4).

o &,.(b) - ontology-based semantic interpretation constraint applied only to
the body of the semantic molecule corresponding to the left-hand side non-

terminal (see Chapter 4).

In our implementation, both the concatenation of strings, w = w; - - - w,, and the concatenation
of their semantic representations, b = by --- b, are implemented as Prolog difference lists (see
examples of grammar rules given in Appendix A.1 and Appendix A.4.2).
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As can be seen, both the strings and their semantic molecules are attached
to nonterminals and each grammar rule is enhanced with the following constraints:
the string composition as concatenation of strings (w = wy -+ wy), the semantic
composition of molecules given by “o”, and the ontology-based semantic interpre-
tation constraint, ®,,4,(b). An example of a grammar rule for noun phrases that

contain nouns modified by adjectives is given in Figure 3.2.

3.2.3 Lexicalized Well-Founded Grammars: Definition

Lezxicalized Well-Founded Grammars augment the Well-Founded Grammars with
semantics. These grammars generate languages that consist of pairs of strings and
their semantic molecules, which we defined as generalized syntagmas (0 = (w,w’),
see Definition 4).

Definition 5. A Lezicalized Well-Founded Grammar (LWFG) is a 6-tuple, G =
(X,%, Na, R, Pg, S), where:

(i) 3 is a finite set of terminal symbols.

(i1) ¥ is a finite set of elementary semantic molecules corresponding to the set of
terminal symbols. That is, w' € X' iff w € X, where 0 = (w,w").

(iii) Ng is a finite set of nonterminal symbols, Ng N2 = .
(iv) Rg is a partial ordering relation, =, among the nonterminals.

(v) Pg is a set of constraint production rules. A constraint rule is a triple
(A, (Bs,...,By),®), written A(oc) — Bi(01),...,Bp(on): ®(5), where 6 =

(0,01, ey 04) Such that o = (w,w"), 0; = (W, wi’), 1 <i < n,w=w - wp,w =

wio---owl. Sometimes, for brevity, we denote a rule by A — B: ®, where

B = Bi,...,B,, and the arguments are variables.® For preterminals, we use
either the A(o) —, or A — o notation. These rules have the following prop-
erties:’

e There are three types of rules: ordered non-recursive rules, ordered re-
cursive rules, and non-ordered rules.



02

e Fuvery nonterminal symbol is a left-hand side in at least one ordered non-
recursive rule.

e The empty string cannot be derived from any nonterminal symbol.

e The rule nonterminals are augmented with generalized syntagmas, o,
(i.e., pairs of strings and their semantic molecules).

e The rules are enriched with constraints, ®(5). There are two types of
constraints: one for semantic composition and one for ontology-based
semantic interpretation, as described in Section 3.2.2.

e The rules (the representation and the constraints) ensure grammar re-
versibility (see Section 3.5).

(vi) S € Ng is the start nonterminal symbol and VA € Ng, S > A.

(vii) In a Lezicalized Well-Founded Grammar all substrings w, derived from a non-
terminal A have the same category of their semantic molecules, given by the
name of the nonterminal. That is, h.cat = A, where w' = (Z) 15 the semantic

molecule of w.

3.3 Derivation in LWFGs

Definition 6. Given a Lexicalized Well-Founded Grammar G, the ground syntagma
derivation, '=’"is defined as:

(i) iz’ (if o = (w,w'),w € L, w' € ¥, i.e. A€ Ng is a preterminal), and
a
(’”) Bi:*>0'1', i=1,...,n, A(U)%Bl (Ul)a"'7Bn(Un): <I>(5'), 5':(0,0'1,---,0'n)

Ao

As can be noticed, in our framework, the grammar derives both the strings
and their semantic molecules, i.e., the grammar derives generalized syntagmas.

The language of a grammar G is the set of all syntagmas generated from
the start symbol S, i.e., L(G) = {o|o = (w,w'),w € £+, S = o}. The set of all

syntagmas generated by a grammar G is L,(G) = {o|o = (w,w'),w € ¥t ,s.t.3A €

8When the arguments of the nonterminal are given, we understood them as being particular
syntagmas attached to nonterminals.

9The first three are the properties of the Well-Founded Grammars, while the last three are
specific to the Lexicalized Well-Founded Grammars.

10We use the notation %5 when the context requires the explicit mention of the grammar.
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Ng, A = o}. For a LWFG G, let E be a sublanguage, such that £ C L(G), and
let E, C L,(G) be the set of subsyntagmas corresponding to the sublanguage E.
We have that L(G) C L,(G) and E C E,."!

Extending the notation, given a grammar G, the set of syntagmas generated
by a nonterminal A of the grammar G is L,(A4) = {o|oc = (w,w'),w € ¥t A €
Ng,A = o}, and the set of syntagmas generated by a rule A — B: ® of the

grammar G is L,(A — §: ®) = {o]o = (w,w'),w € 2+, (A = B: &) = ¢}.12
3.4 Semantics of LWFGs

Operational Semantics. It has been shown that the operational semantics of a
CFG corresponds to the language of the grammar (Wintner, 1999). Analogously, in
our framework, the operational semantics of a Lexicalized Well-Founded Grammar
G is the set of all syntagmas generated by the grammar, L,(G). In Section 3.5,
following the insight of “parsing as deduction” (Shieber, Schabes, and Pereira,
1995), we show that a deductive system for parsing LWFGs can serve as a method

for defining their operational semantics. That is G+ A(o) iff 0 € L, (G).

Denotational Semantics. As discussed in literature (Pereira and Shieber, 1984;
Wintner, 1999), the denotational semantics of a grammar is defined through a
fixpoint of a transformational operator associated with the grammar.

Definition 7. Let I C L,(G) be a subset of syntagmas generated by the LWFG G.
We define the immediate syntagma derivation operator Tg: 2L-(G) — 2Le(G) 5 ¢ -
TG(I) = {U € LO’(G)| Zf (A(G) - Bl(al)v' . '7Bn(0n): (1)(5)) € PG A Bz $ o; A

1Tn the remainder of this dissertation we will use the term sublanguage E, to refer to the set
of subsyntagmas corresponding to the sublanguage E.

12We use the notation (A — §: ®) = ¢ to denote the derivation A = ¢ obtained using the rule
A — (: ® in the last derivation step. We want to remind our reader that we define the ground
derivation bottom-up.
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o; €I then A= o}. If we denote Tg 1t 0=0 and Tg 1 (i +1) = Tg(Tg 14),i > 0,
then we have that for i =1,T¢ 11 =Tg(®) = {0 € L,(G)|A € Ng, A — o}. This
corresponds to the syntagmas derived from preterminals, i.e., o0 = (w,w'), where w'
are elementary semantic molecules, w' € X',

T¢ is analogous with the immediate consequence operator of definite logic
programs (i.e., no negation) (van Emden and Kowalski, 1976; Denecker, Bruynooghe,
and Marek, 2001). T is monotonous and hence the least fixpoint always exists
(Tarski, 1955). This least fixpoint is unique, as for definite logic programs (van
Emden and Kowalski, 1976). We have [ fp(Tg) = Tg 1 w, where w is the minimum
limit ordinal. Thus, the denotational semantics of a grammar G' can be seen as
the least fixpoint of the immediate syntagma derivation operator. An assumption
for learning Lexicalized-Well Founded Grammars is that the rules corresponding to
grammar preterminals are given: A — o, i.e., Tg(() is given (see assumption A3,
Section 5.1.1).

As in the case of definite logic programs, the denotational semantics is equiv-
alent with the operational one, i.e., L,(G) = I fp(Ts) -

Based on the immediate syntagma derivation operator, Tz, we can define
the ground derivation length (gdl) for syntagmas, gdl(o), and the minimum ground
derivation length for grammar rules, mgdl(A — B: ®). These concepts are crucial
in defining the representative example set of a LWFG, G.

Definition 8. Let o be a syntagma.

gdl(o) = min (i)

mgdl(A — f: @) = UELUI(I}XIE},B: <I>)(gdl(a))
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(Wig, wi;) (Wt wy,)

(w, w')

Figure 3.3: Robust parsing: returns all the chunks (w;;, w;;), (wx, wy,;) of a given
syntagma (w, w!).

3.5 Parser/Generator for LWFGs

Lexicalized Well-Founded Grammars are reversible grammars. In this section we
discuss the parser/generator that is an effectively r-reversible program (Neumann
and van Noord, 1994), i.e., it is capable of both parsing and generation and it is
guaranteed to terminate. It is a bottom-up active chart parser (Kay, 1973).

The semantics of our parser/generator is given by the definitions presented
below. Let’s consider (w,w') € E, C L,(G) a syntagma derived by a grammar
G, such that w = wy---w, is a string, w' = (’Z) is its semantic molecule, and
b=by--b, is the string semantic representation.

Definition 9 (Parsing). We define the set of syntagmas returned by the robust

parser by: Lo(w) = {olo = (wij, wj;), with wy = wjwiyr---wj 1, wj,wj, €

$,1<i<j<n+1,st 3A€ Ng, AZ o)}

Definition 10 (Generation). We define the set of syntagmas returned by the gen-

erator by: L,(b) = {o|o = (w;j, ng), with wi; = (ZZ), bij = (bibig1 - - bj_1)v4j, wi =
(e 1<i<j<n+l, st A€ Ng, A% 0}

Definition 11 (Parsing during learning). When both the string (w) and its
semantic representation (b) are given, we define the set of syntagmas parsed by
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the robust parser by L,(w,b) = {olo = (wi,w};), with wy = w;---wj_1,wj; =
!

(ZZj)asz = (bibit1 -+ - bj—1)vij, wi € X, wi = (2:) e¥,1<i<j<n+l, st 3A¢€
NG; A g 0'}

It can be noticed that the parser/generator returns all the subsyntagmas,
and thus we said that it is robust (produces all the chunks, not only the full parse,
see Figure 3.3).

In general, for a given syntagma o = (w, (’;)) we may have that L,(w) #
L,(b), due to semantic ambiguity (one string has many representations) or para-
phrasing (many strings have the same representation), even for unambiguous LWFGs;,
defined in the next section (some examples are given in Appendix A.3).

We assume that Tg(0) is given, that is the rules for preterminals are given:

o€Te) iff o = (w,w') e Ex X' ABe€ NgAB — 0 € Pg.
3.5.1 Parsing/Generation as Deduction

Parsing can be viewed as a deductive process that tries to prove claims about the
grammaticality of a string from assumptions about the grammatical status of the
string’s elements and the linear order between them (Pereira and Warren, 1983).
Several benefits have been claimed about the association between parsing and de-
duction: 1) existing logics can be used as a basis for new grammar formalisms with
desirable representational and computational properties; 2) the modular separation
of parsing into a logic of grammaticality claims and a proof search procedure al-
lows the investigation of a wide range of parsing algorithms for existing grammar
formalisms by choosing specific classes of grammaticality claims and specific search
procedures (Shieber, Schabes, and Pereira, 1995).

In this dissertation, “parsing as deduction” is useful for providing a formal
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definition of ground syntagma derivation, for proving the decidability of LWFGs,
and thus for proving their polynomial learnability (issue discussed at length in
Chapter 5). We begin by giving the basic notions of parsing as deduction as given

in (Shieber, Schabes, and Pereira, 1995).
3.5.1.1 Basic Notions

Shieber, Schabes and Pereira (1995) define parsing as a deductive process in which
rules of inference are used to derive statements about the grammatical status
of strings from other statements represented by formulas in a suitable formal
language. A grammatical deductive system consists of a set of inference rules
and a set of axioms and goals given by an appropriate set of formula schemata,
(deductive system) &f ({formula schemata), {axioms), (inference rule), {goals)),

where (azioms) U (goals) C (formula schemata).

The general form of a rule of inference is

Ay - A
% (side conditions on Ay, ..., Ay, B)

The antecedents Ay, ..., A; and the consequent B are formula schemata.
That means they contain metavariables that will be instantiated with appropriate
terms when the inference rule is used. A derivation of a formula B from assumptions
Aq,..., A, is a sequence of formulas Si,...,S5, such that B = S,, and each S; is
either an axiom (i.e., one of the A;), or there is a rule of inference R and formulas
Sivy--->S, with 41,...,% < i such that for appropriate substitutions of terms for
metavariables in R, the formulas S;,,...,5;, match the antecedents of the rule,
S; matches the consequent, and the side conditions are satisfied. The notation

Aq,..., A, F Bisused, and it means that B is a consequence of A, ..., A,, if such
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a derivation exists. If B is a consequence of the empty set of assumptions, it is said
to be derivable, - B.

In the parsing-as-deduction framework, the side conditions refer to rules of a
particular grammar, and the formulas refer to string positions in the fixed string to
be parsed w = wy - - - w,. With respect to the given string, the goal formula states
that the string is grammatical according to the given grammar. Then parsing a
string corresponds to finding a derivation reaching a goal formula.

We will use standard notation for metavariables ranging over the objects
under discussion:'®* A, B, C, ... for arbitrary formula or symbols such as grammar
nonterminals; 4,7, k,... for indices into various strings, especially the string w;
a,B3,7,... for strings of terminal and nonterminal symbols. Substrings will be

notated w;; = w;, ..., w; 1 for the i-th through j — 1-th elements of w, inclusive.
3.5.1.2 Robust Bottom-up Active Chart Parser/Generator

In this section the robust bottom-up active chart parsing algorithm (Kay, 1973) for
Lexicalized Well-Founded Grammars is presented as a deductive system. The key
new feature is that we obtain syntagmas as result of parsing/generation, i.e., we
obtain semantic molecules (type of feature structures) associated with the strings.

We assume we have a LWFG G = (3,%') Ng, Rg, Pg, S), and a syntagma
o = (w, (})). For parsing we are given the string w, while for generation we are
given the semantic representation b.!4

Let’s consider o = oy -- - 0y,, where o; = (w;, (2“)), 1<i<n,w €% are

13Specific notations required for our grammar formalism and parsing algorithm will be intro-
duced in the next subsection.

14We mention that our semantic representation OntoSeR alone (without the semantic molecule
head) allows string generation.
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h;

bi) € Y are their corresponding elementary semantic molecules,

lexical items, (
w = wy---w, (string concatenation), b = (b;---b,)v (semantic representation
concatenation followed by variable substitution v).

To define the deductive systems, we use the following specific notations in

R

R = (Zg)) are syntagmas

Y (wR

addition to the standard notations presented above: o i

corresponding to the partially parsed right-hand side of a rule; o = (wj;, (}Z:LLJ’)) are
the ground derived syntagmas (i.e., appears in the left-hand side of grammar rules).

The items of the logic (i.e., the parsing formula schemata) are of the form
[i,],005,A — o @ fDy], where A — aff: O, is a grammar rule, constraint ®4 can
be true, e shows how much of the right-hand side of the rule has been recognized
so far, 7 points to the parent node where the rule was invoked, and j points to
the position in the input that the recognition has reached. We can notice here
that syntagmas are associated with each item. For elements of the lexicon, the
item [i,i + 1,0%,,, B; — o] makes a true claim, so that such items are taken as
axiomatic. The goal items are of the form [, j, aiLj, A — adye|, where O'Z-Lj is ground
derived from the rule A — a:: ® 4, i.e., it belongs to the left-hand side nonterminal.
Since we considered the syntagmas derived from all grammar nonterminals, not
only the start symbol, we have a robust parsing mechanism.

In Kay’s terminology, the items are edges. The axioms and goals are inactive

edges having e at the end. The rest are active edges.

We have three inference rules used to obtain the goal items from the axioms:

e Prediction Rule: This is the bottom-up prediction rule from Kay’s bottom-

up active chart parsing algorithm, where an empty active arc is added. From

L

an item [1, j, 0,7, B — 3®pe] (inactive edge) and a grammar rule A — By: ®,
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R

as side condition, the item [i,4,0;’, A — eBy®,] (active edge) can be pre-

dicted. That is, given that a syntagma JZ-L]- has been already ground-derived

from a nonterminal B, and given there is a grammar rule A — Bry: ®4, we

R
)

A — eBy®,| having the empty syntagma o} =

predict the item [i, 1,0 £

R

)

R

R
(w (’zz}f)) associated with it, where wf = € is the empty string, bF = true is

the empty semantic representation, and A% = () is the empty head.

e Completion Rule: This rule corresponds to shifting the e across a nontermi-
nal in the right-hand side of the rule. It combines an active and inactive edge

to obtain an active edge. Thus, it has two antecedents [3, j, af;%, A — aeByd |

and [7, k, o]I-‘k, B — B®pe], and one consequent [i, k, 0% A — aBey®,|. Shift-
ing the e during the processing of the right-hand side of a rule means string

concatenation, conjunction of semantic molecule bodies (i.e., semantic repre-

R

sentation) and union of semantic molecule heads. That is, of = of

L
ij © Ojk>

where w? = wf;wfk (string concatenation), bf = bf}bfk (body logical conjunc-
tion), ki = hfs U hJ, (head union). Figure 3.4 shows the inactive and active

arcs corresponding to the completion rule.

e Constraint Rule: This rule is the only rule that obtains an inactive edge,
from an active edge by executing the grammar constraint ®4 (the e is shift
across the constraint). The execution of the constraint is a SLD resolution

F ®4 (side condition).'® By applying the constraint rule as the last inference

rule we obtain the ground-derived syntagmas aiLj. Thus, the goal items are

obtained only after the constraint rule is applied. During this inference rule

we have that aZLj = (;5(05-), where ¢ is defined by: wiLj = wf;-, bfj = bﬁl/ij, and

I5GLD resolution is the resolution used in logic programming (van Emden and Kowalski, 1976).
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Item form [i,7,06,A = e [ 4] 1<4,j<n+1,A€ Ng,ap € N}
the ® 4 constraint can be true

Axioms li,i+1,05, ,B; — o 1<i<mn,B; € Ng,B; - 0; € Pg
g; € Tg(@)

Goals [i,5,05, A = a® 4] 1<i,j<n+1,A€ Ng,

Inference Rules

. . [i,j,a’f-,B—)ﬁ‘I’B.]
Prediction mjm <A — B’)’ @A)

[i5j70'7;1§5A_)0‘ e By <I)A] [j!kvo']Lk’B_)ﬁ ®p .]

[ik, o ,A—a B ey ® 4]

Completion

.7 -7 R’A .¢ . .
Constraint .05 Amae®a] (Fsep @A) ® 4 is satisfiable

[i,j,aiLj,AﬂmDAo]

Table 3.1: The robust parsing deductive definition

hi; = ¢(hf}). The substitution v and the function ¢ are implicitly contained

L

in the grammar constraint ®(h;;, hf}) performed as Fgp ®4 (more details

are presented in Chapter 4).

Table 3.1 presents the robust bottom-up active chart parser as a deductive
system. In addition to the deductive system in (Shieber, Schabes, and Pereira,
1995), we have that: each item is augmented with a syntagma; and the constraint
rule is a new inference rule. An inactive edge is obtained only after the constraint
rule is applied, as the last inference rule. This corresponds to reaching a goal
formula. Another specific aspect of our parsing mechanism is that it is robust, i.e.,
the goal items are associated to every nonterminal in the grammar, not only to the
start symbol.

Definition 12 (Robust parsing provability). Robust parsing provability corre-
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A— ae Byd,

B — ﬁ(I)B.

inactive

j o
active
A— aBeyd,

Figure 3.4: Chart parsing: completion rule

sponds to reaching the goal item:

Frp A(ol) iff [4, 4,05, A = a®ye].

Thus, we can notice that the ground syntagma derivation used for defining
the LWFG semantics is equivalent to robust parsing provability, i.e., A X o iff
G F,p A(0). The robust parsing algorithm is SPACE O(n?) and TIME O(rn?). The
termination of the parser/generator will be discussed in Chapter 5 when we talk

about LWFG decidability.

3.6 Representative Examples of a LWFG

In formal grammar learning theory it has been shown that learning from “good
examples”, or representative examples, is more powerful than learning from all the
examples (Brazma, 1993; Freivalds, Kinber, and Wiehagen, 1993; Lange, Nessel,
and Wiehage, 1998). In this section, we formally define the representative examples
of a Lexicalized Well-Founded Grammar. The representative examples will be used
by our grammar learning model for the LWFG induction.

Any Lexicalized Well-Founded Grammar G induces a partial ordering on

any generated sublanguage of syntagmas, E, C L,(G). To show this, we need to
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Figure 3.5: Syntagma partial ordering: o; > 0.

introduce the notion of syntagma equivalence classes. The equivalence classes of
syntagmas, eq_class(c), are named by pairs of nonterminals, (C, A). A lexicographic
ordering, > .., is assumed for (C, A) pairs. We add two symbols o and p to the set
of nonterminals, Ng, i.e., Ng = Ng U {o, p}, such that o < p < A, VA € Ng. Also,
we denote by fy(r = o) the set of nonterminals that belong to the parse tree of
r = o, where fy: Py X E, — 2V¢,r € Pg,0 € E, (see Figure 3.5).
Definition 13. A LWFG, G, is unambiguous if Vo € L,(QG) there is one and only
one rule A — B: & = ¢.16

The equivalence classes of a sublanguage E, of an unambiguous LWFG,
G, are computed by Algorithm 2. For each syntagma o; € E, we choose the
nonterminal A4; s.t. A; — 3: ® = 0;. The equivalence class of each subsyntagma
oj C o; is computed. Let C; be the biggest nonterminal of the parsing subtree
rooted at A;, except the root A; (Figure 3.5). For all the rules for which o; is
minimum, i.e, gdl(o;) = mgdl(A; — B: ®), we have three cases: if the rule A; —

* . . . . .
B: ® = o; is ordered, non-recursive, then C; < A;; if the rule is ordered, recursive,

16Unambiguity is relative to syntagmas and not to language strings, which can be ambiguous.
In the case of chains of unary branching rules, the equivalent syntagmas of the same string must
have different categories (see Section 5.1.1 — A1l and Definition 18).
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then C; = A;; and if the rule is non-ordered then C; > A; . The equivalence class
of the minimum syntagma o;, eq_class(o;), is computed at step 1 as: (4;,0) for
an ordered, non-recursive rule; (4;, p) for an ordered, recursive rule; and (Cj;, A4;),
for a non-ordered rule. For non-minimum syntagmas, the equivalence class may be

changed at step 2.

Algorithm 2: Syntagma_Equivalence_Classes(E,, G)
foreach (C;, A;) € Ng x N, do
| Equivalence_Class((C;, 4;)) < 0
foreach o; € E, do
(k, gdl) < eq_class (o)
Equivalence _Class(k) < Equivalence_Class(k) U { (o, gdl)}

Topological Sort(Equivalence_Class(k), Esort)
return F,,

Procedure eq class(o;)

r+ (A; = B: ®) s.t. A; — f: ® = 0; /*given by the robust parser */

ie < gdl(o;) /*given by the robust parser */
C; + Max_Nonterminal(fy(r = 0;) — {A;} ) /*given by the robust
parser */

1 if Az > Cz and Cz z Az then £ + (Ai,O)
else if A; = C; then k «+ (A;, p)
else k «+ (C;, A;)
, ke max{k, max(eq_class(c;))}

0;Co;

return (k,i,)

Thus, the equivalence classes introduce a partial ordering relation among the
syntagmas of the sublanguage: o, > o; iff eq_class(o;) >y eq-class(o;). Algorithm
2 returns the topologically sorted set F,,.; of syntagmas o;, based on the partial

ordering relation,>, and the syntagma’s ground derivation length, gdl(o;):'" o, >

"nside the same equivalence class the total ordering is done based on gdl(o;). Moreover, if
o corresponds to the left-hand side nonterminal of a grammar rule, then ¢ > o;, Yo; on the
right-hand side.
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. > 0; > ... > 0g. The algorithm is polynomial in |E,| and |¢|. The procedure

eq_class is efficiently performed by our robust parser.

Lemma 2. Algorithm 2 ensures that any syntagma o; generated by an unambiguous
LWEFG, G, has the equivalence class greater than or equal to its subsyntagmas o;.
That is 0; = o; for all o; C ;. Moreover, in the totally ordered set Eyyy returned
by Algorithm 2, we have that o; > 0.

Proof. The property o; = o; is guaranteed by the step 2 of Procedure eq_class,
while property o; > o; is guaranteed by the topological sorting of Eg,, where
gdl(o;) > gdl(o;). O

The topologically sorted set of syntagmas enables us to compute the repre-

sentative examples of an unambiguous Lexicalized Well-Founded Grammar.
Definition 14. A set of syntagmas E§ C L,(G) is called representative example
set of an unambiguous LWFG, G, iff for each rule (A — B: ®) € Pg there is a
unique syntagma o € ES s.t. gdl(o) = mgdl(A — B: D).

From this definition it is straightforward that |E§| = |Pg|. ES contains the

most simple syntagmas ground-derived from the grammar G, and covers all the

grammar rules.

Definition 15. Let G be an unambiguous Lexicalized Well-Founded Grammar. A

sublanguage E, is called complete w.r.t. the grammar G if it covers all grammar
rules. That is, VG~ with Pg- C Pg, we have that E, C L,(G) N E, € L,(G™).
The grammar G is called the minimal grammar that covers E,.

The representative example set E§ of an unambiguous LWFG G is complete
w.r.t. the grammar G, because it covers all grammar rules.

We define a representative sublanguage E, of a grammar G to be any set of
syntagmas which includes the representative examples, Fr C E, C L,(QG).

Given a representative sublanguage E, of an unambiguous LWFG G, such

that ES C E, C L,(G), Algorithm 4'® computes iteratively the totally ordered

18 Algorithm 4 can be also used for sublanguages E, that are not complete w.r.t. the grammar
G. In this case, G, which is the minimal grammar that covers E,, is different from G.
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set of grammar rules Pg_ from which E, ground derives, together with the totally
ordered representative example set, Eg’". At the beginning of each iteration, o is the
minimum syntagma of the totally ordered set F,,; = E,, which is still uncovered
by the grammar G,.. The robust parser returns the unique rule r from which o
is ground-derived, in the unambiguous grammar G. At the end of each iteration,
G, is enriched with r, while ¢ is added to Eg’. The syntagmas covered by G, at
this point (including o) are deleted from Fj,.;. The ordering of F,,; ensures that

gdl(o) = mgdl(r).

Algorithm 4: Find Representative_Examples(E,, G)
Esort < Syntagma_Equivalence_Classes(E,,G) /*E, C Ls(G) */
Egr «~0, Pg, +— 0
k=0
repeat
k+—k+1
o + Extract_Min(Esqp¢)
1 r«~ (A—>p:®)ePgst. A>[:® Yo /*given by the robust parser
*/
2 PG’r(_PGrU{(rak)}
ES « ES U {(0,k)}
Esort <~ Esort - LO’(G'I‘) /*0' € LO’(GT) */
until E,y =0

return (ES", Pg,)

Theorem 1 (Representative Examples Theorem). Given an unambiguous
Lexicalized Well-Founded Grammar G and a representative sublanguage E, s.t.
E§ C E, C L,(G), the Find_Representative_Ezamples algorithm generates in poly-
nomial time the totally ordered representative example set, Eg”, together with the
associated totally ordered grammar rule set Pg, that covers E,, such that Eg“ = FE§

and Pg, = Pg. We use the notation (G, E,) LN (ES",G,).

Proof. At step 1 the following properties hold:

(i) 3r € Pgs.t. 1 X o (since 0 € E, C L,(G) and G is unambiguous)

(ii) o ¢ L,(G,) (since otherwise o would have been previously deleted from Fi,,)
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(i) Ar; € Pg, s.t. r; =4 o; for all o; C o (from Lemma 2 it follows that for all
0; C 0, 0; < o and thus they were previously deleted from FE\,.;. This implies

that o; € L, (G,))

(iv) r € Pg. (We assume the contrary. By (iii), if r € Pg,, it follows that r £y
This implies that o € L,(G,) which contradicts (ii) )

In conclusion, at step 1, r is a new rule from Pg and thus ¢ is the minimum

syntagma in FEj,; such that r *¢ o. This implies that mgdl(r) = gdl(o), because
by hypothesis we have that E§ C E,. At step 2, Pg, is enhanced with the new
rule 7 and its index k, while Eg’ is enhanced with the minimum syntagma o that

ground derives from it, and the same index k. As r € Pg,, it follows that r Ly
(by property (iii)). Therefore, o € L,(G,) is deleted from FEj,. It follows that
Algorithm 4 ends with F,,; = @), which implies that E, C L,(G,). The returned
Eg’" is the totally ordered representative example set of the minimal grammar G,
that covers the sublanguage FE,, and Pg, is the totally ordered set of grammar
rules. Since E, is complete w.r.t. G it follows that P, = Pg and EGr = Eg. It is
straightforward that the algorithm is polynomial in |E,| and |o|.
O
The above theorem states that for a representative sublanguage FE, com-
plete w.r.t. an unambiguous LWFG G, Algorithm 4 returns the totally ordered
representative example set Eg’ of the grammar G, together with the totally or-
dered grammar rule set Pg, (this is a consequence of the well-foundedness of the
grammar nonterminal set). The small size of Eg* (i.e., equal to the size of the gram-
mar) is an important feature, since the representative example set will be used as a
semantic treebank for the grammar induction. Moreover, the total order that EgT
provides to the grammar rules is important since it allows a bottom-up induction
of the grammar.
In the remainder of the dissertation, we will use the notation Er when the

grammar is clearly understood from context, and for Algorithm 4 the notation

(G, E,) = (Eg, G).
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e Eg" Eq. class | Pg,

N2 Rl smart Ay, 0) Ay — Adj
Det/\Nl Rmz student Ni,0) Ni = Noun

Al/\Nl T‘v e N1 | solved V1,0) i—=Tv

Adj Noun Noun | the quiz
who solved the quiz
the smart student who solved the quiz | the student who solved the quiz

(a) (b)
Figure 3.6: (a) Parse tree ; (b) Results of Algorithm 4

NQ,O) Ny — Det N;
Rey,0) Rc; — Rpro Vi N,
RCl,Nz) N2 — N2 RCl

(
E
smart student (N1, p) Ny = AL Ny
(
(
(

Example. Figure 3.6(b) shows the results of Algorithm 4 given the sublanguage,
E,, of the noun phrase the smart student who solved the quiz, and the grammar G
in Figure 3.1(a). Figure 3.6(a) shows the corresponding parse tree. For simplicity,
we show only the strings without their semantic molecules.

Another example for illustrating Algorithm 2 and Algorithm 4 is given in
Appendix A.6, where we show the generation of the representative examples and

the equivalence classes for finite auxiliary verbs (the input is a sublanguage and the

grammar for finite auxiliaries).
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Chapter 4

Semantic Composition and
Semantic Interpretation as
Grammar Constraints

In the constraint-based grammars that are defined in this thesis, the semantic struc-
tures are composed by constraint solving, rather then functional application (with
lambda expressions and lambda reduction). Moreover, the semantic interpretation
is also encoded as a constraint, providing access to meaning during parsing.

The main goal of defining Lexicalized Well-Founded Grammars is to provide
a formalism for natural language grammars such they are learnable from examples.
Thus, the definition of semantic molecules, syntagmas and constraints must take the
learning requirement into account. Learning from examples corresponds actually

to learning the ground derivation step:

X3¢0 B;>0y,i=1,..,n,0=010--00,
X(0)—=Bi(o1)s..,Bn(on): ®(7), 6=(0,01,-.-,0n)

In other words, if a positive example (o) is not ground derived from the gram-
mar, but its corresponding chunks (o;) can be derived, then learning the constraint

rule will allow us to ground derive o. In order to learn the rule, the nonterminal X
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must be determined and the constraints ®(5) must be determined if o,04,...,0,
are known.

This chapter presents the principles and properties needed to fulfill this learn-
ing requirement. In Section 4.1 we present the semantic composition constraints,
while in Section 4.2 we describe the ontology-based semantic interpretation con-

straint.

4.1 Semantic Composition: Principles and Prop-
erties

The information for semantic composition is encoded in the head of the semantic

molecules. There are three types of attributes that belong to the semantic molecule

head: category attributes A¢, variable attributes A}, and feature attributes Al
gory h h h

Thus A, = A5 UAY U Al and AS, AY, Al are pairwise disjoint. For the semantic

molecule w' = ('Z) we have that h = h°U h* U b/ and var(h) = var(h®) C var(b).

For example, consider the semantic molecule for the noun phrase major damage.

cat nl

def no

nr pl

pers 3

case  nomacc
count y
_head Xn1

b<Xa1.isa — major, Xn1.Xq3=Xa1, XNl_isa:damage>
We have that cat is a category attribute (€ A%, det, nr, pers, case, count are
feature attributes (€ .Af), while head is a variable attribute (& A2).
We describe in turn each of these types of attributes and their corresponding
principles. All principles, except the first and the last mirror principles in other

constraint-based linguistic formalisms, such as HPSG (Pollard and Sag, 1994).
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The category attributes Ajf are state attributes, and their value set gives
the category of the semantic molecule. There is one attribute, cat € Ajf,, which is
mandatory and whose value is the name of the category (e.g., h.cat = adj, h.cat =
noun). The category of the semantic molecule can be given by: 1) the cat attribute
alone, 2) the cat attribute together with other state attributes in A§ which are
syntactic-semantic marks, or 3) the cat attribute together with only one attribute
bar, which has integer values, as in X-bar theory (Chomsky, 1970; Jackendoff, 1977).

Principle 1 (Category Name Principle). The category name h.cat of a gener-

alized syntagma o = (w, (2‘)) 1S the same as the grammar nonterminal augmented

with the generalized syntagma o.

The above principle allows us to determine the name of the nonterminal in
the left-hand side of the rule (X). For the example major damage the name of
the nonterminal will be N (h.cat = n). In ILP terminology this is called predicate
name invention.

The variable attributes A} are attributes whose values are logical vari-
ables, which appear in the body of the semantic molecule as well (see Figure 4.1,
page 83). Since the body, b, of the semantic molecule, w’, is the semantic represen-
tation of the string w, the logical variables which are shared with the head A of the
semantic molecule, represent the only semantic entities through which the semantic
molecule w' can be bound to other semantic molecules. Thus, A} is the semantic
valence of the molecule, which allows the binding of the semantic representations,!
giving the following principle:

Principle 2 (Semantic Representation Binding Principle). All the logi-
cal variables which the body b of a semantic molecule shares with other semantic

!Unlike A}, A$ allows the binding of the semantic molecules to the grammar nonterminals,
and can be seen mainly as the syntactic valence of the molecules, which include the category.
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molecules, are at the same time values of the variable attributes (A}, ) of the molecule
head.

There is one variable attribute, head € A}, that represents the semantic head
of the semantic molecule (similar with the head notion in X-bar theory,? properties
(iii), (iv)). Thus we can state the Semantic Head Principle:

Principle 3 (Semantic Head Principle). For the composition of generalized
syntagma , 0 = (w, (’;)), realized at the level of each grammar rule, there exists in

the rule right-hand side, one and only one syntagma o; = (wy, (’;:)), which has the
same value of the attribute head, i.e., h.head = h;.head.

The feature attributes Ai are the attributes whose values express the
specific properties of the semantic molecules (e.g., number, person).

Principle 4 (Feature Inheritance Principle). All the feature attributes of a
molecule head inherit the values of the corresponding attributes that belong to the
semantic head (see Semantic Head Principle). That is, if h; is the semantic head
of h, (h.head = h;.head) , then h.f = h;.f, Vf € A,J: N A,’;.

Besides this principle, the feature attributes are used for category agreement.
The categories that enter in agreement are maximum projection categories, if we are
to use X-bar theory terminology. In general there are two types of agreement (An-
derson, 2004): Modifier-Head Agreement (agreement between modifiers and the
heads of their phrases) and Predicate-Argument Agreement (agreement between

predicates, including verb, predicative adjective, and their arguments). The cate-

gory that gives the agreement is known as the “controller” or “trigger”, while the

2“The X-bar scheme is a restrictive mechanism for delimiting possible syntactic (or morpho-
logical) structures. General assumptions: (i) every X™ is a projection of X; (ii) X™* is the
maximal projection of X; (iii) every phrase has a head determining its specific properties; (iv) the
head properties are preserved in all projections; (v) a head category X combines with a non-head
category Y which can be a complement (bar-level promotion: X" — Y™ X7*~1) an adjunct
(bar-level preservation: X™ — Y™e* X™) or a specifier (special case of bar-level promotion:
Xmaw _y ymaz Ymaz—1)» (Aygustinova and Uszkoreit, 2001).
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Type Controller /Trigger | Target Features
Noun Adj number
gender
Modifier-Head Noun Determiner number
person
gender (Rom)
Subject Verb number
person
gender
Predicate-Argument | Subject Predicative Adjective | number
gender

Table 4.1: Examples of agreement

category whose form is determined by agreement is called the “target”. In Table 4.1
we present examples of agreement usually studied in linguistics (Anderson, 2004;
Sag and Wasow, 1999) , which involve strict identities of features values between
the trigger and the target.

However, the description of agreement should also take into account the co-
ordination construction, which involves resolution rules (cf. Corbett as summarized

in (Anderson, 2004)):

e Conjoined singulars typically yield a plural.

e Predominance of first over second over third person inside a coordination

construction (i.e., he+I=we, not they).

e Gender resolution — e.g., in Romanian masc + fem = masc.

This linguistic knowledge about agreement is used in Section 4.1.2 in the

form of the following principle:
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Principle 5 (Feature Agreement Principle). The agreeing/non-agreeing cat-
egories®and the agreement/non-agreement features are a-priori given based on lin-
quistic knowledge, and are applied only at the semantic head level. They are lan-

guage specific.
Given all the above principles, we can now formulate the general Composition
Principle:

Principle 6 (Composition Principle). The semantic molecule corresponding to
a rule left-hand side is obtained by the composition of semantic molecules corre-
sponding to the nonterminals from the rule right-hand side, as in (4.1).

hio---oh,
- ((bl, ey bn)y)

The composition of the molecule heads is realized by a set of constraints
denoted by Peomp(h, by, ... hy) = (h U UL, hi)vu, where v is the body variable
specialization substitution and pu is head feature generalization substitution. The
body parts are connected through conjunction after the application of the variable
substitution v, b = (by, ..., b,)v. In the remainder of this thesis when we refer to
compositional constraint we mean just the molecule head composition, ®¢opmp.

In the next sections we present the composition properties regarding the
substitutions v (Section 4.1.1) and p (Section 4.1.2), the compositional constraint,
D@ omp (Section 4.1.3) and its use in the generalization of the grammar rules (Section

4.1.4).

3Note that not all the categories have an agreeing/non-agreeing relation among them.
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4.1.1 Body Variable Specialization Substitution(v)

The body variable specialization substitution v is the most general unifier (mgu)
of b and by,..., by, st b = (b1,...,0p)v = bivy, ..., byvyn. It is a particular form
of the commonly used substitution (Lloyd, 2003), i.e., a finite set of the form
{X1/Y1,..., X/ Yn}, where Xy, ..., X, Y1, ..., Y, are variables, and X7,..., X,
are distinct. Each element X;/Y; is called a binding. If v = {X;/Y1,..., Xin/Yi}

then domain(v) = {X1,..., Xn} and range(v) = {Y1,...,Y,}. More exactly we

have that:
v={X1/Y1,... . Xn/Yu} =Jw
i=1
(4.2) domain(v) = {X1,..., X} = U domain(v;)
: i=1

range(v) = {Y1,...,Ym} D var(h)
domain(v;) C var(h;)
where v; are pairwise disjoint, i.e., v; Nv; = 0,1 < 4,7, < n.

We will use the following notation for the body variable substitution:

v(X)Y)={X/Y: X € domain(v) \Y € range(v)}

The body variable substitution composition v; v, guarantees that (domain(vs)U
range(v)) N domain(v;) = @, in order to avoid cycles. Thus, the composition is
given by:

(4.3) vy = v (X/Yrp) Uy

where vy1 = {X/Y: (X € domain(v,) —range(v1)) A(Y € range(v,))}, represents

the substitution v, from which the elements whose domains were in the range of
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vy were removed. For example, in Figure 4.1 (page 83), given the substitution vy
and vyg, we have vyo/nv1 = {Xa1/Xn2}, which explains why the term Xy, /Xy, is
crossed-out from the composed substitution vyo(n1).

Property 1 (Body Variable Substitution). The body variable substitution v

is fully determined by the representative example,* as mgu of b and by, ..., b,.

4.1.2 Head Feature Generalization Substitution (u)

For the feature attributes, a contextual constant generalization substitution, pu, is
used. The p substitution is used for generalization of the feature attribute values
needed for agreement constraints. Extending the notation, we will assign the index

0 to the head h corresponding to the left-hand side nonterminal (i.e., h = hy).

p=At1/X1:e1,...,tm/Xm: €m}
domain(p) = {t1,...,tm}
range(u) = {X1,..., Xn}

(4.4)

environment(u) = {e1,...,en}

range(u) N (domain(v) U range(v)) = ()
H= U Hi
i=0

where v is the body variable substitution, and environment(u;) are pairwise dis-
joint, i.e., environment(u;)Nenvironment(u;) = 0,0 < i, j, < n. The environment(u;),
0 < i < n, are feature attributes of the ith component (e.g., {h;.f1,hi.fo,...}),

while domain(y;) are the values of the feature attributes. We denote e; = e(t;/X;).

“We remind our reader that representative examples are used to learn the grammar rules and
the compositional constraints.
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The composition p;us of the contextual constant generalization substitution

is:

M1lbo = {SI if (tl/X : 61) €t A (tQ/Y : 62) € g N egNeg %@
then s=(t;/X:e; —ey,t/Y:e2—e,X/Y)

else s=(t1/X:e1,t2/Y:e3)}

In this way, the variables X, Y, which generalize the constants of the same

environment e; N ey of uy and py, become the same by the X/Y substitution.

Algorithm 5: Feature Generalization(hg, hy, ..., hy,)

w0

if hgep.head = h.head,1 < sem < n then
/*hsem is the Semantic Head. Principle 3 */

1 | foreach f € AL Ah.f = hom.f =1t do
/*Principle 4 */

L p p Ut/ X (A f, hyem-f)}

2 foreach j = 1..n A hgepm.cat = Csem A hj.cat = c¢; N agree(csem, ¢j) do
/*Basic treatment of Principle 5, without details */

foreach f € agreeing_features(csem,c;) do
if hyem.f = h;.f =t then
L H—pd {t/X: (h’sem-fa h]f)}
foreach f € non_agreeing_features(csem,c;) do

if h;.f =1 then
 Lopepu{t/X: (b))

return I

Property 2 (Head Feature Substitution). The contextual constant generaliza-
tion substitution p is fully determined by the representative example and a priori
linguistic knowledge given as agreement rules (Algorithm 5). The u substitution is
sound, even if it can be incomplete if the learned grammar rule is too specialized
and thus it does not contain the categories given in the agreement rules, at the
semantic head level.
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4.1.3 Compositional Constraint Determinacy

The compositional semantic constraint is:

(4.6)  Ceomp(h b, k) =R U bt U (A = (JRo)vpe
1=0 1=0 1=0

i=0

In the above formula, and herein, we have that h = hg,vy = {}. The set

of constraints, @omp(h, by, ..., hy), is encoded as a system of equations, (4.7), and

will be learned together with the grammar rule during the induction process. This

system of equations is similar to “path equations” (Shieber et al., 1983; van Noord,
1993), but is applied to flat feature structures (our semantic molecule heads).

0<4,j<ni#j

h;.c = constant
c € Aj,
(4.7) hiv; = hj.v; where
v; € Ay, v € Ay
hi.f = constant or h;.f = h;.f !

f f
feA,,feA,
Since the v, u substitutions can be determined by example, then the above
system of equations can be generated by Algorithm 6.

Property 3 (Compositional Constraint Determinacy). The compositional
constraint ®,m, is fully determined by example using Algorithm 6. Moreover, at
the rule level, ®.op, fully determines the output of the parser and generator.

Given arule A(o) — Bi(01), ..., Bu(0n): Peomp(h, b1, ..., hy), using the def-
inition of the ground syntagma derivation (Definition 6) in DCG-provability form

we have:

FB;(0;),i=1..n Fécomp(h,hl,...,hn)
FA(o)
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Algorithm 6: Generate_Compositional Constraints(og, o1, .., 0y)
i = (w;, (3)),0<i<n
(Dcomp — @
v < mgu(bg, (b1,...,by))
u +— Feature_Generalization(hg, hi, - . ., hy)

foreach 0 <i<nAce A Ahi.c=tehido
L (bcomp — (I)comp U {th = t}
foreach X/Y e v Av; € A} Ahjv; =X ANv; € Azj Ahjv; =Y do
L (pcomp — (I)comp U {h,vz = hj.Uj}
foreachOSiSn/\fEA,{Z,/\hi.fztEhZf do
if (t/X:e(t/X)¢ uVh.f ¢e(t/X)then
L (bcomp — (Dcomp U {hzf = t}
else if 3h;.f € e(t/X) Ai < j then
L (Dcomp — cbcomp U {hzf = h]f}

return ® .oy

From Definition 9 and 10 of parsing and generation, it results that o can be
computed either by specifying the string w, or by specifying its semantic represen-

tation b. In both cases, we have that:

W =Wyy...,Wy

b= (b1,...,bp)v (Principles 6 and 2)
(4.8) " .y
Deomp(h, b1y hy) = (hUUhi)u,u (Principles 6 and 3, 4, 5)

=1

The last equation in (4.8) gives the value of h as a consequence of composi-

tional constraint proving, - ® (see Section 3.5.1.2, Table 3.1 page 61).
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4.1.4 Rule Generalization

In this section we give a rule generalization property (Property 4, page 84), which
will be used in Chapter 5, Section 5.3.1 for the foundation of the search space of
the LWFG induction. For this, we first define the properties of the rule derivation
step (Section 4.1.4.1), and then we give the properties of the rule generalization

step (Section 4.1.4.2).
4.1.4.1 Rule Derivation Step

If B = Bi(01),...,Bk(0x) and 0; = (w;, (), for 1 < i < k, below we use the

1

following notation: hg = |J h;, bg = |J b, and for provability we use
Bi(O'i)Eﬂ Bi(O'i)Eﬁ
F B for - B;(0;),1 < i < k. Thus for the rules:

B(O’B) — ﬂ: CI)B
(4.9)
A(os) = aB(og)y: ®a

we have (given (4.8)):

bB = b/gl/B
(I)B = (hB U hg)l/B[LB
hp = hsvpup
(4.10)
bA = bab*Bb,yI/A
b,y = (hA U ha U h*B U h.y)VA/,LA

ha "2 (hq U RS U hy)vapa

Given the above two rules, we consider the rule derivation step:
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A(o4)—aB(o%)y: ® B(og)—pB: ®
(4.11) . A(ﬁA)_ﬂ)‘AﬂV: am) - )

Substituting B we have: A(c4) — a(8: ®p,0p = 05)7: P4, and the equiv-

alent DCG-provability form of the rule derivation step is:

F8 g FaB(og)y F®a
FB(og) FA(oa)
(4.12) 3357 I—@B,aBzaﬁiﬁA
FA(oA)

If we denote ®4p) = (Pp,08 = 0, 4) we have for the derived rule:

Aoa) = afy: up
bA = babﬂb VA(B)
(4.13) !
Pup) = (haUha Uhg U hy)vas) pacs)
F®
ha =" (ha Uhg U hy)vampam)

Lemma 3 (Rule Derivation Step). Given the two rules in (4.9) and the derived
rule in (4.13), the substitutions of the derived rule are obtained by composing the
substitutions of the initial rules:

VAB) = VBVA

HA(B) = UBHA

(4.14)

Proof. Since bg = b} and hp = hY, from (4.10) we have that:

(4.15) bA = babﬁVBb,yl/A = babgb»,I/BI/A

and from (4.13) results v4(p) = vpra.

o o
Similarly from (4.10) we have that h, 25 (ha U hgvppp Uhy)vatia 25

(ha U hg U hy)vpvappiea, and thus from (4.13) and (4.15) it results that pap) =

KUBHA-
O
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4.1.4.2 Rule Generalization Step

The rule generalization step is the inverse of the rule derivation step. Let the
specialized rule (4.16):
Aoa) — afy: @,

bA = babﬁbrﬂ/h

(4.16)
= (ha Uha U by U by
ha = (ha Uhg Uk )Vl
and let the rule generalization step (4.17):
Aloa)—apy: B(op)—pB: 5
(417) A(oa)—aB(og)y: ®a

The rule A(o4) — afy: ®4p) (4.13) derived from the generalized rule (4.9),
which are the same as the rules in the generalization step, subsumes the specialized

rule A(oq) = afy: @, (4.16):

(4.18) Va = A
1y C pa)’

The C relation present in the equation (4.18) is explained by Property 2,
which states that the contextual constant generalization is always applied to the
semantic head projection (step 1 in Algorithm 5), while the agreement is performed
only at the semantic head level (step 2 in Algorithm 5). For example, if the semantic
head of the rule in (4.16) is contained in «, then no constant generalization in [ is

possible in the context of this specialized rule. However, in the first rule of (4.9)

the semantic head is in 8 and thus the generalization is performed.

5We use the equivalence relation because the substitutions can differ by the constant values
which are generalized (see Figure 4.1, for pufy, and pna(n1))-
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I. Semantic Molecules

cat  adj
I-1(major/adj)’ = haaj > bag; = |head Xg1| > (Xq1.i8a = major, Xz0.X a3 = Xa1)
mod X0
cat noun
1-2 (damage/noun)’ = hpoun ™ bpoun = | nr sg | > (Xy1.isa = damage)
head X1
cat  noun
I-2' (damages/noun)’ = hpoun ™ bpoun = | 07 pl | > (X,1.isa = damage)
head X1
cat  det
I-3 (a/det)’ = hget < bger = | nr sg | > (X g1.det = a)
mod Xdl

I-4 (major damages)' = hy1 < by

cat nl
= | nr pl

head Xpn1

< (Xg1-18a = major, X n1.Xa3 = Xo1, XnN1.15a = damage)

I-5 (a major damage)' = hyo < bno

cat n2
=| nr sg | (X no.det = a, Xy1.i50 = major, Xn2.Xa3 = Xa1, Xn2.isa = damage)
head Xno

II. Constraint Grammar Rules
021 = 031 = Oget

I1-1 Nl(o'lo) — Adj(Ull), Noun(012) : (I)Nl 010 = 022 = ON1
® N1 = (h1o U ha1 U ha2)vnifine 011 = 033 = Oqqj
vN1 = {Xn1 /X N1, Xa2/X N1} 012 = 033 = Onoun
MUN1 = {pl/Yi : (h]_o.nl', hu.?’”‘)} 0920 = 030 = ON?2

I1-2 N2(020) — Det(021), N1(022) Do /* generalized rule*/
Do = (hao U hot U has)unapne
vne = {Xn1/Xn2, Xai /X o}
un2 = {sg/Ya : (hao.nr, hey.nr,hae.nr)}
I1-1+2 N2(020) = Det(021), Adj(0o11), Noun(o12) : ®no(n1) /* derived rule */
®no(v1) = (h2o U ha1 U hay U hia)vna(niypna(ni)
vna(nt) = {Xn1/ X2, Xaz/Xn2, Xn1/X N2, Xai/Xna}
pnan1y = {pl/ Y1t hianr, sg/Ya 1 (hao-nr, har.nr), Y1 /Ya}

II-3 N2(o30) — Det(os1), Adj(os2), Noun(oss) : ®Y, /* specialized rule */

Py, = (hao U hai U hsa U hag) vy, iy,
Uno = {Xa1/Xn2, Xaz/ Xn2, Xn1 /X N2}
Wyo = {59/Y : (hso.nr, ha1.nr, haz.nr)}

Figure 4.1: The Rule Derivation/Generalization Step
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Property 4 (Rule Generalization). The rule generalization step (4.17) guaran-
tees that L,(A(cs) = aB(og)y: ®4) 2 Ly(A(c4) — afy: D).

The above property holds due to relation (4.18) and to the fact that the
nonterminal B can have multiple definitions (thus, p AB) and v4(p)y have multiple

values).

4.1.5 Example

Figure 4.1 shows an example. I-1, ..., I-3 show the elementary semantic molecules
of the adjective major, the nouns damage (sg) and damages (pl), as well as the de-
terminer a. I-4 is the derived semantic molecule of the noun phrase major damages
ground derived by the rule II-1, while I-5 is the derived semantic molecule of the
noun phrase a major damage, which can be ground derived from either rules I1-2,
I1-1+42, II-3.

From the constraint grammar rules II-1 and II-2 is obtained the derived rule

I1-14-2 by the rule derivation step with g9y = 01¢:

NQ(GQO)—)Det(Ugl),N].(O'Qz) : ‘I>N2 N].(O'l())—h/ldj(dn),NO’IMI(0'12) : (I)Nl
N2(020)—)Det(021),Adj(Ull),NOUTL(Ulg): (I)NZ(Nl)

and from the rules II-3 and II-1 is obtained the generalized rule II-2 by
the rule generalization step with g3y = 099,031 = 091, 032 = 011, 033 = 012, and

010 — 022 -

N2(0'30)—)D€t(0'31),Adj(0'32),N0un(0'33) : (I)9V2 Nl(o’lo)—)Adj(Uu),NOU’I’L(O'lg) : Py
N2(020)—)D6t(021),N1(0’22) : (I>N2

For all the constraint rules involved in the derivation and generalization

steps, the compositional constraint ® together with the variable substitution v

6Property 4 still holds even if the u substitution is absent (i.e., we do not have contextual
constant generalization and every rule is specific to particular values of feature attributes).
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and the contextual constant generalization p are shown in Figure 4.1. It can be
noticed the variable substitution composition (4.3) vyi1vye = Una(n1), as well as the
composition of the contextual constant generalization substitution (4.5) uy1pn2 =
Kno(n1)- We can also notice that the relation (4.18) holds. In this case we have

that l/§v2 = VNQ(NI) and /.1,9\]2 = ,u’NQ(Nl)-
4.2 Ontology-based Semantic Interpretation

The ®,,4,(b) constraint is applied only to the body of the semantic molecule cor-
responding to the left-hand side nonterminal, and provides an ontology-based se-
mantic interpretation at the rule level. This constraint is used both during learning
and afterwards during language analysis, and it is built using a meta-interpreter
with freeze (Saraswat, 1989) (Muresan, Potolea, and Muresan, 1998). The meta-
interpreter ensures that the atomic predicates, APs, (see Eq. (3.1)), of the molecule
body are not evaluated (i.e., they are postponed) until at least one variable becomes
instantiated. This technique allows a nondeterministic efficient search in the ontol-
ogy. Moreover, the meta-interpreter search strategy is independent of the actual
representation of the ontology, and therefore behaves as an interface to any on-
tology at the level of atomic predicates. The ontology-based interpretation is not
done during the composition operation, but afterwards. Thus, for example, the
head of the noun phrase major damages (Figure 4.1) does not need to store the
slot X,3, a fact that allows us to use flat feature structures for representing the
head of the semantic molecule. At this point, when ®,,;, is applied, the variable
X3 becomes instantiated with the value taken from the ontology (e.g., degree).

The ontology-based semantic interpretation constraint is important for the dis-
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ambiguation required for some phenomena (e.g., prepositional phrase attachment,
coordinations), and for the semantic interpretation of phenomena not usually an-
alyzed by current broad-coverage grammars or statistical syntactic parsers (e.g.,
prepositions, noun-noun compounds). More details are presented in Chapter 6.

Parsing Reversibility Principle. The string representation part of the
semantic molecule (OntoSeR) guarantees the parsing reversibility preserving the
original string meaning. Thus, the generalized syntagma is independent of the
ontology-based interpretation level (e.g., interpretation by ®.,)-

Uniform Representation Principle. The string representation part of
the semantic molecule (OntoSeR) is independent of the knowledge level where the
acquisition take place: terminological knowledge (ontology with general concepts),
factual knowledge (knowledge base with individuals), and discourse (text knowl-
edge). Thus, we consider that the assertional form K, of a syntagma o is the same
regardless of the asserting level (K,, K;, K;) that is ontology, factual or discourse
level, respectively. K, is dependent on the interpretation level given by ®,,4. If
o = (w, (’Z)), b is guaranteed to preserve the whole meaning of w at the gram-
mar level, while K, is dependent on ®,,,;,, but independent of the knowledge level
where the acquisition take place. Thus, the meta-interpreter which perform ®,,;,
guarantees the interface with different KRS (knowledge representation systems).

Natural Language as Problem Formulation Principle. The discourse
knowledge (assertional) representation Ky, is only the logic-based problem formu-
lation that can be further solved using logic as problem solving (Kowalski, 1979).
That is, the meta-interpreter ®,,;, does not deal with deep reasoning at the level

of K, assertion. In other words, we are concerned only with the meaning explicitly
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given in text. Thus, K, can contain the representation of a paradox formulation in
natural language, even if the reasoning about its solution cannot be emphasized.
The evaluation has to validate the correctness of problem formulation in natural
language. This can be done by all possible queries (questions) relevant to a dis-
course, validated by human subjects at the string level (answers). As a summary
of Chapter 3, the assertional form K, of a syntagma o can be obtained by relation

(4.19). More details will be presented in Chapter 6, specifically in Figure 6.2.

A(o) = By(01),-..,Bn(on): ©(5)

o= (w, (Z)) = o (wo, ho > bo)

W= Wy Wy

(4.19) b= (bi,...,b)v

A
|

(I)comp (U) ) (I)onto (b)

Ky = @onto(b)
In Section 3.3 and Section 3.4 we have defined the operational semantics of
a grammar G as the set of all syntagmas ground derived (generated) by G. Due
to @yt constraint at the grammar rule level, it results that the semantics L, (G)

is determined not only by the grammar but also by the ontology, i.e., L,(G) =

{olo = (w,w"),w € ¥*,3A € Ng, K A P + A(0)}, where K D K, U K; U K;. We
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have:

o€ L,(G) iff K,, K;, K4+ K, (- means derived as acceptable).

The meaning, M,, of a syntagma, o, is defined as the set of all query-
syntagmas which become derivable by adding the assertional logical form K, to

the system knowledge (K, K;, Ky ).
(4.20) M, = {og|(K,, Ki, Kq t/ KUQ) A (K, Ki, K4, K, = KUQ)}

where K, includes the answer to the question as well.

Similarly, we can define the discourse meaning:
(421) Md: {O'Q‘(KO,KZ' VKJQ) /\(KoaKiaKd FKJQ)}
Chapter 8 contains more discussions about meaning as answers to questions.

4.2.1 The Semantic Interpreter

Semantic interpretation is performed at the rule level through ®,,,(b). Given the
definition of OntoSeR in (3.1) and the notation @, (b) = ¥, the interpretation of

OntoSeR is given below:.

(AP) ' + (postpone (AP))'
(OntoSeR, (lop) OntoSeRy) ' + OntoSeR;] (lop) OntoSeR;

postpone (AP) < freeze (X € var (AP) , AP)

The above definition entails that an atomic predicate, AP, is postponed through
the freeze predicate until at least one of its variables becomes instantiated. This
allows a nondeterministic efficient search in the ontology. The search strategy of
the meta-interpreter is independent of the actual representation of the ontology,

allowing an interface with any ontology at the level of atomic predicate meaning.
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The meta-interpreter can be enhanced with generative ontology’ axioms
(Jensen and Nilsson, 2003): X' + X.sa = X', (XY = Z) «+ X'YV' =27
(admissible concept rule), Y = Z + X.Y = X.Z (well-formedness principle for dis-
tinct simultaneous roles), X.Y = Z ++ Z.Y ™' = X (inversion principle), and also
with a set of admissible affinities and role relations specified as atomic axioms. The
latter refers to the ontologically admissible combinations of concepts and relations
(e.g., event.agt = substance, agt.isa = by). In our current implementation of the
semantic interpreter we only partially use these axioms (see Chapter 8).

The OntoSeR is an ontology independent semantic representation, in the
same way an ontology is a language independent logical structure. Two predicates
are implemented for asserting to and querying the ontology respectively. In the
querying process, different OntoSeRs can have the same answer, thus transforming
the problem of logical equivalence viewed as “meaning identity” (Shieber, 1994) into
equivalence viewed as concept identity. This ensures the computational tractability
requirement for our semantic framework. More discussion is given in Chapter 6
and Chapter 8. In Chapter 8 we define the weak concept identity principle for our

semantic interpreter, related to terminological knowledge.

"Starting from a skeleton ontology, generative ontologies are formed by rules for combining
concepts using semantic roles (binary relations) as binders: “The role relations express possible
relations among the nodes in the lattice constituting the ontology. Thereby they make possible the
generation of an infinite number of ontological nodes in the lattice, thus establishing a generative
ontology. [...] The notion of generative ontology is inspired by the generative grammar paradigm
and provides semantic domains for a compositional ontological semantics for NPs containing PPs.
In contrast to traditional logical semantics, which strongly emphasizes the semantic contribution
of determiners, our ontological semantics places decisive weight on the conceptual semantics of
the nominal parts of NPs and their modifiers such as PPs.” (Jensen and Nilsson, 2003).
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Chapter 5

Induction of Lexicalized
Well-Founded Grammars

In this chapter we describe our theoretical LWFG learning model. We begin by pre-
senting the learning algorithms in Section 5.1. Our learning model allows grammar
learning both from ordered representative examples (Section 5.1.2) and unordered
representative examples (Section 5.1.3). Section 5.2 presents the way in which
grammar merging is defined in our framework. In Section 5.3, we provide the foun-
dation of the hypothesis search space as Boolean algebra/complete grammar lattice,
together with the learnability theorem. This section concludes with the presenta-
tion of the LWFG induction in ILP setting and the description of our Grammar

Approximation by Representative Sublanguage (GARS) model.

5.1 Grammar Learning

The grammar induction problem can be stated as follows: given a representative
sublanguage E, C L,(G) of an unknown Lexicalized Well-Founded Grammar G,
together with its set of representative examples Eg, Fr C E,, learn a grammar G’

such that G = G'. In other words, the learning should always converge. In order to
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prove this convergence (see Theorem 2 pg. 102, Theorem 3 pg. 104, and Theorem
8 pg. 130), we need to formulate some properties and assumptions regarding our
Lexicalized Well-Founded Grammars. The work presented in this section is based
on our papers (Muresan, 2004; Muresan, Muresan, and Klavans, 2004; Muresan,

Muresan, and Klavans, 2005)

5.1.1 Properties and Assumptions

A 1. A property of Lexicalized Well-Founded Grammars (see Definition 5, (vii),
pg. 51) is that the category of a nonterminal is the name of the nonterminal:
VA € Ng we have hy.cat = A. As a consequence, for the unary branching rules,
A — B: ®, where A,B € Ng, the syntagmas which are ground-derived from
A— B:® = g4 and B = op have the same string w and the same semantic
representation b, but have different valences hy # hg. Thus we can define the
equivalence of two syntagmas and set of syntagmas:

(i) Two syntagmas o1 = (ws, (}')) and o3 = (ws, (}?)) are equivalent, 01 = o,
iﬁ”wl :wg/\bl = b2

(ii) Two sets of syntagmas L,; and L,, are equivalent, L,; = Ly, iff
(Vo1 € Lyy Jog € Lyy s.t. 01 =09) A (Vog € Lyy Jo1 € Ly 8-t

o1 = 0'2)

(iii) The intersection by equivalence of two sets of syntagmas L, and L, is the
set Ly1 ﬂng = {0'1 = O'2|O'1 € Lsy Noy € ng}.

Thus for unary branching rules, we have that L,(A — B: ®) = L,(B) (i.e., they
differ just by their valence, including their categories: h4.cat # hp.cat).

A 2. Considering the DCG-style formalism of Lexicalized Well-Founded Grammars,
we assume that all the arguments of the nonterminals are variables, i.e., they are
not instantiated with a particular value. This means that the right-hand side of
all grammar rules cannot contain terminals (except for preterminals). This gives a
syntactic overgeneralization, remaining to obtain a semantic specialization through
the ontology-based interpretation, ®,,;,.

A 3. An assumption for learning Lexicalized-Well Founded Grammars is that the
rules corresponding to the grammar preterminals are given: A — o, i.e., Tg(0) is
given (see denotational semantics, Section 3.4). This property imposes a refinement,
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of the LWFG definition (Definition 5), requiring that 3 € N/, and not 3 € {Ng U
Y}, for the rules that have nonterminals other than preterminals as their left-hand
side.

As we saw in Section 3.6, we consider only unambiguous LWFGs. Two points

should be made:

(i) Unambiguity refers to syntagmas and not to natural language expressions

(strings). Two syntagmas o; = (wy, (hll)) and oy = (wy, (Z;)) are equal, (oq =

b
09), iff wy = wy A hy = hg A by = by. For example the sentence I saw the man
with a telescope is ambiguous at the string level (PP-attachment ambiguity),
but it is unambiguous if we consider the syntagmas associated with it (o7,
09 respectively), since b; # by (in by the PP is the adjunct of the verb saw,
while in by the PP post-modifies the noun man). Thus, E, is unambiguous
since o7 is derived from a single rule, and oy is derived from another rule,
even if the string corresponding to these two syntagmas is ambiguous (more
details are given in Section 6.4 and Appendix B). The same reasoning stands
for the unary branching rules discussed above, since the syntagmas differ by
their category (thus the semantic molecules associated with the strings differ
by their heads this time). For examples the string John has two syntagmas
associated with it: o1 = (john, [cat : pn, head : X| < [X.name = john|) and
o9 = (john,[cat : n,head : X| > [X.name = john|), with hy # hg, and thus
01 # 0. Thus, even if the string alone would be derived from two rules, one
for PN, and another for N (we mentioned before that the category gives the
name of the nonterminal), o, is derived only from the rule corresponding to

PN and o5 only from the rule corresponding to N.
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(ii) Unambiguity refers to syntagmas (i.e., representations) and not to interpreted
natural language expressions. This means that a syntagma derived from a
single rule can have many interpretations. Let us take the example (bone
knife, [cat: n,...] > [Xi.isa = bone, X».Y = Xj, Xy.isa = knife]). It has
two interpretations (i.e., two values for the variable Y: made of and purpose
given by ®,,;,). But it is unambiguous as representation, being derived from a
single rule (noun compound rule in this case). In this dissertation, we will not
consider the interpretation ambiguity that is handled by the ®,,;, constraint,

which nondeterministically returns all interpretations.

Definition 16. A Lezicalized Well-Founded Grammar G is nonredundant iff it does
not contain equivalent nonterminals or rules, i.e., A; # A; iff Lo(Ai) # Ls(4;), and
A= B ®;# A— B2 @ iff Le(A — Bi: @) # Lo(A — B;: ®;), respectively.

Lemma 4. An unambiguous LWFG G is nonredundant.

Proof. The proof is immediate. O

A key concept for proving the grammar learnability (see Sections 5.1.2 and

5.3.1.4) is the reduced grammar semantics defined below.

Definition 17. Let G* be a LWFG, and let E, be a sublanguage of G*, E, C
L,(G*). Given o LWFG G, we call S(G) = L,(G) N E, the semantics of the
grammar G reduced to the sublanguage E,. Given a grammar rule r € Pg, we call

S(r) = L,(r) N E, the semantics of the grammar rule r reduced to the sublanguage
E,.

Definition 18. A chain is a set of ordered unary branching rules: {By, — By_1, ...,
By — By,B; — [} such that L,(Bg) O Ly(By — By_1) = Ly(Bg-1) D -+ D
L,(By = By) = L,(B1) D L,(B1 — B).2A chain set for a nonterminal B;,
0<1i<k,ischs(B;) ={By,...,B1, By}, where By = By_1--- > By and By = .
A grammar rule vt = (A — B1: @) is a generalized rule of a grammar rule

!The grammar cannot contain unused rules since S > A,YA € Ng (see Definition 5, (vi),
pg. 51). Also, every nonterminal symbol is a left-hand side in at least one rule (see Definition 5,

(v)):
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r=(A— B:®), if BT is formed by substituting a nonterminal B; in 5 by a non-
terminal B;* if 3B;* € chs(B;) A B;t = B;. A grammar rule r— = (A — 7: ®7)
is a specialized rule of a grammar rule r = (A — [: ®), if B~ is formed by substi-
tuting a nonterminal B; in 8 by a nonterminal B;~ if 3B;~ € chs(B;) A B;~ < B;.
We call a LWFG, G, general enough w.r.t. a sublanguage E,, if for all generalized
grammar rules we have S(r*) = S(r). We call a sublanguage E, rich enough w.r.t.
a LWFG, G, if for all specialized grammar rules we have S(r~) C S(r).

The general enough property of the grammar, and the rich enough property
of the sublanguage used to reduce the grammar semantics, allow the rule general-
ization during grammar learning.

Definition 19 (Normalized). A Lezicalized Well-Founded Grammar G is called
normalized (NLWFG) if for all grammar rules we have that |B| is minim, i.e.,
VA — B: ®, 3 arule A — ' ® with (3 C B) A (8] >1).2

The above mentioned definitions and assumptions allow us to introduce a
new type of Normalized Lexicalized Well-Founded Grammar G that is conformal
to a sublanguage E,.

Definition 20 (Conformal). A Normalized Lezicalized Well-Founded Grammar
G is conformal w.r.t. a sublanguage E, C L,(G) iff G is unambiguous and gen-
eral enough w.r.t. E,, and E, is complete and rich enough w.r.t. G (E, is a
representative sublanguage, i.e., E, O Eg).

Lemma 5. Given a Normalized Lexicalized Well-Founded Grammar, G conformal
w.r.t. E,, the order of nonterminals in any given chain mazximizes the reduced
grammar semantics S(G).

Proof. Let’s consider the chain chs(B;) = {B,..., B}, where Vi,j,1 < i,j <
k,i # j we have that B; # B;. If we switch nonterminals B; and B;, then grammar
G becomes grammar G*:

G ::Bk—>... Bj_|_1—)Bj Bj—)Bj_l Bz’—|—1_)Bi Bi—)Bi_l...—>B1
G*2By—... Bjyz7—+B; Bi—Bj1 ... Bij1—+B; B;—=B;1... - B

2For simplicity, we use the notation By — Bj_; for the ordered unary branching rules
Bk(Uk) — kal(O'k,l): ‘I’k(ﬁ), where By > Bj_1, and thus o > op_1 even if o = of_;.
We have that Vi,j,¢ # j, Ly (B;) # Ly (B;).

3This is a syntactic definition.
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Figure 5.1: Step ¢ in Algorithm 4. The lines in bold show that the rule associated
with the minimum representative example o; is determined by Pg, and that o;
belongs to L, (G,;), which is deleted from the sublanguage E,.

with the following change of rules:

G rule G* rule

Bji1 — B;j Bji1 — B;

(5.1a) ik ’ becomes specialized ik '
Bj — Bj,1 Bj — B; 1

B;iy1 — B; Biy1 — B;

(5.1b) T ’ becomes generalized i ¢
B; = B B; — Bj—l

The first two rules (5.1a) are specialized rules and the last two rules (5.1b) are
generalized rules, since B; > B;, and Bj 1 > B; 1. In the grammar G U G*, for the first
two rules we have that S(G* rule) C S(G rule) (E, is rich enough w.r.t. G), while for
the last two rules we have that S(G* rule) = S(G rule) (G is general enough w.r.t. E,).
It follows that for the grammar G* we have that S(G*) C S(G). This means that the
original order maximizes the cardinality of the set S(G) = L,(G) N E,.

O

A 4. In order to prove the learnability theorem for grammar induction (see Sec-
tion 5.3.1.4) we assume our target grammar to be a NLWFG conformal w.r.t. a
representative sublanguage F,.



96

The NLWFGs are unambiguous, and thus, during the generation of the rep-
resentative examples, Eg, of a grammar G, from a sublanguage F,, s.t. Er C E, C
L,(G) (Algorithm 4, Theorem 1), each example o; has a unique rule r associated
with it. Moreover, mgdl(r) = gdl(o;), i.e., o; is the syntagma with the minimum
ground derivation length, which is derived from r. Since the representative exam-
ples are ordered, this implies that they induce an order on the grammar rules. In
Figure 5.1, the ith step of Algorithm 4 is given, which shows how the ith represen-
tative example is generated together with the rule from which it is derived. The
rule r = A; — [B: ® is determined from Py and o;, and then added to Pg,. Since G
is normalized and conformal w.r.t. E, (assumption A4), it follows that the rule r
cannot be further generalized. For all nonterminals B; € 3 that belong to the chain
chs(B;), we have the following property: B; is the minimum nonterminal in the
chain chs(B;) that maximizes the reduced rule semantics S(r). This means that r
is general enough w.r.t. E,. The following must be noticed: given the assumptions
Al, A2, A3, and A4, the ith rule, having the above property, can be generated,
based only on the representative example o;, the first + — 1 rules of P, and the
sublanguage FE,. This means that the grammar G, can be learned bottom-up, i.e.,
the ith rule can be learned after the first ¢ — 1 rules are learned (Figure 5.4). The
learning algorithm is presented in Section 5.1.2, and the learnability theorem in
Section 5.3.1.4.

For a Normalized Lexicalized Well-Founded Grammar, G, conformal to a set
of syntagmas, E,, we have that for each equivalence class (C;, 4;), the class (4;, 0),
as well as the class (A;, p) (when it exists) are generated using the Algorithm 2.

Since (A;,0) = (4;,p) 2 (Ci, A;), for each nonterminal A;, the learning algorithm
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Preterminal rules are not learned

77777 1 <--- A—>({<~~E
Bottom-up : l
learned rules : |
(Algorithm 7) Y
A>3 d =----
S |
\‘\\“‘~~> 1+1

Figure 5.2: Grammar nonterminal levels. Preterminals are on level 1 and their
rules are not learned.

will learn first the ordered non-recursive rules (shown in Figure 5.2), then the
ordered recursive rules and last the non-ordered rules (see Algorithm 7). In the
absence of this ordering, the learning machinery might need theory revision steps
(see Algorithm 9).

Table 5.1 presents a summary of the main properties of Normalized Lex-
icalized Well-Founded Grammars and their consequences for learning. The first
property, well-foundedness of the grammar nonterminal set, allows for the total
ordering of the grammar rule set, and thus a bottom-up induction of the grammar.
This implication is shown in Figure 5.2, where it can be seen that the rules corre-
sponding to preterminals are not learned (assumption A3), while all the other rules
are learned bottom-up. The second and the third properties ensure the termination
condition for learning. The fourth property states that the category cat, given in the
current representative example from which the rule is learned, provides the learner
with the name of the predicate (i.e., the name of the left-hand side nonterminal).

The fifth property shows which learning paradigm is suitable: Inductive Logic Pro-
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Properties of LWFGs Consequences for Learning

Ng is well founded Bottom-up induction of the grammar
Every nonterminal is a left-hand side in at
least one ordered non-recursive rule

€ cannot be derived from any nonterminal

Termination condition for parsing®
= ILP decidability

Vo,A = o have the same category of their | Predicate invention for induction
semantic molecules

Ground syntagma derivation A o Grammar-provability K A G F,p, A(0)
Representative examples Small semantic treebank
Representative sublanguage Defines the reduced semantics

G conformal to the representative sublan- | Learnability from positive examples
guage

%For all the rules, if o corresponds to the left-hand nonterminal, then ¢ > 0¢;,Vo; in the
right-hand side, including chains.

Table 5.1: Properties of NLWFGs and their implications for learning

gramming based on Inverse Entailment (Muggleton, 1995), using as performance
criterion the reduced grammar semantics, S(G). The sixth property allows us to
efficiently learn complex rules (see Section 5.1.2, (Muresan, Muresan, and Potolea,
2002)). Learning from a small number of examples has practical importance since
semantic annotations are not readily available and are hard to build for a variety of
domains. The last two properties allow us to learn only from positive data, which

is essential, given that negative evidence is rarely available in language learning.

5.1.2 Relational Learning from Ordered Representative Ex-
amples

Most commonly, research in machine learning has focused on learning classification

functions from data represented as vectors of attributes and their values (a.k.a,

attribute-value representation). Even though this research has its own merits, there

are more complex problems that require more expressive representations as well as
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the use of background knowledge during the learning process. Inductive Logic
Programming (ILP), which is a class of relational learning, embodies both these
characteristics (Muggleton and De Raedt, 1994; De Raedt, 1996; Lloyd, 2003). ILP
methods have been used in a variety of applications for natural language processing
(Zelle and Mooney, 1993; Adriaans and Haas, 1999; Cussens and Dzeroski, 2000;
Tang and Mooney, 2001) and relational data mining, including applications for
bioinformatics (Dzeroski and Lavrag, 2001).

Our learning algorithm for grammar induction is based on our previous work
(Muresan, Muresan, and Potolea, 2002) and belongs to the class of Inductive Logic
Programming methods (ILP), based on Inverse Entailment (Muggleton, 1995). Un-
like existing relational learning methods that use randomly-selected examples and
for which the class of efficiently learnable rules is very limited (Cohen, 1995), our
algorithm learns from an ordered set of representative examples, allowing a poly-
nomial efficiency for more complex rules. The size of this set is small and thus our
algorithm is able to learn, where no large annotated treebanks can be easily built.

ILP methods have the ability to use background knowledge during learning.
For our task, we use background knowledge K that contains: 1) the previously
learned grammar, 2) the previously learned compositional semantic constraints, 3)
the ontology, 4) the lexicon, which specifies for each word its part of speech, as
well as the semantic information given as elementary semantic molecules, and 5) a
reversible robust parser as innate inference engine. Initially, (1) and (2) can be the
empty set, 0.

The learning engine uses two sets of examples at different stages. First, the

cover set algorithm is based only on the representative example set, Er, which
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is semantically annotated (pairs of strings and their semantic molecules; see Ap-
pendix A.1.1 and Appendix A.4.1 for examples). During the generation of the final
hypothesis, a second set E, is used for reducing the grammar semantics. The re-
duced grammar semantics is used in our Inverse Entailment learning method as the
performance criterion in choosing the best rule. A characteristic of this set is that
the examples can be just bracketed if this weakly annotation is enough to ensure
unambiguity.

Algorithm 7 describes the constraint-based grammar induction based only

on positive examples.

Algorithm 7: Constraint_Grammar Induction(Eg, E,, K)
ng — @
repeat
o < Extract_Min(Eg)
(A — B: @) < Generate Rule(o,G', E,, K)
Pg < Py U{A—}ﬁ: q)}
until Er =0
return Pg

For each representative example o € Eg, a cover set algorithm generates the
corresponding rule (Generate Rule) after which the rule together with the learned
compositional semantic constraints are added to the background knowledge K,
which contains the previously learned grammar G’, and the process continues iter-
atively until all the representative examples are covered. By the assumption A3,
the rules corresponding to preterminals are not learned. They are generated from
the lexicon and are given in the background knowledge K (see also Figure 5.2, and
Figure 5.3).

In step 1 of the Generate_Rule procedure, the robust parser generates the
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Procedure Generate Rule(o,G', E,, K)

o= (w,(;)

1w < min(wy ... wy) 8.t b= (by,...,b,)v [fw=w...wy,,
(wj, hj >1b;) € Ly(w,b), 1 < j <n;n is the minimun number of
chunks given by robust parser */
2 chs(j) = {Bjlo; = (wj, h; <1 b;), B < 0;},1<j<n /[*by robust
parser %/
chain(j) = {B]Kj, B]Kjfl, ..., B}, B},BJ} [*ordered chain rules,
s r+« (A—>BY...,B: ®,)
for j < 1 ton do
1 — 1
Bi-»Bi !
whiler 4 7, AS(r) C S(r,) do
t—>1+1
T4 T,
return r

minimum number of chunks that cover o (starting from the string w of ¢)*. In
step 2, for each chunk wj, the robust parser determines chs(j), i.e., the set of
nonterminals from which o; = (wj, w}) is ground-derived (Figure 5.4). In step 3,
the most specific rule r, i.e, with minimum reduced semantics is generated such that
its left-hand side nonterminal is determined from the syntagma category, h.cat = A
(see property Al) and the arguments of each nonterminal B;-) from its right-hand
side are generalized (see assumption A2). Then, the rule r is generalized by un@r)lr
branching rules as long as the reduced semantics increases. We denote by r E —>—1|3 ’

r4 the generalization of r by unary branching rule B;- — B;_l in chain(j) (see section
5.3.1). Therefore, in our Inverse Entailment learning method, the reduced grammar

semantics is used as the performance criterion for selecting the final hypothesis 7.

The final rule r is the least generalized rule which cannot produce a semantic

“For o with gdl(0) = mgdl(r), the chunks with the maximum length |w;| are efficiently com-
puted by the robust parser, from left to right.
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Examples, Eg

Robust Parsing

Most Specitic
Constraint Rule

Constraint Rule
Generalization

Background Knowledge K
- previous learned grammar
- lexicon

~ elementary semantic molecules
— ontology
— robust parser

Candidate Hypotheses

Final Hypothesis, h Performance Criteria

chose
the best

verify| Fqpp

Representative Sublanguage, E o

Figure 5.3: An iteration of Algorithm 7

increase. It is guaranteed that the rule r is normalized and general enough w.r.t.
E,, in accord with assumption A4. An example of an iteration step is given in
Figure 5.3, and in Appendix A.2.

The algorithm is linear on the length of the learned hypothesis and has the
complexity O(|Eg| * | 3] * |chs(j)| * |E,| * |o]?). We assume a constant bound on
the length of the grammar rules. Examples of learned grammars and constraints

are given in Appendix A.1.1 and Appendix A.4.

Theorem 2 (The NLWFG Induction Theorem). Given a Normalized Lezi-
calized Well-Founded grammar, G, conformal to a representative sublanguage E,,
and a semantically annotated set Egr C E, of ordered representative examples given

by Algorithm 4: (G, E,) N (ER,G), Algorithm 7 generates a grammar G' s.t.
G' = G. We write (Eg, E,) — G.

Proof. Let’s assume that after the first ¢+ — 1 representative examples o1,...,0;_1
we have that P = Pg,_,. In Algorithm 4, at step i, for o; we have that 4; —

Bi,...,B,: ® = 0, and the rule 4; — By,...,B,: ® is normalized and general
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cat

E —.
7 A — B :> 0; 0; 1
1
rich enoughw.rt G E
(thuswrt Gr;_1) . R
Bji > --- > Bjjj completew.rt G
) o n = min |J]
robust/” parse :
i chs(j)
Pg,i PGI 1 assumed normalized
assumed general enough
Py, wrt E, atstepi
normalized

general enoughw.rt F,

Figure 5.4: Step ¢ in Algorithm 7. The lines in bold show that the rule rhs, 3, is
learned using the previous i — 1 learned rules, Pg:_ , the current example, o;, and
the sublanguage FE,,.

enough w.r.t. E, (n is minimum (Figure 5.1)). Since G is conformal to E,, it
follows that Algorithm 7 (which guarantees that the learned rules are normalized
and general enough w.r.t. E,), computes for o;, exactly the same rule A; —
Bi,...,B,: ® = o, at step i, and thus Pg = Pg, (Figure 5.4). By complete
induction, it follows that G' = G. O

5.1.3 Iterative Learning from Unordered Representative Ex-
amples
Algorithm 7 presented in the previous section assumes a right order for the repre-
sentative examples. However, in practice it might be difficult to provide the right
order of examples, especially when modeling complex language phenomena. Al-
gorithm 9 is an iterative grammar induction algorithm that starts with a random
order of the representative example set, E%. It scans all the representative exam-
ples (unordered), and for each example o; regenerates the rule r from which it can

be derived, based on the current state of the other rules. The reduced semantics of
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all the rules/chains relative to F, is non-decreasing.

Algorithm 9: Iterative_Grammar Induction(E%, E,, K)

PGI — (2]

repeat

OG1 — PG’

for i < 1 to |E}| do

o; + E%(3) /*unordered set of representative examples ~ */

r=(A— B:®)s.to; € Ly(r)

Pc,v $— PGI — {7‘}

r < Generate_Rule(o;, G', E;, K) [*regenerates the ith rule based on
all the other rules */

B Pe (—PGIU{’I"}
until OGI = PG’
return Pgr

Theorem 3. Given a Normalized Lexicalized Well-Founded Grammar G conformal
w.r.t. a sublanguage E,, and a semantic annotated set E}, C E, of representative
examples in random order, Algorithm 9 learns the same grammar as Algorithm 7
would do, if provided with the representative example set Ex in the right order. We

write (E%, E,) — G iff (Eg, E,) — G.

Proof. Let LF = S(r) be the semantics of the ith grammar rule, r, reduced to
E,, at iteration step k. From the Rule Generalization Property (Property 4) of
semantic composition (Section 4.1.4.2, pg. 84), and Lemma 5 (Section 5.1.1), we
have that L D L™ for 1 < i < |E%|. This implies that L¥ converges (it is non-
decreasing and bounded). Let G be the grammar obtained as limit by Algorithm
9, ie., (E%, Ey) 24 G. The grammar G is conformal to E, ®, which implies that
(G, E,) — (Eg, G) (Theorem 1), and thus (Eg, E,) — G (Theorem 2). Proving
the reciprocal is immediate, since it is sufficient to take E in the right order in
Algorithm 9. O

In Appendix A.1.2, we show a run of the iterative algorithm for learning
finite auxiliary verbs from unordered examples. We show the iterations steps and
the reduced semantics at each step (i.e., the number of covered positive examples

from the representative sublanguage used for generalization).

5The Generate_Rule procedure guarantees that the learned rules are normalized and general
enough w.r.t. E,;.



105

Figure 5.5: Merging two NLWFGs G; and Go

5.2 Grammar Merging

One of the major concerns regarding grammar development and engineering is how
to formally define grammar modularity, such that different fragments of grammars
can be combined together in a sound way (Wintner, 2002). In this section we show
how LWFGs can be merged in a sound way, by the union of their representative
examples, their sublanguages and the subsequent use of the grammar learning al-
gorithm. We also show that grammar merging does not consist merely in the union
of their production rules.

In the previous sections, it could be noticed that for a Normalized Well-
Founded Grammar G conformal to a sublanguage E,, Algorithm 4 and Algorithms
7/9 allow for the reciprocal generation of the grammar rules Pg and the represen-
tative examples Er mediated by the sublanguage E,. We denote this reciprocal
generation G Loy Eg. The direction — is given by Algorithm 4 and the direction

+ by Algorithm 7/9, respectively.
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Definition 21 (Grammar merging). Let G; and Gy be two Normalized Lezical-
ized Well-Founded Grammars defined on two sets of nonterminals, Ng, and Ng,,
respectively, such that Ng, C Ng, Ng, C Ng

Gl = <sz,a NGURGUPGUSl)
GQ = <Z,E/, NG27RG27PG2752>

where Rg, and Rg, are consistent with each other. The subset of nonterminals
(other than preterminals), which are common to Ng, and Ng,, is called the cut
nonterminal set. Let E,1 and E, o be the sublanguages corresponding to the grammar
G and G, respectively.

The merging of the grammars G1 and Gy is realized in three steps:

(i) From G1,Gy and the sublanguages Eq1, Eyo, Algorithm 4 is used to generate
the sets of representative examples corresponding to these grammars, Eg, and
Eg, respectively.

(ii) The union of the sets of representative examples, Eg, U Eg,,"and the union
of the sublanguages, E,1 U E,o are performed.

(i1i) Algorithm 7 or Algorithm 9 is applied to these two sets, obtaining the merged
grammar G = G © Gj.

That s, if :
Gy &2 Ep,
Gy &2 Ep,
then:

G ©G, " Eg, U ER,

Theorem 4. Merging two Normalized Lexicalized Well-Founded Grammars G, and
Gy ensures that: L,(G1) U Ly(G2) C L,(G1 ® G3) (see Figure 5.5).

Proof. The proof is immediate. O

6Between the common nonterminals there is no contradictory partial ordering relation.

"Egr, and Eg, allow the automatic alignment of the nonterminals of the two grammars (in-
cluding the ones belonging to the same chain). For this, the equivalence of syntagmas is exploited
01 = 09, where by = bs and hy.cat # hs.cat. The alignment determines the cut nonterminal set.
During merging, Algorithm 9 could iterate only the rules that corresponds to nonterminals that
belong to the cut nonterminal set, increasing the efficiency.
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Using chains of nonterminals | Using adequate attributes for category definition
A—aBy: @, A—aBy: @,
B—)ﬁliq)l B—)ﬁll (bl (ha:v12)
B—)ﬁgiq)z B—)ﬁQI (bz (ha:v12)
Bt — B: " B — [5: @3 (h.a = v3)
Bt — /632 (I)g

Figure 5.6: Two ways of overcoming overgeneralization. The rules with the non-
terminal B in bold as their left-hand side are the only ones allowed in the ground
derivation of the rule A — aB~: ®,. This is obtained by introducing a new non-
terminal BT, or a discriminative attribute h.a.

If the nonterminals belonging to the cut nonterminal set have different se-
mantics in the two grammars, then we have that L,(G1) U L,(G3) C L,(G1 ® G3)
(strict subset relation). Thus, in general, this merging method can lead to over-
generalization. However, the overgeneralization can be avoided by using chains of
nonterminals or by introducing adequate attributes to define meaningful categories
(i.e., nonterminals). An abstract example of using these two methods to avoid
overgeneralization is given in Figure 5.6. It can be seen that the first method im-
plies introducing an additional nonterminal B, while the second method uses the
same nonterminal B, but with a discriminative attribute h.a. This attribute helps
discriminate between the first two alternatives and the third one (by having two
different values: v12 and v3, where only v12 is accepted by the constraint ®,).

In Figure 5.7, we show an example of merging two grammars (G; and Gs).
{N,} is the cut nonterminal set. In this example, it can be seen that merging two
grammars is not the union of their production rules, i.e., Pg,0¢, # Ps, U Pg,. The

grammar (G; generates only simple sentences (e.g., the child likes John), while the
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G=G1 0 G2

Pg N1 — Noun: ®1 N1 — Noun: &1
N — Adj Np: ®o N1 — Adj Np: &9
No — Det Ni: @3 No — Det Np: &3
No — Det Noun: Py
No — Pn: &5 Ny — Pn: &5
C1 — No Tw Ng: &g C1 — No Tv No: &g
P Noun — [child] Noun — [child] Noun — [child]
Noun — [day] Noun — [day] Noun — [day]
Adj — [sunny] Adj — [sunny] Adj — [sunny]
Adj — [play ful] Adj — [play ful] Adj — [play ful]
Tv — [like] Tv — [like] Tv — [like]
Det — [the] Det — [the] Det — [the]
Det — [a] Det — [a] Det — [a]
Pn — [john] Pn — [john] Pn — [john]

Ly { the child, { sunny day, { sunny day, the child, the playful child,
john, the child, john, the child likes john,
the child likes john, the playful child, john likes a sunny day,

} - the playful child likes a sunny day
(a)

Ea'l Ecr2 Ea'l U Ea'2

child child

playful child playful child

nice playful child | nice playful child
the child the child the child

the playful child | the playful child
john john
john likes the child john likes the child
the child likes john the child likes john

(b)

Er,

the child
john

john likes the child

ER,

child

playful child
the child

ER1 UFE Ro

child

playful child

the child

john

john likes the child

Figure 5.7: Merging two grammars G and G5

(c)

108



109

grammar G generates more complex noun phrases (e.g., modified by adjectives:
sunny day, the playful child). The merged grammar G generates more complex sen-
tences: the playful child likes a sunny day. While this is just an illustrative example,
one can imagine a real case where a grammar that generates complex sentences is
obtained by merging several grammars (e.g., simple clauses, complex noun phrases,
complex verb constructions with auxiliaries). In Chapter 7, we present experiments
done in this direction. The merging method presented in this section shows that
we model the grammar learning/development from simple to complex (which is a
cognitively plausible approach, simulating the child language acquisition process

(Pinker, 1989)).

5.3 Grammar Approximation by Representative
Sublanguage (GARS)

In this section we present our new relational learning model for LWFG learning,
Grammar Approximation by Representative Sublanguage (GARS). For this, we first
present the theoretical foundation of the hypothesis search space for LWFG learn-
ing.

5.3.1 Foundation of the Search Space for Grammar Induc-

tion

In Theorem 2 and Theorem 3 we have proved the soundness of LWFG learning,
done either from ordered representative examples (Algorithm 7), or from unordered
representative examples (Algorithm 9). In this section we prove that the hypothesis

search space for any LWFG learning algorithm is a complete grammar lattice, and

give a learnability theorem. The results of this section are an extension of our paper
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(Muresan, 2005).
5.3.1.1 Representative Examples Parsing Preserving Grammars

In order to define the search space of grammar induction as grammar lattice, we
define the rule derivation step and the rule generalization step of unambiguous
LWFGs, such that they are Eg parsing preserving and are the inverse of each
other. The property of Er parsing preserving means that both the initial and the
derived/generalized rules ground derive the same syntagma, o4 € Ep.

Definition 22. The rule derivation step:

A(oa)—aB(og)y: ® B(og)—p: ®
52 T

1s Eg parsing preserving, if ra *:G> oaNTY *:G> oaNoa € Eg, where ry = A(oy) —
aB(og)y: @4, rg = B(og) — B: @, and 1!y = A(oa) = afy: ®,. We write
TB
ra b7l
The rule generalization step :

A(oa)—apy: @ Bop)=f: @
(53) . X(JA)—:laB(UE)V:gA -

. . . . *G' * . B
is Er parsing preserving, if 'y < OANTA - oaNoa € Eg. Wewriter'y 4 ra.

Since 04 is a representative example, it has the minimum ground derivation
length (gdl(c4) = mgdl(r4)) and thus, we have that rg is an ordered non-recursive
rule. The goal of the rule derivation step is to obtain a new target grammar G’
from G by modifying a rule of GG. Similarly, the goal of the rule generalization step
is to obtain a new target grammar G from G’ by modifying a rule of G’. They
are not to be taken as the derivation/reduction concepts in parsing. An example
of rule derivation steps is given in Figure 5.8. The derivation step o IT—1 rh is Eg

parsing preserving, because the rule 4, ground derives the syntagma major damage.
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G G’ G" Er
r1 N = Noun r1 N = Noun r1 N — Noun damage
ro N— Adj N 714 N— Adj Noun 71§ N — Adj Adj N major damage

Figure 5.8: Example and Counterexample of Ex parsing preserving. Derivation

1 T2
step 7o | 14 is E parsing preserving, while the derivation step ry - rf is not

The derivation step 7 ir—2 ry is not ER parsing preserving since the syntagma major
damage cannot be ground-derived from the rule 7.

We assume that the compositional constraint of the resulting rule (@, for
derivation, and ®,4 for generalization) is computed with the Algorithm 6 (Gener-
ate_Compositional Constraints). Thus, for both specialization and generalization
substitutions, v and u, respectively, the same relation hold for both rule derivation

and generalization steps (see (4.18) in Chapter 4, Section 4.1.4.2):

Uy = VA(B)
1a S pas)

In other words, the specialized rule 7/, can have the contextual constant
generalization substitution u incomplete. This is explained by Principle 5 (Feature
Agreement Principle, Chapter 4, pg. 73) where the agreement is done only at the
level of the semantic head.®

From the Rule Generalization Property (Property 4 in Section 4.1.4.2, pg. 84),

we have that:

(5.5) Lo(ra) 2 Lo (r'y).

8We emphasize that all properties given in this section still hold even if the p substitution is
absent (i.e., we do not have contextual constant generalization).
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Definition 23. A grammar G' is one-step derived from a grammar G, G IT—1 G, if
dr,r1 € P A3r',ry € Pgr, s.t. 1 Ir—1 r', andVq # r,q € Pg iff ¢ € Per. A grammar
G' is derived from a grammar G, G Ii G', if it is obtained from G in n-derivation
stegs: G }T—l Tj G', where n is finite. We extend the notation so that we have
GHG@G.

In Figure 5.8, the grammar G’ is one-step derived from the grammar G, i.e.,

T1
G + G', since G' preserve the parsing of the representative examples FEg, as we
discussed above. The grammar G" is not derived from the grammar G since it does

not preserve the representative example set anymore, as we have shown.

Definition 24. A grammar G is one- step generalized from a grammar G', G' —| G,

if Ar,ry € Pg A 3r',ry € Pgr, s.t. 7' %r anqu#rqE P iff g € Per. A

grammar G is generalized from grammar G', G’ —| G, if it is obtained from G' in
T1

n-generalization steps: G' = - - - 4 G, where n is finite. We extend the notation so
that we have G 4 G.

Definition 25 (Normalized). A LWFG G is called normalized w.r.t. a sublan-

guage E, C L,(Q), if all grammar rules cannot be further generalized by the rule
generalization step (5.3), such that S(r'y) C S(r4).°

Definition 26. Let T be a LWFG, normalized and unambiguous w.r.t. a sublan-
guage E, C Ly(T), and let Er C E, be its set of representative examples. Let

= {G|T u G} be the set of grammars derivable from T. We call T the top

element of L, and L the bottom element of L, if VG € L, T - GAGF L. The
bottom element, |, is the grammar derived from T, such that the right-hand side of
all grammar rules contains only preterminals. We have S(T) = E, and S(L) D Eg
(see Figure 5.15(a)).

Lemma 6. For G,G' € L, G+ G iff G' 4G and L,(G) 2 L,(G").
Proof. Immediate from Property 4, see (5.5). O

Lemma 7. VG € L and Vo € Eg, 3r € P;, s.t. 1 = 0.

9This is a semantic definition.
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r € Pr
* ]
r=o
B; B, ¢
01 0;3 ,,,,, o,,% o1 g; 3 Uni
o | o | o |
(a) (b)
Figure 5.9: (a) Grammar boundary ; (b) Subtree correspondence
Proof. The property holds for T and T F (G is Er parsing preserving. O

Definition 27. If G,G' € L, we say that G subsumes G', i.e., G = G, iff G Ii G'.
Theorem 5. For G,G' € L, if G = G' then S(G) 2 S(G").

Proof. From Lemma 6, Definition 17 (Section 5.1.1), and Definition 27. O

Definition 28. We call boundary of a grammar G € L relative to the parse tree
rs 0,'%he right-hand side of the corresponding rule ra € Pg, 74 X o bd(G) =
{Bl|rs € Pg, B € rhs(r)}' (see Figure 5.9(a)). We denote by fn(r = o) the set
of nonterminals which belong to the parse tree of r 24 o, where fn: Pr x Erp —
N+,r € Pr,0 € Eg. We call top-side, ts(G), and respectively bottom-side, bs(G),

of grammar G relative to the parse treer 2L o, the sets of the nonterminals delimited
by G boundary, bd(G) (see Figure 5.9(a)):
ts(G) = {B € fx(r 2 0)|3B; € bd(G) A B »= B;} U {root}

bs(G) = {B € fn(r 2 0)|3B; € bd(G) A B < B;}'2

-
10All grammars G, T F G, are Eg parsing preserving and all boundaries of G are in the parse
trees of the ground derivations of T grammar rules.

UThe notation of bd(G),ts(G),bs(G) ignores the rule relative to which these concepts are
defined, and in the remainder of this thesis we implicitly understand that the relations hold for
all grammar rules.

125 is the partial ordering relation among the LWFG nonterminals.
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S S
D \% N Verb
og = the boy runs os = the boy runs og = the b(;y runs
G1:S > Det Noun V G2:S —> N Verb T:S—>NV 1 :8S — Det Noun Verb
N — Det Noun N — Det Noun N — Det Noun N — Det Noun
V — Verbd V = Verb V = Verbd V = Verbd

Figure 5.10: Grammars that preserve the parsing of the syntagma the boy runs

We have that ts(G) N bs(G) = bd(G), ts(G) Ubs(G) = fn(r 2L o) and for
the top element of L: ts(T) = bd(T) U {root}.

In Figure 5.10 we present a concrete example. The grammars G, Go, T, L
preserve the parsing of syntagma the boy runs, and we have that T T—l G, T IT—2 G,
Gy lT—l 1, Gy Tl—z L and T Ii L. We can also see the boundaries of the grammar G

and Gy, relative to the parse tree of the T grammar (the right-most figure).

Lemma 8. VG € L,Vry € Pg,ra g o, and VB; € rhs(ra), the parse tree B; g 0;

has a corresponding subtree in the parse tree r 2y o, rooted at the same nonterminal
B; € bd(G), such that B; =L 0;.

Proof. The property holds due to the unambiguity of the T grammar and the Ep
parsing preserving property of the rule derivation step. Moreover, the rule derivation

step preserves grammar unambiguity. If r4 € Pz is A — By, ..., B,, we have that
0 =010, in both parse trees r4 =% o and r 2 o (see Figure 5.9(b)). O

Lemma 9. VG,G' € L, Vry € Pg and Vr'y € Pgr, with 74 X o and ' L o,
o € Eg, if B €rhs(ra), B' € rhs(r'y) and B X op,B’ « 0g, thenop C ogVop D
oy VogNaog=10.

Proof. T is a normalized and unambiguous LWFG, and r € Pt has a unique parse
tree r 2 &. Since both G and G’ are grammars derived from T, the parse trees
B op and B’ < o'z have corresponding subtrees in r L o, which have the same

root due to grammar unambiguity: B 2 op and B' 2 o'y, respectively (Lemma
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(a) (b)
Figure 5.11: Subsyntagma relations

8). Since no two subtrees of a tree overlap in an unambiguous grammar, the lemma
property holds (Figure 5.11(a)). O

Lemma 10. Given the same conditions as in Lemma 9, if G = G', then og D
oy VogNaog=10.

Proof. The proof is similar to the one for Lemma 9 (see Figure 5.11(b)). O
5.3.1.2 Semantic-based Complete Grammar Lattice

We consider the system £ = (L, =) formed by the set £ of the grammars derivable
from T, together with the binary subsumption relation = that establishes a partial
order in L. In order for this system to form a lattice, we must define two operators:
the least upper bound (lub), Y and the greatest lower bound (glb), A, such that for
any two elements G1,Gs € L, the elements G; Y Gy, G A Gy € L exist (Tarski,
1955). The lub element of G, G5 is the minimum element that has the boundary
above the boundaries of G; and GG5. The glb element of G1, (G5 is the maximum

element that has the boundary below the boundaries of G; and G5. Thus, lub and
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Figure 5.12: The lub and glb operators

glb are defined such that for all grammar rules we have:

tS(Gl Y GQ) = tS(Gl) N tS(Gz)
(5.6)

bS(G1 A Gg) = bS(Gl) N bS(GQ)

as can be seen in Figure 5.12(a). For the example in Figure 5.10, we see that T =

G1Y Gy, L = Gy A G,y. In order to have a complete lattice, the property must hold

VA C L:
ts(YoeaG) = () ts(G)
(5.7) GeA
bs(AgeaG) = [) bs(G)

as can be seen in Figure 5.12(b).
These two operators are defined by Algorithms 10 and 11, which generate
the rules corresponding to the grammars G; Y G5, and G; A G5 based on the

corresponding rules in G; and G, and the operators Y and A.

13We need to include the statement if 2 > 2; then z; <+— x5 iff chains of unary branching
rules are considered.
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Algorithm 10: Least_Upper_Bound(G, Gs)

for i < 1 to |Eg| do
PGIYGZ(i) <_PG1(i) YPGz(i) /*Y(GlaGQ,i) */
return Pg, v,

Algorithm 11: Greatest_Lower_Bound(G1, G2)

for i «+ 1 to |ERr| do
L Porxe, (i) < Pa, (i) A Py (i) /*A(G1,Ga,1) */
return Pg, . q,

Procedure 0p(Gy,Ga, 1)

/* PG1(i)YPG2(i) 0TPG1(Z')APG2(Z.) */
| 1hs(Po, (i) /* = Ihs(Pa,(i)) "
o ER(Z)

Ty, < Ths(Pg, (1)) 7z, < rhs(Pg,(7)))
Ty < T i — @

x1 < next(ry,) T2 < next(ry,)

while 71 # 0V 22 # 0 do

Oz, <01 8t 01 Co and 21 *§>1 o1
Oz, < 02 8.5. 02 Co and zo *:G>2 o9
if 04, C 0y, V Oz, 2 0y, then

1 if 05, D 0y, then
L ry « 1vQxzy(0g) T 11Q z9(04,)
/*@ is the concatenation operator */
2 if 0, = 0, then
L [*z) = @y 13 *
ry < rvQzy(og,) 7o 7AQ z9(0y,)

3 if 05, C 04, then
| v 1ryQay(og,) Ta—TiQz(0g) Tz ¢ Tay
z1 < next(ry,)
| T2  next(ry,)

4 else
| ra ¢ TAQ z(04,) x2 < next(ry,)

@ < Generate_Constraints(! — rv)
®, + Generate_Constraints(l — r,)
if Op =Y then return [ — rv: &y else return [ — r, :
function next(r)
x < first(r)
r < rest(r)
return x
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: Tas | next Oz, Oz
® o0, nexto (@
L @2‘ ,,,,, 0-$2 n?),(! ,O,--Z'LL‘ ,,,,, |

4

(a) (b)

Figure 5.13: (a) Cases of syntagma relations ; (b) Transition diagram

For this, the Procedure Op(G1, Ga, %) is built based on Lemma 9. The input
consists of the grammar rules Pg, (i) and Pg, (i), which ground derive the same
syntagma o = Eg(i). The index i shows the bijective mapping between the gram-
mar rules, P; and the representative examples, Er. The output consists of the
corresponding rules Pg,vq, (i), and Pg, g, (i) which ground derive the same repre-
sentative example 0 = Fr() (see also Figure 5.14).

The right-hand sides r;,, r;, of the input grammar rules are traversed from
left to right and the corresponding right-hand sides r+, r, of the output grammar
rules are computed. For each right nonterminal z, x5 of the input rules, the syn-
tagmas o, ,0,,, which derive from them, are computed. The nonterminal whose
ground-derived syntagma includes the other’s syntagma, is appended to ry, while
the other nonterminal is appended to r, (see case 1 and 3 in Procedure Op). For the
equality case (case 2), the nonterminal is appended to both rules ry and r,. Based
on Lemma 9, we have four cases in Procedure Op, illustrated in Figure 5.13(a),
where the syntagmas in two consecutive steps are shown. The 4th case necessarily
follows after case 1 and 3, where the nonterminal x5 is appended to r,. We noticed

that in case 3, r,, and r,, are swapped. The transition diagram among the 4 cases
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. i % Py(i) A Bl BB ®,
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1 s o=FEr(1) |

Figure 5.14: Example of computing (ub and g¢lb

is shown in Figure 5.13(b). A full cycle of Procedure Op is exemplified in Figure
5.14, where the ground-derived subsyntagmas are also shown.

At the end of the Procedure Op both &, and &, are computed, based on the
corresponding rules previously computed.'* This is in accordance with the principle
that the rule derivation/generalization steps are the inverse of each other, since lub
is a generalization, while glb is a derivation.

Lemma 11. The system £ = (L, =) together with the lub and glb operators com-
puted by Algorithms 10 and 11, guarantees that for any two grammars Gl, G, € [,

the following property holds: G1 Y Gs = G1,Gs = G1 A Gy (G1 Y Go l— G1,Go l—
G1 A Gy).

Proof. From Procedure Op (Figure 5.13 and Figure 5.14), it results that the bound-
aries bd(G1 Y G9) and bd(G; A G3) are computed with respect to (5.6) such that the
theorem property is guaranteed for each grammar rule (see Figure 5.12(a)). O

4The constraints can be computed based on the syntagmas which augment the grammar non-
terminals (Muresan, Muresan, and Klavans, 2005, pg. 10).
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Figure 5.15: Grammar semantics reduced to the sublanguage E,: a) Complete
grammar lattice; b) Grammar Boolean algebra

Theorem 6. The system £ = (L, =) together with the lub and glb operators com-
puted by Algorithms 10 and 11 forms a complete lattice.

Proof. Besides the property given in Lemma 11, lub and glb operators are computed
w.r.t. (5.7) (see Figure 5.12(b)), such that we have ts(YgerG) = \ger t5(G) =
ts(T), bs(AaecG) = Ngee bs(G) = bs(L), which gives the uniqueness of T and L
elements. O

Similar to the subsumption relation, >, the lub Y and glb A operators are
semantic-based.
Theorem 7. In the complete lattice £ = (L, =), VG1,Gy € L we have:

S(G1Y Gy) D S(Gh) US(Gy).

(5.8) S(G1 A Gs) € S(Gr) NS(Gy)

Proof. The proof is straightforward from Definition 27, Theorem 5 and Lemma
11. ]
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Thus, the grammar lattice £ is semantic-based (see Figure 5.15(a)).
It is straightforward to prove that the complete lattice £ = (£, =) has the

following properties:

idempotency GALG=G GYyG=G
commutativity Go MGy =Gy LG, GoYGy =Gy YG,
associativity (Ga AGp) AGe =G A (Gy AG.) (GaYG)YG. =G, Y (G Y Ge)
absorption G, A (G, Y Gy) =G, G, Y (G, A Gy) =G,
top TAG=G TYG=T
bottom 1LAG=1 1yYyG=dGa
interdefinability G, = G if G, A Gy =Gy Go =Gyt G, Y Gy =G,
distributivity Go A (Gy YG,) = G, Y (Gy AGe) =
= (Goa A Gb) Y (G4 A G¢) = (Ga Y Gb) A (G, Y Ge)

In proving the above properties it is crucial that Procedure Op always com-
putes the compositional constraints ®, and ®, at the end, and thus they are
independent of the order in which the operators are applied in each of the equality

sides.
5.3.1.3 Grammar Boolean Algebra

As is known, a (grammar) lattice £, = (L, %=1 ) with T and L elements, defines a
Boolean algebra if VG € L, 3G € Ly uniquely determined!® (called the complement
of G), such that GYG =T and G A G = L.

In order for our grammar lattice to define a Boolean algebra, all pairs of
elements, G, G € L, must obey the following condition for all grammar rules (see

Figure 5.16):

bd(G) U bd(G) = bd(T) U bd(L)

0

(5.9)
bd(G) N bd(G)

|

15The uniqueness of G is guaranteed in distributive lattices (Gierz et al., 2003).
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o€ FEp g € Ep o € Eg

Figure 5.16: Boolean algebra

From the above relations it results that:

ts(G) Nts(G) = ts(T)
(5.10)

bs(G) N bs(G) = bs(L)

for all grammar rules, and thus G Y G = T and G A G = L hold, i.e. the gram-
mar lattice forms a Boolean algebra. This means that all rules of all the lattice’s
grammars contain only nonterminals from the corresponding rules of the T or L
grammars. For this, the rule derivation step must guarantee the complete deriva-
tion of each nonterminal down to the L element level. Thus, we will have the
following definitions regarding the rule derivation step:

Definition 29. We call the rule bottom derivation step:

(5 11) A(oq)—aB(og)y: 4 B(og)—pB: ®p
: A(oa)—afiy:
. . . "B . *G *G'
Er parsing preserving, and use the notationra =1 1y, if ra = oaAT!y = 0aN0O4 €
* * |
ErANrp zgoB,,BL = 0p.
Definition 30. A grammar G’ is one-step bottom derived from a grammar G,
T1 T1
Gty G, ifdr,ry € Pg A Elr’,rl € Py, s.t. v 1. A grammar G' is bottom
derived from a grammar G, G I—L ' if it is obtained from G in n-derivation steps
T1
G, -- I—L G', where n is finite. We extend the notation so that we have G I—L G.



123

Figure 5.17: [ub and g¢lb operators in Boolean algebra

Definition 31. If G,G" € Ly, we say that G bottom subsumes G', i.e., G =, G',
iGFE, G

Given these bottom grammar derivation definitions the grammar lattice £, =
(L, =) obeys all the properties given in Section 5.3.1.2 and moreover, it forms
a semantic-based Boolean algebra (see Figure 5.15(b)). In Figure 5.17 is given an
example of lub and glb operator application, where grammar difference is G; — G, =

G A G, and where it can be seen that the de Morgan’s laws also hold, i.e.:

GiAGy =G Y Gy
(5.12)
Gl Y GQ == Gl A GQ
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We notice that given the complete grammar lattice £ = (£, ) (Theorem
7), we have that £ DO L, due to the fact that the rule bottom derivation entails the
rule derivation, i.e. if G I—*L G' then G Ii G'. Thus the grammar Boolean algebra is
a sublattice of the complete grammar lattice (see Figure 5.21(b)).

As an example, the grammars in Figure 5.10 form a boolean algebra, where

5.3.1.4 Learnability Theorem

In accordance with Assumption 3 (Section 5.1.1) the rules corresponding to the
grammar preterminals (POS) are given (i.e. Tg(0)). Thus, for a given represen-
tative example set, EFr, we can construct the grammar | using the robust parser
(P, = Bottom(ERg)). In order to build the T element, we need to apply the gram-
mar generalization procedure starting from the 1 element. This requires knowledge
of the sublanguage E, since the partial order of the grammar lattice is semantic-
based (S(G) = L,(G) N E,).

The grammar generalization is determinate if the rule generalization step is
determinate.

Definition 32. A grammar rule r'y € Pg is determinate generalizable by the rule
generalization step (5.3) if 36 € rhs(r'y) and 3! rg =B — B: ®p (i.e., one and only

' 1c
one rule rg), s.t. vy 4 ra with S(r'y) C S(ra). We use the notation r'y 4 74 for
the determinate generalization step with semantic increase.

In order to soundly build the T element of the grammar lattice, we must

refine the definition of a grammar G' conformal w.r.t. E,.

Definition 33 (Conformal, revised). A LWFG G is conformal w.r.t. a sublan-
guage E, C L,(QG) iff G is normalized and unambiguous w.r.t. E, and the rule
derivation step (5.2) is determinate ('rg) and guarantees the decrease in rule se-
mantics (S(ra) D S(r'y)) for all grammars derived from G. We use the notation
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1D
ra b 1y for the determinate derivation step with semantic decrease (rule rg is

unique and thus not specified).

As a consequence, the only rule generalization steps (5.3) allowed in the
grammar induction process are those which guarantee the same semantic relation
S(r"y) C S(ra),'® which ensures that all the generalized grammars belong to the
grammar lattice. We use the notation 7/, mi|c r4 for the generalization step with
semantic increase (it can be nondeterminate, and thus rp must be specified).

Let chaint be a chain of rules in a LWFG T conformal w.r.t. a sublanguage
E,, chaint = {By, — By 1: ®1,...,By = By: ®y71,B; — [: &7}, such that
By > --- > By > By. All the chain rules, but the last, are unary branching rules.
The last rule is the minimal chain rule.

The rules of a chain must ground derive equivalent representative syntagmas
op, =+ = 0p, (see Figure 5.18(a)), i.e., syntagmas that have the same string and
the same semantic representation, but different categories.

For the 1| grammar of a lattice that has T as its top element, the afore-
mentioned chain becomes chain, = {By — B.: Pp1,...,By — B1: P9y, B —
B1: ®1,}, where 5, contains only preterminals and the rule order is unknown. By
the parsing preserving property of the rule derivation step, the same equivalent
representative syntagmas can be ground-derived from the chain, rules (see Figure
5.18(b)).

We denote by chain = {rg,...,re,r1}, one or more chains in any lattice
grammar, where the rule order is unknown. The minimal chain rules, 7, =

T
min(chain), can always be determined if r,,, € chain s.t. Vr € chain —{rn} Ary, -

16This property allows the grammar induction based only on positive examples.
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Bi €Pri=1.k By r; EFM =Lk
b Tk *# O’B,e

0B, Bk—)IBJ_ Bk—)B]_ ... Bx—=>Byx
By-1—=pL By1— B

By = By B; —» B;

:Bl
L B, =8
rn=og, 1 +

0B,

(b) (c)

Figure 5.18: (a,b) Parsing trees for chain rules (in chaint and chain | , respectively);
(c) The iterations of step 2 in Procedure chains_recovery (chaint contains the
diagonal rules)

T'mg We have that S(r,) = S(r,,,,). By the consequence of the conformal property,

r=
the generalization step 7, = 7,y is not allowed, since it does not produce any

increase in rule semantics. That is, a minimal chain rule cannot be generalized by
any other chain rule, with an increase in its semantics.

Given chain, and the aforementioned property of the minimal chain rules,
we can recover chaint by Procedure chains_recovery.

Lemma 12. Given a LWFG T conformal w.r.t. a sublanguage E,, for any gram-
mar G deriwed from T, all rules are determinate generalizable if all chains of the
grammar T (i.e., all chainT ) are known (e.g., recovered by Procedure chains_recovery).

Proof. The only case of rule generalization step nondeterminism, with semantic
increase, is introduced by the derivation of the unary branching rules of ordered
Bj—p.C

chain, which yields the unordered chain, , where B; — 3, -+  B; — Bj, holds
for all B; < B;. Thus, keeping (or recovering) the ordered chain in any grammar
G derived from T, all the other grammar rules are determinate generalizable. We
have three cases:

B—)IB: CIDBC

(i) A—-apy:®, 4 A—aBy: ®,.
BH_]_—)Bi: <I)Bi+1 C

(ii) A — aB;y: @ — A — aBji1v: ®a.
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Figure 5.19: Determinate rule generalization: (a) no chains, (b) linear chains, (c)
crossing chains

(iii) A — aByy: @, - A—aBl y: ®,.

In the first case, (i), the nonterminal B either does not belong to any chain,
or is the minimum in a chain. The uniqueness of the rule B — 3 is a consequence
of the grammar unambiguity (see Figure 5.19(a)). In the second case, (ii), the
nonterminal B; belongs to a linear chain, and thus it occurs only once as a right-
hand side of a unary branching rule, B;;; — B; (see Figure 5.19(b)). In the third
case, (iii), the nonterminal B; is a crosspoint of grammar chains, and thus it occurs
as right-hand side of all unary branching rules B}, — B;,j = 1..n. In order to
have only one such rule that allows the generalization step with semantic increase,
the following condition must hold (see Figure 5.19(c)):

(5.13) S(B/1) ﬂs (B2,) = S(By),Vj1,j2 € 1..n, j1 # 52
O

Algorithm 13 builds the lattice T element, T < Top(Eg, E;). In step 1,
the Procedure chains_recovery detects all chain = chain,, which contain rules
with identical right-hand side. In step 2, all chain, rules are transformed in chain
form, by generalizing them through the minimal chain rule (see also Figure 5.18(c)).

rmC
The generalization step r < r, guarantees the semantic increase S(ry) O S(r) for
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Algorithm 13: Top(Eg, E,)

P, < Bottom(ER)
Pr < chains_recovery (P, Eg, E,) /*Pr is determinate generalizable */

1C
while dr € Pr s.t. 7 4 ry do
| T4 Ty
return Pt

all the rules r which are generalized through r,,, thus being the inverse of the rule
derivation step in the grammar lattice. The rules r are either chain rules, or rules
having the same left-hand side as the chain rules. The returned set P, contains all
chaint unary branching rules of the T grammar. Therefore, in Algorithm 13 the
set, Pt initially contains determinate generalizable rules, and the “while loop” can

determinately generalize all the grammar rules.

Procedure chains_recovery(P,, Eg, E,;)

while Er # 0 do
1 o « first(ER)

ChG’in(—{TEPJ_|T>k=J>_O'7-/\O'7-EO'} /*  chain = chain */
lhs_chain < {lhs(r)|r € chain}

Ep <+ Er —{o, € Eg|r € chain A r £ or}

2 while |chain| > 1 do

/* chain recovery */
T'm < min(chain) /* r,, cannot be generalized with semantic
increase */

chain <+ chain — {r,}
lhs_chain < lhs_chain — {lhs(rm)}

Tm C
foreach r € P| Alhs(r) € lhs_chain s.t. v = rg do
| T

return P, /* The returned P, contains all chaint */

An example showing the full trace of Procedure chains recovery is given

below.



Eg P, Generalized Rules at:
Iteration 1 Iteration 2 Iteration 3 Itereration 4
he is * AV0O — Pro, Aux
is he AV0 — Auz, Pro
he is * AV1 — Pro, Aux * AV1 - AVO0
he is not AV1 — Pro, Auz, Auz | AV1 — AV0, Auz
he is * AV2 — Pro, Auz * AV2 — AVO *AV2 —» AV1
he can be AV2 — Pro, Auz, Aux | AV2 = AVO0, Auz | AV2 — AV1, Aux
he is * AV3 — Pro, Aux *AV3 — AVO *AV3 —» AV1 * AV3 — AV2
he has been | AV3 — Pro, Aux, Aux | AV3 — AV0, Aux | AV3 = AV1, Auz | AV3 — AV2, Aux
he is * AV4 — Pro, Auz * AV4 — AV *AV4 — AV1 * AV4 — AV2 * AV4 — AV3
he is being | AV4 — Pro, Aux, Aux | AV4 — AV0, Aux | AV4 — AV1, Aux | AV4 — AV2 Aux | AV4 — AV, Aux

Table 5.2: A trace of Procedure chains recovery for auxiliary verb constructions with 4 iterations. Chain rules are
marked with *, and the minimal chain rules are in bold.

6C1
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Example. Table 5.2 shows the trace of Procedure chains_recovery for auxiliary
verb constructions. It can be noticed that at the end, all the rules are determinate
generalizable. For simplicity, only the strings corresponding to E are shown (i.e.,
their semantic molecules are not given). The constraints ®, which are not shown,
are computed at each step for the generalized rules. The sublanguage E, used
for the generalization process is not given. As a note, the Pro nonterminal will be
further generalized to Sbj. Figure 5.20 shows examples of parse trees corresponding
to the ground derivation in the grammar returned by Procedure chains_recovery.

Theorem 8 (Learnability Theorem). If Ey is the set of representative examples
associated with a LWFG G conformal w.r.t. a sublanguage E, O Eg, then the
procedure Top(Egr, E,) computes the lattice T element such that T = G.

Proof. Since G is normalized (Definition 25), none of its rule can be generalized
with increase in semantics. Starting with the L element, after applying Procedure
chains recovery, all rules that can be generalized, with increase in semantics,
through the rule generalization step (5.3), are determinate generalizable (Lemma
12, Definition 32, 33) . Since the rule generalization step and the rule derivation
step are the inverse of each other, the process of grammar generalization from L to
T is the inverse of the derivation process from G to L, which is finite. This means
that regardless of the grammar sequence L,G4,...,Gy, T, there is a derivation
process that yields the inverse sequence G,G,,...,G1, L. Since S(G) = E, and
S(G;) are increasing (because G is conformal to E,), the generalization process
ends at the semantic limit S(T) = F,, and thus T = G. O

If the hypothesis of Theorem 8 holds, then any grammar induction algorithm
that uses the complete lattice search space can converge to the lattice top element,
using different search strategies.

We saw in Section 5.1.2 that if the representative examples are ordered, we
have a more efficient algorithm (Algorithm 7) for learning the T element, for which
we proved the theorem of induction. In this algorithm, the grammar learning is
done bottom-up starting from the | grammar, such that each learned rule belongs
to the T grammar. This way, the generalization process is the inverse of the bottom

derivation, and the search space is the one of a Boolean algebra since at each point

in time, the grammar rules either belong to the T element or to the L element. That
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I"le i‘s c‘an h‘e not have been being

(a) (b)
Figure 5.20: (a) Chain rule deriving a syntagma from FEp; (b) Non-chain rule
deriving a syntagma from E,
is, a grammar G in the Boolean algebra search space has the first rules (already
learned) in the T element, while the others (not learned) in the L element. The
Boolean algebra-type search space gives us the algorithm efficiency (i.e, the T
element is quickly obtained).

Also, when the grammar contains chains and the ordering relation among the
chain nonterminals as well as the order of representative examples are unknown, the
grammar can be iteratively learned based on the chain maximum semantics prop-
erty (Algorithm 9). Moreover, since the search space is a complete grammar lattice
based on monotone semantics, the issue of generalization step nondeterminism is
overcome.

For both Theorem 2 and Theorem 3, the given normalized grammar G (i.e.,
its rules cannot be further generalized) and the given sublanguage E,, uniquely
determines the set of representative examples Er and the grammar complete lattice,

as well as the grammar Boolean algebra as its sublattice. The grammar G is the
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Figure 5.21: Complete Grammar Lattice. a) T built based on the determinate rule

generalization step i|; b) grammar Boolean algebra based on bottom rule derivation
. is a sublattice in the complete grammar lattice based on rule derivation .
lattice T element. The learning is done in the grammar lattice search space, and
the learned grammar has the property that its rules cannot be further generalized.
This means that the learned grammar is the lattice T element which is unique, and
thus both theorems are proved.

Regarding grammar Boolean algebra, we notice that these algebras can be
used for individual learning of grammars that have disjoint sets of nonterminals.
The efficiency of merging these grammars can be increased using the lub operator,

instead of relearning the merged grammar (see Figure 5.15(b) and 5.21(b)).

5.3.2 Grammar Induction Model

Based on the theoretical foundation of the hypothesis search space for LWFG learn-
ing given in the previous section, we define our grammar induction model. First we
present the LWFG induction as an Inductive Logic Programming problem. Then,

in Section 5.3.2.2 we prove that our Lexicalized Well-Founded Grammars are de-
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cidable. We conclude this section by presenting our new relational learning model

for LWFG induction, i.e., the GARS model.
5.3.2.1 Grammar Induction Problem in ILP setting

Inductive Logic Programming (ILP) is a class of relational learning methods con-
cerned with inducing first-order Horn clauses from examples and background knowl-
edge. Kietz and Dzeroski (1994) describe formally the ILP-problem and relate it to
Gold (1967) and PAC-learnability (Valiant, 1984) frameworks. They show that ILP-
problem and Gold’s identification in the limit are not strongly connected, but they
define PAC-learnability for the ILP setting. We briefly present the ILP problem

and then discuss how our grammar induction problem is framed in this approach.

ILP Learning Problem 7

Given:

e a correct provability relation F for a first-order language L, i.e., for all A, B €

L:if A+ B, then A = B,
e background knowledge B in language LB: B € LB C L,

e positive and negative examples E = ET U E~ in language LE C L consistent

with B (B, E /) and not a consequence of B (Ve € E: B/ e), and
e hypothesis language LH C L.
Find a hypothesis H € LH such that:

(i) (B,H,E/0), i.e., H is consistent with B and E,

17Taken from (Kietz and Dzeroski, 1994).
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(ii) (B,HF ET),ie., HA B explain ET, and
(iii) (Ve € E~: B,H / e), i.e., H A B do not explain E~.

The tuple (-, LB,LE,LH) is called the ILP-learning problem. Deciding
whether there exists such an H € LH is called the ILP-consistency problem. An
algorithm which accepts any B € LB and E C LE as input and computes such an
H € LH if it exists, or “no” if it does not exist is called an ILP-algorithm.

Kietz and Dzeroski showed that in order to ensure polynomial PAC-learnability
we need to have polynomial solvability of the ILP-learning problem and to show
that any good hypothesis is found from only a polynomial number of examples. But
the general ILP-problem (=, Horn clauses, ground atoms, Horn clauses ) is unde-
cidable. Thus, it is neither consistently identifiable in the limit, nor PAC-learnable.
The question is what subclasses of first-order logic are efficiently learnable. Possi-
ble choices to restrict the ILP-problem are: the provability relation, - (also called
the generalization model), the background knowledge and the hypothesis language.
Research in ILP has presented positive results only for very limited subclasses of
first-order logic (Kietz and Dzeroski, 1994; Cohen, 1995), which are not appropriate

to model natural language grammars.

Grammar Induction Problem in ILP-setting

Our grammar induction problem can be formulated as an ILP-learning problem

(F,LB,LE,LH), where:

e The provability relation, I, is given by the robust parsing, and we denote it

by F,,. We use the “parsing as deduction” technique (Shieber, Schabes, and
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Pereira, 1995) (see Section 3.5.1). Using this technique, for all syntagmas we
can say in polynomial time whether they belong or not to the grammar lan-
guage. Thus, using the F,,, as generalization model, our grammar induction

problem is decidable.

e The language of background knowledge, LB, is the set of LWFG rules (a type
of DCG rules) that are already learned together with elementary syntagmas
(i.e., corresponding to the lexicon), which are ground atoms (the variables are

made constants).

e The language of examples, LE are sytagmas of the representative sublan-

guage, which are ground atoms. We only have positive examples.

e The hypothesis language, LH, is a LWFG lattice whose top element is a con-

formal grammar, and which preserve the parsing of representative examples.

That is, our grammar induction problem can be formulated as (+,,, LWFG
rules (type of DCG rules) + elementary syntagmas (ground atoms), representative

sublanguage(ground atoms), LWFG rules (type of DCG rules) ).

5.3.2.2 Decidability of LWFGs

In this section we show that LWFGs are decidable, i.e., we show that given a LWFG
G and any syntagma o, there is an algorithm that can decide in a finite number
of steps whether 0 € L,(G). This is equivalent to say that the grammar language
can be recognized by a Turing machine that halts on all inputs.

As given in Chapter 3, L,(G) = {o|o = (w,w'),w € ©+,3A € Ng, A = o}.

We showed that the ground derivation is equivalent to parsing provability, i.e, A =
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o iff G F,, A(c). Thus for a LWFG G and any syntagma o we have that:
e 0€L,(G)if GF,y A0)
e 0 ¢ L,(Q) if G, A(o)

Thus the decidability is reduced to proving the termination of parsing. A

rule A(o) — Bi(01),...,Bp(o,): () in a LWFG G ensures that:

e 0> 0;,1 <i<n. Wehave two cases: a) if n > 1 then |w| > |w;| which
holds true since the empty string cannot be derived; and b) if n = 1, which
corresponds to unary branching rules A(o) — Bi(o1): ®(5), we have that
w = w; and A > B which holds true because there are only chains where the

nonterminals are ordered, and there are no cycles.

e the solving of the ®(5) constraints, which are path equations, is guaranteed
to terminate as it results from the properties given in Chapter 4. The inter-
pretation, ®,,;,, guarantees termination because the semantic interpretation
is performed in the framework of natural language as problem formulation

(i.e., without reasoning).

From these two properties it results the termination of the parsing algorithm.

5.3.2.3 GARS Model

We have formulated the grammar induction problem in the ILP-setting. The the-
oretical learning model, called Grammar Approximation by Representative Sublan-
guage (GARS), can be formulated as follows:

Given:
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e a representative example set Eg, lexically consistent (i.e., it allows the con-

struction of the grammar lattice L element)

e a finite sublanguage E,, conformal and thus unambiguous, which includes
the representative example set, F, O Er. We called this sublanguage, the

representative sublanguage

Learn a grammar G, using the ILP-learning setting outlined above, such that G is
unique and E, C L,(G).

The representative sublanguage defines the reduced semantics that is used as
the performance criterion for grammar rule generalization during grammar learn-
ing. LWFGs are decidable and thus the ILP learning problem is decidable. The
hypothesis space is a complete grammar lattice, and thus the uniqueness prop-
erty of the learned grammar is guaranteed by the learnability theorem (i.e., the
learned grammar is the lattice top element). This learnability result extends sig-
nificantly the class of problems learnable by ILP methods. This class is a class
of constraint-based grammars which capture syntax and semantics (LWFG) and
which are learnable by relational learning methods.

Practically, the GARS model uses two algorithms for LWFG learning. The
first algorithm learns from an ordered set of representative examples and has as
hypothesis search space a Boolean algebra, which guarantees increased learning
efficiency.

The second algorithm learns from unordered representative examples and has
as hypothesis search space a complete grammar lattice, which has as a sublattice
the Boolean algebra of the first algorithm. Even if this algorithm is less efficient

— it requires several iteration steps to converge to the same grammar as the first
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algorithm — its importance is twofold:

e we do not always know the right order of examples, so learning from unordered

examples is a practical need.

e this iterative algorithm allows a sound grammar revision.

The second property can be used to revise the grammar only by revising the
set of representative examples and elementary semantic molecules at the lexicon
level. In other words, the burden of rewriting by hand the grammar rules and the
compositional constraints is replaced by a much easier task of revising the examples.
This sound grammar revision makes the GARS model suitable for incrementally
increasing the coverage of the learned grammar. In this way, GARS can be seen
as a learning model suitable for approximating natural language coverage. The
incremental learning with revision is illustrated in Chapter 7, where we describe
our learning system, which implements all the theoretical algorithms presented in
Part I (Chapters 3, 4, 5) for learning an experimental LWFG. Samples of the results
are also given in Appendix A.

Before presenting our LWFG learning system and the learned experimental
grammar, we present in Chapter 6 the expressiveness of our semantic representation
OntoSeR for all the linguistic phenomena covered by this learned grammar. This

chapter is one of the qualitative evaluations of our theoretical GARS model.
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Chapter 6

Expressiveness of the Semantic
Representation (OntoSeR)

The general problem of text interpretation involves the determination of the se-
mantic relations among entities and the events they participate in, answering to
questions, such as “who” did “what” to “whom”, “when”, “where”, “how” and
“why”. In this dissertation, we take the meaning to be the set of answers given to
all the questions w.r.t. an utterance or set of utterances. In Section 4.2 we formally
defined the meaning of a syntagma, M, as the set of all query-answers that can be
derived by adding the assertional logical form K, to the system’s prior knowledge
(K,,K;,Ky) (see (4.20), pg. 88).

In this chapter, we are presenting in detail the expressiveness of OntoSeR
from a linguistic point of view, its usefulness for a straightforward mapping from
utterance representation to knowledge representation (ontology level), as well as
it adequacy for obtaining the meaning of utterances. Therefore, this chapter will
offer a qualitative evaluation of the learning grammar method developed in this
dissertation, by using an experimental learned grammar. The focus is not the

learned grammar in itself, which can be at any moment revised, but precisely the
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(OntoSeR
(AP
(AP

= (AP) | (OntoSeR) (lop) (OntoSeR)

= (conceptID) . (attr) = (concept)

= (conceptID) = (conceptID) (coord) (conceptID)
(concept) = (conceptID) | (conceptName)
(conceptID) = (logicalVariable)
(attr) = (attrID) | (attrName)
= (logicalVariable)
(attrName) = (lexicalWord)
= (lexicalCoord)

= A

)
)
)
)
)
(conceptName) wof (lexical Word)
)
)
)
{coord)
)

(lop

Figure 6.1: Definition of OntoSeR (syntactic definition)

usefulness of the semantic representation for covering diverse linguistic phenomena.

First, we need to refine the definition of OntoSeR given in Section 3.2.1.
The new definition is shown in Figure 6.1. As can be seen from this definition,
the variables in our representation are either concept IDs or attribute IDs in the
ontology; hence, we can argue that OntoSeR is an ontology query language. The
logical operator lop, which we consider in this dissertation is the logical conjunction
(A).! The coord operator is one of the linguistic coordinators, such as and, or, but
(see details in Section 6.1.5).

As we explained in Section 4.2, we took into account several levels of repre-

sentation in order to get from the utterance representation to the knowledge rep-

'If the grammar would cover other constructions, such as “if then else” constructions, other
logical operators would be required.
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conceptlD Var
Attrld Var
OntoSeR™ (O’) reversibility +
concept identity -
{0}
utterance level onto conceptlD Var

Attrld Ct

OntoSeRt (Ka) reversibility +

concept identity -

directly asserted

conceptID Ct
Attrld Ct
text level TKR ( K d) reversibility  +
concept identity -
filtered
spec. interp. conceptiD ct
Attrid Ct
ontology level OKR (K,) reversibility -

concept identity  +
Figure 6.2: Levels of representation

resentation. We mainly have three levels: utterance level, text level and ontology
level (see Figure 6.2).

At the utterance level, we call OntoSeR ™ the semantic representation that
corresponds directly to a syntagma o, before the ontology constraint ®,,,;, is ap-
plied. Both the conceptIDs and attrIDs remain variables. After the application of
®,n10o during parsing (i.e., a semantic interpretation, which can be weak, such as
role compatibility and consistency check), the assertional form K, of the syntagma
o is obtained. We call this form OntoSeR ™. At this level, the attrIDs become con-
stant, while the conceptIDs remain variables to allow further composition to take
place (we are still at the utterance level). Both at the OntoSeR~ and OntoSeR™
levels, we can exploit the reversibility of the grammar, since both these representa-
tions are used during parsing/generation. Reversibility signals the nondeterminism
at the parsing/generation level.

The text level or discourse level representation, TKR, represents the asserted
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representations (K;). The conceptIDs become constants, and no composition can
happen at this level. However, we still have (indirect) reversibility, since TKR
represents all the asserted OntoSeRs™. Therefore, all the information needed for
reversibility is still present.

The knowledge representation at the ontology level, OKR (K,), is obtained
after filtering and task-specific interpretation. For example, we filter determiners,
and some verb forms, such as aspect. In this dissertation, task-specific interpre-
tation is geared mainly towards terminological interpretation. OKR is a directed
acyclic graph (DAG) G = (V, E), where vertices V' are concepts (corresponding to
nouns, verbs, adjectives, adverbs, pronouns, cf. Quine’s criterion (Sowa, 1999, page
496)), while edges are semantic roles given by verbs, prepositions, adjectives and
adverbs (see more details in Chapter 8). We can consider the nodes of the graph as
frames in an ontology and the edges as the slots of the frames. At the OKR level we
assume the principle of concept identity which means that there is a bijection
between a vertex in OKR and a referent. For example, if we do not have pronoun
resolution, the pronoun and the noun it refers to will be represented as two separate
vertices in the graph. Both the concepts (vertices) and the semantic roles (edges)
form hierarchies of concepts and semantic roles, respectively. Based on these hier-
archies we can model the semantic context for the interpretation that takes place
both locally, from OntoSeR™~ to OntoSeR™ (i.e., ®,u4), and globally from TKR. to
OKR (where additional discourse context can be used). In this dissertation, we
consider only a fairly weak semantic context given by the admissibility relations
that we can find at the level of lexical entries. For the verb thematic roles we con-

sidered the thematic roles derived from Dorr’s “LCS Database” (Dorr, 1997). For
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adjectives, and adverbs we took the roles (properties) from WordNet (Miller, 1990),
and for those we did not find in WordNet we looked at FrameNet (Baker, Fillmore,
and Lowe, 1998), or we manually added them. For prepositions we considered the
“LCS Database”, or we have manually added specific semantic roles.

Since text meaning is defined as being all the answers given to all questions
w.r.t. that text (see Section 4.2), the meaning is implicitly contextual. It indeed
depends on all the filtering and consistency checks that take place at various levels
of representation.

An answer is a vertex in the OKR of an utterance, together with all the
edges incident from/to it. A question is a subgraph of the utterance graph where
the wh-word substitutes the answer concept (see Figure 6.5).

In the remainder of this introductory part we will consider some examples
to illustrate all the concepts introduced until now.

Example In Figure 6.3 we show all the levels of representation starting from
OntoSeR™ for the utterance John has been loving Mary. We can see that the
only difference between OntoSeR™* and TKR is that the conceptID are variables in
OntoSeR™* (A,B,C), while they are constants in TKR (~1,~2,~3). At both these
levels we have all the semantic information that appears in the utterance (verb
tense, aspect, etc). At the OKR level, some filtering can take place: for example
we can ignore verb aspect (i.e., the progressive pg, and perfect pf forms). Moreover,
all concepts are denoted by # (frame identifiers). In Figure 6.3 we can see both
the OKR and a graph representation that is its equivalent. The graphical repre-
sentation displays clearly the directed graph where the concepts are vertices, and

semantic roles are edges. We can also notice that some vertices are not concepts
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OntoSeR™*

[A.name=’John’ ,B.tense=pr,B.pf=y,B.pg=y,B.is_a=love,B.exp=A,B.perc=C,
C.name=’Mary’]

TKR

“1.name=’John’
“2.tense=pr
“2.pf=y
“2.pg=y
~2.is_a=love
“2.exp="1
“2.perc="3
“3.name=’Mary’

OKR

#love2.tense=pr
#love2.exp=#’John’
#love2.perc=#’Mary’

#John’ FMary’

Figure 6.3: Representations of John has been loving Mary

but simply values of slots (e.g., tense and aspect, modals). For readability reasons,
in the remainder of this chapter we generally keep only the graphical representation
of the OKR.

In Figure 6.4 we want to emphasize briefly the principle of concept identity.
In 6.4(a) we show the TKR and OKR of the utterance The boy who loves Mary
gives her a flower. Since we do not deal with anaphora resolution, we have two
vertices in the graph: one corresponding to Mary, the other to her. Another point
that we want to make is that the concept identity principle allows us to have an
implicit merging procedure at the OKR level. In 6.4(b) we have the TKR and OKR
representation of the two utterances The boy loves Mary and The boy gives her a
flower. At the TKR level we have the boy corresponding to two concepts ID (~1,

and ~4, respectively). However, at the OKR level they become the same #boy



TKR
“1.det=the
“1.is_a=boy

“1.is_a=who
“2.tense=pr
“2.is_a=love
“2.exp="1
"2.perc="3
“3.name=’Mary’
"4 .tense=pr
"4.is_a=give
“4.ag="1
“4.th="5
"4.goal="6
“6.is_a=her
“5.det=a
“5.is_a=flower

TKR 142

"1.det=the
“1.is_a=boy
“2.tense=pr
"2.is_a=love
“2.exp="1
"2.perc="3
“3.name=’Mary’

“4.det=the
“4.is_a=boy
“5.tense=pr
“5.is_a=give
“5.ag="4
“5.th="6
“5.goal="7
~“7.is_a=her
"6.det=a
“6.is_a=flower

(b) 1. The boy loves Mary
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OKR

#love2
#love2.
#love2
#gived.
#gived.
#gived.
#gived.

.tense=pr
exp=#boy
.perc=#’Mary’
tense=pr
ag=#boy
th=#flower
goal=#her

#Hovez

FMary’

(a) The boy who loves Mary gives her a flower

OKR 142

#love2.tense=pr
#love2.exp=#boy
#love2.perc=#’Mary’
#giveb.tense=pr
#giveb.ag=#boy
#giveb.th=#flower
#giveb.goal=i#her

{gives Hovez

| iiflower | | {ther | #'Mary’

2. The boy gives her a flower

Figure 6.4: TKR/OKR examples
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Question: What does the boy give her? Answer: #flower
OKR OKR

th

¥

tther I@l

itboy {fwhat I

Figure 6.5: Question and answers for utterance(s) in Figure 6.4(a)

(the determiners are filtered). This way, merging these two utterances we obtain
the same OKR as the OKR of the utterance given in 6.4(a).

As previously mentioned, the OKR representation allows us to obtain the
meaning of a text through answers to questions. For the sake of readability, for each
utterance presented in this chapter, we choose to show only one or two questions
together with their answers. This will be eloquent to illustrate our point. In Figure
6.5 we present the question What does the boy give her? asked in conjunction to
either the utterance in Figure 6.4(a) or the merged utterances in Figure 6.4(b),
along with the answer that we obtain. As we can see, the OKR of the question is a
subgraph of the utterance(s) graph where the wh-word is the vertex corresponding
to the answer vertex (in this case #what matches the concept #flower). The answer
is the vertex representing the concept #flower. At the rendering of OKR we can
choose to give a more detailed context of the vertex, for example all the edges
incident from/to it (see Figure 6.5 where the OKR of the answer shows also the
context of the concept vertex). In Chapter 8, we will present examples where the
answer concept is given in association with its subgraph (that represents nodes
which determine the concept).

In the remainder of this chapter, we will present the expressiveness only at
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the TKR and OKR level. All the examples presented are covered by our learned
grammar (described in Chapter 7). In Section 6.1 we present the representation
of lexical items (verbs, nouns, adjective, adverbs, prepositions and coordinators).
Section 6.2 presents the treatment of raising and control constructions. In Section
6.3 we describe the treatment of relative clauses and wh-questions, showing how
filler-gap dependencies are handled in our framework. In Section 6.4 we discuss the

issue of ambiguity.

6.1 The Lexicon and Elementary Semantic Molecules

In the Lexicalized Well-Founded Grammar formalism, an elementary semantic
molecule corresponds to each terminal symbol (word, or lexical item). In order
to establish this correspondence, we consider a set of elementary semantic molecule
templates that correspond to lexical categories. Within the learning framework,
the lexicon and these templates are a priori given as background knowledge. Ta-
ble 6.1 gives all lexical categories (parts of speech), the number of their associated
elementary semantic molecule templates and the number of attributes that appear
in the molecule heads. We should remind our reader that the attributes that ap-
pear in semantic molecule heads are of three types: feature, variable and constant
(see Section 4.1).We want to point out that these elementary semantic molecule
templates can be easily refined, and the grammar learning framework provides an
implicit grammar revision. Thus, in general, different attributes or representations
can be tried and the effort is minimal since it will not involve refining by hand the
grammar rules or the constraints.

In the next sections we will briefly describe each of these lexical categories
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Table 6.1: Lexical categories: Statistics

and the elementary semantic molecule templates associated with them.

6.1.1 Verbs

149

Verbs are central categories of any approach to syntax and semantics. In this disser-

tation, we give an account of representing complex verbal constructions, including

tense, aspect, negation, modals, finite and non-finite verbs. For this, we introduce

32 semantic molecules templates (22 for main verbs and 10 for auxiliaries) and 12

features. As can be seen from Table 6.1, elementary molecules templates related to

verbal constructions represent almost 70% of all the elementary semantic molecule

templates. However, the semantic interpretation will be partial, depending on the

specific application (e.g., a partial account for negation and modals for terminology,

and tense and negation for some factual constructions). While the full semantic

interpretation of complex verbal constructions is outside the scope of this disser-
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[cat verb |
vtype*  norm
vft fin
val dv
vf no
voice act
tense*  pr
pers* 3rd
(gives)!= pg no
pf no
head X
headS Y
headC1 Z1
headC2 Z2
nl J
b<X.tense — pr, Xis.a=give, X.Arg0=Y, X .Argl =Z1, X.Arg2:Z2>

Figure 6.6: Elementary semantic molecule for gives

tation, we provide an expressive representation that could be used to develop a
semantic interpretation module for this purpose.

An example of an elementary semantic molecule for finite, ditransitive, active
voice main verbs is given in Figure 6.6, with an instantiation shown for the lexical
item gives.? The head of the elementary semantic molecule given in Figure 6.6
contains: category attributes (cat), feature attributes (vtype, vft, val, vf, voice, tense,
pers, pg, pf), variable attributes (head, headS, headC1, headC2).

For lexical items, the category attribute specifies the part of speech, in this
case, verb.

The feature attributes can be divided in two categories, based on their values

in the elementary semantic molecule templates. The values of the attributes marked

2Tn the lexicon we have five forms of verbs associated with five types of elementary semantic
molecules. Considering finite/nonfinite forms, and intransitive/transitive/ditransitive verbs, there
are 22 distinct elementary semantic molecule templates.
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by * (tense, pers, vtype) are variables that get instantiated only when applied to
a particular lexical item. This means that we do not require separate elementary
molecule templates for different values of tense attribute, pers attribute, or vtype
attribute (this attribute distinguishes between normal, raising or control verbs).?
The rest of the feature attributes influence the verb semantics. For example, the
valence attribute val determines the number of arguments the verb has. For ditran-
sitive verbs, we have three arguments, as can be seen in Figure 6.6. The verb form
type attributes vft specifies if the verb is finite or non-finite, which leads to different
semantic representations. The attributes pf, pg specifies the perfect or progressive
aspect of finite verbs, which is marked in the semantic representation.

In general, variable attributes are involved in the composition process and
link a semantic molecule with other semantic molecules. For verbal constructions,
the number of variable attributes is influenced by the value of val attribute. In the
case of ditransitive verbs, we have four attributes: head which is the index of the
verb, headS, which will be linked to the subject of the verb, and headCl, headC2,
which will be linked to the two complements, respectively. The variables associated
with this attributes are also present in the semantic representation.

The body of the elementary semantic molecule given in Figure 6.6 repre-
sents the semantic representation of the lexical item gives (i.e., its OntoSeR ™). The
variables in the representation are concept or attribute/role identifiers in the on-
tology. Thus, X will map onto the concept associated with the verb give, while the

arguments Arg0, Argl,Arg2 will map onto the verb thematic roles (e.g., ag, th,

3Unlike other lexicalized approaches, such as HPSG, we do not use a different lexical structure
for raising and control verbs, we only specify their vtype. These constructions are treated at the
grammar rule level, as can be seen in Section 6.2.



152

string has not been  giving
elementary semantic molecule templates auxtnsS auxnotS  beenS  vingS

-

OntoSeR < X.tense=pr, X.neg=y, X.pf=y, X.pg=y, X.isa=give, X.Arg0=Y, X.Argl=71, X.Arg2=22 >

Figure 6.7: OntoSeR of a verbal construction with auxiliaries

goal). The variables Y, Z1, Z2 will map onto other concepts in the ontology that
represent the arguments of the verb. As can be noticed, we work with a frame-like
representation. In this way, the tense is actually a slot in the frame of the verb.
Similarly, aspect, negation, modals are represented by slots in the verb’s frame.
We present in Figure 6.7 the semantic representation of the construction has not
been giving and show schematically how each lexical element (more precisely, its
elementary semantic molecule) contributes to the whole representation.

The composition is given by grammar rules that are learned from examples.
A discussion of the total number of grammar rules learned for different phenomena
is presented in Chapter 7. As we mentioned in the beginning of this section, in order
to represent complex verbal constructions we introduced 32 elementary semantic
molecule templates and 12 feature attributes. The main goal was to encode in the
semantic representation (OntoSeR) all the information needed for the semantic in-
terpretation, even if in this dissertation we only partially develop the interpretation
module for verbal constructions.

Let us take two examples of complex verbal constructions in (1):

(1)  a. Kim has not been reading the book.

b. Kim could not have written the book.
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Kim has not been reading Questions
the book. 1. Who has not been reading Answer for 1,2

the book? [#7Kim’ ]
TKR 2. Who doesn’t read the i

book?
“1.name=’Kim’ OKR OKR
“2.tense=pr IEI
“2.neg=y
~2.pf=y iy
"2.pg=y FKim’
~2.is_a=read
“2.ag="1
~9 ;gl=~ 3 Answer for 3
~3.det=the 3. What has not been being [#book]
~3.is_a=book read by Kim? 00

OKR

OKR

OKR

{read2

(b) (c)

Figure 6.8: Representation and meaning for (1a)

In Figure 6.8 we show the text level representation (TKR) and the ontology-
level representation (OKR), as well as three questions together with their answers
for the construction (1a). From the TKR representation we can see that the verb’s
frame contains, besides its arguments, information about negation, tense, aspect
(perfect and progressive). Thus, at this level, all the information pertaining to
the utterance is kept in the representation. This allows us to obtain the utterance
directly from the representation using the robust parser/generator (see Appendix
A3).

At the OKR level, filtering can take place. If we choose to ignore the aspect
information (pf, pg) we obtain the representation given in Figure 6.8(a). The fact

that the aspect is ignored from the meaning of the utterance, becomes clear when
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we ask the questions: Who has not been reading the book? and Who doesn’t read
the book?. These two questions have the same OKR representation and thus give
the same answer (shown in Figure 6.8). We can also ask questions at the passive
voice: What has not been being read by Kim? and get an answer even if the
utterance was in active voice. This shows that semantically, active and passive
voice are equivalent (see Section 6.2.2.3 for other examples of active and passive
constructions). However, if we ask the questions: Who has been reading the book?,
or Who had not been reading the book? (i.e., no negation, and wrong tense) we fail
to obtain an answer, since negation and tense are part of the utterance meaning.
A similar analysis is shown in Figure 6.9 for the utterance in (1b). We
show how modals are represented and illustrate that we can choose to represent
modals and negation at the OKR level. We represent modals by their lexical item
(e.g., “~2.mod=could” shows that the verb “~2.is_a=write” has as modal could).
Therefore, the valid questions that can be asked are those that use the same modal

(we cannot ask a question with can or should, for example).

6.1.2 Nouns

Nouns are another well-studied lexical category in linguistic theories, both syntac-

tically and semantically. Let us consider three examples:

(2) a. We enjoyed your wonderful concert on Saturday.
b. The interior of the concert hall is superb.

c. John’s observation contradicted the hypothesis.
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Kim could not have written the book. Questions
vew 1. Who couldn’t have written the

book?

TKR
2. Who couldn’t write the book?

“1.name="Kim’ OKR

~2.mod=could

~“2.neg=y

~“2.bse=have
“2.pf=y
“2.is_a=write
“2.ag="1
~“2.th="3
~“3.det=the Answer
~“3.is_a=book

[#’Kim’]
OKR
OKR

fhwrite2

an
¥

Figure 6.9: Representation and meaning for (1b)

While all three underlined lexical elements belong to the noun category, they as-
sume a different syntactico-semantic representation. For example, concert in (2b)
is a noun modifier, behaving similarly to adjectives, while the noun observation
is a nominalization, behaving syntactically as a noun, but having the underlying
semantics of a verb.

In Figure 6.10 we present the elementary semantic molecule templates needed
for each of these phenomena.

The noun concert in constructions such as the one in (2a) has the elemen-
tary semantic molecule presented in Figure 6.10(a). The head of the semantic
molecule (h) contains the following attributes: category attributes (cat), feature
attributes (det, pers, nr, case,hum, count) and variable attributes (head). The cat-

egory attribute specifies for lexical items their part of speech, in this case, noun.
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(observation)’
(concert)’ [cat noun
[cat noun | det no,
det no, (concert)’ pers*  3rd,
pers* 3rd, cat noun nr* sg,
nr* sg, nr sg case* nomacc
case* nomacc head X hum* no,
hum* no, mod X1 count®  yes,
" h
count”  yes, <X.isa = concert, X .Y:X> head X
plhead X ] b P headS Y
i headC Z
<X.|sa = concert> h*-
b b<X.is_a —observe, X.Arg0=Y, X.Argl:Z>

Figure 6.10: Elementary semantic molecules templates for three types of nouns:
(a) basic nouns; (b) noun modifier; (¢) nominalization

The feature attributes marked by *, as in the case of verbs, have as their values
variables, which get instantiated for each lexical item. They are mainly agreement
features. The feature attribute det no specifies that the bare common nouns are
not determined. Proper nouns and pronouns have instead this feature attribute
set to y, showing that a determiner cannot modify them. The variable attribute
head specifies the index of the noun. The body of the semantic molecule (b), is the
semantic representation (OntoSeR ™), which is a concept in the ontology.

The noun concert in the noun-noun compound construction in (2b) is a noun
modifier, which has the semantic molecule presented in Figure 6.10(b). It behaves
like an adjective, so that its semantic molecule is similar to that of adjectives
(see Section 6.1.3 for adjective semantics). The head of the semantic molecule (h)
contains only one feature attribute nr, which is set to sg, because noun modifiers
cannot be plural. As variable attributes, we have both the usual head attribute,
giving the index (X)) of the lexical item (i.e., the modifier noun) and an additional
attribute mod, which gives the index of the modified noun (X1). The body of the

semantic molecule provides the semantics of the modifier noun. It is a concept in




157

an ontology (X.isa=concert), representing the value of a slot of another concept
given by the modified noun, (X1.Y=X). In the example (2b) the modified concept
is hall (X1) and the slot name is purpose (V).

The noun observation is a nominalization, having the semantic molecule
given in Figure 6.10(c). We noticed that the head of the semantic molecule contains
all the attributes relevant to a noun, because nominalizations behaves syntactically
as nouns. However, their underlying meaning is that of a verb. This fact is reflected
both in the semantic representation, which is the representation of the correspond-
ing verb (observe), and in the molecule head that has the same variable attributes
as the ones of the corresponding verb (head, headS, headC). One aspect needs to be
discussed here. The new type of semantic molecule for nominalization is required
if we want to capture this phenomenon in the grammar. Another possibility would
be to have the molecule of a basic noun, and to treat nominalization only at the
interpretation level (TKR level). The important aspect is that our representation
and our learning framework allow us to experiment with different alternatives.

Examples of TKR and OKR involving nouns will be given in the next sections
when we introduce adjectives, coordinations, relative clauses as they will all present

more complex constructions involving nouns.

6.1.3 Adjectives and Adverbs

In this dissertation, we rely mainly on the conventional wisdom that adjectives
modify nouns and that they denote some properties of the concepts denoted by
nouns.

In Figure 6.11(a) we present the elementary semantic molecule for adjec-

tives, with an instance for the adjective loud. As can be seen, elementary semantic
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cat  adj cat  ad
head X lmod XV]
(loud)'= L mod X, (very)'= | h
b<X.is_a = loud, X1.Y:X> b<X 'YZ"ery>

Figure 6.11: Elementary semantic molecules templates for: (a) adjective; (b) adverb

molecules for noun modifiers and adjectives are almost identical, except that the
molecule for adjectives does not need the feature attribute nr. In this way, we
specify that the adjective is a concept in an ontology (X .isa=loud), which is the
value of a slot (property) of a concept given by the modified noun (X1.Y=X). For
example, loud is the value of the property volume (V') for the concept sound (X1),
in a noun phrase loud sound.

This representation is suitable for intersective adjectives (e.g., the concept
loud sound, is still a sound that additionally has the property of being loud). There
is another type of adjectives, non-interesective adjectives, for which this property
does not hold (e.g., former president is not a president). In this dissertation, we are
not concerned with the latter type of adjectives, but we can envision that they could
be included with the same elementary semantic molecule, making the distinction
between the two types at the interpretation level.

In Figure 6.11(b), we present the elementary semantic molecule for adverbs,
with an instance for the adverb wvery. This elementary semantic molecule is a very
shallow representation of adverbs. They are not concepts, but only values of slots
of concepts. The mod feature is the index of the modified concept, we do not have
the feature head for adverbs (they are headless, like determiners). The decision
to adopt this representation for adverbs was a pragmatic one, since we do not

encounter in our corpus complex constructions including adverbs (e.g., like adverb
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I heard a very clear loud sound.

OKR
TKR

“1.is_a="1’
“2.tense=pt
“2.is_a=hear
“2.exp="1
~“2.perc="3
“3.det=a

“4 .degree=very
“4.is_a=clear
“3.clearness="4
“5.is_a=loud
“3.volume="5
~“3.is_a=sound

| lr’|’| | #sound |

Figure 6.12: Representations for I heard a very clear loud sound

coordination that would require a representation for adverbs similar to the one for
adjectives, with a head feature, and an enriched semantic representation). But this
refinement can be performed, and will subsequently imply only the refinement of
the representative examples involving adverbs.

What we want to mention is that the decision to refine elementary semantic
molecules for different lexical items can be taken at any point. We provide an ex-
pressive representation and a grammar learning tool that makes the refinement task
easy. Also, the underlying theoretical model provides a sound grammar revision.

An example of text and ontology level representations (TKR and OKR) of
the sentence I heard a very clear loud sound is given in Figure 6.12. We treat
adverbs in the same way as we treat determiners at the TKR level (i.e., they are
“headless”). The difference is that we do not ignore them at the OKR level as we

do with determiners.*

“The decision to ignore determiners is taken since the interpretation in this dissertation is
focused on terminological knowledge.
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cat prep cat  iprep
head X case g
(of)'= link X1 ()= head X
comp Xc mod Y
h h
b<X.|s_a =of, Xl.X:Xc> b<Y.of:X>

Figure 6.13: Elementary semantic molecules templates for: (a) prepositions; (b)
genitive marker

6.1.4 Prepositions

Recently, there has been a growing awareness of the difficulties posed by preposi-
tions and the importance of providing adequate means of capturing them, for many
different applications (Jensen and Nilsson, 2003; Saint-Dizier, 2005).

Let us consider the sentence below:

(3)  a. The president of Monsanto will give a briefing for the Brazilian media

at noon.

What can be seen from this example is that prepositions express relations between
two noun phrases (of ), or between a verb and its complement (for), or adjunct (at).
In this dissertation, we provide a uniform representation for prepositions, which
accounts for all these three cases. The elementary semantic molecule template for
prepositions is given in Figure 6.13(a), with an instance for the preposition of.
The head of the semantic molecule contains three variable attributes: head,
which is the index of the preposition, link, which is the index of the concept to
which the preposition is connected (either a noun or a verb), and comp, which is
the index of the preposition complement. From the semantic representation we can

see that prepositions are semantic roles, being slots in frames.
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~“10.mod=will
TKR ~10.is_a=give “12.det=the

“10.ag="8 “13.is_a=brazilian
~8.det=the ~710.th="11 “12.0rigin="13
“8.is_a=president ~“10.goal="12 ~“12.is_a=media
poss.is_a=of “11.det=a time.is_a= at
~“8.poss="9 "11.is_a=briefing ~10.time="14
“9.name=’Monsanto’ goal.is_a=for “14.is_a=noon

~“10.goal="12

OKR

#givelD

@ |1kpresidem | | itbriefing | | 1kmedia| | noon |

poss origin
¥ ¥
{Monsanto’ {brazilian

Figure 6.14: Representation of the example in (3)

From the semantic representation of the sentence in (3) given in Figure
6.14, the representation of prepositions becomes more clear. At the TKR level,
we have the full representation of all three prepositions. The preposition of has
in this example the representation (“poss.is_a=of”, ~8.poss=~9), which says that
of means “poss” (possession), and the concepts ~8 (president), ~9 (Monsanto)
are in a semantic relation of possession. At the OKR representation, we have only
the semantic role introduced by the preposition, and here we can clearly see that
the preposition connects two concepts (i.e., two vertices in the directed graph), its
semantics being the semantic role (i.e., the directed edge between the concepts).

In the grammar learned in this dissertation, we treat the genitive marker as
the inverse of the preposition of from a semantic point of view. For example, Mon-
santo’s president, is equivalent to president of Monsanto. The semantic molecule

for ’s is given in Figure 6.13. We have a feature attribute case which is set to gen-
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cat coord

head X
nay= | [0 ¥
h INnKr
b<X:Y and Z>

Figure 6.15: Elementary semantic molecule templates for coordination

itive. We have also two variable attributes head and mod. The head refers to the
noun in the genitive (e.g., Monsanto) and mod refers to the modified noun (presi-
dent). The intuition is that the construction Monsanto’s behaves syntactically like
an adjective that modifies a noun. Semantically, ’s is the inverse of the preposition
of (Y.of=X). Only at the interpretation level we will have the exact semantic role
given by the preposition of in that particular context. This is because the semantic

role of the genitive marker is not known a-priori.

6.1.5 Coordination

What we mean by coordination in this dissertation is a function that combines
several sentence elements of the same or similar category into a single larger element.
In our ontology-based approach, coordination can be applied to properties (encoded
lexically by adjectives), relations (encoded either by prepositions or verbs), and

entities (encoded by nouns). An example is given bellow:

(4)  a. toxic and persistent contaminants on and in tomato and cucumber.

The lexical item that links the units of a coordinate construction is called
coordinator. And is by far the most frequently occurring coordinator. However,

coordinate constructions can also present various other types of linkers, such as or,
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TKR

“1.is_a=toxic

“2.kind_of="1

“3="1 and "4

“4.is_a=persistent OKR

“2.permanence="4

~“2.is_a=contaminants #contaminants.kind_of = #toxic

loc_surf.is_a=on #contaminants.permanence = #persistent
~2.loc_surf="5 #contaminants.loc_surf = [#tomato,and,#cucumber]
~“6= loc_surf and loc_int #contaminants.loc_int = [#tomato,and,#cucumber]

loc_int.is_a=in
“2.loc_int="5
“7.is_a=tomato
“5="7 and ~8
~“8.is_a=cucumber

fHontaminants

{persistent

|Hnnmatnﬁndﬂmucumheﬂ

Figure 6.16: Semantic representation of coordination

and but. And-coordination is also called conjunctive coordination (or conjunction),
or-coordination is also called disjunctive coordination (or disjunction), while but-
coordination is called adversative coordination.

In Figure 6.15 we give the elementary semantic molecule template for all
these three coordinators, with an instance for and. Unlike the approach taken by
(Copestake et al., 2001) we do consider coordinators as functions, not as binary
relations. From the formal definition of OntoSeR given in Figure 6.1, we notice
that coordination introduces a different definition for atomic predicate (AP), i.e.,
(AP) & (ConceptI D) = (ConceptI D) coord (ConceptlD).

The body of the elementary semantic molecule template for and is given in

Figure 6.15 (X=Y and Z), where X is the value of the head variable attribute, Y is



164

Kim likes Shakespeare and Dante.
Pat likes Balzac and Shakespeare.
OKR

#like2.tense=pr

#like2.exp= #’Kim’
#1like2.perc=[#’Shakespeare’ ,and,#’Dante’]
#like7.tense=pr

#like7.exp= #’Pat’
#like7.perc=[#’Balzac’,and,#’Shakespeare’]

a | FPat’ | [iFBalzac’and FShakespeara’] | a 1PKim’ | | [’shakespeare’and d’'Dante’]
Question: Who likes Shakespeare? Answer: #’Kim’ , #’Pat’
OKR OKR
[#ikez] | wikez]
t e e¥p péyc
erp exp

h J ¥
@ iwho I #Fshakespeare’ Pat’ PKim®

Figure 6.17: Multiple answers to questions

the index of the left coordinant (linkl), and Z is the index of the right coordinant
(linkr). From this representation one can see that we treat coordinators as heads
(Johannessen, 1997).

In Figure 6.16 we can see the TKR and OKR representation of the utterance
given in (4), involving coordination between properties (adjectives tozic, persistent),
relations (prepositions on, in) and entities (nouns tomato, cucumber). At the TKR
level we have all the necessary information to perform the interpretation of co-
ordination. At the OKR level, we keep the coordination of concepts as a logical

proposition for further possible interpretation (e.g., [# tomato,and,#cucumber| in
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Figure 6.16). In this dissertation, we interpret the conjunctive coordination as a set

of concepts, while ignoring the coordinator. While we do represent the same the

coordinators but and or, we leave for future research their specific interpretation.
Even for the conjunctive coordination, the set union is a very simplified way

of interpretation. Let us take the following examples:

(5)  a. young and clever man
b. *young and old man

c. young and old men

The first example enters under the most common case of and coordination as set
union. If we look at the example (b) we have a contradiction: a man cannot be both
young and old (we cannot have antonymic values of the same property assigned to
the same concept). However, in (¢) the coordination among young and old attached
to the plural noun men implies the creation of two concepts: young men and old
men. In this dissertation, we only treat the first two cases, but the interpretation
can be extended to include the third case.

However, even if we do have a limited interpretation of coordination, this is
sufficient to provide correct answers to questions involving coordinations, such as
the case presented in Figure 6.17. Given the two utterances Kim likes Shakespeare
and Dante and Pat likes Balzac and Shakespeare, when we ask the question Who
likes Shakespeare, we get as answers both #Pat and #Kim.

In the grammar learned in this dissertation, we do not handle the coordi-
nation of different categories (beautifully and with great empathy), complex coor-

dinators (e.g., both ... and), or ellipses. The same-category coordination is not
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too restrictive, because we can introduce categories based on functional/semantic
criteria and not on syntactic ones (for the example above we can have a category
for manner adjuncts). We suggest that treatment of ellipses should be done at the

robust parser level and not at the grammar level.

6.2 Raising and Control

In the previous section, we have described the semantics of lexical items, and shown
the usefulness of our semantic molecule representation to model phenomena such
as noun compounds, coordination, and nominalization. In this section, we present
sentence-level constructions that express complex meanings, in which one situation
functions as the semantic argument of another. Two such constructions are raising

and control constructions.

6.2.1 Linguistic Phenomenon and Syntactic Analysis
Let us consider the sentences in (6), which have an infinitival complement:

(6) a. Pat continues to avoid conflict.

b. Pat tries to avoid conflict.

Superficially these two constructions look the same. The embedded clause is missing
the subject, and the subject (or the object as in (7)) of the matrix clause (i.e., the

“controller”) is interpreted as the subject of embedded clause.

(7)  a. We expect the doctor to examine us.

b. I persuade the doctor to examine us.
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fel - finite clause

ncl - nonfinite clause

tocl - to-infinitive clause (subsumed by
ncl)

sv - finite verb

nv - nonfinite verb

obj - object

(a)

wﬁds nal/fdl

)
headCt’

vtype ncl/fecl nv/sv tocl
head headS | head headS headCl headC2 | head headS
rsbj \Y S \Y S 0] C C S
robj \Y S \Y S 0] C C O
csbj \Y S \Y S 0) C C S
cobj \Y S \Y S 0] C C O

(b)

Figure 6.18: Semantic molecules linking in raising and control constructions

The essential difference is semantic. In constructions such as (6a) and (7a)
the controller is not one of the semantic arguments of the matrix verb. These are
called raising constructions (raising to subject, and raising to object, respectively).
In constructions such as (6b) and (7b) the controller is one of the semantic argu-
ments of the matrix verb. The constructions are called control (subject control,
and object control, respectively). Both in raising and control constructions, the
controller is one of the arguments of the embedded verb.

Like in HPSG (Pollard and Sag, 1994; Sag and Wasow, 1999), there is no
structural difference between raising constructions and control constructions in our
approach. For example, in both subject raising and subject control constructions
(6), the controller is realized by the syntactic subject of both the matrix verb and

the embedded verb. What constitutes a major difference in our approach is the
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fact that we do not have different elementary semantic molecules (i.e., structures
of lexical items) for raising and control verbs. They have elementary semantic
molecules like any other verb, the difference being set by the value of the attribute
vtype: rsbj, robj,csbj,cobj, and by their thematic roles (e.g., subject raising verbs
have a no_role role, encoding the fact that these verbs do not have an agent-like
semantic argument).

In our framework, the specific constructions for subject/object raising and
subject/object control are encoded by grammar rules that are learned from exam-
ples.

Figure 6.18 presents schematically the type of semantic molecules that are
involved in raising and control constructions and how linking (i.e., composition) is
performed.® The principal semantic molecules are: sv which stands for the finite
verb together with its subject (including agreement), tocl the infinitival complement
(i.e., to-infinitive clause), and fcl which is the finite clause. To give an example, the

sentence in (7b) is composed from the following molecules:

fel
I persuaded the doctorto examine us
N —  pr— Vv v
sv obj tocl

In order to obtain recursive constructions, we can have nonfinite clauses, ncl,
instead of finite clauses, and nonfinite verbs nv, instead of finite verbs. Recursive
constructions will allow us to process sentences like We tried to convince him to try

to quit smoking, or I saw Mary trying to convince John to sell the house.

5This figure exemplifies constructions where the matrix verb is ditransitive. For transitive
constructions, the verb has only one complement, and thus we would have headC instead of
headC1 and headC2.
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Figure 6.18 presents only the elements of the semantic molecule heads that
are involved in the composition process (i.e., the variable attributes). The nv/sv
molecule has four variable attributes: head, the head of the molecule, which is
the index of the raising/control verb; headS, the index of the subject of the rais-
ing/control verb; headC1, the index of its direct complement, and headC2, the index
of the indirect complement. The tocl molecule has only two variable attributes: head
and headS, because only these are relevant in the linking, the complements of the
embedded clause (to-infinitive clause) being already consumed (linked). From the
table in Figure 6.18 it can be seen that the head and headS of the finite/nonfinite re-
sulting clause is always the same as the head and headS of the nv/sv molecule. Also
the headC2 complement is always the same with the head of the tocl molecule. The
difference in subject raising/control versus object raising/control is the way in which
the subject(headS) of the to-infinitive clause is linked. In subject raising/control it
is linked to the subject headS of the nv/sv molecule, while in object raising/control
it is linked to the complement headC1 of the nv/sv molecule. The linking (i.e., com-
position) is performed through the semantic composition constraint ®.ey,,, which is
encoded as path equations learned together with the grammar rules (see Appendix
A.4). The advantage of our semantic molecule representation can be seen in these
complex constructions, since we keep in the head of the semantic molecules all the
mandatory information required for further composition.

As can be seen from Figure 6.18 raising and control are similar structurally
and compositionally. What, then, is the difference between raising predicates, such
as continue or expect, and control predicates, such as try or persuade? The es-

sential difference is semantic: the controller arguments of control predicates are
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assigned a semantic role by the control verb, while the controller arguments of
raising predicates are not assigned such a role by the raising verb. These seman-
tic differences will become clear in the next sections, with the presentation of the

semantic representation of these phenomena.

6.2.2 Semantic Analysis
6.2.2.1 Subject Raising and Subject Control

As we mentioned in the Section 6.2.1, syntactically we treat raising and control
constructions the same. That is, Pat is the subject of the matrix verb in both of

the constructions bellow.

(8)  a. Pat continues to avoid conflict.

b. Pat tries to avoid conflict.

However, semantically there is a difference: Pat is not the “agent” (ag) of the
raising verb continue, but is the agent of the control verb ¢ry. In our framework this
is implemented by having the raising verb specifying a no_role role. Even if at the
text-level representation (TKR), this information is represented (~2.no_role=~1),
at the OKR level this information is filtered and we obtain the representation as
given in Figure 6.19. For the control verb try, we have an agent role ag, which is
kept as usual at the OKR representation. The fact that these two constructions
are semantically different is captured also by the fact that for raising verbs, we
can ask either What does Pat continue? and What continues?, while for control
constructions we cannot ask the equivalent to the last question What tries?, since

Pat is the agent of the matrix verb.



Pat continues to avoid conflict.

TKR

~“1.name=’Pat’
“2.tense=pr
“2.is_a=continue
“2.no_role="1
~2.prop="3
“3.vft=to
~3.is_a=avoid
“3.ag="1
“3.prop="4

"4 _.is_a=conflict

OKR

| wpat | | #eonflict |

(al)

Pat tries to avoid conflict.

TKR

“1.name=’Pat’
“2.tense=pr
“2.is_a= try
"2.ag="1
“2.prop="3
“3.vft=to
~“3.is_a=avoid
“3.ag="1
“3.prop="4
“4.is_a=conflict

OKR

| weat

| #iconflict |

(b1)
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Question(s):
What does Pat continue?
What continues?

Answer:[#avoid3]

#icontinue2

prpp
Y
#avoid3

prgp

| wpat’ | | #conflict |

(a2)

Figure 6.19: Semantics of subject raising and subject control constructions

Question:
What does Pat try?

Answer:[#avoid3]

fitry2

prpp
¥
#avoida

prgp

| wpat’

|#cunfﬁct|

(b2)



‘We expected the doctor to examine us.

TKR

“1.is_a=we
“2.tense=pt
"2.is_a=expect
"2.ag="1
“2.no_role="3
“2.prop="4
“3.det=the
~“3.is_a=doctor
“4.vft=to
“4.is_a=examine
“4.exp="3
"4.perc="5
“b.is_a=us

OKR

| #we | | #examined |

edp perc
viocor] [

(a)

Figure 6.20: Semantics of object raising and object control constructions

We persuaded the doctor to examine us.

TKR

“1.
.tense=pt
.is_a=persuade
.ag="1

"2.
.prop="4
“3.
“3.
4.
4.

"2
~2
"2

2

~4
“4

is_a=we

th="3

det=the
is_a=doctor
vit=to
is_a=examine

.exp="3
.perc="5
“5.

is_a=us

OKR

#persuade2

6.2.2.2 Object Raising and Object Control
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For object raising/control construction the difference is that the “object” of the

matrix verb is the theme (th) for control verbs, but is not the theme for the raising

verbs. Thus, the raising verb has a no_role semantic role, similar to the no_role role

in the subject raising constructions. The semantic difference between object raising

and object control can be clearly perceived from the OKR representation of the two

constructions given in (9), given in Figure 6.20.

(9) a. We expect the doctor to examine us.



Reporters continued to interview the
candidate

OKR

| #ire porters | | #candidate |

(al)
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Reporters tried to interview the candi-
date.

OKR

| #ireporters | | #icandidate

(b1)

The candidate continued to be inter-
viewed by reporters.

OKR

| #re porters | | #icandidate |

(a2)

The candidate tried to be interviewed
by reporters.

OKR

| #icandidate | #ireporters

(b2)

Figure 6.21: Passivizing the complement of the matrix verb: continue (al,a2); try

(b1,b2)

b. We persuade the doctor to examine us.

6.2.2.3 Passivizing the Complement of the Matrix Verb

In the previous sections, we analyzed the semantic difference between raising and

control construction. Another semantic test showing this difference is the passiviza-

tion of the complement of the matrix verb. For raising constructions, passivizing

the complement does not change the truth conditions, while for control construc-

tion it does. That is, the sentences in (10) are semantically the same, namely they
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are paraphrases, while the sentences in (11) are not. Our system can predict this
phenomenon. From Figure 6.21(al) and 6.21(a2) it is clear that the OKR of (10a)
is the same as the OKR of (10b). For the control constructions (11) this is not the
case, given that in the OKR of (11a) the agent of ¢ry is reporters (Figure 6.21(b1)),

while in the OKR of (11b) the agent of ¢ry is candidates (Figure 6.21(b2)).

(10)  a. Reporters continued to interview the candidate.

b. The candidate continued to be interviewed by reporters.

(11)  a. Reporters tried to interview the candidate.

b. The candidate tried to be interviewed by reporters.

Similar analyses can be done for the sentences (12) and (13), taken from
(Sag, Wasow, and Bender, 2003). Moreover, from these examples, it is clear that
the controller must be the subject of the raising verb since agreement needs to be

performed (skeptics continue vs. your hypothesis continues).
(12) a. Skeptics continue to question your hypothesis.
b. Your hypothesis continues to be questioned by skeptics.

(13)  a. The police tries to arrest disruptive demonstrators.

b. Disruptive demonstrators try to be arrested by the police.

6.3 Relative Clauses and Wh-Questions

An interesting natural language phenomenon is the existence of long-distance de-
pendencies between phrases that are not adjacent in the surface sequence of words.

Long-distance dependencies can arise in at least two ways (Philips, Kazanina, and
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Abada, 2005), as shown (14):

(14) a. Monsanto’s president [who seems to try to get royalties from the farm-

ers [who grew genetically modified soya illegally|] will be giving a brief-
ing for the Brazilian media tomorrow at noon .

b. What does the president seem to try to get __ from the farmers?

One situation, given in (14a), involves subject-verb agreement relations,
where the elements are structurally close to one another and they are in their
canonical position, but are separated by additional material (e.g., relative clauses).

Long-distance dependencies also arise when a phrase is moved from its canon-
ical position to a potentially unbounded distance from that position. This situation
appears both in relative clauses and in wh-questions. For example, the canonical
position of a direct object is immediately after the verb that assigns its thematic
role (e.g., royalties in (14a)). But in a wh-question, this direct object NP, which
becomes a wh-word, is moved to the front of the clause as in (14)b. Following
standard linguistic terminology we call the wh-word the filler and the canonical
position of the fronted NP, marked by underlining in (14b), the gap. The combina-
tion of the two is known as filler-gap dependency (Fodor, 1978). In Section 6.3.3 we
show that in this dissertation, filler-gap dependencies are a processing effect, that
is, they are resolved during parsing by our robust parser.

Relative clauses and wh-questions are both wh-clauses. Without further
context, the clause who visited Kim can be either a relative clause or a wh-question.
In this dissertation, we introduce a feature attribute int(interrogative) at the level of

the semantic molecule head, which is underspecified by default. When this clause is



Monsanto’s president who seems to try to get royalties from the farmers.

TKR

“1.name = ’Monsanto’
“2.0f ="1

“2.is_a = president
~2.is_a = who
“3.tense = pr
“3.is_a = seem
“3.no_role ="2
“3.prop ="4

“4.vft = to

“4.is_a = try

“4.ag ="2

“4.prop ="5

“5.vft = to

“5.is_a = get h
"5.ag ="2 |i|president | |ﬂroyalties | | tifarmers
“6.th ="6
~B.src ="7 of
6.is_a = royalties ¥

src.is_a = from H'Monsanto’
“7.det = the

“7.is_a = farmers
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The toy which Pat handed to the baby.

TKR
OKR

“1.det = the
“1.is_a = toy
“1.is_a = which
“2.name = ’Pat’
“3.tense = pt
~3.is_a = hand

h goal
~3.ag ="2
"3.th ="1 Hoy I tthaby
~3.goal ="4
goal.is_a = to
“4.det = the

“4.is_a = baby

Figure 6.22: Representation of wh-relative clauses

attached to a noun, the value of int feature is no, while when we have a wh-question

it is y. An example illustrative for this phenomenon is given in Appendix A.3.1 for

the utterance who can not have been going. In the next two subsections, we will

give several examples of how relative clauses and wh-questions are represented in

our framework.

6.3.1 Relative Clauses

In this section we focus mainly on the semantic representation of relative clauses,

both at the text-level and ontology-level.
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Regarded syntactically, relative clauses are postmodifiers of nouns. Thus,
the head of the relative clause molecules has a variable attribute mod, which will
be linked to the modified noun, similar to the mod attribute used for adjectives.
But the wh-words do not have this feature, since the wh-clause becomes a relative
clause, only when it is attached to a noun, as we mentioned before. We handle
the agreement between the head noun and the verb in the relative clause. The
proper treatment of agreement helps in disambiguation as can be seen in the two
endocrine glands [located above the kidney/ [that secrete hormones and epinephrine].
The second relative clause is connected to the noun glands and not kidney, because
the verb is in the plural.

In (15) we present the types of relative clauses that are treated in this dis-
sertation: subject wh-relatives (15a), nonsubject wh-relatives (15b), that-relatives
(15¢), reduced relative clauses (15c,d). That-relatives are treated as wh-relatives

in our approach, given that we consider that as a wh-pronoun as in (Sag, 1997).

(15)  a. Monsanto’s president [who seems to try to get royalties from the farm-
ers|
b. the toy [which Pat handed to the baby]
c. an acute viral hepatitis [caused by a virus [that tends to persist in the
blood serum]|

d. an inflammatory disease [involving the sebaceous glands of the skin]

Figure 6.22 shows the text-level and ontology-level representations of the wh-
relative clauses (15a, b). From the text-level representation (TKR) we can see that

the wh-word has the same concept ID with the noun concept it modifies, and both



an acute viral hepatitis caused by a virus that tends to persist in the blood serum

TKR

.det= an
.is_a= acute
.duration="2
.is_a= viral
.kind_of="3
.is_a= hepatitis
vit= ed
.voice= pas
is_a= cause
.ag="5
.th="1
.is_a= by
.ag="5

.det= a
.is_a= virus
.is_a= that
.tense= pr
.is_a= tend
.no_role="5
.prop="7
vit= to
.is_a= persist
.th="5

loc_int.is_a= in

7
"8
“9
"8
"8

.loc_int="8
.det= the
.is_a= blood
.of="9
.is_a= serum

OKR

prop

‘irpersist7|

lockint

{thepatitis

| fiserum |

| flacute |

| fiblood |
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an inflammatory disease involving the sebaceous glands of the skin

TKR

.det= an

.is_a= inflammatory
.kind_of="2
.is_a= disease
.vft= ing

.is_a= involve
.exp="1

.perc="4

.det= the

.is_a= sebaceous
.kind_of="5
.is_a= glands
.is_a= of

.of="6

.det= the

.is_a= skin

Figure 6.23

OKR

idisease

X

| finflammatory |

|irsehacenus | | fiskin |

: Representation of reduced relative clauses
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fill the appropriate verb argument position. At the ontology-level representation
(OKR), the wh-word is not represented, and the concept given by the noun fills the
appropriate verb argument position.

Figure 6.23 presents the text-level and ontology-level representations of the
reduced relative clauses (15c, d). Reduced relative clauses do not have an overt
wh-word, and they are similar to the non-finite participial clauses (-ed and -ing

clauses), but they modify a noun.

6.3.2 Wh-Questions

In order to illustrate several types of wh-questions let us consider the sentence given
in (14a). This is a complex example that contains embedded relative clauses and
raising and control constructions. The ontology-level representation (OKR) is given
in Figure 6.24.

Let us consider the following questions, which exemplify different gapping

positions:

(16) a. Who grew genetically modified soya?
b. What did the farmers grow illegally?

c. For whom will Monsanto’s president be giving a briefing?

We can ask questions for relative clauses (16a,b). An instance of a question
involving an indirect object as answer is illustrated in (16¢). The ontology-level
representation of both questions and answers is given in Figure 6.25. The answer is
done by graph matching, and this can be easily seen when trying to map the OKR

of the question onto the OKR of the sentence. The wh-word in question matches
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Monsanto’s president who seems to try to get royalties from the farmers who grew
genetically modified soya illegally will be giving a briefing for the Brazilian media

tomorrow at noon .

OKR

#president . of=#’Monsanto’
#seem3.tense=pr
#seem3.prop=#try4
#try4.ag=#president
#try4.prop=#getb
#getb.ag=#president
#get5.th=#royalties
#getb.src=#farmers

#modified

viewpoint

genetically

#grow8.tense=pt
#grow8.ag=#farmers
#grow8.th=#soya
#grow8.manner=illegally
#soya.quality=#modified
#modified.viewpoint=genetically

| tifarmers |

| iroyalties | | Hipresident |

#givell.
#givell.
#givell.
#givell.
#givell.
#givell.
#media.origin=#brazilian

#brazilian

mod=will
ag=#president
th=#briefing
goal=#media
temporal=tomorrow
time=#noon

Figure 6.24: OKR representation for the sentence in (14a)
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Q: Who grew genetically modified soya?
A: #farmers

{grow

#fwho I #s0ya

quajity
h i
| fgrows | | iigets |

tmodified

viewpoint
h

Q: What did the farmers grow illegally?
A: #soya

fgrows
th
¥
o)

quality
¥

tmodified

Taase o] Th man
{farmears {what I Fillagally

Q: For whom will Monsanto’s president be giving a briefing?

A: #media
1#givell
gaal
||rpresident | | #tbriefing | |irwhnm |
fmedia I
of orifgin
h J

¥
#'Monsanto’ ftbrazilian

Figure 6.25: Questions and answers for the sentence in (14a) and Figure 6.24
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utterance John gave abook to Mary
LEARNING Yes/No question OntoSerR
rep. example What did John give a book to Mary inconsistent
J
(not linked)
OntoSeR
PROCESSING ~ wh-question What did John give to Mary ?
(robust parser) | A A A
robust JE N S D
parserl
OntoSeR
Yes/No question did John give what to Mary consistent

Figure 6.26: Learning and processing of filler-gap dependencies

the concept in the sentence. The answer consists of the concept node together with

all its edges.

6.3.3 Filler-Gap Dependencies

In this section, we present our mechanism for filler-gap dependencies. These con-

structions are often instances of long-distance dependencies, like the wh-question

in (17):

(17)  a.  What does the president seem to try to get __ from the farmers?

In this dissertation, we treat filler-gap dependencies as processing effects,
that is, they are resolved during parsing by our robust parser. The key element
which triggers this view is learning. Since we are concerned with learning the
grammar and the grammar rules, it seems impossible to think of learning rules that

would capture all the situations where gapping occurs.
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In Figure 6.26 we present an example for a wh-question that illustrates both
the learning and the processing phase for filler-gap dependencies. Let us consider
the utterance John gave a book to Mary. In order to learn grammar rules for
filler-gap constructions (in this case wh-questions), we use resumptive pronouns,
or resumptive NPs in lieu of the gap. For example, the representative example
from which the rule is learned is What did John give a book to Mary, where a book
is a resumptive NP. The wh-word is not linked, and the construction is in fact
a wh-word followed by a full Yes/No question. During learning we do not have
wh-movement, and the use of resumptive pronouns/NPs allows us to learn general
rules without considering every possible position of a gap. At this stage, OntoSeR
is inconsistent, since we have an unlinked variable (the one corresponding to the
wh-word). While we are not claiming the adequacy of our framework for modeling
child language acquisition, it is worth noticing that the use of resumptives has
been noticed in several studies of child acquisition of relative clauses (Diessel and
Tomasello, 2005). Labelle (1990) argues that the use of resumptives is incompatible
with wh-movement.

During parsing, the robust parser tries to fill subsequently all the verb ar-
gument positions (including the ones of the verbs from embedded clauses), until
the OntoSeR becomes consistent, that is, until no variable remains unlinked. We
show this parsing process in Figure 6.26. The results will be a consistent Yes/No
type question, where the wh-word fills the right verb argument (e.g., did John give
what to Mary. In Appendix A.5 we show the treatment of long distance dependen-
cies through an example, for which we give the OntoSeR ™~ (representation returned

by the robust parser before applying the consistency checks performed by ®,.,),
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Q: What does the president seem to try to get from the farmers?
A: #royalties

th
¥

ad !
| tpresident | |ﬂwhat I {ifarmers | {iroyalties I

Figure 6.27: OKR for an example of long-distance dependency

OntoSeR™, the TKR and the OKR representations.
It can be noticed that the “filler-gap” dependency can be very far when we
also have raising and control constructions as in (17a). An OKR representation is

given in Figure 6.27 together with the answer concept (Appendix A.5).

6.4 Ambiguity

We saw throughout this dissertation that we do not have syntagma ambiguities
(syntagmas are pairs of utterances and their semantic molecules). This is essential
for the grammar learning process, where the representative examples and the rep-
resentative sublanguage are actually syntagmas. During language processing, more
exactly during parsing, we have unannotated utterances, and thus ambiguity can
occur. We can have many TKRs/OKRs corresponding to the same utterance. In
this case, our robust parser provides all alternatives. Let us consider the classical

example:

(18)  a. Isaw the man with the telescope.
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TKR

“1.is_a= I’
“2.tense= pt
“2.is_a= see
“2.exp="1
~2.perc="3
~3.det= the
“3.is_a= man
instr.is_a= with
“2.instr="4

~“4 _det= the
“4.is_a= telescope

OKR

| {Hman | | telescope

TKR

“b.is_a= ’I’
“6.tense= pt
“6.is_a= see
“6.exp="5
“6.perc="7
“7.det= the
“7.is_a= man

inftr

instr.is_a= with

~7.instr="8 v
“8.det= the [Wetescons
~“8.is_a= telescope

Figure 6.28: Two TKRs and OKRs for I saw the man with the telescope

From Figure 6.28 we can see that this utterance has two text level repre-
sentations (TKRs) and two corresponding ontology level representations (OKRs).
This is possible since we do have two grammar rules from which this utterance can
be ground-derived, and the compositional constraints and the ontology constraints
satisfies both these alternatives. The ambiguity can be eliminated in this case only
if we have a discourse context. In this case, we would have two TKRs but only
one OKR representation, since the interpretation from the TKR to the OKR might
consider discourse context.

We have a similar case for the sentence in Figure 6.24, where illegally can

be attached either to the verb grow, or to the verb get (again, the reason is that
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the utterance can be derived from two grammar rules (i.e., to-infinitive clause +
adjunct and relative clause + adjunct) and the constraints satisfy both of these
alternatives).® We present this ambiguity example in Appendix B.

However there are cases where ambiguities can be eliminated by the use of

our grammar constraints:

(19)  a. the two endocrine glands [located above the kidney] [that secrete hor-
mones and epinephrine]

b. I saw the man with the blue shirt.

In the first example the second relative clause can be attached to the noun kid-
ney or the noun glands. Since we have agreement between the head noun and the
verb in the relative clause, we have that the relative clause is attached to the noun
glands (plural). This is achieved through our compositional constraint ® ;. In
the second example, the ambiguity can be eliminated through semantic interpreta-
tion given a strong semantic context that has hierarchies of concepts and roles, as
well as selectional restrictions. This way, the ®,,;, constraint, based on this strong
semantic context, allows only one interpretation: the prepositional phrase with the
blue shirt is associated with the noun man and not with the verb saw. In the
same way, polysemy can be handled. In this dissertation, we did not experiment
with a strong context (i.e., a full-fledged ontology), but such resources, when avail-
able, can be incorporated in our framework, since our representation is an ontology
query language, as this chapter has shown. In Chapter 8 we will show that this

representation is useful for acquiring ontological knowledge from natural language.

6 A to-infinitive clause allows an adjunct only at the innermost level.
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Chapter 7

A General Framework for LWFG
Learning

Part I of this dissertation has presented a major theoretical result:

Lexicalized Well-Founded Grammars can always be learned from a set
of semantically annotated representative examples and a representative

sublanguage (see Theorems 2, 3, and 8).
As a consequence, the following statement holds true:

If natural language can be covered by Lexicalized Well-Founded Gram-

mars, natural language can be learned.

While a major finding in itself, this theoretical result triggers an intriguing
question Can natural language be covered by LWFGs?, which in our framework
translates to Does the Grammar Approrimation by Representative Sublanguage
(GARS) model guarantee an approzimation of natural language by LWFGs?

A positive answer about the GARS model can be obtained only empiri-
cally through an extensive quantitative evaluation on large corpora. Although our

learning is based on a small annotated treebank, for a broad coverage quantitative
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evaluation we would need a large OntoSeR-annotated treebank. Unfortunately,
such a resource is not currently available, in order to perform such a quantitative
evaluation.

In this dissertation, we have learned an experimental LWFG. Since it is
clear that we cannot provide a definite positive answer to the above question, we
have performed experiments to show the quality of our learned LWFG, and of our

semantic representation OntoSeR with respect to:

e Coverage of difficult and diverse linguistic phenomena (e.g., raising and con-
trol, noun compounds, nominalization, long-distance dependencies, complex

noun phrases, coordination, complex verbal constructions with auxiliaries).

e Usefulness of our semantic representation for direct knowledge acquisition

from text.

In Chapter 6 we have presented the first quantitative evaluation, while Chap-
ter 8 we will present the second. In order to carry out these evaluations we needed:
1) a general framework for LWFG learning; and 2) a semantic interpreter. In this
chapter we present the general framework for LWFG learning, while in Chapter 8
we will present our semantic interpreter.

The core of our grammar-learning approach is the fact that the process of
writing grammar rules and constraints by hand is replaced by the construction of
a small annotated treebank — utterances and their semantic molecules. This tree-
bank consists of: 1) a set of representative examples, Er (simplest examples used
to generate the grammar rules) and 2) representative sublanguage E, (used for per-

formance criteria in rule generalization). Our grammar-learning framework has the
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practical advantage of allowing grammar revision through an iterative algorithm,
as we have shown in Chapter 5. Thus, if the grammar needs to be refined, we only
refine the representative examples/sublanguage, and not the grammar rules and
the constraints, which would be a more difficult process. In this dissertation, we
implemented a system that represents an experimental platform for all theoretical

algorithms presented in Part I. This system consists of:

e an Inductive Logic Programming system that learns only from positive ex-
amples, uses background knowledge and has a dual mode of operation: learns

both from ordered and unordered examples (iterative algorithm).

e a robust parser/generator that has been used in all our learning experiments

to signal the over/under generalization and ambiguity.

In the remainder of this chapter we present the details of learning an exper-
imental LWFG which we evaluate qualitatively in this dissertation (Chapter 6 and

Chapter 8).

7.1 Learning an Experimental LWFG

Chapter 6 presented the linguistic phenomena that our learned experimental gram-
mar covers, and has shown the degree of expressiveness of our semantic representa-
tion with regard to those phenomena. In this section, we describe what was needed
for learning this grammar (the training data), the overall results we have obtained,
and a discussion of some controlled experiments used to further demonstrate the

practical venue of our theoretical work.
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Lexical Elem. Sem. Mol. | Nonterm. Attributes |Er| | |Es|
Categories | Types | Templates Feature | Variable | Constant
13 25 46 31 24 12 1 151 | 448

Table 7.1: Statistics of the input data for learning

7.1.1 Training Data

Table 7.1 presents the statistics of the training data required for learning. Re-
garding the lexical items, we have a total number of 13 lexical categories (i.e.,
preterminals, or parts of speech), 46 elementary semantic molecule templates that
represent 24 types. For example, as we mentioned in Section 6.1.1, the verbs have 5
types of elementary semantic molecules, which gives a total number of 22 different
templates (e.g., the type vtnsSem (finite, tensed verb) has three different templates
for intransitive/transitive/ditransitive). More details on the lexical item statistics
and the elementary semantic molecule templates have been presented in Chapter
6, Section 6.1.

In order to learn our grammar, we need to provide the names of the new
categories which, as we said in our previous chapters, give the names of the grammar
nonterminals. As Table 7.1 shows, we have 31 categories/nonterminals, which are
different from the lexical categories/preterminals. We also need to provide the
attributes that appear in the semantic molecule heads of all the categories (including
lexical categories). We have 24 feature attributes, 12 variable attributes and 1
constant attribute (cat, whose values are the categories). The last two columns
give the size of our semantically annotated treebank that was required for learning.
We have two sets of positive examples: 1) representative examples, used to generate

the grammar rules (one example per rule), and 2) representative sublanguage used
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Gr. No NL fragment |Er| =|Pg| | |Es] [Nips| {Nins}

1 fin. aux (+sbj+agr) 14 81 6 {sbj, av0, avl, av2,
av3, av4}

2 nonfin aux 5 12 2 {nav0, nav1}

3 nonfin verbs 35 88 5 {nv, nvo, snvo, obj,
pobj}

4 fin verbs (+sbj+agr) 28 115 2 {sv, svo}

5 noun phrases 26 53 10 {sbj, obj, pobj, a,
na? nc7 n7 d7 p7 pc}

6 fin + mnonfin clause 16 41 4 {fcl, ncl, tocl, adjc}

(raising/control)

7 relative clause 10 25 2 {relcl, n}

8 wh-questions 7 16 1 {whcl}

9 copula “to be” 4 6 2 {npred, fcl1}

10 reduced relative clause 6 11 2 {rrcl, n}

Total 151 448 [ 31+ (5)

Table 7.2: Statistics of our learned experimental grammar

for generalization. In order to learn our grammar, we annotated 151 representative
examples Er and 448 examples that constitute the representative sublanguage E,,.
In this experiment, since both E'r and E, are fully annotated, ontological validation
is not needed — the annotation provides the disambiguation required for learning,
i.e, syntagma unambiguity. Only a reduced lexicon is needed for training (e.g.,
only a few lexical items are given for every open word class, such as nouns (20),
verbs (13, 6 of which are for raising and control verbs), adjectives (14), adverbs
(9), proper nouns (4)). For testing we built a larger lexicon required for various

experiments (see Section 8.4 for details).

7.1.2 Overall Results

The summary of the linguistic phenomena covered by the learned experimental
grammar is given in Table 7.2. We have an incremental learning methodology due

to a practical reason, which is the time of learning. Execution time depends on the
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size of the representative sublanguage set, |E,|.! Thus, F,, and accordingly Eg,
have been fragmented into 17 groups of treating the linguistic phenomena presented
in Table 7.2.? In the figure we give only the 10 main groups (the finite verbs have
been divided in 4 subgroups, while the non-finite verbs in 5 subgroups). Another
reason for learning incrementally from smaller groups is that the overall size of E,
is in this case smaller than if we would learn from the whole Ey at once.> This
practical importance of incremental learning emphasizes once more the theoretical
assets of our learning framework: sound grammar revision and merging methods.
In the remainder of this section, we present the learned experimental grammar,

detailing each group of linguistic phenomena mentioned in Table 7.2.

1. finite auxiliary verbs. To learn auxiliary constructions, including modals,
negation, tense, aspect, periphrastic do, we used 14 representative examples,
Er and 81 representative sublanguage examples for generalization, E,. The
learned grammar has 14 grammar rules and 14 learned compositional con-
straints. Appendix A.1.1 gives the full set of representative examples, all the
grammar rules, and sample compositional constraints. The last column of Ta-
ble 7.2 shows the categories (nonterminals) used in this grammar. We have
5 nonterminals for auxiliaries and 1 nonterminal for subject. We introduced
the subject at this level in order to facilitate agreement and subject-auxiliary
inversion that appears in questions. In this grammar, we only have pronouns

and proper names as subject. More complex subject constructions will be in-

LE, is used as performance criteria for generalization, and thus it is parsed at every general-
ization step of each rule in order to choose the rule that parses the biggest number of examples
from E,.

2For each group, the system keeps the entire learning history (e.g., Appendix A.2).

3E, needs to be conformal.
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troduced incrementally at different group levels (e.g., when grammar rules for
noun phrases are learned). Grammar rules for the nonterminal (category) avo
model simple forms of auxiliaries be and have as well as modal auxiliaries and
the periphrastic auxiliary do, together with subject agreement and inversion.
Also at this level we model constructions with relative pronouns used either
in questions or relative clause constructions, where we do not have inversion.
The category avl introduces negation, av2 introduces future tense, av3 models
the perfect aspect, while av4 introduces the progressive form of the auxiliary
to be, which will be used in conjunction with the passive constructions (e.g.,

she may have been being examined by ....)

non-finite auxiliary verbs. To learn non-finite forms of auxiliaries, we
used 5 representative examples and 12 representative sublanguage examples.
The learned grammar has two categories nav0 and navl, for simple and com-
plex non-finite auxiliaries, respectively. We learned 5 grammar rules and 5

compositional constraints.

non-finite verbs. Using the already learned grammar of auxiliary as back-
ground knowledge, we learned a grammar for nonfinite verbs. At this level
we have five categories nv, nvo, snvo, obj, pobj. Learning has been done on 5
smaller groups: 3 for nv, 1 for nvo, and 1 for snvo, respectively. The category
nv models nonfinite verbs alone (e.g., to love, loving, having loved), nvo mod-
els verbs and their object(s) (e.g., loving me, to give me something), and snvo
models subject+verb+object(s) (him to love me). The category obj is just a
proper noun or a pronoun. As in the case of subj, more complex object will

be introduced at later stages. Overall, we used 35 representative examples
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and 88 representative sublanguage examples. The learned grammar contains

35 grammar rules and 35 compositional constraints.

finite verbs. In the next step, we learned grammar rules for finite verbs,
again using the already learned grammar as background knowledge. The
grammar covers simple and complex finite verbal constructions for intransi-
tive, transitive and ditransitive verbs, covering subject verb agreement, active
and passive constructions, tense and aspect information. We used a set of 28
representative examples, Fr, 115 representative sublanguage examples. We
have two categories sv and svo. The learning has been done on 4 smaller
groups, in order to reduce the size of E, at each learning stage to increase
time efficiency (we have 3 groups for sv, and 1 group for svo). At the sv level
we only have constructions of subject-verb, while at svo we have construc-
tions including subject, verb, and object(s). The svo constructions represent
the verb together with all its complements (objects), but no adjuncts. The
adjuncts will be introduced at the clause level. In this learning stage, we did
a coverage experiment for complex finite verbal constructions, because they
are highly regular and we could manually build an exhaustive unannotated
test set. At this stage subj, obj, pobj are only pronouns and proper nouns,
and thus the complexity of the noun phrases does not interfere. The test
set has been fully covered and correctly parsed and generated back using the
reversible robust parser. We manually validated the output representation

(OntoSeR) of each utterance.

noun phrases. The grammar learned in this group models several phenom-

ena of complex noun phrases (n), either premodified by adjectives (a), genitive
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Sample of learned grammar for noun phrases (5)
a((g)) - a,d_]((zll)), ‘I’compSB(ha hl)a cI>onto(b)'
a((}) = adV((le))a a((',f;)), @ compsa(hy b1y ha), Ponio(D).
a’((g)) — a’((gll)): COOTd((gj))a a((’;:)), <I)comp85(hahlahZah3)a q)onto(b)-
na((g)) — noun((gll)), ®ompss (B, B1), Ponto(b).
na((’;)) — na((gll))a na((gj)); q)comp87(h7h17h2)7 q)onto(b)-
ne((})) = noun((’,fll)), ®ompss (B h1)y Ponto(b).
nc((y)) = na((51)); ne((32))s Beompso(hy b, ha), Bonto(b)-
n((3)) = nc((31))s @eompoo (s h1), Ponto ().
n((3)) = a((3)), n((32)), ®eompor (h, b1, ha), Bonto(b)-
n((};)) - det((gf)); n((Zf)), @compoz(h, hi, ha2), Ponto(D).
n((’;)) - pn((’bl;)): @ compos(h; h1)s Ponto(b).
n((4) = PTO((bll)); ®compoa(h, h1), Ponto(D).
Sb.]((};)) - n((’;;)); cI>comploﬁ(hahl)a (I)onto(b)'

Sample of learned constraints for noun phrases (5)

D comps7(h, b, ho) = {h.cat=na, h.head=h;.mod, h.head=hy.head, h.mod=hy.mod,
hi.cat=na, hs.cat=na}

Dcompoo(h, h1) = {h.cat=n, h.det=no, h.pers=h; .pers, h.nr=h; .or,
h.case=h; .case, h.hum=h; .hum, h.gen=h;.gen,
h.count=h;.count, h.head=h;.head, h;.cat=nc, h;.det=no}

®compo2(h, hi,ho) = {h.cat=n, h.det=y, h.pers=hs.pers, h.nr=ho.nr, h.case=hs.case,
h.hum=hy.hum, h.gen=hs.gen, h.count=hs.count,
h.head=h;.mod, h.head=hy.head, h;.cat=det, hs.cat=n,
hs.det=no}

Figure 7.1: Samples of learned grammar rules and constraints for noun phrases

constructions (d), or postmodified by prepositional phrases (p, pc). We also
model noun-noun compounds (na, nc), and have coordination among all the
categories (n, a, pc, d). At this stage sbj, obj and pobj are refined. We used

26 representative examples and 53 representative sublanguage examples.

In Figure 7.1, we give a fragment of our learned grammar for noun phrases

and selected compositional constraints.* In Appendix A.4.1 and Appendix

4We present here the DCG-like form of the rules, where the nonterminals are given by lowercase
letters, but the arguments and the constraints are kept in the theoretical notation of LWFG for
readability reasons. The actual DCG form for all our experiments is given in Appendices.
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A.4.2 we give a sample of the representative examples from which this frag-
ment was learned, and present all the grammar rules and sample constraints,
respectively. In this grammar, the noun compounds are given by the rules
corresponding to the nonterminals na and nc, where na generates construc-
tions where nouns behave like adjectives and could be further combined with
another noun to form a full-fledged noun compound. For example skin disease
treatment can be a full-formed noun compound (generated by nc) or can be
further combined with the noun effect to obtain skin disease treatment effect.
In this case, it is generated by na. It can be noticed that the learned rule
for na is both left- and right-recursive. The compositional constraint is also
given (®comps7 in Figure 7.1). In order to control overgeneralization, besides
using the chain {sbj, n, nc, noun}, we also used discriminative attributes for
the nonterminal n. For example, the difference between a determinate and a
nondeterminate noun is given by the attribute det, which takes two values: y
and no respectively (otherwise we should have used two nonterminals nl and
n2). The constraint ® ympe2 Will constrain the rule n — det n, and thus it will
not generate recursively ungrammatical phrases such as the the disease. This
is obtained by having the constraints h.det = y, ho.det = no, which say that
the value of the attribute det for the noun on the left-hand side of the rule is

y, while for the noun on the right-hand side is no.

finite and non-finite clauses. Using the already learned grammar as back-
ground knowledge, at this stage we learned rules for nonfinite clauses (ncl),
which include the to-nonfinite clauses (tocl), and finite clauses (fcl). At this

stage we introduce adjuncts adjc, which in our case are adverbs and prepo-
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sitional phrases. At this level are learned the grammar rules for raising and
control constructions, which we have described extensively both from a syn-
tactic and semantic point of view in Section 6.2. To learn this grammar
fragment, we use 16 representative examples and 41 representative sublan-
guage examples. In Appendix A.4.1 and Appendix A.4.2, we give samples
of representative examples, learned grammar rules and learned compositional

constraints for raising and control constructions.

relative clauses. Next we learned grammar rules for wh-relative clauses and
that-relative clauses. We used 10 representative examples and 25 representa-
tive sublanguage examples. At this stage we also learned a rule for n, which
represents noun phrases postmodified by relative clauses. In Section 6.3.1 we

have given examples of relative clauses covered by our grammar.

wh-questions. In order to learn wh-questions we used 7 representative ex-
amples and 16 representative sublanguage examples. As we have mentioned
in Section 6.3.3 and Figure 6.26, pg. 182, we used resumptive pronouns and
nouns for learning wh-questions. The long-distance filler-gap dependencies
are treated by the robust parser. An example is given in Appendix A.5. A
discussion of wh-questions, and filler-gap dependencies was given in Sections

6.3.2 and 6.3.3.

copula to be. We learned grammar rules for copula to be in order to account
for our definitional sentences. We introduced two new categories npred for
nominal predicate, and fcll for the finite clause that contains copula to be,

which as we treat as an auxiliary verb. As we mentioned in Section 8.1.1, in
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this experiment we only interpret the predicative-be. We used 4 representative

examples and 6 representative sublanguage examples for learning.

10. reduced relative clauses. The grammar rules for reduced relative clauses
rrcl and noun phrases postmodified by reduced relative clauses n have been
learned from 6 representative examples and 11 representative sublanguage
examples. In Section 6.3.1 we have presented examples of reduced relative
clauses, and in Appendix A.4.1 and Appendix A.4.2 we give samples of rep-
resentative examples, learned grammar rules and learned compositional con-

straints.

This experimental grammar has been tested incrementally on each group of
phenomena, based on a benchmark of 823 grammatical examples we developed. We
manually validated the output of the parser/generator for each of these examples.
This test was not intended to evaluate coverage in the broad-coverage sense, but to
test the correctness of our learned grammar, with respect to the phenomena under
study.

From the above description and from Table 7.2 we see the practical advantage
of our framework: 1) the use of background knowledge (previously learned gram-
mars are added to the background knowledge); 2) the implementation of sound
merging and revision methods. At later stages, some rules are added that subsume
the previously learned rules, and thus a revision is provided. This is the case when
for noun phrases we learned a rule for sbj — n, which subsumes the already existing
rules defined for auxiliaries: sbj — pro (pronoun), and sbj — pn (proper noun), re-
spectively. This learning methodology, which guarantees sound grammar revision,

allows us to learn additional phenomena at any time. In our case, due to our defi-
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nitional corpus requirement, we had to learn rules for copula to be and for reduced
relative clauses. For the latter, a new rule for n has been added to account for the
fact that noun phrases can be postmodified by reduced relative clauses. Table 7.2
shows a summary of all the categories (nonterminals) for which rules are learned in
each group. We can also see that the number of learned grammar rules and learned
compositional constraints equals the number of representative examples, i.e., 151.

In Chapter 3 we have presented Algorithm 1 which determines whether a
Context-Free Grammar is a Well-Founded Grammar, and provides the partial order
among all the nonterminals of a grammar (including preterminals). In Figure 7.2
we show the graphical output of this algorithm for our learned grammar. The nodes
are the nonterminals and the directed arcs show the partial order . The self-loops
indicate recursive rules, while the dotted arcs show the inverse relation < introduced
by non-ordered rules. From this figure we can see that this learned experimental
grammar has all type of rules we theoretically mentioned in the definition of a
LWFG in Chapter 3. That is, we have ordered non-recursive, ordered recursive,
and non-ordered grammar rules.

In order to avoid overgeneralization we have used both chains of nonter-
minals, and discriminative attribute, as was theoretically mentioned in Section 5.2
(Figure 5.6, pg. 107). For auxiliary verbs for examples, we have a linear chain {av4,
av3, av2, avl, av0}. We also have crossing chains (see Section 5.3.1.4, Figure 5.19,
pg. 127): {relcl, fcl, svo, sv} and {whcl, fcl, svo, sv}, where fcl is the crossing point.
We also experimented use discriminative attributes in order to avoid introduction
of a new category (nonterminal). We presented an example at the noun phrase

level, for the rule n — det n and the constraint ®.y;,p92, where we used a feature
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“@

Figure 7.2: Partial ordering relation among nonterminals
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attribute det.

An intuitive idea of incremental learning is to learn phenomena that are
incrementally more complex. Thus, it seems intuitive to learn first auxiliary con-
structions, then finite verbs, then clauses and so on. Analyzing the attributes
required to annotate the representative examples, we can see that for the lower-
level categories (e.g., av, sv) we have more attributes, and the feature attributes
are more directly connected to lexical features (pers, nr, etc.), while the higher level
categories (e.g., relcl) do not have as many attributes, and the feature attributes
are more functional in natures (e.g., stype, ctype for subject and complement type,
respectively). Thus, a category can “delete” attributes or “add” new attributes.
Also we can have attributes that are carried underspecified by the lower level cat-
egories, and they get instantiated at the appropriate category. An example is the
attribute int (interrogative), which remains underspecified till it gets either to the
category relcl when it becomes no, or to the category whcl when it becomes y (see

Appendix A.3.1).

7.1.3 Controlled Experiments

In the previous section, we described the grammar that we have learned for different
linguistic phenomena, and the incremental process of learning.
In this section we present additional experiments used for learning this gram-

mar in order to show the practical aspects of all our theoretical algorithms.

Ordered vs. Unordered Representative Examples. In Section 5.1, we pro-
vided two algorithms for learning LWFGs. Algorithm 7 assumes an ordered set

of representative examples and provides efficient learning, having the hypothesis
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search space as a Boolean Algebra (see Section 5.3.1.3). Algorithm 9 is an iterative
algorithm which allows us to learn from an unordered set of representative exam-
ples, having the search space a complete grammar lattice (see Section 5.3.1.2). The
practical advantage of the iterative algorithm is that sometimes when modeling
complex linguistic phenomena we might not always know the exact correct order
of the examples. The theoretical proof of the search space properties guarantees
that both grammar learning algorithms converge to the same grammar. Thus, they
can both be used and the resulting learned grammar is the same. In Appendix
A.1 we give an example of using both of these algorithms to learn the grammar
of finite auxiliaries. For the iterative algorithm, we choose a random order of rep-
resentative examples (Appendix A.1.2). For this representative example set, we
needed four iteration steps for convergence. We can see that the grammar learned
from the unordered examples is the same as the grammar learned from the ordered

examples.

How do we know that Ey is the representative set? We theoretically define
the representative example set as being the simplest set of examples which can
be derived from a LWFG and which covers all the grammar rules (Section 3.6,
pg. 62). When choosing a representative example set in practice, we are not sure
if this is the exact representative set, that is, we may not have chosen the simplest
examples. In Section 3.6 we have provided Algorithm 4, which, given a grammar
G, and a sublanguage E,, generates the representative examples of that grammar
(annotated with the semantic molecules). Using this algorithm, we can check if
indeed our representative example set was representative. A run of this algorithm

for finite auxiliary verbs is given in Appendix A.6.



203

How do we know that FE, is conformal? If the representative sublanguage
E, is not conformal w.r.t a grammar, we do not reach the top of the complete
grammar lattice, the learned grammar being one of the grammars of the lattice. In
practice, we can detect this by the final coverage of E,,. If an example is missing, the
generalization cannot be done, and thus some of the examples remain uncovered.’
Another reason is that examples can be wrongly annotated. We can detect some
of these mistakes in annotation by taking advantage of grammar reversibility. At
the end of each learning iteration, the entire E, set is parsed and then generated

back. In the next paragraph we say more about the parsing/generation control.

The role of the robust parser/generator. We have extensively taken advan-
tage of our reversible parser/generator throughout our experiments. Reversibility
has been used to signal over/under generalization and nondeterminism. This has
sometimes led us to refine our annotation of the representative examples. In an
initial experiment of learning relative clauses, we have not taken into account the
agreement between the modified noun and the embedded verb. In that case, for
the utterance the boy who loves Mary tries to be loved by her, we obtained only one
parse, but when using that representation as input for the generator we obtained

back 8 utterances given below:

the boy who love mary does try to be loved by her

the boy who love mary tries to be loved by her

the boy who loves mary does try to be loved by her

the boy who loves mary tries to be loved by her

the boy who do love mary does try to be loved by her
the boy who do love mary tries to be loved by her

the boy who does love mary does try to be loved by her
the boy who does love mary tries to be loved by her

O~ O Ui W N —

5This can be noticed from the learning history which allows the validation of our learning
mechanism, thus acting as learning explanation.
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From this output we can clearly see that agreement is not done. This control
enabled us to revise the representative examples in order to account for agreement,
and finally to obtain only the valid generated sentences (3,4,7,8). In Appendix A.3.2
and Appendix A.3.3 we give the full runs of the parsing/generation example for the
relative clauses with and without agreement, respectively. In Appendix A.3.1 we
give an example of parsing/generation for the clause who can not have been going
which has 5 parsing outputs due to different categories — sv, svo, fcl, relcl, whcl
— even if the semantic representation OntoSeR, is the same. For generation, we
obtained three utterances corresponding to this OntoSeR due to lexical variation
of cannot, can’t, and can not. In Appendix A.3.4 we give a more complex utterance
King Abdullah has been working to try to get the Palestinian leaders to come to the

table, for which we obtain only one parse that is generated back as one utterance.

7.2 Concluding Remarks

From these experiments we have seen that the learned experimental LWFG (151
rules and 151 compositional constraints) is complex, it covers diverse linguistic phe-
nomena, it can be incrementally extended, and it can be used for deep semantic
analysis (see Chapter 6). The refinement of any grammatical aspects involves only
the refinement of the elementary semantic molecules and of the representative exam-
ples/sublanguage, and not the refinement of the grammar rules and compositional
constraints. This important feature is possible due to our sound grammar revision
and merging methods. The results of this section and the qualitative evaluation in

Chapter 6 allow us to draw the following conclusions:
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e The representative examples, Er, and the representative sublanguage E, can
be built based on linguistic knowledge about categories and their specific

attributes.

e The learning algorithms presented theoretically in Part I, allow us to verify
the Fr/E, adequacy and consistency, and allow grammar revision for incre-
mentally building an experimental grammar. The learning can be done both
from ordered and unordered representative examples. The theoretical prop-
erties of the search space (boolean algebra and complete grammar lattice,
respectively) guarantee that the learned grammar is the same regardless of

the order of the examples.

e The learned experimental grammar covers complex linguistic phenomena (e.g,
raising and control, long-distance dependencies, noun compounds, nominal-

ization, complex verbs with auxiliaries, complex noun phrases)

e Our semantic representation OntoSeR is expressive enough to be able to rep-
resent these linguistic phenomena and it is useful for deep language under-

standing (concept level answers to questions)

In Chapter 8 we will show that OntoSeR together with the weak concept
identity principle is useful for direct knowledge acquisition. We present our seman-
tic interpreter which implements this principle, and we show, in a pilot experiment,
that we can build semi-automatically OKR-annotated treebanks (human validation
is required to choose just the correct annotation). This type of treebanks can be
used in future research to further develop the semantic interpreter towards a strong

semantic context.
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Chapter 8

OntoSeR for Knowledge
Acquisition

In Chapter 6 we have shown the expressiveness of our semantic representation, On-
toSeR with respect to diverse and complex linguistic phenomena covered by our
learned grammar, as well as its suitability for semantic role labeling and straight-
forward handling of questions and answers. As we have mentioned before, we define
the meaning of an utterance as the set of answers given to all the questions that
can be asked with respect to that utterance. We come back to this issue in Section
8.3.

In this chapter, we present the usefulness of OntoSeR in direct knowledge
acquisition, with focus on terminological knowledge. For this, we first present
a more refined definition of the OKR and a particular treatment of the concept
identity principle adequate to terminological knowledge.

The OKR for terminological knowledge is a directed acyclic graph (DAG),
G = (V, E), where the vertex set V is a set of concepts and instances of concepts,

and the set of edges E has associated a labeling function sr: E — Sk, where Sg is
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a set of semantic roles.! This representation is similar to conceptual graphs (Sowa,
1999), except that the roles are labeled edges in DAG, and not vertices as in Sowa’s
conceptual graphs. In Figure 8.1 we show an example of OKR for terminological
knowledge in geometry domain obtained from definitions given in natural language
(see more details on the acquisition process in Section 8.1.1). This example will be
used to show the main theoretical concepts introduced in this chapter.

We denote the concepts in OKR by #name_concept (e.g., #square in Fig-
ure 8.1). The concepts constitute a hierarchy of concepts, based on the subsume
relation (sub), which is the inverse of the is_a relation. In this dissertation we
denote by #concept the top element of this hierarchy. This is the only con-
cept that has a self-loop. An instance of a concept is denoted by the name of
a concept followed by the instance number (e.g., #angle7). A concept and the
instance of this concept are distinct vertices in OKR, having the same name (e.g.,
name(#angle) = name(#angle7) = angle).

The semantic role which labels an edge (u,v) € E is denoted by sr(u,v),
and the set of vertices adjacent to a vertex v € V is adj[u] = {v € V: (u,v) € E}.

A DAG is called rooted at a vertex u € V, if there exists a path from u to
each vertex of the DAG. Let us consider an OKR (i.e., DAG) rooted at #concept,
and let us denote by subDAG[u] a subDAG rooted at the vertex u € V. We have
the following definition:

Definition 34. Two subDAGs rooted at two vertices u,u’ are equal if the set of the
adjacent vertices to u and u' respectively, are equal and if the edges incident from
u and u' have the same semantic roles as labels. That is:

subDAG[u] = subDAG[u'] & adjlu] = adj[u’] AVv € adj[u], sr(u,v) =
sr(u',v)

'Tn the remainder of this chapter, when we say OKR we refer to OKR for terminological
knowledge.
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Figure 8.1: Concept identity for terminological knowledge
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Property 5 (P5). In an OKR, all vertices u,u’ € V with the same name, and
whose subDAGs are equal are identical (i.e., the same vertex in OKR). That is:

Vu,u' € V,name(u) = name(u’) A subDAG(u) = subDAG(v') = u = v/

Using a hash table, there is a linear algorithm O(|V'|+|E|) which transforms
an OKR to an equivalent OKR which satisfies Property 5. The algorithm is similar
to the algorithm which finds the common subexpressions of a given expression.?

In Figure 8.1(a) we can see that the vertices #angle7 and #anglel6 have
the same name and their subDAGs are equal. The same is true for the vertices
#sides10 and #sidesl3. Using the above mentioned algorithm the initial OKR
in Figure 8.1(a) is transformed to an equivalent OKR, which satisfies Property 5,
shown in Figure 8.1(b).

Property 6 (P6). A concept in a hierarchy of concepts can be linked by the sub
relation only to its parent(s), and not to any other ancestors. A subDAG defining
a property of a concept from the hierarchy of concepts can be found only once in
the OKR at the level of the most general concept that has this property.

The OKR in Figure 8.1(b), does not satisfy Property 6, since the subDAG
corresponding to the property “right angles” for example, belongs both to the
concept #rectangle and its child #square. Similarly, the subDAG corresponding to
the property “equal sides” belongs both to the concept #rhombus and to its child
#square. By applying Property 6, we obtain the OKR in Figure 8.1(c). In this
way, we can see that the properties “right angle” and “equal sides” belongs directly
only to #rectangle and #rhombus, respectively, and not to #square, which is lower
in the hierarchy. In this way we remove redundancy, and implement the notion of

inheritance. Thereby, the concept #square inherits the properties “right angles”

and “equal sides”.

2Property P5 guarantees that the OKR is a DAG with totally shared subDAgs.
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Principle 7 (Weak Concept Identity for Terminological Knowledge). An
OKR which satisfies Property 5 and 6 is an OKR which satisfies the weak concept
tdentity principle.

The OKR in Figure 8.1(c) is an example of OKR which satisfies the weak
concept identity principle.

Our semantic interpreter implements the weak concept identity principle
for terminological knowledge. Acquiring terminological knowledge from natural
language requires a proper treatment of the semantics of copula to be, as can be
seen from the examples (1). All the examples given in this chapter are covered by

our learned grammar.

(1)  Acne is a skin disease.
Acne is very common.
Acne is an inflammatory skin disease characterized by pimples.

Acne is an inflammatory disease involving the sebaceous glands of the skin.

In Section 8.1 we present the treatment of copula to be in our framework. Section 8.2
presents an application of acquiring terminological knowledge from natural language
definitions in the medical domain. In Section 8.3 we discuss the concept of meaning
as answers to questions from a practical point of view (this concept was formally
defined in Chapter 4). In Section 8.4 we describe a pilot experiment of building an
OKR-annotated treebank from medical definitions and querying it using natural

language (wh-questions).



211

8.1 Copula to be

The verb be as used in sentences (2) is referred as the copula. It can be followed

by a predicative phrase (a noun phrase, or an adjective).?

(2) a. Patisa graduate student.

b. Pat is smart.

As stated in many linguistic theories, the syntactic behavior of the copula follows
the auxiliary verbs rather than the main verbs (Gazdar et al., 1985; Pollard and
Sag, 1994; Joshi and Schabes, 1997). We take the same approach in our framework,
considering it as an auxiliary verb. However, copula is not followed by a verbal
category (by definition) and therefore it must be the rightmost verb. In this respect
it behaves like a main verb. In our framework we learn a special grammar rule for
the copula to be.

The semantic behavior of the copula is also unlike the main verbs. Any se-
mantic restrictions or roles placed on the subject come from the complement phrase,
rather than from the verb. Because the complements predicate over the subject,
these types of sentences are often called predicative sentences, and the copula to be
is called predicative-be. In Figure 8.2 we show the OKR of the sentences given in
(2). We can see that all the properties are attached to the vertex corresponding to
the subject, i.e., Pat.

A fundamental semantic property of the utterances involving predicative-be
is that the subject is the most specific concept (or, an instance of a concept, if we

have factual knowledge), while the complement is the more general concept. Thus,

3In this dissertation we are not concerned with the predicative PP.
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Student is a concept.®
Pat is a graduate student
Pat is smart

Slli 4 {Honcapt

{F'Pat’
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%The reader should keep in mind that #concept is a generic name we have assigned to the top
element of the hierarchy of concepts. The hierarchy can be extended to have many top elements
similar to WordNet(Miller, 1990), and other names can be chosen for this top concept.

Figure 8.2: Predicative-be

the sentence in (2a) cannot have the complement and the subject inverted, i.e., A
graduate student is Pat, since Pat is an individual and a graduate student is a more
general concept.*

The copula be can be used in examples where this sort of inversion between
the subject and complement can occur, as can be see in (3). We have in this case

the equative-be.

(3) a. Pat is the student who tried to avoid conflict.
b. The girl who expects him to be examined by the doctor is Pat.
c. The girl who expects him to be examined by the doctor is the student

who tries to avoid conflict.

“The predicative inversion in English is irrelevant as it is purely syntactic.
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Pat is the student who tried to avoid conflict
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Figure 8.3: Equative-be

Equative constructions can be used only if both the subject and the complement

of be are individuals (given either as a proper name of an individual in a factual

KB, or as a fully determinate instance of a concept).

In the examples (3a-b), we have an individual given by its proper name, and

an individual given as a determinate concept. In Figure 8.3(a) we give the OKR for

the sentences in (3a-b) as well as the answer to the question Who is Pat?. In (3c)

we have a different equative construction, in which the name of the concept is not

given. In this case we have a “New_concept” which will have the properties of both
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the left and the right concept. Comparing Figure 8.3(a) and 8.3(b) we can see that
if we add the statement This is Pat after (3c) we will have the same representation,

having identified the name of the concept as being Pat.

8.1.1 Copula be for terminological knowledge

We have seen that copula be can be either predicative or equative. For acquiring
terminological knowledge from natural language statements, however, we only con-
sider the predicative-be. This assumption holds even if we have natural language
definitions as a source of terminology, as can be seen in (1) and discussed also
in more detail in Section 8.2. The intuition is that the equivalence between the
definiendum and the definiens is a theoretical property, and the definitions we en-
counter in natural language text and even in dictionaries lack this property. Thus,
we cannot consider equative-be in a practical application for acquiring terminology
from natural language.

Since we consider predicative-be, the left concept (i.e., subject) is more spe-
cific than the right concept (i.e., the complement): e.g., the quadrilateral with equal
sides is a polygon with equal sides. We can also have the predicative phrase given
by an adjectival phrase.

In the remainder of this section, we present an illustrative example for ac-
quiring terminological knowledge from natural language definitions, in the geometry
domain. This example emphasizes both the theoretical concepts introduced at the
beginning of this chapter, and the semantics of predicative-be. Let us consider the

definitions below:®

5As in generative ontology (Jensen and Nilsson, 2003), we ignore the determiners at the OKR,
level for terminological knowledge (see Chapter 4, footnote 7). Thus, we make no difference among
a concept, the concept, every concept, at OKR level for terminological knowledge. In the case of
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Figure 8.4: Terminological knowledge acquired from the NL definitions in (4)

(4)

A quadrilateral is a concept.

A parallelogram is a quadrilateral with opposite parallel sides.

A rectangle is a parallelogram with right angles.

A rhombus is a parallelogram with equal sides.

A square is a rectangle with equal sides.

A square is a rhombus with right angles.

As we mentioned in the introduction of this chapter, we have #concept as

the top of the terminological OKR (i.e., the root of the directed acyclic graph).

In order to build the sub hierarchy we need to define the concepts: either directly

(e.g., a quadrilateral is a concept), or indirectly by definitions based on previously

introduced concepts (e.g., a parallelogram is a quadrilateral with opposite parallel

sides). We can also have concepts that have two different definitions that are

conceptually different.

An example is the concept #square, defined either as a

factual knowledge, it is clear that we do need to interpret the determiners. The determiners are
represented at the OntoSeR level and they could be interpreted; we leave this for future work.
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Figure 8.5: NL-querying of the terminological knowledge acquired from (4)

rectangle with equal sides or a rhombus with right angles. These types of definitions
lead to the issue of multiple inheritance present at the level of OKR.

In Figure 8.4 we give the OKR that was obtained from the NL definitions in
(4). The OKR on the left, does not satisfy Properties 5 and 6 (we have redundant
attributes for the concept #square). The OKR on the right satisfies these two
properties, i.e., the weak concept identity principle for terminological knowledge.

After the OKR is built we can query it using natural language. Examples
of such NL-queries are given in Figure 8.5, showing the usefulness of our OntoSeR
representation as an Ontology Query Language. For example, asking the question
What is a parallelogram? gives back the concept #parallelogram with all its inci-
dent sub edges and all it determinations (subDAGs), i.e., “is a quadrilateral” (sub is
the inverse of is_a), “has sides opposite,” “has sides parallel,” “subsumes rectangle,”

“subsumes rhombus” (Figure 8.5(a)).® As mentioned in Chapter 6 only If we ask

6The answers are obtained at the concept level and not generated directly in natural language
because at the OKR level we do not have reversibility. As mentioned in Chapter 6, only at
the OntoSeR and TKR levels the reversibility of LWFGs can be exploited. Generating natural
language strings from OKR would require text generation techniques, which is outside the scope
of this dissertation.
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Figure 8.6: Acquisition of nameless new concepts in terminology

What is a square?, we obtain the concept #square with its incident sub edges, i.e.,
“is a rectangle” and “is a rhombus” (Figure 8.5(d)). As can be seen, due to Property
5 and 6 the concept #square does not have any other determinations (subDAGs),
since they can be inherited from its parents. We can thus see that we always obtain
conceptual answers, which have a different rationale and outcome than the simple
“bag of words” answers extracted directly from the natural language definitions.
In the previous section, we have seen that we can introduce nameless new
concepts using equative sentences, such as (3c). Since for terminology we only
have predicative-be, the nameless new concepts are introduced only if we provide

statements in both directions, such as (5).

(5)  Every rectangle with equal sides is a rhombus with right angles.

Every rhombus with right angles is a rectangle with equal sides.

If we are to use these statements instead of the two definitions of “square” in (4),
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we obtain the OKR given in Figure 8.6 which obeys both Property 5 and 6.

8.2 Application: Terminology Acquisition in the
Medical Domain

A key source for terminological knowledge is the definition of a term, a fact ac-
knowledged by the abundance of work on processing dictionary-like definitions
(Chodorow, Byrd, and Heidorn, 1985; Klavans, Chodorow, and Wacholder, 1992;
Wilks, Slator, and Guthrie, 1996; Richardson, Dollan, and Vanderwende, 1998;
Moldovan and Rus, 2001; Rus, 2002). However, the definition construction is a
notorious problem for terminology work. What exactly is a definition?

A theoretical definition of definitions can be formulated as follows:
Definition 35. A definition is a syntagma o, which in the query-form og has as
answer one and only one concept, regardless of further addition of new concepts to
the ontology.

Only in this theoretical view, can we talk about the logical definition (Weis-
man, 1992), which assumes the equivalence between the definiendum (term to be
defined) and the definiens (the definition of the term). Moreover, logical definitions
require the definiens to have both a genus and a differentia (Eck and Meyer, 1995).

In practice, we cannot guarantee neither the theoretical limit, nor the genus-
differentia assumption. This practical view is in accordance with studies on scien-
tific dictionaries that show that definitions often contain “encyclopedic information”
making the equivalence between the definiendum and definiens questionable (Nor-
man, 2002). As we are focusing on the medical domain, these findings are relevant
to our approach.

In this dissertation, we consider as sources of definitions both dictionaries and
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definitions extracted from on-line articles. For the latter, we have implemented a
system, DEFINDER that mines definitions from on-line consumer-oriented medical
articles. We present this system in the next section. Then, we show the charac-
teristics of our definitional corpus, where we can see that the logical definition is

rather a theoretical concept, not a practical reality.

8.2.1 DEFINDER: Getting NL Definitions from Corpora

A rich resource for definitions is the consumer-oriented medical text. It consists of
medical articles or manuals written by specialists for a general audience, where a lot
of terminology must be defined. The language of definitions is thus less technical,
closer to general vocabulary. We collected a corpus of consumer-oriented medical
articles containing over 1M words from different sources on the web.

The acquisition of definitions from textual corpora is a challenging task.
The structure of definitions in a text is not always similar to the one in on-line
dictionaries. The algorithm for the extraction of definitions from text is a rule-
based method implemented in the DEFINDER system (Klavans and Muresan, 2000;
Muresan and Klavans, 2002). First, a development set of articles was analyzed and a
set of patterns that occur frequently and reliably in many text genres (e.g., articles,
book chapters, health newspapers) were identified. We grouped these patterns into
three categories: cue-phrases (e.g., is the medical term for), text markers (e.g.,
“rE(”, 9)"), and syntactic patterns (e.g. syntactic complement of the copula
to be, appositional patterns). The identification of definitions from these initial
contexts was performed in two steps: 1) shallow parsing for identification of simple
definitions and candidate complex definitions, and 2) full parsing of these candidate

definitions using a statistical parser (Charniak, 2000).
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In the first step, we use Brill’s tagger (Brill, 1992) and an NP chunker
(Ramshaw and Marcus, 1995) in conjunction with a simple finite-state grammar.
We have augmented Brill’s tagger lexicon with medical terms from Unified Medi-
cal Language System (UMLS) lexicon (Lindberg, Humphreys, and McCray, 1993)
to increase accuracy. A filtering step is performed to remove patterns for enu-
merations, or explanations. As a result of shallow analysis, we can have both
(term)({definition)) and (definition)({term)). When length was not sufficient, a
simple statistical measure based on frequency counts was used to discriminate be-
tween the term and its definition. This is usually the case for technical/lay pairs,
like “tachycardia/irregular heartbeat”. In addition, we select candidate definitions
that cannot be easily identified by shallow processing and for which full parsing is
more reliable.

In the second step, these candidate definitions are syntactically parsed using
a statistical parser (Charniak, 2000). We perform a pattern matching over full
parse trees in order to identify complex appositives, syntactic complements of the
copula to be and complex definitions found in the context of text markers. One
aspect is worth mentioning here. Even if we have used full syntactic parsers in
our definition extraction system, we only used pattern matching of limited depth
over the parse trees. Thus, we were able to extract definitions even if the deep tree
structure was not correct. While this strategy is sufficient to extract fairly accurate
definitions (see Appendix D for DEFINDER'’s evaluation), it is not good enough
if we are to use these parsers to acquire the semantics of these definitions (wrong
syntactic parsing will lead inevitably to wrong semantics). The inability of current

syntactic parsers, trained on the Wall Street Journal (WSJ) to accurately parse
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1. Acne is a skin disease characterized by papules and pustules on the face and
neck.

2. Acne is an inflammatory skin disease characterized by pimples that can
appear on any part of the body.

3. Acne is a skin disease caused by overactive oil glands.

4. Acne is an inflammatory disease involving the sebaceous glands of the skin.
Acne is characterized by papules or pustules or comedones.

Figure 8.7: Multiple definitions of acne

medical text is a further motivation for our grammar learning framework. We used
samples of the DEFINDER corpus to analyze the characteristics of definitions, in
order to learn the linguistic phenomena that characterize them.

In the next section we present the characteristics of our definitional corpus.

8.2.2 Characteristics of the Definitional Corpus

In this section we present briefly the characteristics of our definitional corpus on
two dimensions: conceptual and linguistic.

Conceptual Dimension. We consider as our corpus both definitions extracted
from corpora, by DEFINDER, and definitions from dictionary-like resources (Word-
Net glosses). This corpus has the advantage of containing multiple definitions of
the same term, which enables us to analyze the conceptual nature of definitions,
and to see if the theoretical definition, i.e., logical definition, is the type we find in
practice (either in the text, or in existing resources). Figure 8.7 presents multiple
definitions of the term acne. It can be noticed that each definition has some addi-

tional property (e.g., definition 1 specifies the symptoms and their location, while
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1. Atherosclerosis is the progressive narrowing of arteries from cholesterol
plaque deposits.

2. Hepatitis is a disease caused by infectious or toxic agents and characterized
by jaundice, fever and liver enlargement.

3. Hepatitis A is an acute but benign viral hepatitis caused by a virus that does
not persist in the blood serum.

4. Hepatitis B is an acute viral hepatitis caused by a virus that tends to persist
in the blood serum.

5. Addison’s disease is a degenerative disease caused by a deficiency in adreno-
cortical hormones and characterized by weight loss, brown pigmentation of the
skin, and low blood pressure.

Figure 8.8: Sample from the definitional corpus

definition 3 specifies the cause; definition 1 specifies that acne is a skin disease,
while definition 5 specifies that acne is an inflammatory disease). Thus, neither
of these definitions can be considered complete. This incompleteness questions the
core assumption of the logical definition: the equation between the definiendum
and the definiens. How can we be sure that the equivalence can be obtained? How
can we be sure that there is no other definition, which contains an additional prop-
erty required to fully determine the “acne” concept? Not only that we do not have
the equative assumption satisfied, but we do not always have the genus-differentia
pattern either. For example, in Figure 8.8 the definition of atherosclerosis does
not contain the genus phrase, which would be “disease”. This conceptual analysis
further motivates our choice of interpreting copula be as predicative-be instead of
equative-be for terminological knowledge (see Section 8.1.1).

Linguistic Dimension. Figure 8.8 gives several definitions from our corpus, illus-

trating their complex linguistic constructions (both from a syntactic and a semantic



Disease Body Part | Procedure
cause (287) carry (58) use (80)
characterize (73) | locate (41) remove (42)
mark (62) lead (18) destroy (18)
occur (44) connect (18) | treat (15)
affect (38) produce (17) | involve (15)
result (32) contain (16) | help (14)
lead (27) control (15) | make (13)
produce (25) cover (13) cut (12)
form (25) line (12) insert (11)
associate (23) extend (12) | inhibit (10)
destroy (21) pass (11) change (10)
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Figure 8.9: Top 10 verbs for three semantic types in UMLS

point of view). We have instances of almost all the linguistic phenomena discussed
in Chapter 6. We have nominalization (narrowing of arteries from cholesterol plaque
deposits) and noun compounds (e.g., cholesterol plaque deposits, weight loss, blood
serum, liver enlargement). We have wh-relative and that-relative clauses (that does
not persist in the blood serum. .. ), reduced relative clauses (caused by infectious or
toxic agents ...), and embedded relative clauses ( caused by a virus that tends to
persist in the blood serum ...). One characteristic of the definitional corpus is the
presence of prepositions and coordinations. An analysis of our corpus shows that
on average there are 3 prepositions per definition. Regarding coordination, defini-
tions 2 and 5 in Figure 8.8 are eloquent examples of the complexity of coordination
constructions. We can have coordinations between all categories. While definitions
are notorious for their complex noun phrase structure, the verbal constructions are
less complex. We have active and passive voice, modals (can appear on any part of
the body), negation (does not persist in ...) and sometimes raising verbs (tends to
persist in ...), but we do not have complex constructions involving aspect, while

the tense is generally the present tense. There is a reduced number of verbs, as
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well. We performed a simple frequency count of verbs that appear in definitions
based on the semantic types of the definiendum. Table 8.9 shows the top 10 verbs
for the semantic types Disease or Syndrome, Body Part, Organ or Organ Compo-
nent and Therapeutic or Preventive Procedure in UMLS (in Table we use the short
names Disease, Body Part, Procedure). In this dissertation, the semantic roles of
these verbs have been either adapted from existing general lexical resources (LCS
Database (Dorr, 1997)), or manually derived from UMLS (Lindberg, Humphreys,
and McCray, 1993).

As we have already mentioned, our learned experimental grammar covers
linguistic phenomena that are characteristic for definitional corpus. We need to
mention that learning is based on semantically annotated representative examples
that were not domain specific, the learning framework being general. Application
for the medical corpus could benefit from a stronger semantic context (e.g., domain-

specific roles), but this is not a requirement (i.e., we can use generic semantic roles).

8.2.3 Terminological Knowledge Acquisition

The findings from our definitional corpus analysis bear relevance to the process of
terminological knowledge acquisition from the definitional text. We saw that we
can only have copula be-predicative, we cannot assume that there is an equivalence
between definiendum and definies, and we cannot assume that we always have the
genus phrase.

In this section, we show that our semantic representation, OntoSeR, is ade-
quate for the acquisition of terminological knowledge. We have performed a pilot
experiment in order to acquire terminological knowledge, which has been subse-

quently used for NL-querying. This section constitutes the other side of the quali-
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2. Hepatitis is a disease caused by infectious or toxic agents and characterized by jaundice, fever
and liver enlargement.

3. Hepatitis A is an acute but benign viral hepatitis caused by a virus that does not persist in
the blood serum.

4. Hepatitis B is an acute viral hepatitis caused by a virus that tends to persist in the blood

serum.
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Figure 8.10: OKR for the definitions 2,3,4 given in Figure 8.8

tative evaluation of our semantic representation, OntoSeR, and of our learned gram-
mar (Chapter 6 showed the linguistic expressiveness of OntoSeR). Unlike Moldovan
and Rus (2001) and Rus (2002), who use logical formulas for the representation of
WordNet glosses, we transform our OntoSeR representation in an OKR form that
is a DAG for which we have defined the weak concept identity principle (Principle
7).

In order to show the processes of knowledge acquisition and NL-querying, we
present two examples: one of constructing a hierarchy of concepts (definitions 2,3,4
of hepatitis, Hepatitis A and Hepatitis B, from Figure 8.8), and one for merging
several definitions of a term (definitions of acne given in Figure 8.7). The defini-
tional text and OKRs of these two examples are presented in Figure 8.10 and 8.11,

respectively. The questions and answers related to these two OKRs are given in
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1. Acne is a skin disease characterized by papules and pustules on the face and neck.

2. Acne is an inflammatory skin disease characterized by pimples that can appear on any part of
the body.

3. Acne is a skin disease caused by overactive oil glands.

4. Acne is an inflammatory disease involving the sebaceous glands of the skin. Acne is character-
ized by papules or pustules or comedones.
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Figure 8.11: OKR for the definitions of acne given in Figure 8.7

Figure 8.12 and Figure 8.13, where we give the answer concept(s) together with its
defining subDAG(s).

The acquisition of knowledge can be done directly, since we consider both
concepts (#hepatitis, #blood) and instances of concepts (#glands49,#glandsb5,
#virus25,#virus33) in our OKR representation (Nirenburg and Raskin, 2004).

The definiendum is always a concept, and it is part of the sub hierarchy. The
concepts in the sub hierarchy are presented with double square boxes in Figure 8.10
and Figure 8.11. All the definitional properties of the concepts are directly linked to
the concept vertex (facilitated by our interpretation of copula be-predicative). For
example, even if in the text we have Acne is an inflammatory disease, the property
“inflammatory” is linked to the concept #acne and not to the concept #disease.

This is obtained since only #disease was previously part of the sub hierarchy. If the
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concept #inflamatory_disease is present, then this most specific concept is selected
as the direct parent of #acne. However, the hierarchy of concepts can be dynami-
cally revised as the system acquires more knowledge. If we encounter concepts that
are diseases and they have the “inflammatory” property, this information can be
collected and a new concept can be proposed to be added in the hierarchy. In this
dissertation we are not concerned with this revision, but our representation clearly
allows such a step.

Besides the concepts that are defined, we can also have concepts that are
referred (i.e., they are part of the definiens), if they do not have any modification
(e.g., #blood in definition of Hepatitis A , and Hepatitis B, #papules in definition
4 of acne).

If a referred concept has modifications, it is represented as an instance of
a concept in OKR. As a consequence, various verbalizations of concept properties
can be differentiated in OKR, allowing us to obtain direct answers that are specific
to each verbalization. For example, the term virus appears in the definition of both
Hepatitis A and Hepatitis B. In OKR, they are two different instances of a concept,
#virus25 and #virus33, since they have different modifications: persists in the blood
serum, does not persists in the blood serum, respectively. These modifications are
essential part of the differentia of concepts #HepatitisA and #HepatitisB, making
the distinction between the two. When we ask the question What is caused by a
virus that persists in the blood serum? (Q4 in Figure 8.12), we obtain only the
correct answer #HepatitisB (A4 in Figure 8.12). Another example of two different
instances of a concept is given by #glands49 and #glandsb5, in definitions 3 and 4

of acne (Figure 8.11). Asking the question What causes acne? (Q2 in Figure 8.13),
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Q2: What causes hepatitis?
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Figure 8.12: OKR for questions and answers with respect to hepatitis
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we obtain the answer #glands49 (A2 in Figure 8.13). Asking the question What
does acne involve? (Q1 in Figure 8.13), we obtain the answer #glands55 (Al in
Figure 8.13). Thus, we can obtain the verbalizations corresponding to the particular
instances that occur in the definitional text. In this case though, these two instances
should be the same, as oil glands and sebaceous glands are semantically equivalent,
but currently we do not consider synonymy. The system could be extended in this
direction (see the end of this section for a discussion). Another point that should
be mentioned about instances of concepts, is that they can be matched together by
Property 5. This is what happened with the instance #serum27 from definitions
of #HepatitisA and #HepatitisB in Figure 8.10.

In OKR the concepts are part of the sub hierarchy, while the instances of
concepts are not. The instances are connected to their concepts by instance_of
relations (not shown in the OKR of the text).

We have seen that having concepts and instances of concepts allows us to
directly acquire knowledge and to answer questions relevant to particular verbal-
izations. Another important aspect that contributes to the adequacy of our repre-
sentation for acquisition and query is the OKR-equivalences we obtain for different
syntactic forms. They are mainly related to verbal constructions. Since we deal
with terminology, temporal reasoning is not important, and thus we ignore tense
and aspect information. For terminology, however, modals and negation need to be
taken into account. For example, negation is essential for differentiating Hepatitis
A and Hepatitis B. Among OKR-equivalence we have: 1) active and passive con-
structions (e.g., question can be in active voice What characterizes acne? (Q4 in

Figure 8.13), while the definitional text where the answer is derived from contains
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Q3: What is characterized by some-
thing on the face?

#characterize

| #isomething | |ﬂwhat I

loc |ext

¥

{face

A3: #acne

disease.sub= #acne

#characterize4l.ag= #pimples42
#appear43.mod=can

#appear43.th= #pimples42

#appear43.loc_ext= #part44

#part44.of= #body

#characterize4l.th= #acne

#cause48.ag= #glands49

#glands49.intensity= #overactive
#glands49.kind_of= #o0il

#cause48.th= #acne

#involveb4.exp= #acne

#involveb4.perc= #glandsbb

#glandsb55.kind_of= #sebaceous

#glandsb55.0f= #skin

#characterizeb9.ag= [#papules,or,#pustules,or,#comedones]
#characterize59.th= #acne
#characterize67.ag=[#papules69,and, #pustules7(]
[#papules69,and, #pustules70] .loc_ext=[#face,and,#neck]
#characterize67.th= #acne

#acne.kind_of= #inflammatory

(a3)

#acne.body_part= #skin

Q4: What characterizes acne?

{icharacteriza

itwhat

A4-1: #pimplesd2

#characterize4l.ag= #pimples42
#appear43.mod=can
#appear43.th= #pimples42
#appear43.loc_ext= #partd4d
#part44d.of= #body
#characterize4l.th= #acne

A4-2:
[#papules,or,#pustules,or,#comedones]

#characterizeb9.ag= [#papules,or, #pustules,or, #comedones]
#characterizeb9.th= #acne

A4-3: [#papules69,and,#pustules7O]

#characterize67.ag=[#papules69,and,#pustules70]
[#papules69,and,#pustules70].loc_ext=[#face,and,#neck]
#characterize67.th= #acne
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Figure 8.13: OKR for questions and answers with respect to acne
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a passive construction Acne is characterized by papules or pustules or comedones
(A4-2 in Figure 8.13); 2) -ed and -ing verb forms in reduced relative clauses are
equivalent to passive/active verbal constructions (e.g., the question can be formu-
lated in present tense, active voice What causes hepatitis? (Q2 in Figure 8.12),
while the answer is obtained from a definitional statement involving the reduced
relative clause hepatitis is a disease caused by infectious or tozric agents ... (A2 in
Figure 8.12)); 3) constructions involving raising verbs, where we can take advan-
tage that the controller is not the semantic argument of the raising verb (e.g., in
the definition of Hepatitis B we have ... caused by a virus that tends to persist in
the blood serum, while the question can be asked without the raising verb What is
caused by a virus that persists in the blood serum?).

In all of the above examples, we dealt with precise questions. Our repre-
sentation, however, facilitates vague questions as well, such as, What is caused by
something that does not persist in the blood serum? (Q3 in Figure 8.12), or What
is characterized by something on the face? (Q3 in Figure 8.13). This is obtained by
considering something as a variable concept that matches a vertex in the OKR. A
practical advantage is that we can obtain all the concepts that are in a particular
relation with other concepts, or that have particular properties. For example, we
can ask the question What causes something?. In this case, considering both OKRs
in Figure 8.10 and Figure 8.11, something would match #acne, #hepatitis, # Hep-
atitisA, and #HepatitisB, showing that they can all be caused by something. The
answers are #glands49, #agents7, #virus25, and #virus33, respectively.

In these examples, and in the entire acquisition experiment, the direct knowl-

edge acquisition from text is done only in the context of the weak concept identity
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given by Principle 7, which was presented at the beginning of this chapter (i.e.,
Properties 5 and 6). Principle 7 does not fully guarantee the informal definition
of the concept identity principle by which a referent has one and only one ver-
tex in OKR. We call the principle guaranteeing this informal definition, the strong
concept identity principle. In order to apply the strong concept identity principle
in general, Property 5 and 6 should be extended to handle semantic/pragmatic
equivalences (e.g., synonyms, anaphora), which is outside the scope of this disser-
tation. In our terminological knowledge acquisition experiment, only the defined
concept(definiendum) is guaranteed to satisfy the strong concept identity princi-
ple, while any other referred concepts or instances of concepts that are part of the
definiens are guaranteed to satisfy only the weak concept identity given by Princi-
ple 7. For example, in Figure 8.13 we can see that the answer concept #glandsb5
(A1), and the answer concept #glands49 (A2) have the same referent, even if
they appear as distinct vertices in OKR. The same holds true for the answers
in association with question Q4, which contain concepts or instances of concepts
that have the same referent (#pimplesd2, [#papule,or,#pustules,or,#comedones],
[#papules69,and,#pustules70]). These examples show that Property 5 and Prop-
erty 6 must be refined to handle OKR subDAGs semantic equivalences, which
implies the treatment of contradictions as well. While we do not treat these types
of semantic equivalences/contradictions in this dissertation, our representation can
facilitate the direct acquisition of knowledge that will enable this type of reasoning.

Let us consider the two utterances in (6):

(6)  a. acne is characterized by pimples.

b. acne is characterized by oil glands.



233

suﬁ ﬂ fconcept fcharacterized
sub g
h
| Hidisease | | {icauses | | {marrows |
sub ag saverity
X
| #atherosclerosis I | {ideposits10 | | fprogressive | | ffarteries |
fopm
5 = = ¥
Hprograssive | | mnerlem| | Mepnsltssl il =
plaque
form
material
1
. fcholesterol
matorial

(a) (b)

Figure 8.14: OKR for the definition of atherosclerosis in Figure 8.8 considering a
weak (a), or a strong (b) semantic context interpretation

If we do not have any type of prior knowledge regarding these utterances, they
can be added to the ontology. However, suppose we have the knowledge previously

acquired from utterances (7) in the ontology:

(7)  acne is a disease.
a pimple is a symptom.
a gland is an organ.

a disease is characterized by symptoms.

In this case, using this knowledge allows us to accept the statement in (6a), while
rejecting the one in (6b). This type of reasoning is straightforward for any semantic
interpreter that uses the generative ontology axioms defined in Section 4.2.
Moreover, a hierarchy of concepts and semantic roles incrementally built,
will allow us to replace the weak semantic context used by our semantic interpreter

with an incrementally stronger semantic context, when transforming OntoSeR™
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into OntoSeR™ (i.e., ®pu10), and TKR into OKR (see Figure 6.2 in Chapter 6). The
use of a stronger semantic context will allow us to directly acquire knowledge from
increasingly complex and ambiguous utterances.

The difference between having a strong and a weak semantic context becomes
crucial when we have semantically complex utterances such as the definition of
“atherosclerosis” given in Figure 8.8: atherosclerosis is the progressive narrowing
of arteries from cholesterol plaque deposits. In a weak semantic context, we have
the OKR given in Figure 8.14(a), where narrowing is a “process” and is the genus-
phrase of the definition. In this example, narrowing is a noun, and the copula to
be is predicative. This is a valid interpretation where atherosclerosis is the process
of narrowing of the arteries.

However, this definition might have a different interpretation if we consider

a stronger semantic context, such as the one given by utterances in (8):

(8)  atherosclerosis is a disease.
a disease is characterized by symptoms.
a disease is caused by chemical compounds.
the narrowing of the arteries is a symptom.

cholesterol plaque deposits are chemical compounds.

Taking this knowledge into account, the definition of “atherosclerosis” becomes

equivalent to the utterances given below:

(9)  atherosclerosis is a disease.

atherosclerosis is characterized by the progressive narrowing of the arteries.
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atherosclerosis is caused by cholesterol plaque deposits.

arteries are narrowed by cholesterol plaque deposits.

These utterances have the OKR given in Figure 8.14(b), which we can obtain
since we have a treatment of nominalizations. But such a representation cannot
be obtained from the initial definition alone using only a weak semantic context.
However, we do this analysis to see how such an OKR could be obtained directly,
given the strong semantic context in (8), and a treatment of the copula be-equative.
The interpretation of the copula be-equative in conjunction with the nominaliza-
tion and the strong semantic context, should give us that the agent of narrowing
(i.e., cholesterol plaque deposits) is the cause of atherosclerosis, as well (see Figure
8.14(b)). This looks similar to the behavior of control verbs, where the argument of
the matrix verb becomes also the argument of the embedded verb. Unlike control
verbs, where this decision is taken at the lexicon/grammar rule level, the decision is
taken in this case at the interpretation level, based on the strong semantic context.
In the absence of such a strong context, we cannot have this interpretation. In this
dissertation we do not treat such semantically complex definitions, but the goal of
this example and of all the examples given in this section is to show that OntoSeR
is adequate to directly obtain ontological knowledge from text given a weaker or a
stronger semantic context, being a qualitative evaluation of our semantic represen-

tation.
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8.3 Meaning as Answers to Questions

In Section 4.2 we theoretically defined the meaning of a syntagma, o, (3.20) and of
a discourse, d, (3.21) as the total number of query-syntagmas together with their
answers which become ground derivable by adding the assertional form K, and K,
to the system’s knowledge.

In this chapter and Chapter 6, we have introduced the ontological-based rep-
resentation form for K,, K4, K, (syntagma, discourse, and ontology, respectively).
Every syntagma/discourse is represented at the ontology-level representation, OKR.
Moreover, the associated questions and answers are also represented at the OKR
level, as we have seen in all the examples presented in these two chapters, where
we gave sample questions and their answer(s) related to every example.

In Section 8.2.3 we have seen that the questions can be precise or vague.
Thus, it becomes important to define the meaning of a question with respect to
a terminological knowledge base, K,.” The meaning of questions and answers has
been studied in general by formal theories (Groenendijk and Stokhof, 1984). We
give a definition of the meaning of a question and an answer with respect to our
framework.

Definition 36. The meaning of a question, q, with respect to a terminological
knowledge base, K,, is the set of all answers that can be directly obtained from K,.

Definition 37. The answer to a question is the concept that matches the wh-
word through the DAG matching algorithm between the question’s subDAG and the
terminological knowledge base DAG, K,.8

"In this dissertation, we only refer to terminology, where we have clearly defined the concept
identity principle.

8Definition 37 can be extended if the DAG matching algorithm includes reasoning as well.
Complex reasoning can affect tractability. However, in Chapter 4 we have stipulated the principle
of natural language as problem formulation (i.e., without reasoning).
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a) QUESTION+ANSWER
A/What is caused by sor&ething that does not persist in the blood serum.
A3= #HepatitisA matched =#virus25
b) UNIQUE GROUND-DERIVED TRUE SYNTAGMA

Hepatitis A is caused by a virus that does not persist in the blood serum.

Figure 8.15: Meaning as answers to questions

A question together with an answer determines a unique syntagma that is
ground derived from the terminological knowledge base. In Figure 8.15 we present
an example to illustrate this fact. The question What is caused by something that
does not persist in the blood serum? (Q3 from Figure 8.12), together with the
tuple consisting of the answer concept A3=#HepatitisA, and the variable concept
something that matches the concept #virus25, uniquely determines the syntagma
corresponding to the utterance Hepatitis A is caused by a virus that does not persist
in the blood serum, which can be ground derived as true from the knowledge base. In
this way, the meaning becomes the set of all syntagmas that can be ground derived
from the knowledge base, and whose truth value is true. Thus, our definition of
meaning is equivalent to those that use truth conditions, although we use only the
concept of ground syntagma derivation based on which we have defined the LWFG
semantics (see Chapter 4, (4.20), (4.21), pg. 88). We obtain meaning without using
full first-order logic formulas (Blackburn and Bos, 2005).

Unlike meaning as truth conditions, where the problem of meaning equiv-
alence is reduced to logical form equivalence, in our case meaning equivalence is

reduced to semantic equivalence of DAGs/subDAGs, which obey the concept iden-
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tity principle (weak, or strong). The matching algorithm obtains the same answers
to questions, relative to semantic equivalent DAGs. If we consider only the weak
concept identity principle given by Properties 5 and 6, the problem is reduced to
DAG /subDAG identity.

For example, for terminological knowledge we ignore tense and aspect in-
formation as we do not deal with temporal reasoning. In this scenario, the two
DAGs (OKRs) corresponding to the utterances in (10) are identical (the subDAG
corresponding to the vertex #characterize59 in Figure 8.11), thus their meaning is

identical.

(10) a. Acne is characterized by papules or pustules or comedones.

b. Papules or pustules or comedones characterized acne.

As we define meaning through question and answer we need to discuss also the

meaning equivalences for questions. Let us consider the two vague questions in

(11):

(11)  a. What characterizes something?

b. What was characterized by something?

Their corresponding OKRs are given in Figure 8.16. Let us call what the “answer
concept” and something the “matched concept”. These two OKRs become identical
if the agent ag and the theme th slots for the concept #characterize are the same
concepts in the two OKRs. That is the pair (“answer concept”, “matched concept”)
of the first question, is identical with the pair (“matched concept”, “answer con-

cept”) of the second question. As we saw in Figure 8.15 a question together with an
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What characterizes something?

X Y
What was characterized by something?
Y X ag th

\ #something \ \ #what \

Figure 8.16: Semantic equivalence of questions

answer determines a unique syntagma that can be ground derived as true. Given
this, the vague question equivalence becomes the equivalence of “X characterizes
Y”, “Y was characterized by X”, which we showed through example (10) that are
equivalent (we ignore tense).

The above discussion motivates our approach of considering meaning as an-
swers to questions, defined in Section 4.2, where the meaning of a knowledge base
K,, is given by all syntagmas that result from question-answer pairs, and which
can be ground derived as true from the knowledge base K, (see (3.20)). Chapter
6 and Chapter 8, which constitute a qualitative evaluation, show the adequacy of
OntoSeR to enable the practical use of the theoretical definition of meaning given in
Section 4.2, in the context of terminological knowledge, where we have the concept
identity principle well defined. From an applicative perspective, the evaluation of
OntoSeR can be performed by any user by providing a set of questions with re-
spect to a given text and evaluating the obtained concept-level answers. If correct
answers are obtained for all possible questions, it means that the representation is
correct. We use this type of evaluation in the pilot experiment presented in the

next section.
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8.4 Acquisition and Querying of OKR-annotated
treebanks — Pilot Experiment

The goal of this section is to show that our semantic representation, the learned
grammar, and our semantic interpreter can be used to build semi-automatically
OKR-~annotated treebanks suitable for NL-querying, where precise/vague questions
can be asked and precise answers (at the concept level) are always obtained.

This setting is different from the question-answering tasks of the Text RE-
trieval Conference (TREC) (Voorhees, 1999) and the Advanced Question and An-
swering for Intelligence (AQUAINT) program, which involve finding answers in
large collections of documents, with or without reasoning. In our case the text con-
sists of one or more utterances, and we are interested in factual answers that are ex-
plicitly stated in those utterances (i.e., no reasoning is involved). The reader should
keep in mind that the acquisition/querying setting is used to evaluate qualitatively
our LWFG learning model (the learned grammar and our semantic representa-
tion). Our setting is also different from Natural Language Interfaces to Databases
(NLDIB) since we automatically acquire the knowledge base from text. After the
acquisition takes place, we can see the question as a NL-query to a knowledge base.

In order to carry out this qualitative evaluation, we have used small sets
of utterances of three types: 1) 73 examples used to show individual linguistic
phenomena, which we selected from literature and Quirk grammar (Quirk et al.,
1972); 2) 15 complex utterances that combined difficult linguistic phenomena which
we selected from news-like articles; 3) set of 17 complex definitions in the medical
domain automatically extracted by DEFINDER from on-line medical articles.

Samples from the first two sets have been used in the examples in Chapter
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6. The last set has been exemplified in this chapter and has been used to report
the results of building a pilot OKR-annotated treebank and performing a querying
experiment. Before describing this pilot experiment, we discuss how we acquired
the lexicon and the ontological information for the weak semantic context used by
our semantic interpreter.

For all the data sets we have derived a lexicon from COMLEX (Grishman,
Macleod, and Meyers, 1994) and UMLS lexicon (Lindberg, Humphreys, and Mc-
Cray, 1993), which contains information that is needed for the elementary semantic
molecules. For our weak semantic context we needed information regarding the se-
mantic roles of verbs, prepositions, attributes of adjectives, adverbs and also nouns
that appear in noun-noun compounds. For the semantic roles of verbs and preposi-
tions we extracted the thematic roles from the “LCS Database” (Dorr, 1997). For
adjectives and adverbs we used information from WordNet (Miller, 1990). How-
ever, especially for the medical definitions, these resources do not contain all the
required information and thus we were forced to manually introduce this informa-

tion (especially for adjectives, nouns, and specific roles of prepositions).

Acquisition of a pilot OKR-annotated treebank. In this experiment we
tested the use of our learned grammar and of our semantic interpreter based on
weak semantic context to build a pilot OKR-annotated treebank for terminological
knowledge. We used the set of 17 medical definitions. In Appendix C.1 we show
these definitions as well as the number of different syntagmas obtained without
and with the semantic validation (®,,;,). Without semantic validation, the average
number of syntagmas (OntoSeR ™) obtained by our robust parser is 2.53 per defini-

tion. After ®,,, is applied, the average number of different syntagmas (OntoSeR™)
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obtained for a definition is 2.00. We noticed that the weak semantic context that
our semantic interpreter implements is not enough to obtain only the correct se-
mantic analysis. Thus, we developed the system to allow a user to manually select
the correct OKR and to add it to a treebank. The selection of the OKR-level of
representation for human validation is due to the fact that this representation is
much more “readable” for a user than the OntoSeR™ and OntoSeR™ levels, as can
be seen from Appendix B. This mode of operation allows the semi-automatic cre-
ation of OKR-annotated treebanks, with user validation. Building such a treebank
is important for further developing the semantic interpreter towards strong seman-
tic context. In Appendix C.1 we give the 17 medical definitions and in Appendix

C.2 their OKR-annotated treebank.

NL-querying of the acquired treebank. For this experiment, we created a
benchmark of 29 questions. We used both precise (22) and vague (7) questions.
The type of questions we used are “Who did what to whom?”, that is only ques-
tions regarding the verbs’ arguments. Since in our OKR treebank we obtained a
hierarchy of concepts, the question can be related to this hierarchy: e.g., the ques-
tion Which are viral diseases? has as answer #HepatitisA and #HepatitisB, even if
their direct parent is #hepatitis and not #disease. For questions, the ambiguity is
increased due to our treatment of long distance dependencies. As can be seen from
Appendix C.3, for questions we have an average of 6.06 syntagmas per question at
the OntoSeR ™~ level (i.e., without ®,,;, validation). This is explained by our treat-
ment of long distance dependencies. After semantic validation, we have an average
of 2.35 syntagmas per question. In this experiment though, even if the weak seman-

tic context is not always enough to eliminate incorrect semantic representations of
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questions, we only obtain the correct answer(s), since we match the OKRs of these
questions against the manually validated correct treebank. In Appendix C.3 we
give all the questions, with the number of syntagmas at the OntoSeR~ level, at
the OntoSeR™ level and with the answer concepts. We see that we obtain precise
answers at the concept level. We also give a sample of these question-answer(s)
pairs that contains the answers together with their subDAGs (Appendix C.4).
Appendix C presents all the data of this experiment. We conclude this

chapter with a discussion of the outcome of our qualitative evaluation:

Positive Conclusions. OntoSeR allows us to acquire ontological knowledge in
OKR form that obeys the weak concept identity principle. As we deal only with
a weak semantic context given by the admissibility relations that we can find at
the level of lexical entries, our qualitative evaluations show that “a lexicon can
sometimes be the basis for the development of a practical ontology” (Hirst, 2003).
The weak concept identity guarantees the same OKR representation for different
grammatical forms (e.g., nominalizations - verbal forms; active-passive voice; -ing
and -ed forms of reduced relative clauses - active/passive forms of verbs), or different
forms of tense and aspect, which are filtered. Since we focus on terminological
knowledge, modals and negation are important, while temporal reasoning is not.
However, if we would not filter the tense and aspect, the semantic interpreter could
be further developed towards this reasoning needed for factual knowledge bases.
Another important conclusion of our evaluation is that the meaning seen as question
together with its answer allows the ground derivation of syntagmas even from the

filtered form of OKR (for which we do not have the reversibility property anymore).

Open Problems. The main current limitation of our semantic interpreter is that it
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uses only a weak semantic context. We do not currently use hierarchies of concepts
and semantic roles, and semantic equivalences based on synonymy and anaphora.
However, we mentioned in this chapter that our framework can be used in future
work to incrementally enhance the weak semantic context towards a strong seman-
tic context by acquiring this knowledge directly from natural language utterances.
The learned experimental grammar will require further revision that goes up to
the refinement of some elementary semantic molecules: adverb, relative pronoun
(in order to be able to treat whose, where, when, how, that will require a differ-
ent semantic molecule), and the coordinator or. However, the main open problem
that was noticed is the ambiguity which appears in the examples with complex
coordination constructions characteristic of the medical corpus. This problem em-
phasizes the need to have an interaction between the constraints ®,,;, and @y,
by introducing a semantic attribute in the head of semantic molecules, whose value
should be provided by the ®,,;, constraint during parsing. For example, the utter-
ance comedones, papules and pustules on the face, neck and upper body is highly
ambiguous (the coordination rule is both right and left recursive). The presence
of a semantic attribute (e.g., symptom for comedones, papules and pustules, and
body part for face, neck, and upper body) in the head of the semantic molecules,
and thus at the level of the compositional constraint ®.op,, allows only two group-
ings. In our experiment we simulated such an effect by using the attribute count
— which is available at the lexical level and is present in the head of semantic
molecules of nouns — to discriminate between the two groups of nouns. In this
way we noticed the decrease in ambiguity, which in the future should be captured

by the interaction between ®,,;, and @ ypp-
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The pilot experiment has shown that we can build semi-automatically OKR-
annoted treebanks, from definitions given in natural language text. This can be
used in the future to enhance the OKR with probabilities. This probabilistic en-
hancement only at the conceptual level bears similarity to Pinker’s theory of child
language acquisition that there is “a formal and nearly exceptionless grammatical
linkage between syntax and semantics, and a more probabilistic cognitive correla-
tion between semantics in parental speech and childlike concepts” (Pinker, 1989,
page 364). Our current system requires manual validation of the obtained OKR
(since the level of ambiguity is still fairly high). Adding probabilities at the OKR
level will eliminate the need for manual validation, and thus will allow a future
quantitative evaluation of our grammar learning model based on question-answering
experiments on unannotated text. The corpus used for LWFG learning evaluation

should contain precise answers explicitly stated in the text (i.e., without reasoning).
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Chapter 9

Conclusions

We conclude this dissertation with a summary of the main contributions of this
work. We also discuss the open problems and limitations and propose directions

for future work.

9.1 Contributions

The fundamental idea which was the starting point of this dissertation was the
introduction of a new semantic representation, OntoSeR which should allow deep
language understanding and should have the properties of an ontology query lan-
guage. The practical use of this representation would have required us to rewrite
existing grammars by hand in order to facilitate access to ontology-based mean-
ing during parsing. As a consequence, we posed the problem of defining a new
type of grammar suitable for deep language understanding, which is learnable us-
ing relational learning methods, eliminating thus the need of rewriting hand-crafted
grammars.

This dissertation is the result of addressing this problem, whereby the defined

theoretical concepts are original. Following is a summary of both the theoretical
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and application-oriented contributions of this work. While the research in this
dissertation spans several topics, the common thread we follow is the learnability

issue.

9.1.1 Theoretical Contributions

New Representation of Natural Language. We have defined three levels of

representation in this dissertation:

e Semantic Molecule — representation at the grammar level. We intro-
duced a new syntactico-semantic representation of natural language expres-
sions, which we call semantic molecule. The semantic molecule of a natural
language string w has two components — the head and the body — w' = (’;)
The head is a flat feature structure which contains syntactico-semantic at-
tributes needed for composition. The body of the semantic molecule is a new
flat semantic representation, OntoSeR. This representation is the concatena-
tion of the semantic representations of lexical items it contains, followed by
a variable substitution obtained as a consequence of applying the semantic
composition constraints ®.om, during parsing. The novelty of OntoSeR is
twofold: it is an ontology query language, and it ensures the reversibility of
parsing/generation, without the information from the head of the semantic
molecule. Our semantic molecule representation allowed us to define the se-
mantic composition and semantic interpretation as grammar constraints at
the rule level. The semantic composition is given by constraints applied to the
heads of the semantic molecules, while the semantic interpretation is given

by an ontology constraint applied to the body of the semantic molecule. The
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compositional constraints are learned together with the grammar rules, while
the ontology constraint provides access to meaning during parsing. We have
formulated the properties and principles of the semantic molecule represen-

tation.

e Text Knowledge Representation (TKR) — representation at the
text level. TKR is an asserted form of OntoSeR, which represents the entire
text. We still have at this level the reversibility property (i.e., from this

representation we can directly obtain the text through our parser/generator).

e Ontology-level Knowledge Representation (OKR) — representation
at the ontology level. From TKR we can obtain the OKR representation
through filtering and by introducing the concept identity principle, which es-
tablishes a bijection between a concept and a referent. We define the OKR
as a directed acyclic graph (DAG), where vertices are concepts or instances
of concepts, and edges are semantic roles (including properties). In this dis-

sertation we only define and implement a weak concept identity principle.

Lexicalized Well-Founded Grammars — A New Type of Constraint-
based Grammars. In this dissertation we introduced a learnable type of Definite
Clause Grammars, which we call Lexicalized Well-Founded Grammars (LWFGs).
These grammars capture both syntax and semantics and have constraints at the
rule level for semantic composition and semantic interpretation. The nonterminals
of a LWFG are augmented with syntagmas, which are pairs of strings and their
semantic molecules (0 = (w,w’)). Moreover, LWFGs introduce a partial ordering

among nonterminals, which allows the ordering of syntagmas and thus the bottom-
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up induction of these grammars. The learning is done from a set of representative
examples, which generates the grammar rules, and a representative sublanguage,
which gives the reduced semantics used for generalization. We have formally defined
the representative examples and the representative sublanguage, and provided an
efficient algorithm that generates the representative example set, given a grammar
and a representative sublanguage. We also defined the semantics of LWFGs and
the robust parsing/generation for LWFGs as deduction. We have proved that our

Lexicalized Well-Founded Grammars are decidable.

Grammar Approximation by Representative Sublanguage — A New
Model for Relational Learning of LWFGs from Positive-only Examples.
In this dissertation, we have defined the LWFG learning as a decidable Inductive
Logic Programming problem. The decidability of ILP is a consequence of LWFG
decidability, which is guaranteed by the fact that we chose as provability relation
of ILP, F, the robust parsing provability, ,,. We have defined the representative
example parsing preserving property of LWFGs, which allowed us to prove that the
search space for grammar learning is a complete grammar lattice/grammar boolean
algebra. Based on this search space property, our learning method can generate
the most specific hypotheses from the representative examples, and then general-
ize these hypotheses based on the reduced semantics defined by the representative
sublanguage. Thus, the learning method is based on inverse entailment, using the
reduced semantics as performance criteria. For a type of LWFGs (conformal) we
proved the learnability theorem, which states that a conformal Lexicalized Well-
Founded Grammar can always be learned from a representative example set and

a conformal representative sublanguage, the solution being the top element of the
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grammar lattice search space. The learnability theorem extends significantly the
class of problems learnable by ILP methods. This class is a class of constraint-based
grammars which capture syntax and semantics (LWFG) and which are learnable by
relational learning methods. We have provided polynomial algorithms for grammar
induction based either on ordered representative examples — the search space is a
grammar boolean algebra — or on unordered representative examples — the search
space is a complete grammar lattice. We proved the soundness of these algorithms.
The convergence property of the iterative algorithm from unordered examples al-
lows the sound and straightforward revision of LWFGs. This revision property

makes LWFGs suitable for incremental coverage of natural language fragments.

9.1.2 Application-oriented Contributions

Framework for Grammar Learning and Merging. In this dissertation, we im-
plemented a system that represents an experimental platform for all the theoretical

algorithms. This system consists of:

e an Inductive Logic Programming system that learns only from positive ex-
amples, uses background knowledge and has a dual mode of operation: learns

from both ordered and unordered representative examples.

e a robust parser/generator that has been used in all our learning experiments

to signal the over/under generalization and ambiguity.

We have learned an experimental grammar of 151 grammar rules and 151
grammar constraints that covers diverse and complex linguistic phenomena, such as

raising and control, long-distance dependencies, relative clauses, noun compounds,
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nominalizations, coordinations, verbal constructions with auxiliaries. In order to
learn this grammar, we have built a semantically annotated treebank of 151 rep-
resentative examples and 448 representative sublanguage examples. This small
annotated treebank represents a new type of annotated corpus used for grammar
relational learning. This framework has the practical advantage of implementing
sound grammar revision and grammar merging, which allow an incremental cover-

age of natural language fragments.

Semantic Interpreter For Text-to-Knowledge Acquisition. We built a se-
mantic interpreter based on a weak semantic context. Using this interpreter, we
provided qualitative evaluations that show that our semantic representation On-
toSeR, and its derived forms TKR and OKR are expressive enough to represent
all the above mentioned linguistic phenomena covered by our learned experimental
grammar, are useful for direct knowledge acquisition and deep language understand-
ing (concept level answers to questions). The semantic interpreter implements the
weak concept identity principle for terminological knowledge. We have shown that
the interpreter allows us to semi-automatically build an OKR~annotated treebank
(with human validation) from a set of medical definitions, and to perform NL-
querying experiments. The implementation of the weak concept identity principle
allows us to experiment with the meaning as pairs of questions and their answers.
We have shown that for a terminological knowledge base in OKR form, which does
not allow the direct generation of text from the representation, the meaning can
still be defined as all syntagmas that can be derived as true from the OKR by using
pairs of questions and answers. In this way, meaning can be obtained (theoretically

and practically) without explicitly using first-order logic.



252

9.2 Open Problems and Future Work

In this dissertation we proved theoretically and showed practically that Lexicalized
Well-Founded Grammars can be learned from a set of representative examples and a

representative sublanguage. As a consequence, the following statement holds true:

If natural language can be covered by Lexicalized Well-Founded Gram-
mars, and the set of representative examples and the representative

sublanguage are given, then natural language can be learned.

While in this dissertation we have shown that the representative example and rep-
resentative sublanguage sets can be built and that diverse and complex fragments
of natural language can be covered by Lexicalized Well-Founded Grammars, the

main open problem that still remains is
Can natural language, in general, be covered by LWFGs?

The answer to this question is not an immediate one, and only future research might
be able to provide a definite answer. However, in this dissertation we provided
a learning framework that incrementally learns, thus the system can be used in
future research towards broad coverage of language. In order to move towards

broad coverage, we must address first the two main limitations of the current work:

9.2.1 Weak Semantic Context/Weak Concept Identity

In this dissertation, we only use a weak semantic context for role/property assign-
ment and a weak concept identity principle. The experimental results have shown
that in this situation we have still a fairly high degree of ambiguity. Regarding

the property of concept identity — i.e., the bijection between the OKR vertices
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and referents — using only the weak concept identity principle we cannot currently
treat semantic equivalences, such as synonymy and anaphora.

Future work must consider the incremental enhancement of the semantic con-
text to construct hierarchies of concepts and semantic roles and to add selectional
restrictions. We should introduce a strong concept identity principle, which incor-
porate synonymy and anaphora. The enhancement of the semantic context and the
strong concept identity principle open the problem of defining a normal form for the
OKR representation. As tractability might be affected by the enhancement of the
semantic context, future work should address the issue of introducing probabilities
in order to choose the semantic type of a word and to quantify the admissibility
of concept association. OKR-annotated treebank(s), which our pilot study showed
can be built with the current weak semantic context and human validation, can be
used in future work to enrich the hierarchy of concepts with probabilities. The med-
ical definition corpus automatically extracted by DEFINDER from medical articles

will be further exploited in this direction.

9.2.2 Evaluation

The evaluation of a grammar learning framework for deep semantic analysis is a
difficult problem since we do not have large semantically annotated treebanks and
they are difficult to build. Even if our system learns from a reduced-size treebank,
in order to evaluate it for broad coverage we would need a large annotated treebank.
The lack of a large OntoSeR-annotated treebank has led us to evaluate our frame-
work in two ways: 1) a qualitative evaluation regarding the coverage of diverse
and difficult linguistic phenomena, and 2) a pilot experiment of acquisition and

NL-querying of terminological knowledge from unannotated text (i.e., definitions).
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For the latter we only used a small set since it requires human validation of the
pilot OKR-annotated treebank.

In future work, as the semantic interpreter is enhanced with a strong seman-
tic context with probabilities, such a system can be used to evaluate our grammar
learning framework and our representation on a larger scale using just unannotated
text. The main characteristic of the corpora used for this evaluation purpose, is
that the questions should refer only to what was stated explicitly in text. Thus,
they should target the principle of natural language as problem formulation (i.e.,
without deep reasoning). Building such a corpus of question and answers is less
difficult than building a large semantically annotated treebank, and the evaluation
can be performed by any type of users, as the answers that our system gives are
precise, at the concept level.

As our grammar becomes one of broad coverage, another open problem
would be whether our semantic representation OntoSeR can be used for merging
existing treebanks that focus on parts of the larger problem of semantic annotation.
Pustejovsky et al. (2005) discuss the issues involved in merging four of these ef-
forts into a unified linguistic structure: PropBank (Palmer, Gildea, and Kingsbury,
2005), NomBank (Meyers et al., 2004), the Discourse Treebank (Miltsakaki et al.,
2004) and Coreference Annotation (Poesio and Vieira, 1998). The issues are to
resolve overlapping and conflicting annotations as well as to investigate how the
various annotation schemes can reinforce each other to produce a representation
that is greater than the sum of its parts. It would be an interesting future direction
to investigate how OntoSeR and its derived representation forms TKR and OKR

could be used to realize such a merging automatically.
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Appendix A

Learning an Experimental
Grammar

This appendix presents run examples that illustrate our grammar learning frame-
work. In Appendix A.1 we present the concepts of learning from ordered and
unordered representative examples, for the case of auxiliary verbs. Appendix A.2
shows an example of one iteration of the grammar learning algorithm (i.e., gener-
ation of the most specific rule, the generalization process and the best rule chosen
based on performance criteria). In Appendix A.3 we give several examples of pars-
ing and generation, which exemplify the reversibility of our grammar. We give
examples of learned grammar rules and constraints for several fragments of natural
language in Appendix A.4. Appendix A.5 shows through an example our treatment
of long-distance dependencies. We conclude this appendix with an illustration of
how to generate representative examples given a grammar and a sublanguage using
Algorithm 4 presented in Section 3.6 (Appendix A.6).

The runs are given in Prolog. The grammar rules are shown in their DCG
form, where the constraints are enclosed in {}. The syntagmas are represented as

follows:
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([skin,diseasel, [cat:na,nr:sg,head:Y,mod:Z]><[X@is_a:skin,YQP:X,
YQis_a:disease,Z@P1:Y])

where the first element is the string given as a Prolog list, while the second element
h><b is the corresponding semantic molecule (h is the head of the molecule, b is the
body, and both are given as Prolog lists). The atomic predicates of the body b are
represented as concept@attr:concept, which is just a Prolog notational variant for
the form concept.attr=concept, which we used throughout this dissertation. Capital

letters denote variables.

A.1 Learning Auxiliary Verbs

In this section we present the experiment of learning a grammar for finite auxiliary
verbs. We show the representative examples used, the learned grammar rules and
samples of the learned compositional constraints. We experimented with both
ordered representative examples (Appendix A.1.1) and unordered representative
examples (Appendix A.1.2) as input. As can be noticed, the learned grammar is

the same in both cases.

A.1.1 Learning From Ordered Representative Examples

In the first experiment we used our algorithm Constraint_Grammar_Induction(Eg, E,, K )
that learns from an ordered set of representative examples (see Algorithm 7, Section
5.1.2). The ordered representative example set, Fr, the learned grammar G and
samples of the learned compositional constraints are given below. As can be seen
the number of representative examples equals the number of learned rules, in this
case 14. A representative sublanguage E, consisting of 81 examples was used for

rule generalization.
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Ordered representative examples, Er given as input:!

pos([hel, [cat:sbj,stype:s,dets: y,pers:(_,3),nr:sg,case: ((n,ng)) ,hum:y,
head:X]><[X@is_a:hel).

pos([john], [cat:sbj,stype:s,dets:y,pers:(_,3),nr:sg,case: ((n,ng)) ,hum:y,
head:X]><[XO@name: john]).

pos([who], [cat:sbj,stype:s,dets:no,pers:(_,3),nr:_,case: ((n,ng)) ,hum:y,
head:X]><[X@is_a:who]).

pos([someone,is], [cat:av0,stype:s,vtype:aux,vit:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers: (_,3),
nr:sg,pf:no,pg:no,headS:X,head: Y] ><[X@is_a:someone, Y@tense:pr]).

pos([is,someone], [cat:av0,stype:s,vtype:aux,vit:fin,int:y,dets:y,
case: (n,ng) ,hum:_,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf:no,
pg:no,headS:X,head:Y]><[Y0@tense:pr, XQis_a:someone]).

pos([who,is], [cat:av0,stype:s,vtype:aux,vft:fin,int:_,dets:no,
case: ((n,ng)) ,hum:y,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:who, Y@tense:pr]).

pos([someone,is], [cat:avl,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr]).

pos([someone,is,not], [cat:avl,stype:s,vtype:aux,vit:fin,int:no,dets:y,
case: (n,ng) ,hum:_,aux:be,neg:y,tense:pr,pers: (_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:someone,Y0tense:pr,YOneg:yl) .

pos([someone,is], [cat:av2,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers: (_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr]).

pos([someone,can,bel, [cat:av2,stype:s,vtype:aux,vit:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:mod,pers: (_,3) ,nr:sg,pf:no,
pg:no,headS:X,head:Y]><[X@is_a:someone,YOmod:can,Y@bse:bel) .

pos([someone,is], [cat:av3,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum:_,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf:no,
pg:no,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr]).

pos([she,has,been], [cat:av3,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum:y,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf:y,
pg:no,headS:X,head:Y]><[X@is_a:she,Y@tense:pr,Y0pf:yl).

pos([someone,is], [cat:av4,stype:s,vtype:aux,vit:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers: (_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr]).

pos([someone,is,being], [cat:av4,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum:_,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf :no,
Pg:y,headS:X,head:Y]><[XQis_a:someone, Y@tense:pr,Y@pg:yl).

Tt can be noticed that our input for grammar learning does not consist of entire sentences
that are annotated as is customary when learning from the Penn Treebank. Our examples are
syntagmas (which can be any unit corresponding to words, phrases, clauses and sentences). Thus
our representative examples are a different type of annotated corpus for grammar learning.
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The learned LWFG rules in DCG form:

sbj (A><B-C) --->pro(D><B-C) ,{phi_comp(1, [A,D]),phi_onto(B)}.

sbj (A><B-C) --->pn(D><B-C) ,{phi_comp(2,[A,D]) ,phi_onto(B)}.

sbj (A><B-C)--->relpro(D><B-C) ,{phi_comp(3, [A,D]) ,phi_onto(B)}.
av0(A><B-C)--->sbj (D><B-E) ,aux (F><E-C) ,{phi_comp (4, [A,D,F]) ,phi_onto(B)}.
av0 (A><B-C) --->aux (D><B-E) ,sbj (F><E-C) ,{phi_comp(5, [A,D,F]) ,phi_onto(B)}.
av0 (A><B-C) --->relpro(D><B-E) ,aux (F><E-C) ,{phi_comp(6, [A,D,F]) ,phi_onto(B)}.
avl(A><B-C)--->av0(D><B-C) ,{phi_comp(7, [A,D]) ,phi_onto(B)}.
avl(A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp(8, [A,D,F]) ,phi_onto(B)}.
av2(A><B-C)--->av1(D><B-C) ,{phi_comp(9, [A,D]),phi_onto(B)}.
av2(A><B-C)--->av1(D><B-E) ,aux (F><E-C) ,{phi_comp (10, [A,D,F]) ,phi_onto(B)}.
av3 (A><B-C)--->av2(D><B-C) ,{phi_comp(11,[A,D]) ,phi_onto(B)}.

av3 (A><B-C)--->av2(D><B-E) ,aux (F><E-C) ,{phi_comp (12, [A,D,F]) ,phi_onto(B)}.
av4 (A><B-C)--->av3(D><B-C) ,{phi_comp(13,[A,D]) ,phi_onto(B)}.

av4 (A><B-C) --->av3(D><B-E) ,aux (F><E-C) ,{phi_comp(14, [A,D,F]) ,phi_onto(B)}.

Samples of learned compositional constraints predicates (®.omp):*

phi_comp(3, [A,C]) :-
eq(A, head:D, C, head:D),
eq(A, cat:sbj),
eq(A, stype:s),
eq(A, dets:no, C, dets:no),
eq(A, pers:(E,F), C, pers:(E,F)),
eq(A, nr:G, C, nr:G),
eq(A, case:(n,ng), C, case:(n,ng)),
eq(A, hum:H, C, hum:H),
eq(C, cat:relpro),
e_list(A).

phi_comp(4, [A,C,D]) :-
eq(A, headS:E, C, head:E),
eq(A, head:F, D, head:F),
eq(A, cat:av0),
eq(A, stype:G, C, stype:G),
eq(A, vtype:H, D, vtype:H),
eq(A, vit:fin, D, vft:fin),
eq(A, int:no),
eq(A, dets:y, C, dets:y),
eq(A, case:(I1,J), C, case:(I,J)),
eq(A, hum:K, C, hum:K),
eq(A, aux:L, D, aux:L),
eq(A, neg:M, D, neg:M),

2The first argument of the phi_comp predicates is the number of the grammar rule that these
constraints are associated with.
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eq(A, tense:N, D, temnse:N),
eq(A, pers:(0,P), C, pers:(0,P)),
eq(A, pers:(Q,R), D, pers:(Q,R)),
eq(A, nr:S, C, nr:S),
eq(A, nr:T, D, nr:T),
eq(A, pf:U, D, pf:U),
eq(A, pg:V, D, pg:V),
eq(C, cat:sbj),
eq(D, cat:aux),
e_list(A).

phi_comp(5, [A,C,D]) :-
eq(A, headS:E, D, head:E),
eq(A, head:F, C, head:F),
eq(A, cat:av0),
eq(A, stype:G, D, stype:G),
eq(A, vtype:H, C, vtype:H),
eq(A, vit:fin, C, vft:fin),
eq(A, int:y),
eq(A, dets:y, D, dets:y),
eq(A, case:(I,J), D, case:(I,J)),
eq(A, hum:K, D, hum:K),
eq(A, aux:L, C, aux:L),
eq(A, neg:M, C, neg:M),
eq(A, tense:N, C, tense:N),
eq(A, pers:(0,P), C, pers:(0,P)),
eq(A, pers:(Q,R), D, pers:(Q,R)),
eq(A, nr:S, C, nr:S),
eq(A, nr:T, D, nr:T),
eq(A, pf:U, C, pf: 1),
eq(A, pg:V, C, pg:V),
eq(C, cat:aux),
eq(D, cat:sbj),
e_list(A).

phi_comp(7, [A,C]) :-
eq(A, headS:D, C, headS:D),
eq(A, head:E, C, head:E),
eq(A, cat:avl),
eq(A, stype:F, C, stype:F),
eq(A, vtype:G, C, vtype:G),
eq(A, vit:H, C, vit:H),
eq(A, int:I, C, int:I),
eq(A, dets:J, C, dets:J),
eq(A, case:(K,L), C, case:(X,L)),
eq(A, hum:M, C, hum:M),
eq(A, aux:N, C, aux:N),
eq(A, neg:0, C, neg:0),
eq(A, tense:P, C, tense:P),
eq(A, pers:(Q,R), C, pers:(Q,R)),
eq(A, nr:S, C, nr:S),
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eq(A, pf:T, C, pf:T),
eq(4, pg:U, C, pg:U),
eq(C, cat:av0),
e_list(A).

phi_comp(8, [A,C,D]) :-
eq(A, headS:E, C, headS:E),
eq(A, head:F, C, head:F),
eq(A, head:G, D, head:G),
eq(A, cat:avl),
eq(A, stype:H, C, stype:H),
eq(A, vtype:I, C, vtype:I),
eq(A, vtype:J, D, vtype:J),
eq(A, vit:fin, C, vft:fin),
eq(A, int:K, C, int:K),
eq(A, dets:L, C, dets:L),
eq(A, case:(M,N), C, case:(M,N)),
eq(A, hum:0, C, hum:0),
eq(A, aux:P, C, aux:P),
eq(A, neg:y, D, neg:y),
eq(A, tense:Q, C, temnse:Q),
eq(A, pers:(R,S), C, pers:(R,S)),
eq(A, nr:T, C, nr:T),
eq(A, pf:U, C, pf:lU),
eq(A, pg:V, C, pg:\),
eq(C, cat:av0),
eq(C, neg:no),
eq(D, cat:aux),
eq(D, aux:not),
e_list(A).

phi_comp(10, [A,C,D]) :-
eq(A, headS:E, C, headS:E),
eq(A, head:F, C, head:F),
eq(A, head:G, D, head:®),
eq(A, cat:av2),
eq(A, stype:H, C, stype:H),
eq(A, vtype:I, C, vtype:I),
eq(A, vtype:J, D, vtype:J),
eq(A, vit:fin, C, vft:fin),
eq(A, int:K, C, int:K),
eq(A, dets:L, C, dets:L),
eq(A, case:(M,N), C, case:(M,N)),
eq(A, hum:0, C, hum:0),
eq(A, aux:P, D, aux:P),
eq(A, neg:Q, C, neg:Q),
eq(A, tense:mod, C, tense:mod),
eq(A, pers:(R,S), C, pers:(R,S)),
eq(A, nr:T, C, nr:T),
eq(A, pf:U, C, pf:U),
eq(4, pg:V, C, pg:V),
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eq(C, cat:avl),
eq(C, aux:mod),
eq(D, cat:aux),
eq(D, vft:nf),
e_list(A).

phi_comp(14, [A,C,D]) :-
eq(A, headS:E, C, headS:E),
eq(A, head:F, C, head:F),
eq(A, head:G, D, head:G),
eq(A, cat:avd),
eq(A, stype:H, C, stype:H),
eq(A, vtype:I, C, vtype:I),
eq(A, vtype:J, D, vtype:J),
eq(A, vit:fin, C, vft:fin),
eq(A, int:K, C, int:K),
eq(A, dets:L, C, dets:L),
eq(A, case:(M,N), C, case:(M,N)),
eq(A, hum:0, C, hum:0),
eq(A, aux:be, C, aux:be),
eq(A, aux:be, D, aux:be),
eq(A, neg:P, C, neg:P),
eq(A, tense:Q, C, temse:Q),
eq(A, pers:(R,S), C, pers:(R,S)),
eq(A, nr:T, C, nr:T),
eq(A, pf:U, C, pf:lU),
eq(A, pg:y, D, pg:y),
eq(C, cat:av3d),
eq(C, pg:no),
eq(D, cat:aux),
eq(D, vft:nf),
e_list(A).

A.1.2 Learning from Unordered Representative Examples

In the second experiment of learning a grammar of finite auxiliary verbs, we used
our iterative learning algorithm Iterative-Grammar_Induction(E%, E,, K ), which
learns from unordered representative examples, Ef, (see Algorithm 9, Section 5.1.3).
We took the set representative examples Eg given in the previous section and
scrambled them, obtaining the representative example set EF, given below. We

show the iteration steps, and the reduced semantics at each step (i.e., the numbered
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of covered positive examples from the representative sublanguage, E,, used for
generalization). At each iteration step we show the best set of grammar rules.
We can notice that the grammar obtained at the last iteration is the same as the

grammar learned from the ordered representative examples.

Unordered representative examples, £}, given as input:

pos([hel, [cat:sbj,stype:s,dets:y,pers:(_,3) ,nr:sg,case: ((n,ng)) ,hum:y,
head:X]><[X@is_a:he]).
pos([john], [cat:sbj,stype:s,dets:y,pers:(_,3),nr:sg,case: ((n,ng)) ,hum:y,
head:X]><[X@name: john]) .
pos([who]l, [cat:sbj,stype:s,dets:no,pers:(_,3),nr:_,case: ((n,ng)) ,hum:y,
head:X]><[X@is_a:who]).
pos([someone,is], [cat:av0,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr]).
pos([is,someone], [cat:av0,stype:s,vtype:aux,vit:fin,int:y,dets:y,
case: (n,ng) ,hum:_,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf:no,
pg:no,headS:X,head:Y]><[Y@tense:pr, X@is_a:someone]).
pos([who,is], [cat:av0,stype:s,vtype:aux,vft:fin,int:_,dets:no,
case: ((n,ng)) ,hum:y,aux:be,neg:no,tense:pr,pers: (_,3) ,nr:sg,pf:no,
pg:no,headS:X,head:Y]><[X@is_a:who, Y@tense:pr]).
pos([someone,is], [cat:av4,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr]).
pos([someone,is,being], [cat:av4,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf :no,
pg:y,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr,Y@pg:yl).
pos([someone,is], [cat:av3,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers: (_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr]).
pos([she,has,been], [cat:av3,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum:y,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf:y,
pg:no,headS:X,head:Y]><[X@is_a:she,Y@tense:pr,Yepf:y]l).
pos([someone,is], [cat:av2,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[XQ@is_a:someone, Y@tense:pr]).
pos([someone,can,bel, [cat:av2,stype:s,vtype:aux,vit:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no, tense:mod,pers: (_,3) ,nr:sg,pf:no,
pg:no,headS:X,head:Y]><[X@is_a:someone,Y@mod:can,Y@bse:be]).
pos([someone,is], [cat:avl,stype:s,vtype:aux,vft:fin,int:no,dets:y,
case: (n,ng) ,hum: _,aux:be,neg:no,tense:pr,pers:(_,3) ,nr:sg,pf :no,
pg:no,headS:X,head:Y]><[X@is_a:someone, Y@tense:pr]).
pos([someone,is,not],[cat:avl,stype:s,vtype:aux,vit:fin,int:no,dets:y,
case: (n,ng) ,hum:_,aux:be,neg:y,tense:pr,pers:(_,3) ,nr:sg,pf:no,
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pg:no,headS:X,head:Y]><[X@is_a:someone,Y0tense:pr,YOneg:yl) .

The learned LWFG rules after each iteration step:®

The first iteration

Performance criterion - number of parsed E+ examples=49

Best set of rules

sbj (A><B-C) --->pro(D><B-C) ,{phi_comp(1, [A,D]),phi_onto(A)}.

sbj (A><B-C) --->pn(D><B-C) ,{phi_comp(2,[A,D]) ,phi_onto(A)}.

sbj (A><B-C)--->relpro(D><B-C) ,{phi_comp(3, [A,D]) ,phi_onto(A)} 3).

av0 (A><B-C)--->sbj (D><B-E) ,aux (F><E-C) ,{phi_comp (4, [A,D,F]) ,phi_onto(A)}.
av0 (A><B-C) --->aux (D><B-E) , sbj (F><E-C) ,{phi_comp(5, [A,D,F]) ,phi_onto(A)}.
av0 (A><B-C) --->relpro(D><B-E) ,aux (F><E-C) ,{phi_comp(6, [A,D,F]) ,phi_onto(A)}.
av4 (A><B-C) --->av0(D><B-C) , {phi_comp(7, [A,D]) ,phi_onto(A)}.

av4 (A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp(8, [A,D,F]) ,phi_onto(A)}.
av3(A><B-C)--->av0(D><B-C) ,{phi_comp(9, [A,D]),phi_onto(A)}.
av3(A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp (10, [A,D,F]) ,phi_onto(A)}.
av2(A><B-C)--->av0(D><B-C) ,{phi_comp(11,[A,D]) ,phi_onto(A)}.
av2(A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp (12, [A,D,F]) ,phi_onto(A)}.
avl(A><B-C)--->av0(D><B-C) ,{phi_comp(13,[A,D]) ,phi_onto(A)}.

avl (A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp(14, [A,D,F]) ,phi_onto(A)}.

The second iteration

Performance criterion - number of parsed E+ examples=68

Best set of rules:

sbj (A><B-C) --->pro(D><B-C) , {phi_comp(1, [A,D]),phi_onto(A)}.

sbj (A><B-C) --->pn(D><B-C) ,{phi_comp(2,[A,D]) ,phi_onto(A)}.

sbj (A><B-C)--->relpro(D><B-C) ,{phi_comp(3, [A,D]) ,phi_onto(A)}.

av0(A><B-C) --->sbj (D><B-E) ,aux (F><E-C) ,{phi_comp (4, [A,D,F]) ,phi_onto(A)}.
av0 (A><B-C) --->aux (D><B-E), sbj (F><E-C) ,{phi_comp(5, [A,D,F]) ,phi_onto(A)}.
av0(A><B-C) --->relpro(D><B-E) ,aux (F><E-C) ,{phi_comp(6,[A,D,F]) ,phi_onto(A)}.
av4 (A><B-C)--->av3(D><B-C) ,{phi_comp(7,[A,D]),phi_onto(A)}.

av4 (A><B-C)--->av3(D><B-E) ,aux (F><E-C) ,{phi_comp(8, [A,D,F]) ,phi_onto(A)}.
av3(A><B-C)--->av1(D><B-C) ,{phi_comp(9, [A,D]),phi_onto(A)}.
av3(A><B-C)--->av1(D><B-E) ,aux (F><E-C) ,{phi_comp (10, [A,D,F]) ,phi_onto(A)}.
av2(A><B-C)--->av1(D><B-C) ,{phi_comp(11,[A,D]),phi_onto(A)}.
av2(A><B-C)--->av1(D><B-E) ,aux (F><E-C) ,{phi_comp(12, [A,D,F]) ,phi_onto(A)}.
avl(A><B-C)--->av0(D><B-C) ,{phi_comp (13, [A,D]) ,phi_onto(A)}.
avl(A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp (14, [A,D,F]) ,phi_onto(A)}.

The third iteration:

3E+ is the representative sublanguage E, .
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Performance criterion - number of parsed E+ examples=77

Best set of rules:

sbj (A><B-C)--->pro(D><B-C) , {phi_comp(1, [A,D]),phi_onto(A)}.

sbj (A><B-C)--->pn(D><B-C) ,{phi_comp(2, [A,D]) ,phi_onto(A)}.

sbj (A><B-C)--->relpro(D><B-C) ,{phi_comp(3, [A,D]) ,phi_onto(A)}.

av0 (A><B-C)--->sbj (D><B-E) ,aux (F><E-C) ,{phi_comp (4, [A,D,F]) ,phi_onto(A)}.
av0 (A><B-C) --->aux (D><B-E), sbj (F><E-C) ,{phi_comp(5, [A,D,F]) ,phi_onto(A)}.
av0 (A><B-C) --->relpro(D><B-E) ,aux (F><E-C) ,{phi_comp(6, [A,D,F]) ,phi_onto(A)}.
av4 (A><B-C) --->av2(D><B-C) , {phi_comp(7, [A,D]) ,phi_onto(A)}.

av4 (A><B-C)--->av3(D><B-E) ,aux (F><E-C) ,{phi_comp(8, [A,D,F]) ,phi_onto(A)}.
av3(A><B-C)--->av2(D><B-C) ,{phi_comp(9, [A,D]),phi_onto(A)}.
av3(A><B-C)--->av2(D><B-E) ,aux (F><E-C) ,{phi_comp (10, [A,D,F]) ,phi_onto(A)}.
av2(A><B-C)--->av1(D><B-C) ,{phi_comp(11,[A,D]) ,phi_onto(A)}.
av2(A><B-C)--->av1(D><B-E) ,aux (F><E-C) ,{phi_comp (12, [A,D,F]) ,phi_onto(A)}.
avl (A><B-C)--->av0(D><B-C) ,{phi_comp (13, [A,D]) ,phi_onto(A)}.

avl (A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp(14, [A,D,F]) ,phi_onto(A)}.

The fourth iteration:

Performance criterion - number of parsed E+ examples=81

Best set of rules:

sbj (A><B-C) --->pro(D><B-C) , {phi_comp(1, [A,D]),phi_onto(A)}.

sbj (A><B-C)--->pn(D><B-C) ,{phi_comp(2, [A,D]) ,phi_onto(A)}.

sbj (A><B-C)--->relpro(D><B-C) ,{phi_comp(3, [A,D]) ,phi_onto(A)}.

av0 (A><B-C) --->sbj (D><B-E) ,aux (F><E-C) ,{phi_comp (4, [A,D,F]) ,phi_onto(A)}.
av0 (A><B-C) --->aux (D><B-E), sbj (F><E-C) ,{phi_comp(5, [A,D,F]) ,phi_onto(A)}.
av0 (A><B-C) --->relpro(D><B-E) ,aux (F><E-C) ,{phi_comp(6, [A,D,F]) ,phi_onto(A)}.
av4 (A><B-C)--->av3(D><B-C) ,{phi_comp(7,[A,D]),phi_onto(A)}.

av4 (A><B-C) --->av3(D><B-E) ,aux (F><E-C) ,{phi_comp(8, [A,D,F]) ,phi_onto(A)}.
av3 (A><B-C)--->av2(D><B-C) ,{phi_comp(9, [A,D]) ,phi_onto(A)}.
av3(A><B-C)--->av2(D><B-E) ,aux (F><E-C) ,{phi_comp (10, [A,D,F]) ,phi_onto(A)}.
av2(A><B-C)--->av1(D><B-C) ,{phi_comp(11,[A,D]) ,phi_onto(A)}.
av2(A><B-C)--->av1(D><B-E) ,aux (F><E-C) ,{phi_comp(12, [A,D,F]) ,phi_onto(A)}.
avl(A><B-C)--->av0(D><B-C) ,{phi_comp (13, [A,D]) ,phi_onto(A)}.
avl(A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp(14,[A,D,F]) ,phi_onto(A)}.

A.2 Example of Grammar Learning Steps

In this appendix we exemplify the grammar learning steps that occur in learning
the ith grammar rule from the ith representative example (see Procedure Gen-
erate_Rule(o,G', E,, K ) and Figure 5.4 in section 5.1.2). For example, given the

representative example liking me today (annotated with its semantic molecule), we



learn a grammar rule for reduced relative clauses post-modified by adjuncts.

cat:rrcl

OntoSeR=["1@vft:ing, 1@is_a:1like, 1@exp:~2, 1@perc:~3,~3Q@is_a:me,
~1@time:today]
w=[liking,me,today]]

Nchunk=2 [liking,me], [today]
Positive representative example:[[liking,me], [today]]

Annotation w’ of representative example:
[cat:rrcl,stype:no,ctype:s,vtype:norm,vft:nfin,vf:ing,val:tv,voice:act,
head:A,mod:B]><[A@vft:ing,A@is_a:1like,AQexp:B,AQperc:C,CQis_a:me,
A@time:today] .

Robparse semantics wi’ of chunks :

(2, adv([cat:adv,head:A]><[A@time:today|B]-B)).

(2, adjc([link:A,atype:s,cat:adjc]><[A@time:today|B]-B)).

(1, nvo([head:A,headS:B,headC:C,cat:nvo,stype:no,ctype:s,vtype:norm,
vit:nfin,vf:ing,val:tv,voice:act]><[ACvft:ing,ACis_a:1like,AQexp:B,
A@perc:C,C@is_a:me|D]-D)).

(1, rrcl([head:A,mod:B,stype:no,ctype:s,vtype:norm,vit:nfin,vf:ing,val:tv,

voice:act,cat:rrcl]><[A@vft:ing,A@is_a:1like,ACexp:B,A@perc:C,
C@is_a:me|D]-D)).

Compositional constraint:

phi_comp(151,[A,C,D]):-
eq(A,head:E,C,head:E),
eq(A,head:F,D,head:F),
eq(A,mod:G,C,headS:G),
eq(A,stype:H,C,stype:H),
eq(A,ctype:I,C,ctype:I),
eq(A,vtype:J,C,vtype:J),
eq(A,vft:nfin,C,vft:nfin),
eq(A,vf:K,C,vE:K),
eq(A,val:L,C,val:L),
eq(A,voice:M,C,voice:M),
eq(A,cat:rrcl),
eq(C,cat:nvo),
eq(D,cat:adv),
e_list(A).

Most specific constraint rule:
rrcl (A><B-C) --->nvo (D><B-E) ,adv(F><E-C) ,{phi_comp(151,[A,D,F])}.
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Generalization of the 1st right constituent

Compositional constraint:

phi_comp(151,[A,C,D]):~-
eq(A,head:E,C,head:E),
eq(A,head:F,D,head:F),
eq(A,mod:G,C,mod:G),
eq(A,stype:H,C,stype:H),
eq(A,ctype:I,C,ctype:I),
eq(A,vtype:J,C,vtype:J),
eq(A,vft:nfin,C,vft:nfin),
eq(A,vf:K,C,vE:K),
eq(A,val:L,C,val:L),
eq(A,voice:M,C,voice:M),
eq(A,cat:rrcl),
eq(C,cat:rrcl),
eq(D,cat:adv),
e_list(A).

Performance criterion based on reduce semantics:
nvo=3 rrcl=4

Generalization of the 2nd right constituent

Compositional constraint:

phi_comp(151,[A,C,D]):~-
eq(A,head:E,C,head:E),
eq(A,head:F,D,1link:F),
eq(A,mod:G,C,mod:G),
eq(A,stype:H,C,stype:H),
eq(A,ctype:I,C,ctype:I),
eq(A,vtype:J,C,vtype:J),
eq(A,vft:nfin,C,vft:nfin),
eq(A,vf:K,C,vf:K),
eq(A,val:L,C,val:L),
eq(A,voice:M,C,voice:M),
eq(A,cat:rrcl),
eq(C,cat:rrcl),
eq(D,cat:adjc),
e_list(A).

Performance criterion based on reduce semantics:
adv=4 adjc=5

Best rule:
rrcl (A><B-C)--->rrcl(D><B-E),adjc(F><E-C) ,{phi_comp (151, [A,D,F])}.
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A.3 Examples of Parsing/Generation

In this appendix we illustrate the reversibility of our grammar as presented in
Section 3.5. It can be seen that the input to our robust parser is just the string,
while the output is one or more syntagmas. The input to our generator is just
the body of the semantic molecule, i.e., our semantic representation OntoSeR. The
output of the generator is one or more syntagmas. In the examples given here, we
show only the strings of these syntagmas if more are generated, except for the last

syntagma which is chosen to illustrate the whole output form.

A.3.1 Finite Verbs

In this example we can see that for the string who can not have been going we
obtained as output of parsing five syntagmas. They all have the same semantic
representation, but they differ in their categories (and thus the heads of their se-
mantic molecules are different). This string can be a wh-question (whcl), a relative
clause (relcl), a finite clause (fcl), a clause with all its complements (svo), and a
clause with subject and verb (sv). Since we only have one semantic representation,
we have one input to our generator. We obtain three syntagmas, for which we
show only their strings (we have three ways of verbalizing the modal and negation

(cannot, can’t, can not).

PARSING: string given as input:
w=[who,can,not,have,been,going]

Syntagmas resulted as output of parsing:

(w,w’)=([who,can,not ,have,been,going],
[head:A,headS:B,stype:s,ctype:s,vtype:norm,vft:fin,val:iv,
voice:act,int:y,dets:no,cat:whcl]><[BQis_a:who,A@mod:can,ACneg:y,
A@bse:have,AQpf:y,AQpg:y,AQ@is_a:go,AGagt:B]).
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(w,w’)=([who,can,not ,have,been,going],
[head:C,mod:D,stype:s,ctype:s,vtype:norm,vit:fin,val:iv,
voice:act,pers:(_,3),nr:_,int:no,dets:no,vf:no,cat:relcl]><
[D@is_a:who,C@mod:can,COneg:y,Cebse:have,Cepf:y,Clpg:y,CRis_a:go,
Ceagt:D]) .

(w,w?)=([who,can,not,have,been,going],
[head:E,headS:F,stype:s,ctype:s,vtype:norm,vft:fin,val:iv,
voice:act,pers:(_,3),nr:_,dets:no,int:_,cat:fcl]><[F@is_a:who,
E@mod:can,E@neg:y,E@bse:have,E@pf:y,E@pg:y,E@is_a:go,E@agt:F]).

(w,w’)=([who,can,not ,have,been,going],
[head:G,headS:H,stype:s,vtype:norm,vit:fin,vf:ing,val:iv,
voice:act,int:_,dets:no,pers:(_,3),nr:_,ctype:s,cat:svo]><
[Heis_a:who,G@mod:can,G@neg:y,GObse:have,GOpf:y,G0pg:y,GRis_a:go,
Ge@agt:H]) .

(w,w’)=([who,can,not,have,been,going],
[head:I,headS:J,cat:sv,stype:s,vtype:norm,vft:fin,vf:ing,val:iv,
aux:be,voice:act,int:_,dets:no,case: (n,ng) ,hum:y,neg:y,tense:mod,
pers:(_,3),nr:_,pf:y,pg:y]><[JQ@is_a:who,I@mod:can,ICneg:y,
I@bse:have,IQpf:y,I@pg:y,IQ@is_a:go,ICagt:J]1)]1]1).

GENERATION: OntoSeR given as input (in this case only one):
b=["1@is_a:who, 2@mod:can, “2@neg:y,  2@bse:have, "2@pf:y, 2@pg:y,
“2Q@is_a:go, "2@agt: 1]

Strings of the syntagmas resulted as output of generation:
w=[who,cannot,have,been,going]

w=[who,can’t ,have,been,going]
w=[who,can,not,have,been,going]

Last syntagma from generation(output):

(w,w?)=([who,can,not,have,been,going],
[head:A,headS:B,stype:s,ctype:s,vtype:norm,vft:fin,val:iv,
voice:act,int:y,dets:no,cat:whcl]><[B@is_a:who,A@mod:can,
A@neg:y,AQ@bse:have,A@pf:y,ACpg:y,AQis_a:go,AQagt:B]).

A.3.2 Relative Clause (without agreement)

In this appendix we present the case of parsing/generation of relative clauses in
an experiment when we did not model the agreement between the head noun and

the verb in the relative clause. Running the parser/generator pinpointed this error,
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and let us refine the grammar by refining our representative examples.

PARSING: string given as input:
w=[the,boy,who,loves,mary,tries,to,be,loved,by,her]

Syntagmas resulted as output of parsing (in this case only one):

(w,w’)=([the,boy,who,loves,mary,tries,to,be,loved,by,her],
[head:A,headS:B,headC:C,stype:s,vtype:csbj,vft:fin,vf:no,val:tv,
voice:act,dets:y,int:no,ctype:c,cat:fcl]><[B@det:the,B@is_a:boy,
BQ@is_a:who,D@tense:pr,D@is_a:love,DQ@exp:B,D@perc:E,EO@name:mary,
AQ@tense:pr,AQ@is_a:try,AQag:B,ACprop:C,Cevit:to,Clbse:be,
C@voice:pas,C@is_a:love,CQexp:F,C@perc:B,expQis_a:by,CQexp:F,
F@is_a:her]).

GENERATION: OntoSeR given as input (in this case only one):
b=["1@det:the, " 1@is_a:boy, 1@is_a:who, 2@tense:pr, 2Qis_a:love, 2Qexp:~1,
“2Qperc:~3,"30Qname:mary, “4Q@tense:pr, “4Q@is_a:try, 4Qag:~1, "4@prop:~5,
“bQvft:to, b@bse:be, "bO@voice:pas, 5@is_a:love, "5Qexp:~6, b@perc: 1,

exp@is_a:by, “5Q@exp:~6, 6@is_a:her]

Strings of the syntagmas resulted as output of generation:
w=[the,boy,who,love,mary,does,try,to,be,loved,by,her]
w=[the,boy,who,love,mary,tries,to,be,loved,by,her]
w=[the,boy,who,loves,mary,does,try,to,be,loved,by,her]
w=[the,boy,who,loves,mary,tries,to,be,loved,by,her]
w=[the,boy,who,do,love,mary,does,try,to,be,loved,by,her]
w=[the,boy,who,do,love,mary,tries,to,be,loved,by,her]
w=[the,boy,who,does,love,mary,does,try,to,be,loved,by,her]
w=[the,boy,who,does,love,mary,tries,to,be,loved,by,her]

Last syntagma from generation(output):

(w,w’)=([the,boy,who,does,love,mary,tries,to,be,loved,by,her],
[head:A,headS:B,headC:C,stype:s,vtype:csbj,vift:fin,vf:no,val:tv,
voice:act,dets:y,int:no,ctype:c,cat:fcl]><[B@det:the,B@is_a:boy,
B@is_a:who,D@tense:pr,DQ@is_a:love,DQ@exp:B,D@perc:E,ECname:mary,
AQ@tense:pr,AQ@is_a:try,AQag:B,AQprop:C,Cevit:to,Clbse:be,
C@voice:pas,C@is_a:love,CQexp:F,C@perc:B,explis_a:by,CQexp:F,
F@is_a:her]).

A.3.3 Relative Clause (with agreement)

In this appendix we show the parsing/generation for relative clauses in our current

grammar, where we model agreement.
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PARSING: string given as input:
w=[the,boy,who,loves,mary,tries,to,be,loved,by,her]

Syntagmas resulted as output of parsing (in this case only one):

(w,w’)=([the,boy,who,loves,mary,tries,to,be,loved,by,her],
[head:A,headS:B,headC:C,stype:s,vtype:csbj,vift:fin,vf:no,val:tv,
voice:act,pers:(_,3),nr:sg,dets:y,int:no,ctype:c,cat:fcl]><
[Bedet:the,B@is_a:boy,B@is_a:who,D@tense:pr,D@is_a:love,D@exp:B,
D@perc:E,E@name:mary,AQtense:pr,AQis_a:try,AQag:B,ACprop:C,
Cevft:to,C@bse:be,CQvoice:pas,CQis_a:love,CQexp:F,COperc:B,
exp@is_a:by,CQexp:F,F@is_a:her]).

GENERATION: OntoSeR given as input (in this case only one):
b=["1@det:the, 1@is_a:boy, 1@is_a:who, 2@tense:pr, 20is_a:love, 2Qexp:~1,
“2Q@perc:~3,"30@name:mary, “4Q@tense:pr, 4Q@is_a:try, 40Qag:"1, "4@prop:~5,
“bQvft:to, 5@bse:be, "b0@voice:pas, 50@is_a:love, "5Q@exp:~6, b@perc: 1,

expQis_a:by, "5Q@exp:~6, 6Q@is_a:her]

Strings of the syntagmas resulted as output of generation:
w=[the,boy,who,loves,mary,does,try,to,be,loved,by,her]
w=[the,boy,who,loves,mary,tries,to,be,loved,by,her]
w=[the,boy,who,does,love,mary,does,try,to,be,loved,by,her]
w=[the,boy,who,does,love,mary,tries,to,be,loved,by,her]

Last syntagma from generation(output):

(w,w’)=([the,boy,who,does,love,mary,tries,to,be,loved,by,her],
[head:A,headS:B,headC:C,stype:s,vtype:csbj,vft:fin,vf:no,val:tv,
voice:act,pers:(_,3),nr:sg,dets:y,int:no,ctype:c,cat:fcl]><
[B@det:the,B@is_a:boy,B@is_a:who,D@tense:pr,D@is_a:love,D@exp:B,
D@perc:E,E@name:mary,AQtense:pr,AQis_a:try,AQag:B,ACprop:C,
Cevft:to,C@bse:be,COvoice:pas,CQis_a:love,CQexp:F,COperc:B,
exp@is_a:by,C@exp:F,F@is_a:her]).

A.3.4 Complex Utterance

In this appendix we present an example of parsing/generation for a complex sen-
tence King Abdullah has been working to try to get the Palestinian leaders to come

to the table.

PARSING: string given as input:
w=[King Abdullah,has,been,working,to,try,to,get,the,palestinian,leaders,
to,come,to,the,table]
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Syntagmas resulted as output of parsing (in this case only one):

(w,w?)=([’King Abdullah’,has,been,working,to,try,to,get,the,palestinian,
leaders,to,come,to,the,table],
[head:A,headS:B,headC:C,stype:s,vtype:csbj,vit:fin,val:tv,
voice:act,pers:(_,3),nr:sg,dets:y,int:no,ctype:c,cat:fcl]><
[Bename: ’King Abdullah’,A@tense:pr,ACpf:y,ACpg:y,AQis_a:work,
AQ@ag:B,A@th:C,Cevft:to,C@is_a:try,C@ag:B,C@prop:D,Devit:to,
D@is_a:get,D@ag:B,D@th:E,D@src:F,E@det:the,GQ@is_a:palestinian,
E@_:G,EQ@is_a:leaders,F@vft:to,FQis_a:come,FQag:E,HQis_a:to,
FOH:I,I@det:the,I@is_a:table]).

GENERATION: OntoSeR given as input (in this case only one):

b=["1@name:King Abdullah,~2@tense:pr, 2@pf:y, 2@pg:y, 2@is_a:work, 20@ag:"1,
~“2@th:73,730Qvft:to,”3@is_a:try, 30Qag:"1, 3C@prop:~4, 4Qvft:to, 4Q@is_a:get,
“4Qag:"1,740Qth:"5,"4@src: "6, 5@det:the, "70@is_a:palestinian, "5Q@origin: "7,
“b@is_a:leaders, " 6@vft:to, 6@is_a:come, “60@ag: 5, (mod-prop)@is_a:to,
~6@(mod-prop) : "8, “8@det :the, "8Qis_a:tablel

Strings of the syntagmas resulted as output of generation:
w=[King Abdullah,has,been,working,to,try,to,get,the,palestinian,leaders,
to,come,to,the,table]

Last syntagma from generation(output):

(w,w’)=([’King Abdullah’,has,been,working,to,try,to,get,the,palestinian,
leaders,to,come,to,the,table],
[head:A,headS:B,headC:C,stype:s,vtype:csbj,vit:fin,val:tv,
voice:act,pers:(_,3),nr:sg,dets:y,int:no,ctype:c,cat:fcl]><
[Bename: ’King Abdullah’,A@tense:pr,ACpf:y,ACpg:y,ACis_a:work,
AQ@ag:B,A@th:C,Cevft:to,C@is_a:try,C@ag:B,C@prop:D,Devit:to,
D@is_a:get,D@ag:B,D@th:E,D@src:F,E@det:the,GQis_a:palestinian,
E@origin:G,EQ@is_a:leaders,FQ@vft:to,FQ@is_a:come,FQag:E,
(mod-prop)@is_a:to,F@(mod-prop) :H,H@det :the ,H@is_a:table]).

A.4 Samples of the Learned Grammar: Noun
Compounds, Raising/Control, Reduced Rel-
ative Clauses

In this section we present fragments of our learned grammar that models noun
compounds (see Section 6.1.2, Figure 6.10(b) and Section 7.1.2), raising and con-

trol (see Section 6.2 and Section 7.1.2), and reduced relative clauses (see Section
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6.3.1 and Section 7.1.2). In Appendix A.4.1 we give samples of the representative
examples for each of these phenomena, while in Appendix A.4.2 we give the learned

grammar rules and samples of the learned compositional constraints.

A.4.1 Representative Examples

Sample of representative examples for noun compounds

pos([disease], [cat:na,nr:sg,head:X, mod:Y]><[X@is_a:disease, Y@P:X]).

pos([skin,disease], [cat:na,nr:sg,head:Y,mod:Z]><[X@is_a:skin, Y@P:X,
YQis_a:disease,Z@P1:Y]).

pos([disease], [cat:nc,modr:no,det:no,pers:(_,3) ,nr:sg,case: (_,ng) ,hum:no,
gen:neutr,count:y,head:X]><[XQ@is_a:disease]).

pos([skin,disease], [cat:nc,modr:no,det:no,pers: (_,3) ,nr:sg,case: (_,ng),
hum:no,gen:neutr,count:y,head:Y]><[XQ@is_a:skin, YOP:X, Y@is_a:disease]).

Sample of representative examples for raising and control verbs

pos([he,tells,mary,to,love,me], [cat:fcl,stype:s,ctype:c,vtype:cobj,
vit:fin,val:dv,voice:act,pers:(_,3) ,nr:sg,dets:y,int:no,head:B,
headS:A,headC1:C,headC2:X]><[A@is_a:he,BQtense:pr,B@is_a:tell,Blag:A,
B@goal:C,BQprop:X,Clname:mary,XQvit:to,X0@is_a:love,XQexp:C,X0perc:Z,
ZQ@is_a:me]).

pos([he,seems,to,love,me], [cat:fcl,stype:s,ctype:c,vtype:rsbj,vit:fin,
val:tv,voice:act,pers:(_,3),nr:sg,dets:y,int:no,head:B,headS:Y,
headC:X]><[Y@is_a:he,B@tense:pr,B@is_a:seem,B@no_role:Y,B@prop:X,
X@vft:to,XQis_a:love,X@exp:Y,X0Qperc:Z,ZR@is_a:me]) .

pos([he,tries,to,love,me], [cat:fcl,stype:s,ctype:c,vtype:csbj,vit:fin,
val:tv,voice:act,pers:(_,3),nr:sg,dets:y,int:no,head:X1,headS:Y,
headC:X]><[YQ@is_a:he,X1@tense:pr,X1Q@is_a:try,X1@ag:Y,X1@prop:X,X@vft:to,
X@is_a:love,XQexp:Y,X@perc:Z,Z@is_a:me]).

pos([he,promises,mary,to,love,me], [cat:fcl,stype:s,ctype:c,vtype:csbj,
vit:fin,val:dv,voice:act,pers:(_,3) ,nr:sg,dets:y,int:no,head:X1,
headS:Y,headC1:T,headC2:X]><[Y@is_a:he,X10@tense:pr,X1@is_a:promise,
X1@ag:Y,X1@goal:T,X1@prop:X,TO@name:mary,XQvit:to,X@is_a:love,XQexp:Y,
X@perc:Z,ZQ@is_a:me]).

Sample of representative example for reduced relative clauses

pos([liking,me], [cat:rrcl,stype:no,ctype:s,vtype:norm,vit:nfin,vf:ing,
val:tv,voice:act,head:A,mod:B]><[A@vft:ing,AQis_a:like,A@exp:B,A@perc:C,
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C@is_a:me]).

pos([loved,by,mel, [cat:rrcl,stype:no,ctype:s,vtype:norm,vft:nfin,vf:ed,
val:tv,voice:pas,head:A,mod:B]><[A@vft:ed,AQvoice:pas,AQis_a:love,
A@exp:C,A@perc:B,D@is_a:by,A@D:C,CRis_a:me]).

pos([loving,you,or,liking,me], [cat:rrcl,stype:no,ctype:s,vtype:norm,
vit:nfin,vf:ing,val:tv,voice:act,head:X,mod:B]><[A@vft:ing,AQis_a:love,
AQexp:B,A@perc:C,C@is_a:you,X:A or Al,Al@vft:ing,A1@is_a:1like,AlQexp:B,
Al@perc:C1,C1@is_a:me]).

pos([boy,liking,me], [cat:n,modr:no,det:no,pers: (_,3) ,nr:sg,case: (_,ng),
hum:y,gen:male,count:y,head:B]><[BQ@is_a:boy,ACvft:ing,AQis_a:1like,
AQexp:B,AQperc:C,CQis_a:me]) .

A.4.2 Learned Grammar Rules and Samples of Composi-
tional Constraints

Learned grammar rules for noun phrase, raising and control verbs and
reduced relative clauses

a(A><B-C)--->adj(D><B-C) ,{phi_comp(83,[A,D]) ,phi_onto(A)}.

a(A><B-C)--->adv(D><B-E) ,a(F><E-C) ,{phi_comp (84, [A,D,F]) ,phi_onto(A)}.

a(A><B-C)--->a(D><B-E) , coord (F><E-G) ,a(H><G-C) , {phi_comp (85, [A,D,F,H]),
phi_onto(A)}.

na(A><B-C) --->noun(D><B-C) , {phi_comp(86, [A,D]) ,phi_onto(A)}.

na(A><B-C) --->na(D><B-E) ,na(F><E-C) ,{phi_comp(87,[A,D,F]) ,phi_onto(A)}.

nc (A><B-C) --->noun (D><B-C) , {phi_comp (88, [A,D]) ,phi_onto(A)}.

nc (A><B-C) --->na(D><B-E) ,nc (F><E-C) , {phi_comp (89, [A,D,F]) ,phi_onto(A)}.

n(A><B-C) --->nc(D><B-C) ,{phi_comp (90, [A,D]) ,phi_onto(A)}.

n(A><B-C)--->a(D><B-E) ,n(F><E-C) ,{phi_comp (91, [A,D,F]) ,phi_onto(A)}.

n(A><B-C) --->det (D><B-E) ,n(F><E-C) ,{phi_comp (92, [A,D,F]) ,phi_onto(A)}.

n(A><B-C) --->pn(D><B-C) ,{phi_comp (93, [A,D]) ,phi_onto(A)}.

n(A><B-C) --->pro(D><B-C) ,{phi_comp (94, [A,D]) ,phi_onto(A)}.

n(A><B-C) --->n(D><B-E) , coord (F><E-G) ,n(H><G-C) ,{phi_comp(95,[A,D,F,H]),
phi_onto(A)}.

d (A><B-C) --->apro(D><B-C) ,{phi_comp (96, [A,D]) ,phi_onto(A)}.

d (A><B-C) --->n(D><B-E) , iprep(F><E-C) ,{phi_comp (97, [A,D,F]) ,phi_onto(A)}.

d (A><B-C) --->det (D><B-E) ,d (F><E-C) ,{phi_comp (98, [A,D,F]) ,phi_onto(A)}.

d (A><B-C) --->d (D><B-E) ,coord (F><E-G) ,d (H><G-C) , {phi_comp(99, [A,D,F,H]),
phi_onto(A)}.

n(A><B-C)--->d (D><B-E) ,n(F><E-C) ,{phi_comp (100, [A,D,F]) ,phi_onto(A)}.

p(A><B-C) --->prep(D><B-C) ,{phi_comp (101, [A,D]) ,phi_onto(A)}.

p(A><B-C) --->p(D><B-E) , coord (F><E-G) ,p(H><G-C) , {phi_comp (102, [A,D,F,H]),
phi_onto(A)}.

pc (A><B-C) --->p(D><B-E) ,n(F><E-C) ,{phi_comp (103, [A,D,F]) ,phi_onto(A)}.

pc (A><B-C) --->pc(D><B-E) , coord (F><E-G) ,pc (H><G-C) , {phi_comp (104, [A,D,F,H]),
phi_onto(A)}.

n(A><B-C) --->n(D><B-E) ,pc (F><E-C) ,{phi_comp(105, [A,D,F]) ,phi_onto(A)}.

sbj (A><B-C)--->n(D><B-C) , {phi_comp (106, [A,D]) ,phi_onto(A)}.



obj (A><B-C)--->n(D><B-C) ,{phi_comp (107, [A,D]),phi_onto(A)}.
pobj (A><B-C) -—->pc (D><B-C) , {phi_comp (108, [A,D]) ,phi_onto(A)}.

adjc(A><B-C)--->adv(D><B-C) ,{phi_comp (109, [A,D]) ,phi_onto(A)}.

adjc(A><B-C)--->pc(D><B-C) ,{phi_comp(110, [A,D]) ,phi_onto(A)}.

tocl (A><B-C)--->nvo (D><B-C) ,{phi_comp(111,[A,D]) ,phi_onto(A)}.

tocl (A><B-C)--->nvo(D><B-E) ,adjc(F><E-C) ,{phi_comp(112,[A,D,F]) ,phi_onto(A)}.

ncl (A><B-C)--->nv(D><B-E) ,obj (F><E-G) ,tocl (H><G-C) ,{phi_comp (113, [A,D,F,H]),
phi_onto(A)}.

ncl(A><B-C)--->nv(D><B-E) ,tocl (F><E-C),{phi_comp(114, [A,D,F]) ,phi_onto(A)}.

ncl(A><B-C)--->nv(D><B-E) ,tocl (F><E-C),{phi_comp(115, [A,D,F]) ,phi_onto(A)}.

ncl(A><B-C)--->nv(D><B-E) ,obj (F><E-G) ,tocl (H><G-C) ,{phi_comp(116,[A,D,F,H]),
phi_onto(A)}.

tocl(A><B-C)--->ncl(D><B-C) ,{phi_comp(117,[A,D]),phi_onto(A)}.

fcl(A><B-C)--->svo(D><B-C) ,{phi_comp(118, [A,D]) ,phi_onto(A)}.

fcl(A><B-C)--->fc1(D><B-E) ,adjc(F><E-C) ,{phi_comp(119, [A,D,F]) ,phi_onto(A)}.

fcl(A><B-C)--->adjc(D><B-E) ,fc1(F><E-C) ,{phi_comp (120, [A,D,F]) ,phi_onto(A)}.

fcl(A><B-C)--->sv(D><B-E) ,obj (F><E-G) ,tocl (H><G-C) ,{phi_comp(121,[A,D,F,H]),
phi_onto(A)}.

fcl(A><B-C)--->sv(D><B-E) ,tocl(F><E-C),{phi_comp (122, [A,D,F]) ,phi_onto(A)}.

fcl(A><B-C)--->sv(D><B-E) ,tocl(F><E-C),{phi_comp (123, [A,D,F]) ,phi_onto(A)}.

fcl(A><B-C)--->sv(D><B-E) ,obj (F><E-G) ,tocl (H><G-C) ,{phi_comp(124,[A,D,F,H]),
phi_onto(A)}.

rrcl(A><B-C)--->nvo (D><B-C) ,{phi_comp (146, [A,D]) ,phi_onto(A)}.
rrcl (A><B-C) --->nvo (D><B-C) ,{phi_comp(147,[A,D]) ,phi_onto(A)}.
rrcl (A><B-C)--->nvo (D><B-E) , coord (F><E-G) ,rrcl (H><G-C) ,
{phi_comp (148, [A,D,F,H]) ,phi_onto(A)}.
n(A><B-C) --->n(D><B-E) ,rrcl(F><E-C) ,{phi_comp (149, [A,D,F]) ,phi_onto(A)}.
rrcl (A><B-C) --->nvo (D><B-C) ,{phi_comp (150, [A,D]) ,phi_onto(A)}.

274

rrcl (A><B-C)--->rrcl(D><B-E),adjc(F><E-C) ,{phi_comp (151, [A,D,F]) ,phi_onto(A)}.

Sample of learned compositional constraints

phi_comp(86, [A,C]) :-
eq(A, head:D, C, head:D),
eq(A, mod:E, C, mod:E),
eq(A, nr:sg, C, nr:sg),
eq(A, cat:na),
eq(C, cat:noun),
e_list(A).

phi_comp(87, [A,C,D]) :-
eq(A, head:E, C, mod:E),
eq(A, head:F, D, head:F),
eq(A, mod:G, D, mod:G),
eq(A, nr:sg, D, nr:sg),
eq(C, nr:sg),
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eq(A, cat:na),
eq(C, cat:na),
eq(D, cat:na),
e_list(A).
phi_comp(89, [A,C,D]) :-
eq(A, head:E, C, mod:E),
eq(A, head:F, D, head:F),
eq(A, modr:G, D, modr:G),
eq(A, det:H, D, det:H),
eq(A, pers:(I,J), D, pers:(I,J)),
eq(A, nr:K, D, nr:K),
eq(A, case:(L,M), D, case:(L,M)),
eq(A, hum:N, D, hum:N),
eq(A, gen:0, D, gen:0),
eq(A, count:P, D, count:P),
eq(C, nr:sg),
eq(A, cat:nc),
eq(C, cat:na),
eq(D, cat:nc),
e_list(A).
phi_comp(92, [A,C,D]) :-
eq(A, head:E, C, mod:E),
eq(A, head:F, D, head:F),
eq(A, modr:G, D, modr:G),
eq(D, det:no),
eq(A, pers:(H,I), D, pers:(H,I)),
eq(A, nr:J, D, nr:J),
eq(A, case:(K,L), D, case:(X,L)),
eq(A, hum:M, D, hum:M),
eq(A, gen:N, D, gen:N),
eq(A, count:0, D, count:0),
eq(A, nr:P, C, nr:P),
eq(A, det:y),
eq(A, cat:n),
eq(C, cat:det),
eq(D, cat:n),
e_list((A,B)).

phi_comp(118, [A,C]) :-
eq(A, head:D, C, head:D),
eq(A, headS:E, C, headS:E),
eq(A, stype:F, C, stype:F),
eq(A, ctype:G, C, ctype:G),
eq(A, vtype:H, C, vtype:H),
eq(A, vft:fin, C, vft:fin),
eq(A, val:I, C, val:I),
eq(A, voice:J, C, voice:J),
eq(A, pers:(K,L), C, pers:(K,L)),
eq(A, nr:M, C, nr:M),
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eq(A, dets:N, C, dets:N),
eq(A, int:0, C, int:0),
eq(A, cat:fcl),
eq(C, cat:svo),
e_list(A).

phi_comp(119, [A,C,D]) :-
eq(A, head:E, C, head:E),
eq(A, head:F, D, link:F),
eq(A, headS:G, C, headS:G),
eq(A, stype:H, C, stype:H),
eq(A, ctype:s, C, ctype:s),
eq(A, vtype:I, C, vtype:I),
eq(A, vit:fin, C, vft:fin),
eq(A, val:J, C, val:J),
eq(A, voice:K, C, voice:K),
eq(A, pers:(L,M), C, pers:(L,M)),
eq(A, nr:N, C, nr:N),
eq(A, dets:0, C, dets:0),
eq(A, int:P, C, int:P),
eq(A, cat:fcl),
eq(C, cat:fcl),
eq(D, cat:adjc),
e_list(A).

phi_comp(120, [A,C,D]) :-
eq(A, head:E, C, link:E),
eq(A, head:F, D, head:F),
eq(A, headS:G, D, headS:G),
eq(A, stype:H, D, stype:H),
eq(A, ctype:I, D, ctype:I),
eq(A, vtype:J, D, vtype:J),
eq(A, vft:fin, D, vft:fin),
eq(A, val:K, D, val:K),
eq(A, voice:L, D, voice:L),
eq(A, pers:(M,N), D, pers:(M,N)),
eq(A, nr:0, D, nr:0),
eq(A, dets:P, D, dets:P),
eq(A, int:Q, D, int:Q),
eq(A, cat:fcl),
eq(C, cat:adjc),
eq(D, cat:fcl),
e_list(A).

phi_comp(148, [A,C,D,E]) :-
eq(A, head:F, D, head:F),
eq(A, mod:G, C, headS:(),
eq(A, mod:H, E, mod:H),
eq(C, head:I, D, link_1:I),
eq(D, link_r:J, E, head:J),
eq(A, stype:K, C, stype:K),



eq(A, stype:
eq(A, ctype:
eq(A, ctype:
eq(A, vtype:
eq(A, vtype:

H

I’

I’

I’

vo==t

2

H

I’

I’

I’

maQmaQm

2

stype
ctype
ctype
vtype
vtype

eq(A, vit:Q, C, vit:Q),
eq(A, vft:R, E, vft:R),
eq(A, vi:S, C, vi:S),

eq(A, vi:T, E, vi:T),

eq(A, val:U, C, val:U),
eq(A, val:V, E, val:V),
eq(A, voice:W, C, voice
eq(A, voice:X, E, voice

eq(A, cat:rrcl)
eq(C, cat:nvo),
eq(D, cat:c),
eq(E, cat:rrcl)
e_list(A).

phi_comp(149, [A,C,D]) :

I’

H

:L),
M),
:N),
:0),
:P),

W),
:X),

eq(A, head:E, C, head:E),

eq(A, head:F, D, mod:F),

eq(A, modr:y),
eq(C, modr:no),

eq(A, det:G, C, det:G),

eq(A, pers:(H,I), C, pers:(H,I)),

eq(A, nr:J, C, nr:J),

eq(A, case:(K,L), C, case:(X,L)),

eq(A, hum:M, C, hum:M),
eq(A, gen:N, C, gen:N),
eq(A, count:0, C, count:0),

eq(A, cat:n),
eq(C, cat:n),
eq(D, cat:rrcl)
e_list(A).
phi_comp(151, [A,C,D])

2

eq(A, head:E, C, head:E),
eq(A, head:F, D, link:F),
eq(A, mod:G, C, mod:G),
eq(A, stype:H, C, stype:H),
eq(A, ctype:I, C, ctype:I),
eq(A, vtype:J, C, vtype:J),

eq(A, vit:nfin, C, vft:nfin),

eq(A, vi:K, C, vi:K),
eq(A, val:L, C, val:L),
eq(A, voice:M, C, voice:M),

eq(A, cat:rrcl)
eq(C, cat:rrcl)
eq(D, cat:adjc)
e_list(4).

3

3

3
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A.5 Long-Distance Dependencies in Wh-questions

In this appendix we give an example of processing long-distance dependencies in
wh-questions (see Section 6.3.3 and Figure 6.26). For the input What does the
president seem to try to get from the farmers? we show the output of parsing
(before and after ®,,,, validation), the asserted text knowledge (TKR) and the

asserted ontology-level knowledge (OKR).

>> Wh-Question (input)

w = [what,does,the,president,seem,to,try,to,get,from,the,farmers]

A1l Syntagmas (with inconsistent OntoSeR-) obtained as result of
parsing(output) :

(w,w’)=([what,does,the,president,seem,to,try,to,get,from,the,farmers],
[head:A,headS:B,ans:C,stype:s,ctype:c,vtype:csbj,vft:fin,val:tv,
voice:act,int:y,dets:y,cat:whcl]><[C@is_a:what,AQ@tense:pr,B@det:the,
B@is_a:president,AQ@is_a:seem,A@no_ag:B,AQprop:D,D@vit:to,DR@is_a:try,
D@ag:B,D@prop:E,ECvft:to,EQis_a:get,EQag:B,EQth:F,E@src:G,C=F,
H@is_a:from,E@H:G,G@det:the,G@is_a:farmers]). *ok ok

(w,w’)=([what,does,the,president,seem,to,try,to,get,from,the,farmers],
[head:I,headS:J,ans:C,stype:s,ctype:c,vtype:csbj,vft:fin,val:tv,
voice:act,int:y,dets:y,cat:whcl]><[CQis_a:what,IQ@tense:pr,J@det:the,
J@is_a:president,I@is_a:seem,I@no_ag:J,I@prop:K,K@vft:to,KQ@is_a:try,
K@ag:J,K@prop:L,L@vft:to,L@is_a:get,L@ag:J,LOth:M,L@src:N,C=N,C=M,
D@is_a:from,L@0:P,P@det:the,P@is_a:farmers]). skeokokok ok ok ok

Uniques syntagma accepted by phi_onto with consistent OntoSeR+(output):

(w,w’)=([what,does,the,president,seem,to,try,to,get, ,from,the,farmers],
[head:A,headS:B,ans:C,stype:s,ctype:c,vtype:csbj,vft:fin,val:tv,
voice:act,int:y,dets:y,cat:whcl]><[C@is_a:what,A@tense:pr,
B@det:the,BQ@is_a:president,AQis_a:seem,ACno_ag:B,A@prop:D,D@vft:to,
D@is_a:try,D@ag:B,D@prop:E,EQvft:to,EQis_a:get,EQag:B,EQth:C,EQsrc:F,
src@is_a:from,E@src:F,F@det:the,FQ@is_a:farmers]). *

OntoSeR+
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[C@is_a:what,AQ@tense:pr,Bedet:the,BQ@is_a:president,A@is_a:seem,ACno_ag:B,
A@prop:D,D@vft:to, D@is_a:try,D0@ag:B,D@prop:E,EQ@vft:to,EQis_a:get,EQag:B,
E@th:C,E@src:F,src@is_a:from,E@src:F,F@det:the,F@is_a:farmers]

Asserted text knowledge:

TKR-query

“1@is_a: :what.
“20@tense::pr.
~“3@det: :the.
~“3Q@is_a::president.
"2Q@is_a::seem.

“2@no_ag::"3.
“2@prop::74.
“4ovit::to.
“4Q@is_a::try.
“40ag::"3.
“4Qprop::~b.
“5@vft::to.
“b@is_a::get.
“bRag::"3.
“bQth::"1.
“b@src::76.
src@Qis_a: :from.
“b@src::76.
“6@det: :the.

“6Q@is_a::farmers.
Asserted ontology knowledge:

OKR-query
#seem@prop:#:#try.
#tryQag:#:#president.
#tryQprop:#:#get.
#getQag:#:#president.
#get@th:#:#what.
#get@src:#:#farmers.

A.6 Generating Representative Examples

In this appendix we present an example of generating the set of representative exam-
ples given a grammar G, and a sublanguage F, using Find_Representative_Examples(E,, G)

and Syntagma_Equivalence_Classes(E,, G) algorithms presented in Section 3.6. We
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show the results for the case of finite auxiliary verbs.

Input: Representative Sublanguage E+ (positive examples)
poss ([who,can,have,been,being], _).
poss([has,someone,been,being], _).

poss([john,was,not], _).

poss([was,he,being], _).

Input: Grammar G

sbj (A><B-C)--->pro(D><B-C) ,{phi_comp(1,[A,D])}.

sbj (A><B-C) --->pn(D><B-C) ,{phi_comp(2,[A,D]1)}.

sbj (A><B-C)--->relpro(D><B-C) ,{phi_comp(3,[A,D]1)}.
av0(A><B-C)--->sbj (D><B-E) ,aux (F><E-C) ,{phi_comp (4, [A,D,F])}.
avQ(A><B-C) --->aux (D><B-E) , sbj (F><E-C) ,{phi_comp (5, [A,D,F])}.
av0(A><B-C)--->relpro(D><B-E) ,aux (F><E-C) ,{phi_comp(6, [A,D,F])}.
avl (A><B-C)--->av0(D><B-C) ,{phi_comp(7,[A,D])}.
avl(A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp (8, [A,D,F])}.
av2(A><B-C)--->av1(D><B-C) ,{phi_comp(9, [A,D])}.

av2(A><B-C) --->av1(D><B-E) ,aux (F><E-C) ,{phi_comp(10,[A,D,F]1)}.
av3(A><B-C)--->av2(D><B-C) ,{phi_comp(11,[A,D])}.

av3(A><B-C) --->av2(D><B-E) , aux (F><E-C) ,{phi_comp(12,[A,D,F])}.
av4 (A><B-C)--->av3(D><B-C) ,{phi_comp(13,[A,D])}.

av4 (A><B-C) --->av3(D><B-E) , aux (F><E-C) ,{phi_comp(14,[A,D,F])}.

Output: Equivalence clases

eq_cll((aux,0), 0, ([havel,1)).
eq_cll((aux,0), 0, ([havel,1)).
eq_cll((aux,0), 0, ([beingl,1)).
eq_cl1l((av4,0), 14, ([who,can,have,been,being]l,5)).
eq_cll((aux,0), 0, ([beingl,1)).
eq_cll((av4,0), 13, ([who,can,have,been],4)).
eq_cll((av3,0), 12, ([who,can,have,been],4)).
eq_cll((aux,0), 0, ([been]l,1)).
eq_cll((av4,0), 13, ([who,can,have],3)).
eq_cl1((av3,0), 11, ([who,can,have],3)).
eq_cll((av2,0), 10, ([who,can,have],3)).
eq_cll((aux,0), 0, ([havel,1)).
eq_cll((av4,0), 13, ([who,can],2)).
eq_cll((av3,0), 11, ([who,can],2)).
eq_cll((av2,0), 9, ([who,can],2)).
eq_cll((av1,0), 7, ([who,can],2)).
eq_cll((av0,0), 6, ([who,can],2)).
eq_cll((aux,0), 0, ([can],1)).
eq_cl1((sbj,0), 3, ([whol,1)).
eq_cll((relpro,0), 0, ([who]l,1)).
eq_cll((av4,0), 14, ([has,someone,been,being],4)).
eq_cll((av4,0), 13, ([has,someone,been],3)).
eq_cll((av3,0), 12, ([has,someone,been],3)).
eq_cll((av4,0), 13, ([has,someone],2)).
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eq_cll((av3,0), 11, ([has,someone],2)).
eq_cll((av2,0), 9, ([has,someone],2)).
eq_cll((av1,0), 7, ([has,someone],2)).
eq_cll((av0,0), 5, ([has,someone],2)).
eq_cl1((sbj,0), 1, ([someone],1)).
eq_cll((pro,0), 0, ([someone],1)).
eq_cll((aux,0), 0, ([has],1)).
eq_cll((av4,0), 13, ([john,was,not],3)).
eq_cl1l((av3,0), 11, ([john,was,not],3)).
eq_cll((av2,0), 9, ([john,was,not],3)).
eq_cll((av1,0), 8, ([john,was,not],3)).
eq_cll((av4,0), 13, ([john,was],2)).
eq_cl1l((av3,0), 11, ([john,was],2)).
eq_cll((av2,0), 9, ([john,was],2)).
eq_cll((av1,0), 7, ([john,was],2)).
eq_cl1((av0,0), 4, ([john,was],2)).
eq_cll((aux,0), 0, ([was],1)).
eq_cll((aux,0), 0, ([not],1)).
eq_cll((aux,0), 0, ([was],1)).
eq_cl1((sbj,0), 2, ([john]l,1)).
eq_cl1((pn,0), 0, ([john],1)).
eq_cll((av4,0), 14, ([was,he,being],3)).
eq_cll((av4,0), 13, ([was,he],2)).
eq_cll((av3,0), 11, ([was,he],2)).
eq_cll((av2,0), 9, ([was,hel,2)).
eq_cll((av1,0), 7, ([was,hel,2)).
eq_cll((av0,0), 5, ([was,hel,2)).
eq_cl1((sbj,0), 1, ([hel,1)).
eq_cll((pro,0), 0, ([hel,1)).

Output: Representative examples(strings and their semantic molecules)

(sbj,0),1, ([hel], [head:A,cat:sbj,stype:s,dets:y,pers:(_,3) ,nr:sg,

case: (n,ng) ,hum:y]><[A@is_a:hel),1)).

(sbj,0),2,([john], [head:A,cat:sbj,stype:s,dets:y,pers: (_,3) ,nr:sg,

case: (n,ng) ,hum:y]><[A@name: john]),1)).

(sbj,0),3, ([who], [head:A,cat:sbj,stype:s,dets:no,pers: (_,3) ,nr:_,
case: (n,ng) ,hum:y]><[A@is_a:who]),1)).

(av0,0),5, ([was,he] , [headS:A,head:B,cat:av0,stype:s,vtype:aux,vit:fin,
int:y,dets:y,case: (n,ng) ,hum:y,aux:be,neg:no,tense:pt,
pers:(_,3) ,nr:sg,pf:no,pg:nol ><[B@tense:pt,ARis_a:he]),2)).

(av0,0) ,4, ([john,was], [headS:A,head:B,cat:av0,stype:s,vtype:aux,
vft:fin,int:no,dets:y,case:(n,ng),hum:y,aux:be,neg:no,tense:pt,
pers:(_,3) ,nr:sg,pf:no,pg:nol ><[AGname: john,Betense:pt]),2)).

(av0,0),6, ([who,can] , [headS:A,head:B,cat:av0,stype:s,vtype:aux,vft:fin,
int:_,dets:no,case: (n,ng) ,hum:y,aux:mod,neg:no,tense:mod,
pers:(_,3),nr:_,pf:no,pg:nol><[A@is_a:who,B@mod:can]),2)).

(av1,0),7, ([was,he], [headS:A,head:B,cat:avl,stype:s,vtype:aux,vit:fin,
int:y,dets:y,case:(n,ng),hum:y,aux:be,neg:no,tense:pt,



pers: (_,3) ,nr:sg,pf :no,pg:nol ><[B@tense:pt,A@is_a:he]),2)).

(av1,0),8, ([john,was,not], [headS:A,head:B,cat:avl,stype:s,vtype:aux,
vift:fin,int:no,dets:y,case: (n,ng) ,hum:y,aux:be,neg:y,tense:pt,
pers: (_,3) ,nr:sg,pf:no,pg:no]><[AGname: john,B@tense:pt,
Béneg:y1),3)).

(av2,0),9, ([was,he], [headS:A,head:B,cat:av2,stype:s,vtype:aux,vit:fin,
int:y,dets:y,case: (n,ng) ,hum:y,aux:be,neg:no,tense: pt,pers:(_,3),
nr:sg,pf:no,pg:nol><[Betense:pt,AQis_a:hel),2)).

(av2,0),10, ([who,can,have] , [headS:A,head:B,cat:av2,stype:s,vtype:aux,
vft:fin,int:_,dets:no,case:(n,ng),hum:y,aux:have,neg:no,
tense:mod,pers: (_,3),nr:_,pf:no,pg:no]><[AQ@is_a:who,B@mod:can,
B@bse:have]),3)).

(av3,0),11, ([was,he], [headS:A,head:B,cat:av3,stype:s,vtype:aux,vit:fin,
int:y,dets:y,case: (n,ng) ,hum:y,aux:be,neg:no,tense:pt,
pers:(_,3) ,nr:sg,pf:no,pg:no]><[B@tense:pt,AQis_a:he]),2)).

(av3,0),12, ([has,someone,been] , [headS:A,head:B,cat:av3,stype:s,vtype:aux,
vft:fin,int:y,dets:y,case:(n,ng),hum:_,aux:be,neg:no,tense:pr,
pers:(_,3) ,nr:sg,pf:y,pg:nol ><[B@tense:pr,A@is_a:someone,
Bepf:y]),3)).

(av4,0),13, ([was,he] ,[headS:A,head:B,cat:av4,stype:s,vtype:aux,vft:fin,
int:y,dets:y,case:(n,ng),hum:y,aux:be,neg:no,tense:pt,
pers: (_,3) ,nr:sg,pf :no,pg:nol] ><[BGtense:pt,AQis_a:hel),2)).

(av4,0),14, ([was,he,being], [headS:A,head:B,cat:av4,stype:s,vtype:aux,
vit:fin,int:y,dets:y,case: (n,ng) ,hum:y,aux:be,neg:no,tense:pt,
pers:(_,3) ,nr:sg,pf:no,pg:yl><[B@tense:pt,ACis_a:he,B@pg:yl),
3.

Output: Grammar Gr:

sbj (A><B-C) --->pro(D><B-C) , {phi_comp(1, [A,D])}.

sbj (A><B-C) --->pn(D><B-C) ,{phi_comp(2,[A,D]1)}.

sbj (A><B-C)--->relpro(D><B-C) ,{phi_comp(3,[A,D]1)}.

av0 (A><B-C) --->aux (D><B-E) , sbj (F><E-C) ,{phi_comp (5, [A,D,F])}.
av0 (A><B-C)--->sbj (D><B-E) ,aux (F><E-C) ,{phi_comp (4, [A,D,F])}.
av0 (A><B-C) --->relpro(D><B-E) ,aux (F><E-C) ,{phi_comp(6,[A,D,F]1)}.
avl(A><B-C)--->av0(D><B-C) ,{phi_comp(7,[A,D])}.
avl(A><B-C)--->av0(D><B-E) ,aux (F><E-C) ,{phi_comp (8, [A,D,F])}.
av2(A><B-C)--->av1(D><B-C) ,{phi_comp(9, [A,D])}.
av2(A><B-C)--->av1(D><B-E) ,aux (F><E-C) ,{phi_comp (10, [A,D,F])}.
av3 (A><B-C)--->av2(D><B-C) ,{phi_comp(11,[A,D])}.

av3 (A><B-C) --->av2(D><B-E) ,aux (F><E-C) ,{phi_comp(12,[A,D,F])}.
av4 (A><B-C) --->av3(D><B-C) ,{phi_comp (13, [A,D])}.

av4 (A><B-C)--->av3(D><B-E) ,aux (F><E-C) ,{phi_comp (14, [A,D,F])}.

282



283

Appendix B

Example of an Ambiguous
Utterance

In this appendix we present an example of parsing an ambiguous utterance Mon-
santo’s president who seems to try to get royalties from the farmers who grew ge-
netically modified soya illegally will be giving a briefing for the Brazilian media
tomorrow at noon. We have two interpretations—one where illegally modifies the
verb get and one where it modifies the verb grow (see also Section 6.4 and Figure

6.24, which shows the OKR representation of one of the interpretations).

>> Assertion

w= [Monsanto,’s,president,who,seems,to,try,to,get,royalties,from,the,
farmers,who,grew,genetically,modified,soya,illegally,will,be,giving,a,
briefing,for,the,brazilian,media,tomorrow,at,noon]

Syntagmas (OntoSeR-) returned by the parser:

(w,w’)=([’Monsanto’,’\’s’ ,president,who,seems,to,try,to,get,royalties,
from,the,farmers,who,grew,genetically,modified,soya,illegally,will,
be,giving,a,briefing,for,the,brazilian,media,tomorrow,at,noon],
[head:A,headS:B,stype:s,ctype:s,vtype:norm,vft:fin,val:dv,voice:act,
pers:(_,3) ,nr:sg,dets:y,int:no,cat:fcl]><[C@name: ’Monsanto’ ,BQof:C,
BQ@is_a:president,B@is_a:who,DQ@tense:pr,DQ@is_a:seem,D@no_ag:B,
D@prop:E,E@vft:to,EQis_a:try,EQag:B,E@prop:F,Fevft:to,FR@is_a:get,
F@ag:B,F@th:G,F@src:H,GQ@is_a:royalties,IQ@is_a:from,F@I:H,HQ@det:the,
H@is_a:farmers,H@is_a:who,JQtense:pt,J@is_a:grow,JQag:H,JOth:K,
L@viewpoint:genetically,L@is_a:modified,K@_:L,K@is_a:soya,
F@manner:illegally,ACmod:will,A@bse:be,ACpg:y,AQis_a:give,AQag:B,
A@th:M,A@goal:N,M@det:a,MQ@is_a:briefing,0@is_a:for,ACD:N,N@det:the,
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PQ@is_a:brazilian,N@_:P,N@is_a:media,A@temporal:tomorrow,(@is_a:at,
A@Q:R,R@is_a:noon]).

(w,w?)=([’Monsanto’,’\’s’ ,president,who, seems,to,try,to,get,royalties,from,
the,farmers,who,grew,genetically,modified,soya,illegally,will,be,
giving,a,briefing,for,the,brazilian,media,tomorrow,at,noon],
[head:S,headS:T,stype:s,ctype:s,vtype:norm,vft:fin,val:dv,voice:act,
pers:(_,3) ,nr:sg,dets:y,int:no,cat:fcl]><[UCname: ’Monsanto’ ,T@of:U,
T@is_a:president,T@is_a:who,VQtense:pr,V@is_a:seem,V@no_ag:T,
V@prop:W,Wevft:to,Weis_a:try,Weag:T,Weprop:X,X0vft:to,XQis_a:get,
XQ@ag:T,X@th:Y,X@src:Z,Y0@is_a:royalties,A1@is_a:from,X@Al:Z,
Z@det:the,Z@is_a:farmers,ZQ@is_a:who,Bl@tense:pt,Bl1Q@is_a:grow,
Bl@ag:Z,B1@th:C1,D1@viewpoint:genetically,D1@is_a:modified,C1@_:D1,
Cl@is_a:soya,Bl@manner:illegally,S@mod:will,S@bse:be,S@pg:vy,
S@is_a:give,S@ag:T,SQ@th:E1,S@goal:F1,E1Q@det:a,E1@is_a:briefing,
Gl@is_a:for,S@G1:F1,Fl@det:the,H1@is_a:brazilian,F1@_:H1,
F1Q@is_a:media,S@temporal:tomorrow,I1Q@is_a:at,S@I1:J1,
Ji1@is_a:noon])]1]).

Number of syntagmas(OntoSeR-) returned by robust parser = 2

Syntagmas (OntoSeR+) accepted by phi_onto as consistent:

(w,b)=([’Monsanto’,’\’s’ ,president,who, seems,to,try,to,get, ,royalties,
from,the,farmers,who,grew,genetically,modified,soya,illegally,
will,be,giving,a,briefing,for,the,brazilian,media,tomorrow,at,noon],
[A@name: ’Monsanto’ ,BQof :A,B@is_a:president,B@is_a:who,CQtense:pr,
C@is_a:seem,C@no_ag:B,C@prop:D,D@vft:to,DQ@is_a:try,DCag:B,DCprop:E,
E@vft:to,EQ@is_a:get,EQag:B,EQth:F,E@src:G,FQis_a:royalties,
src@is_a:from,E@src:G,G@det:the,GQis_a:farmers,GQ@Qis_a:who,H@tense:pt,
H@is_a:grow,H@ag:G,HCth:I,J@viewpoint:genetically,J@is_a:modified,
IQ@quality:J,IQ@is_a:soya,H@manner:illegally,K@mod:will,K@bse:be,
K@pg:y,K@is_a:give,K@ag:B,KQ@th:L,K@goal:M,L@det:a,L@is_a:briefing,
goal@is_a:for,K@goal:M,M@det:the,N@is_a:brazilian,MQorigin:N,
M@is_a:media,K@temporal:tomorrow,time@is_a:at,KQtime:0,0Q@is_a:noon]).

(w,b)=([’Monsanto’,’\’s’ ,president,who,seems,to,try,to,get,royalties,from,
the,farmers,who,grew,genetically,modified,soya,illegally,will,
be,giving,a,briefing,for,the,brazilian,media,tomorrow,at,noon],
[P@name: ’Monsanto’ ,Q@of :P,Q@is_a:president,Q@is_a:who,R@tense:pr,
R@is_a:seem,R@no_ag:Q,R@prop:S,SCvit:to,S@is_a:try,SQag:Q,SCprop:T,
Tevit:to,TQ@is_a:get,TCag:Q,TQth:U,T@src:V,UQ@is_a:royalties,
src@is_a:from,TO@src:V,V@det:the,V@is_a:farmers,VQ@is_a:who,WQtense:pt,
Weis_a:grow,We@ag:V,Weth:X,Y@viewpoint:genetically,Y@is_a:modified,
X@quality:Y,X@is_a:soya,T@manner:illegally,Z@mod:will,Z@bse:be,
Z0pg:y,Z20@is_a:give,ZQag:Q,Z0th:A1,Z0@goal:B1,A1@det:a,
Al1@is_a:briefing,goal@is_a:for,Z@goal:B1,Bl@det:the,
Cl@is_a:brazilian,Bl@origin:C1,B1@is_a:media,Z@temporal:tomorrow,
time@is_a:at,Z@time:D1,D1@is_a:noon]]]).
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Number of syntagmas (OntoSeR+) validated by phi_onto = 2

1.First alternative (modifies the verb ’get’)

Asserted text knowledge:

TKR-assert

“4@name ’:a:’ ’Monsanto’.
“B@of ’:a:’"4.

“b@is_a ’:a:’ president.
“b@is_a ’:a:’ who.
“6Q@tense ’:a:’ pr.
“6Q@is_a ’:a:’ seem.
“60no_ag ’:a:’"5.
“6@prop ’:a:’"7.

“7Tevit ’:a:’ to.

“7T@is_a ’:a:’ try.

“TQag ’:a:’"b.

“T@prop ’:a:’"8.

“8@vft ’:a:’ to.

“8@is_a ’:a:’ get.

“8Cag ’:a:’"5.

“80th ’:a:’"9.

“8@src ’:a:’710.

“9@is_a ’:a:’ royalties.
src@is_a ’:a:’ from.
“8@src ’:a:’"10.

~“10@det ’:a:’ the.
“10Q@is_a ’:a:’ farmers.
“10@is_a ’:a:’ who.
“11Q@tense ’:a:’ pt.
“11@is_a ’:a:’ grow.
“11@ag ’:a:’"10.

“11@th ’:a:’"12.
“13@viewpoint ’:a:’ genetically.
“13Q@is_a ’:a:’ modified.
“12@quality ’:a:’"713.
“12Q@is_a ’:a:’ soya.
“8@manner ’:a:’ illegally. s kkkkkskkkskskxk
“14@mod ’:a:’ will.
“14Q@bse ’:a:’ be.

“14Qpg ’:a:’ y.

“14Q@is_a ’:a:’ give.
“14Qag ’:a:’"b.

~14@th ’:a:’"15.
“14Q@goal ’:a:’"16.
“15@det ’:a:’ a.
“15Q@is_a ’:a:’ briefing.
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goal@is_a ’:a:’ for.
~“14Qgoal ’:a:’"16.

“16Q@det ’:a:’ the.

“17@is_a ’:a:’ brazilian.
“16Qorigin ’:a:’"17.
“16@is_a ’:a:’ media.
“14Q@temporal ’:a:’ tomorrow.
time@is_a ’:a:’ at.

“14@time ’:a:’718.

“18@is_a ’:a:’ mnoon.

Asserted ontology knowledge:

OKR-assert
#concept@sub:=:#concept.
#concept@sub:=:#person.
#person@sub:=:#president.
#person@sub:=:#farmer.
#president@of :=:#’Monsanto’.
#seem”6@prop:=:#try~7.
#try~7Q@ag:=:#president.
#try~7Q@prop:=:#get”8.
#get~"8Qag:=:#president.
#get~8Qth:=:#royalties.
#get~"80@src:=:#farmers”10.
#get~"80manner:=:illegally. *¥¥¥kakdkkkx
#grow~11Cag:=:#farmers”10.
#grow~11@th:=:#soya”12.
#modified”13@viewpoint:=:genetically.
#soya~12@quality:=:#modified~13.
#give~14@mod:=:will.
#give~14@ag:=:#president.
#give~14@th:=:#briefing.
#give~14Qgoal:=:#media”16.
#give~14@temporal:=:tomorrow.
#give~14@time:=:#noon.
#media~16Qorigin:=:#brazilian.

2.Second alternative (modifies the verb ’grow’)

Asserted text knowledge:

TKR-assert

“4@name ’:a:’ ’Monsanto’.
“b@of ’:a:’"4.

“b@is_a ’:a:’ president.
“b@is_a ’:a:’ who.



“6Q@tense ’:a:’ pr.
“6Q@is_a ’:a:’ seem.
“6@no_ag ’:a:’"b.
“6@prop ’:a:’"7.

“7evit ’:a:’ to.

“7T@is_a ’:a:’ try.

“T@ag ’:a:’"5.

“T@prop ’:a:’"8.

“8@vft ’:a:’ to.

“8@is_a ’:a:’ get.

“80ag ’:a:’"5.

“8@th ’:a:’"9.

“8@src ’:a:’710.

“9@is_a ’:a:’ royalties.
src@is_a ’:a:’ from.
“8@src ’:a:’"10.

“10@det ’:a:’ the.
~“10@is_a ’:a:’ farmers.
~“10@is_a ’:a:’ who.
“11Q@tense ’:a:’ pt.
“11@is_a ’:a:’ grow.
“11@ag ’:a:’"10.

“11@th ’:a:’712.
“13@viewpoint ’:a:’ genetically.
“13@is_a ’:a:’ modified.
“12@quality ’:a:’"13.
“12@is_a ’:a:’ soya.
“11@manner ’:a:’ illegally. ¥kkkkkkkkxkxk
“14@mod ’:a:’ will.
“14@bse ’:a:’ be.

“14Q@pg ’:a:’ y.

“14Q@is_a ’:a:’ give.
“14Qag ’:a:’"b.

~“14@th ’:a:’"15.
~“14@goal ’:a:’"16.
~“15Q@det ’:a:’ a.
“15@is_a ’:a:’ briefing.
goal@is_a ’:a:’ for.
“14Qgoal ’:a:’"16.
~“16@det ’:a:’ the.
“17@is_a ’:a:’ brazilian.
“16Qorigin ’:a:’"17.
“16Q@is_a ’:a:’ media.
“14Q@temporal ’:a:’ tomorrow.
time@is_a ’:a:’ at.
~“14@time ’:a:’718.
“18Q@is_a ’:a:’ noon.

Asserted ontology knowledge:
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#concept@sub:=:#concept.
#concept@sub:=:#person.
#person@sub:=:#president.
#person@sub:=:#farmer.
#president@of:=:#’Monsanto’.
#seem”6@prop:=:#try~7.
#try~7Qag:=:#president.
#try~7Q@prop:=:#get”8.
#get"80ag:=:#president.
#get"80@th:=:#royalties.
#get~8@src:=:#farmers”10.
#grow~11@ag:=:#farmers~10.
#grow~11@th:=:#soya”12.
#grow~11@manner:=:illegally. *xkikxkxkkkkkx
#modified”13@viewpoint:=:genetically.
#soya"12@quality:=:#modified~13.
#give~14@mod:=:will.
#give~14Qag:=:#president.
#give~14Qth:=:#briefing.
#give~14@goal:=:#media”16.
#give~14@temporal:=:tomorrow.

#give~14@time:=:#noon.
#media~16Qorigin:=:#brazilian.
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Appendix C

Acquisition and Querying of a
Pilot OKR-annotated treebank

In this appendix we present the entire pilot experiment described in Section 8.4.

C.1 Medical Definitions

In this appendix we give the 17 medical definitions used in this pilot experiments to-
gether with the number of different syntagmas obtained without and with semantic

validation (®yptp)-

>> Assertion= [hepatitis,is,a,disease,that,inflames,the,liver]
Number of syntagmas (OntoSeR-) from robust parser = 1
Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [hepatitis,is,a,disease,caused,by,infectious,or,toxic,agents,
and, characterized,by,jaundice,’,’,fever,and,liver,enlargement]

Number of syntagmas (OntoSeR-) from robust parser = 2

Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [’Hepatitis A’,is,an,acute,but,benign,viral,hepatitis,caused,
by,a,virus,that,does,not,persist,in,the,blood,serum]

Number of syntagmas (OntoSeR-) from robust parser = 1

Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [’Hepatitis B’,is,an,acute,viral,hepatitis,caused,by,a,virus,
that,tends,to,persist,in,the,blood, serum]
Number of syntagmas (OntoSeR-) from robust parser = 1



Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [acne,is,an,inflammatory,skin,disease,characterized,by,
pimples,that,can, appear,on,any,part,of,the,body]

Number of syntagmas (OntoSeR-) from robust parser = 2

Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Assertion= [acne,is,a,skin,disease,caused,by,overactive,o0il,glands]
Number of syntagmas (OntoSeR-) from robust parser = 1
Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [acne,is,an,inflammatory,disease,involving,the,sebaceous,
glands,of ,the, skin]

Number of syntagmas (OntoSeR-) from robust parser = 1

Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [acne,is,characterized,by,papules,or,pustules,or,comedones]
Number of syntagmas (OntoSeR-) from robust parser = 4
Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [acne,is,a,skin,disease,characterized,by, papules,and,
pustules,on,the,face,and,neck]

Number of syntagmas (OntoSeR-) from robust parser = 2

Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Assertion= [’Addison’’s disease’,is,a,degenerative,disease,caused,by,
a,deficiency,in,adrenocortical,hormones,and,characterized,by,
a,’bronze-like’ ,pigmentation,of,the,skin,and,a,low,blood,
pressure]

Number of syntagmas (OntoSeR-) from robust parser = 3

Number of syntagmas (OntoSeR+) validated by phi_onto = 3

>> Assertion= [’Addison’’s disease’,is,a,rare,disorder,caused,by,a,
deficiency,of ,hydrocortisone,and, characterized,by,
anemia,’,’,weight,loss,and,extreme,weakness]

Number of syntagmas (OntoSeR-) from robust parser = 2

Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [cataract,is,an,eye,disease,characterized,by,partial,or,
complete,opacity,on,or,in,the,lens,or,capsule]

Number of syntagmas (OntoSeR-) from robust parser = 1

Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Assertion= [cataract,is,caused,by,eye,lens,opacity,impairing,vision,
or,causing,blindness]

Number of syntagmas (OntoSeR-) from robust parser = 4

Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Assertion= [’Acute otitis media’,is,a,disorder,involving,inflammation,
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and,infection,of ,the,structures,of,the,middle,ear]
Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 3

>> Assertion= [’Acute otitis media’,is,characterized,by,an,inflammation,of,
the,middle,ear,with,signs,of ,infection]

Number of syntagmas (OntoSeR-) from robust parser = 9

Number of syntagmas (OntoSeR+) validated by phi_onto = 8

>> Assertion= [’Acute otitis media’,is,caused,by,a,bacterial,or,viral,
infection,of ,the,middle,ear]

Number of syntagmas (OntoSeR-) from robust parser = 3

Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Assertion= [’endocrine glands’,are,glands,that,secrete,substances,
which,influence,metabolism,and,body,functions]

Number of syntagmas (OntoSeR-) from robust parser = 3

Number of syntagmas (OntoSeR+) validated by phi_onto = 3

C.2 Acquired Pilot OKR-annotated treebank

In this appendix we give the entire semi-automatically acquired OKR-annotated
treebank. The concept #concept is the top element of the hierarchy, and it is
a-priori given (see also Figure C.1 for a visualization of this entire pilot OKR-

annotated treebank).

#concept@sub:=:#concept.
#concept@sub:=:#disease.
#disease@sub:=:#hepatitis.

#inflame~3Q@exp:=:#liver.
#cause~6Cag:=:#agents”7.
#agents~7Q@type_of:=:#infectious.
#agents~7@kind_of:=:#toxic.
#characterize~12@ag:=: [#jaundice,’,’ ,#fever,and,#enlargement~17] .
#enlargement~17@body_part:=:#liver.
#hepatitis@sub:=:#’Hepatitis A’.
#’Hepatitis A’Qduration:=:#acute.
#’Hepatitis A’Q@benignity:=:#benign.
#’Hepatitis A’Qkind_of:=:#viral.
#cause”24Cag:=:#virus~25.
#persist”~260neg:=:y.
#persist~26Q@th:=:#virus~25.
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#persist~26@loc_int:=:#serum”27.

#serum”~27Qof :=:#blood.

#hepatitis@sub:=:#’Hepatitis B’.

#’Hepatitis B’Qduration:=:#acute.

#’Hepatitis B’Qkind_of:=:#viral.
#cause”32Cag:=:#virus~33.
#tend"~34@prop:=:#persist~35.
#persist”~35@th:=:#virus~33.
#persist~35@loc_int:=:#serum”27.
#disease@sub:=:#acne.

#acne@kind_of :=:#inflammatory.
#acne@body_part:=:#skin.
#characterize™41Qag:=:#pimples~42.
#appear~430@mod:=:can.

#appear~43Q@th:=:#pimples~42.
#appear~43@loc_ext:=:#part~44.

#part~44Qof :=:#body.

#cause"48Qag:=:#glands"49.
#glands~49Q@intensity:=:#overactive.
#glands~49@kind_of:=:#o0il.
#involve~b4@perc:=:#glands”55.

#glands~55@kind_of :=:#sebaceous.

#glands~55Q@of :=:#skin.

#characterize~590ag:=: [#papules,or,#pustules,or,#comedones] .
#characterize~670ag:=: [#papules~69,and, #pustules”70].
[#papules”69,and,#pustules”70]@loc_ext:=: [#face,and,#neck] .
#concept@sub:=:#disorder.
#disease@sub:=:#’Addison\’s disease’.

#’Addison\’s disease’@severity:=:#degenerative.
#cause”78Cag:=:#deficiency”~79.
#deficiency~79@loc_int:=:#hormones~80.
#hormones~80@kind_of :=:#adrenocortical.
#characterize~830ag:=: [#pigmentation~85,and,#pressure~88].
#pigmentation~85Q@color:=:#’bronze-like’.
#pigmentation~85Qof:=:#skin.

#pressure”88Qlevel :=:#low.

#pressure”~88Qof :=:#blood.
#disorder@sub:=:#’Addison\’s disease’.

#’Addison\’s disease’@commonality:=:#rare.
#cause”93Cag:=:#deficiency~94.

#deficiency~94@of :=:#hydrocortisone.
#characterize”970@ag:=: [#anemia,’,’ ,#loss~102,and,#weakness~103] .
#loss~102Qof :=:#weight.
#weakness~103@degree:=:#extreme.
#disease@sub:=:#cataract.

#cataract@body_part:=:#eye.
#characterize”108Qag:=:#opacity~109.
#opacity~109@degree:=:#partial.
#opacity~109@completeness:=:#complete.
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#opacity~109@loc_ext:=: [#lens,or,#capsule].
#opacity~109@loc_int:=: [#lens,or,#capsule].
#cause~118Q@ag:=:#opacity~119.
#lens~121@body_part:=:#eye.
#opacity~119@of:=:#lens”121.
#impair~122@ag:=:#opacity~119.
#impair~122Q@exp:=:#vision.
#cause~1250ag:=:#opacity~119.
#cause~125@th:=:#blindness.

#concept@sub:=:#infection.

#disorder@sub:=:#’Acute otitis media’.
#involve~130@perc:=: [#inflammation~132,and,#infection].
[#inflammation~132,and,#infection] @of :=:#structures~134.
#structures”134Qof :=:#ear~135.
#ear~13b@position:=:#middle.
#characterize~1380Qag:=:#inflammation”139.
#characterize~138Qconcomitant:=:#signs~142.
#signs~1420@of :=:#infection.
#infection@kind_of:=:#bacterial.

#infection@kind_of:=:#viral.
#concept@sub:=:#glands.
#glands@sub:=:#’endocrine glands’.
#secrete”154@emission:=:#substances~155.
#influence”156Qag:=:#substances™155.
#influence~156@th:=: [#metabolism,and,#functions~159].
#functions~159€of :=:#body.
#inflammation~139@of :=:#ear~135.
#infection@of:=:#ear~135.
#inflame~3Q@ag:=:#hepatitis.
#cause”6Qth:=:#hepatitis.
#characterize”™12Qth:=:#hepatitis.
#cause”24Qth:=:#’Hepatitis A’.
#cause~32Q@th:=:#’Hepatitis B’.
#characterize~41Q@th:=:#acne.
#cause~480Qth:=:#acne.
#involve~54Qexp:=:#acne.
#characterize™59@th:=:#acne.
#characterize™67Qth:=:#acne.
#cause~78Q@th:=:#’Addison\’s disease’.
#characterize~83@th:=:#’Addison\’s disease’.
#cause~93Q@th:=:#’Addison\’s disease’.
#characterize~97@th:=:#’Addison\’s disease’.
#characterize”1080@th:=:#cataract.
#cause”~118@th:=:#cataract.
#involve~130Qexp:=:#’Acute otitis media’.
#characterize~138@th:=:#’Acute otitis media’.
#cause”145Q@ag:=:#infection.
#cause”1450@th:=:#’Acute otitis media’.
#secrete”154@src:=:#’endocrine glands’.
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Figure C.1: OKR-annotated treebank obtained from 17 medical definitions

C.3 NL-Querying Experiment

In this appendix we present the output of our NL-querying experiment. We created
a set of 29 questions, both precise (22) and vague (7). The answers that are obtained
are at the concept level. In this appendix we give the short answer (just the concept
itself), while in the next appendix we give samples of full concept-level answers
which takes into account the entire context of the concept. The answers are at the
concept level because we do not have reversibility from the OKR, and obtaining
natural language answers will require text generation, which is outside the scope of
this dissertation. In this appendix we also show the ambiguity of questions due to
our treatment of long distance dependencies, by showing the number of syntagmas

that we obtain without and with semantic validation.

>> Question= [which,are,viral,diseases]
Number of syntagmas (OntoSeR-) from robust parser = 1
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Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #’Hepatitis A’
>> Answer = #’Hepatitis B’

>> Question= [which,are,inflammatory,diseases]

Number of syntagmas (OntoSeR-) from robust parser = 1
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #acne

>> Question= [which,are,degenerative,diseases]

Number of syntagmas (OntoSeR-) from robust parser = 1
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #’Addison\’s disease’

>> Question= [which,are,rare,disorders]

Number of syntagmas (OntoSeR-) from robust parser = 1
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #’Addison\’s disease’

>> Question= [what,is,caused,by,infectious,or,toxic,agents]
Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Answer = #hepatitis

>> Question= [what,is,characterized,by,jaundice,and,liver,enlargement]
Number of syntagmas (OntoSeR-) from robust parser = 3

Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Answer = #hepatitis

>> Question= [what,causes,hepatitis]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #agents™7

>> Question= [what,is,caused,by,a,virus,that,does,not,persist,in,the,
blood, serum]

Number of syntagmas (OntoSeR-) from robust parser = 5

Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Answer = #’Hepatitis A’

>> Question= [what,is,caused,by,a,virus,that,persists,in,the,blood,serum]
Number of syntagmas (OntoSeR-) from robust parser = 5

Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Answer = #’Hepatitis B’

>> Question= [what,is,caused,by,something,that,does,not,persist,in,the,
blood, serum]

Number of syntagmas (OntoSeR-) from robust parser = 5

Number of syntagmas (OntoSeR+) validated by phi_onto = 2
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>> Answer = #’Hepatitis A’

>> Question= [what,is,characterized,by,pustules,on,the,facel
Number of syntagmas (OntoSeR-) from robust parser = 5
Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Answer = #acne

>> Question= [what,causes,acne]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #glands~49

>> Question= [what,does,acne,involve]

Number of syntagmas (OntoSeR-) from robust parser = 1
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #glands~55

>> Question= [what,characterizes,acnel

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #pimples”42

>> Answer = [#papules,or,#pustules,or,#comedones]

>> Answer = [#papules”69,and,#pustules”70]

>> Question= [what,is,characterized,by,something,on,the,face]
Number of syntagmas (OntoSeR-) from robust parser = 5

Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Answer = #acne

>> Question= [what,causes,’Addison’’s disease’]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #deficiency”79

>> Answer = #deficiency~94

>> Question= [what,characterizes,’Addison’’s disease’]
Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = [#pigmentation~85,and,#pressure”88]

>> Answer = [#anemia,,,#loss~102,and,#weakness~103]

>> Question= [what,is,characterized,by,pigmentation,of,the,skin]
Number of syntagmas (OntoSeR-) from robust parser = 5

Number of syntagmas (OntoSeR+) validated by phi_onto = 2

>> Answer = #’Addison\’s disease’

>> Question= [what,is,caused,by,something,impairing,vision]
Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1



297

#blindness
>> Answer = #cataract

>> Answer

>> Question= [what,characterizes,cataract]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #opacity~109

>> Question= [what,causes,’Acute otitis media’]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #infection

>> Question= [what,characterizes,’Acute otitis media’]
Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #inflammation~139

>> Question= [what,involve,inflammation,and,infection,of,the,structures,
of ,the,middle,ear]

Number of syntagmas (OntoSeR-) from robust parser = 17

Number of syntagmas (OntoSeR+) validated by phi_onto = 6

>> Answer = #’Acute otitis media’

>> Question= [what,secrete,substances,which,influence,metabolism]
Number of syntagmas (OntoSeR-) from robust parser = 3

Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Answer = #’endocrine glands’

>> Question= [what,secrete,substances,which,influence,body,functions]
Number of syntagmas (OntoSeR-) from robust parser = 3

Number of syntagmas (OntoSeR+) validated by phi_onto = 1

>> Answer = #’endocrine glands’

>> Question= [what,is,caused,by,something]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #blindness

>> Answer = #hepatitis

>> Answer = #’Hepatitis A’

>> Answer = #’Hepatitis B’

>> Answer = #acne

>> Answer = #’Addison\’s disease’

>> Answer = #’Addison\’s disease’

>> Answer = #cataract

>> Answer = #’Acute otitis media’

>> Question= [what,causes,something]
Number of syntagmas (OntoSeR-) from robust parser = 3
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Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #agents”7

>> Answer = #virus~25

>> Answer = #virus~33

>> Answer = #glands~49

>> Answer = #deficiency~79

>> Answer = #deficiency~94

>> Answer = #opacity~119

>> Answer = #opacity~119

>> Answer = #infection

>> Question= [what,is,characterized,by,something]
Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = #hepatitis

>> Answer = #acne

>> Answer = #acne

>> Answer = #acne

>> Answer = #’Addison\’s disease’

>> Answer = #’Addison\’s disease’

>> Answer = #cataract

>> Answer = #’Acute otitis media’

>> Question= [what,characterizes,something]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
>> Answer = [#jaundice,,,#fever,and,#enlargement”17]
>> Answer = #pimples~42

>> Answer = [#papules,or,#pustules,or,#comedones]

>> Answer = [#papules”69,and,#pustules”70]

>> Answer = [#pigmentation~85,and,#pressure”88]

>> Answer = [#anemia,,,#loss~102,and,#weakness”~103]
>> Answer = #opacity~109

>> Answer = #inflammation~139

C.4 Samples of Full Concept-level Answers to NL-
Queries

>> Question= [what,is,caused,by,something]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
0KR-query

#cause@ag:#:#something.

#causeQth:#:#what.
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>> Answer = #blindness

#cause”12bQ@ag:==:#opacity~119.
#lens”~121@body_part:==:#eye.
#opacity~119@of :==:#lens”121.
#cause~118Q@ag:==:#opacity~119.
#cause~118@th:==:#cataract.
#cause~125@th:==:#blindness.

>> Answer = #hepatitis

#disease@sub:==:#hepatitis.
#inflame~3Q@exp:==:#liver.
#inflame~3Q@ag:==:#hepatitis.
#cause~6Qag:==:#agents”7.
#agents~7@type_of:==:#infectious.
#agents~7Ckind_of :==:#toxic.
#cause”60th:==:#hepatitis.
#characterize”12@ag:==: [#jaundice,’,’ ,#fever,and,#enlargement~17].
#enlargement"17@body_part:==:#liver.
#characterize”12@th:==:#hepatitis.
#hepatitis@sub:==:#’Hepatitis A’.
#hepatitis@sub:==:#’Hepatitis B’.

>> Answer = #’Hepatitis A’

#hepatitis@sub:==:#’Hepatitis A’.
#cause”24Qag:==:#virus”25.
#persist”~260neg:==:y.
#persist~26Q@th:==:#virus~25.
#persist”26@loc_int:==:#serum”27.
#serum”~27@of :==:#blood.
#cause”24Qth:==:#’Hepatitis A’.
#’Hepatitis A’Qduration:==:#acute.
#’Hepatitis A’Qbenignity:==:#benign.
#’Hepatitis A’Qkind_of:==:#viral.

>> Answer = #’Hepatitis B’

#hepatitis@sub:==:#’Hepatitis B’.
#cause”320Qag:==:#virus~33.
#persist~35@th:==:#virus~33.
#persist~35@loc_int:==:#serum”27.
#serum”~27@of :==:#blood.
#cause”320th:==:#’Hepatitis B’.
#’Hepatitis B’Qduration:==:#acute.
#’Hepatitis B’Qkind_of:==:#viral.

>> Answer = #acne



#disease@sub:==:#acne.
#characterize”41Qag:==:#pimples”42.
#appear~43@mod:==:can.
#appear~43Q@th:==:#pimples”42.
#appear~43Q@loc_ext:==:#part~44.
#part~44Qof :==:#body.

#characterize”41@th:==:#acne.
#cause”480ag:==:#glands"49.
#glands~49@intensity:==:#overactive.

#glands~49@kind_of:==:#o0il.
#cause~48Q@th:==:#acne.
#involve~b4@perc:==:#glands~55.
#glands~550@kind_of :==:#sebaceous.
#glands~55Qof :==:#skin.
#involve~b4Q@exp:==:#acne.

#characterize“59@ag:==:[#papules,or,#pustules,or,#comedones].

#characterize~590Qth:==:#acne.

#characterize”67Qag:==: [#papules”69,and,#pustules~70] .
[#papules”69,and,#pustules”70]@loc_ext:==: [#face,and,#neck].

#characterize”67@th:==:#acne.
#acne@kind_of :==:#inflammatory.
#acne@body_part:==:#skin.

>> Answer = #’Addison\’s disease’

#disease@sub:==:#’Addison\’s disease’.
#disorder@sub:==:#’Addison\’s disease’.

#cause”78Qag:==:#deficiency”~79.

#deficiency~79@loc_int :==:#hormones~80.
#hormones~80@kind_of :==:#adrenocortical.
#cause”780th:==:#’Addison\’s disease’.
#characterize~830ag:==: [#pigmentation~85,and,#pressure~88].
#pigmentation~85Q@color:==:#’bronze-like’.

#pigmentation~85Qof :==:#skin.
#pressure”88Q@level :==:#low.
#pressure”~88Qof :==:#blood.

#characterize~83@th:==:#’Addison\’s disease’.

#cause”930Qag:==:#deficiency~94.

#deficiency~940Qof :==:#hydrocortisone.
#cause~930@th:==:#’Addison\’s disease’.
#characterize”97@ag:==: [#anemia,’,’,#loss"102,and, #weakness~103].

#loss~102Qof :==:#weight.
#weakness~103Qdegree:==:#extreme.

#characterize”97@th:==:#’Addison\’s disease’.
#’Addison\’s disease’@severity:==:#degenerative.
#’Addison\’s disease’@commonality:==:#rare.

>> Answer = #cataract
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#disease@sub:==:#cataract.
#characterize”108Qag:==:#opacity~109.
#opacity~109@degree:==:#partial.
#opacity~109@completeness:==:#complete.
#opacity~109@loc_ext:==: [#lens,or,#capsule].
#opacity~109@loc_int:==:[#lens,or,#capsule].
#characterize”108@th:==:#cataract.
#cause~1180Qag:==:#opacity~119.
#lens~1210body_part:==:#eye.

#opacity~119@of :==:#lens"121.
#impair~122@ag:==:#opacity~119.
#impair~122Q@exp:==:#vision.
#cause~1180th:==:#cataract.
#cataract@body_part:==:#eye.

>> Answer = #’Acute otitis media’

#disorder@sub:==:#’Acute otitis media’.
#involve~130@perc:==: [#inflammation”132,and,#infection].
[#inflammation~132,and,#infection] @of :==:#structures~134.
#structures”~134@of :==:#ear~135.
#ear~135@position:==:#middle.
#involve~130Qexp:==:#’Acute otitis media’.
#characterize”138Qag:==:#inflammation™139.
#inflammation~139Qof :==:#ear~135.
#characterize”138Qconcomitant:==:#signs~142.
#signs~142@of :==:#infection.
#characterize”™138@th:==:#’Acute otitis media’.
#cause”1450ag:==:#infection.

#cause”~145@th:==:#’Acute otitis media’.

>> Question= [what,causes,something]

Number of syntagmas (OntoSeR-) from robust parser = 3
Number of syntagmas (OntoSeR+) validated by phi_onto = 1
OKR-query

#causeQag:#:#what.

#cause@th:#:#something.

>> Answer = #agents”7

#cause~6Qag:==:#agents”7.
#agents~7Q@type_of :==:#infectious.
#agents~7Qkind_of:==:#toxic.
#cause”60th:==:#hepatitis.

>> Answer = #virus~25

#cause”24Qag:==:#virus”25.
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#persist”~260neg:==:y.
#persist~26Qth:==:#virus~25.
#persist”26Q@loc_int:==:#serum”27.
#serum”~27Qof :==:#blood.
#cause”24Qth:==:#’Hepatitis A’.
#persist~35Q@th:==:#virus~33.
#persist~3b6Q@loc_int:==:#serum”27.

>> Answer = #virus~33

#cause”32Qag:==:#virus”33.
#persist~35@th:==:#virus~33.
#persist~35Q@loc_int:==:#serum”27.
#serum”~27Qof :==:#Dblood.
#cause~32Q@th:==:#’Hepatitis B’.
#persist”260@neg:==:y.
#persist”26Q@th:==:#virus~25.
#persist”26Q@loc_int:==:#serum”27.

>> Answer = #glands~49

#cause~48Qag:==:#glands"49.

#glands~49Q@intensity:==:#overactive.

#glands~49@kind_of:==:#o0il.
#cause~48@th:==:#acne.

>> Answer = #deficiency~79

#cause~78Cag:==:#deficiency”~79.

#deficiency~79@loc_int :==:#hormones~80.
#hormones~80@kind_of :==:#adrenocortical.
#cause~780Qth:==:#’Addison\’s disease’.

>> Answer = #deficiency~94

#cause~93Cag:==:#deficiency~94.

#deficiency~94@of :==:#hydrocortisone.
#cause~93Q@th:==:#’Addison\’s disease’.

>> Answer = #opacity~119

#cause~118Q@ag:==:#opacity~119.
#lens~121@body_part:==:#eye.
#opacity~119@of :==:#lens"121.
#impair~1220Qag:==:#opacity~119.
#impair~122Q@exp:==:#vision.
#cause~118@th:==:#cataract.
#cause”125Q@ag:==:#opacity~119.
#cause”125@th:==:#blindness.
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>> Answer = #infection

#concept@sub:==:#infection.
#involve~130@perc:==: [#inflammation~132,and,#infection].
[#inflammation~132,and,#infection] @of :==:#structures~134.

#structures~134Qof :==:#ear~135.
#ear~135@position:==:#middle.

#involve~130Qexp:==:#’Acute otitis media’.
#signs~142@of :==:#infection.
#cause”1450Cag:==:#infection.
#cause”1450th:==:#’Acute otitis media’.
#infection@kind_of:==:#bacterial.
#infection@kind_of:==:#viral.

#infection@of:==:#ear~135.

303



304

Appendix D
DEFINDER Evaluation

We have developed DEFINDER in the context of a medical digital library project,
PERSIVAL, in order to automatically extract definitions from consumer-oriented
medical articles (Klavans and Muresan, 2001; Muresan and Klavans, 2002). We
thoroughly evaluated the system, on several dimensions: performance of the defini-
tion extraction algorithm in terms of precision and recall; quality of the generated
dictionary as judged both by non-specialists and by medical specialists; coverage

of on-line dictionaries (Klavans and Muresan, 2001; Muresan and Klavans, 2002).

D.1 Quantitative Evaluation

A standard approach in any system evaluation is to compare the results against
human performance. Thus we selected four subjects, not trained in the medical
domain and who did not participate in the development of the system. Each of
them was provided with a set of nine articles, and was asked to annotate the
definitions and their headwords in text. We equally represent the sources of our
corpora (medical articles, book chapters, manuals and newspapers), but we limit

the length of the articles to two pages.
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The gold-standard against which we compared our system was determined
by the set of definitions marked up by at least 3 out of the 4 subjects and consists
of 53 definitions. Our system obtained 86.95% precision and 75.47% recall.

The interpretation of the results was more difficult then expected, given that
there was no agreement among users regarding what is a definition?, even though
they were provided with a set of instructions and sample definitions. For example,

given the input sentence:

The most frequent cause of the condition in older patients is atheroscle-
rosis - the progressive narrowing of the heart’s own arteries by choles-
terol plaque buildups, which starves the heart itself for oxygen and

nutrients.

our system identified as definition for atherosclerosis the whole phrase the pro-
gressive narrowing of the heart’s own arteries by cholesterol plaque buildups, [which
starves the heart itself for orygen and nutrients/, while only 2 out of 4 subjects

marked up the relative clause given in square brackets.

D.2 Qualitative Evaluation: Lay User Perspec-
tive

Satisfying both the specialist and the layman with a single definition of a technical
term will be hard to achieve. Thus, in our next evaluation, our aim was to compare
the quality of our lay dictionary against existing specialized dictionaries from the
perspective of non-specialist users.

We chose the UMLS Metathesaurus and the On-line Medical Dictionary
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| Hypothesis | Usefulness | Readability |

DEFINDER > UMLS | p < 0.00003 | p < 0.00003
DEFINDER > OMD | p < 0.00003 | p < 0.00005

Table D.1: Sign test (p) for usefulness and readability

(OMD)! as technical dictionaries. A set of eight subjects was provided with a list
of randomly chosen 15 medical terms and their definitions from UMLS, OMD and
the definition extracted by our system from on-line lay text. The source of each
definition was not given in order not to bias the experiment. Also the order of
definitions was randomly changed for each term. The task was to assign to each
definition a quality rate (QR) for usefulness and readability on a scale of 1 to 7
(1 very poor, 7 excellent). Usefulness means that the definition can help the user
understand the term, while readability means that the definition is not technical,
thus is easy to read.

We first measured the Average Quality Rating (AQR) for each definition
source on these two criteria. Our hypotheses were that DEFINDER outperforms
both UMLS and OMD in terms of usefulness and readability. For usefulness, our
system was rated 5.17, while OMD and UMLS obtained 3.9 and 2.94. In terms of
readability, the difference was even higher: 5.65 compared with 4.3 and 3.18. In
order to statistically validate our results we applied the sign test (Siegel and Castel-
lan, 1988). As shown in Table D.1 by the p values, the results were statistically
significant.

One question that arises in computing the AQR is whether the high scores

given by one subject can compensate for the lower values given by other subject,

"http://www.graylab.ac.uk/omd



307

thus introducing noise in comparing the results. To address this issue we performed
a second analysis to evaluate the relative ranking of the three definitional sources.
Using Kendall’s coefficient of correlation, W, we first measured the interjudge agree-
ment on each term, and for terms with significant agreement we compute the level
of correlation between them. If W was significant, we compared the overall mean
ranks of the three sources. We tested the same hypotheses: DEFINDER is ranked
better than UMLS and OMD both in terms of usefulness and readability. For
usefulness, DEFINDER ranked first (1.3), OMD second (2.11) and UMLS third
(2.57). For readability, we obtained the same relative ranking with the scores 1.25,
2.1 and 2.64, respectively. We obtained statistically significant W values (W=0.54

and W=0.45 at p=0.01 and p=0.05 respectively).

D.3 Qualitative Evaluation: Medical Specialist
Perspective

The results of the previous section show that the definitions extracted from consumer-
oriented text are readable and useful for the lay user, outperforming the existing
specialized dictionaries. One question that arises is if they are also accurate and
complete from medical point of view.

In order to answer this question we performed a user-based evaluation. We
selected a set of 15 medical specialists (physician assistants, nurse practitioners,
residents and medical students). Each subject was provided with the same set of
15 medical terms and the definitions extracted by DEFINDER from text, as the
one given in the previous section. They were asked to judge the accuracy and

completeness of the definitions on a scale from 1 to 7 (1 very poor, 7 excellent).
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The definitions were rated on average 5.87 for accuracy and 5.38 for com-
pleteness. The results show that consumer-oriented text, when of high quality can
be a valuable source of definitions. Also because our definitions were embedded
in text, one of their required characteristics was to be concise. This explains the

somewhat lower value obtained for completeness.

D.4 Coverage of Existing Dictionaries

In this study we evaluated the coverage of three on-line dictionaries. In the introduc-
tion we claimed that these dictionaries are incomplete and our system can be used
to fill in the gaps. We selected two specialized dictionaries: UMLS Metathesaurus
and On-line Medical Dictionary, and one popular glossary: Glossary of Popular
and Technical Medical Terms (GPTMT).2 The popular glossary was chosen since
it would be a good resource for lay users and we wanted to analyze its complete-
ness. A base test set of 93 terms and their associated definitions was chosen for

this experiment. As expected three cases were found:

1. the term is listed in one of the on-line dictionaries and is defined in that

dictionary (defined)

2. the term is listed in one of the on-line dictionaries but does not have an

associated definition (undefined)

3. the term is not listed in one of the on-line dictionaries (absent)

Results are presented in Table D.2. Looking at the UMLS results, we noticed

that 24% of terms were undefined, which is equivalent to say that they are in the

Zhttp:/ /allserv.rug.ac.be/ % 7Ervdstich/eugloss /welcome.html
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[Term | UMLS |OMD | GPTMT |
defined | 60%(56) | 76%(71) | 21.5%(20)
undefined | 24%(22) | - -
absent 16%(15) | 24%(22) | 78.5%(73)

Table D.2: Coverage of on-line dictionaries

axiomatic vocabulary. But the question is if these terms are really known by the lay
users (e.g., Holter monitor or coumadin)? Analyzing the terms that were classified
as absent in UMLS, we conclude that modifiers play an important role in deciding
which are the true terms (e.g. cardiac defibrillator was the defined term extracted
by our system, while in UMLS only the term defibrillator was present).

In the case of the popular dictionary (GPTMT) only 20 out of the 93 terms
were present, thus achieving a coverage of only 21.5%. These results encourage us
to believe that building dictionaries automatically from text is a valuable endeavor

for enhancing existing resources.
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