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ABSTRACT

Data-Driven Solutions to Bottlenecks in Natural
Language Generation

Or Biran

Concept-to-text generation suffers from what can be called generation bottlenecks - aspects

of the generated text which should change for different subject domains, and which are

usually hard to obtain or require manual work. Some examples are domain-specific content,

a type system, a dictionary, discourse style and lexical style. These bottlenecks have stifled

attempts to create generation systems that are generic, or at least apply to a wide range of

domains in non-trivial applications.

This thesis is comprised of two parts. In the first, we propose data-driven solutions that

automate obtaining the information and models required to solve some of these bottlenecks.

Specifically, we present an approach to mining domain-specific paraphrasal templates from

a simple text corpus; an approach to extracting a domain-specific taxonomic thesaurus

from Wikipedia; and a novel document planning model which determines both ordering

and discourse relations, and which can be extracted from a domain corpus. We evaluate

each solution individually and independently from its ultimate use in generation, and show

significant improvements in each.

In the second part of the thesis, we describe a framework for creating generation systems

that rely on these solutions, as well as on hybrid concept-to-text and text-to-text genera-

tion, and which can be automatically adapted to any domain using only a domain-specific

corpus. We illustrate the breadth of applications that this framework applies to with three

examples: biography generation and company description generation, which we use to eval-

uate the framework itself and the contribution of our solutions; and justification of machine

learning predictions, a novel application which we evaluate in a task-based study to show

its importance to users.
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6.8 Output for Škoda Auto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.9 Output for Holly Madison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1 Example nomogram for a logistic regression model of credit risk. . . . . . . 148

7.2 Example of a full justification produced for a prediction in the evaluation. . 161

vi



List of Tables

1.1 List of contributions, with chapters and publications . . . . . . . . . . . . . 4

1.2 Timeline of phases in three key aspects of NLG . . . . . . . . . . . . . . . . 11

2.1 Evaluation domains. Article links preceded by https://en.wikipedia.org/wiki/ 23

2.2 Annotation score labels and explanations . . . . . . . . . . . . . . . . . . . 23

2.3 Size (number of paraphrase pairs generated), average score, % of pairs with

a score above 3 (paraphrases), and % of pairs with a score above 4 (high

quality paraphrases) for the different domains with different thresholds . . . 25

2.4 Comparison with the precision and paraphrases generated per input sentence

(PPS) of relevant prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Examples of template pairs and their scores . . . . . . . . . . . . . . . . . . 29

3.1 The features used in the taxonomic relation classifier . . . . . . . . . . . . . 39

3.2 Precision, Recall and F-measure obtained for each data set for the main

task (synoronymy). Results are shown for the development set, the large

general test set, and the science test set. . . . . . . . . . . . . . . . . . . . . 45

3.3 Precision, Recall and F-measure obtained for each data set for the hyper-

nymy task. Results are shown for the development set, the large general

test set, and the science test set. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Precision, Recall and F-measure obtained for each data set for the syn-

onymy task. Results are shown for the development set, the large general

test set, and the science test set. . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



3.5 Precision, Recall and F-measure obtained with a single feature for the main

task on the science test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Examples of correct and incorrect decisions made by classifier. . . . . . . . 48

4.1 The PDTB relation category hierarchy, with level 1 classes and level 2 types.

The level 3 subtypes are not shown . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The number of times a relation type appears in PDTB, and the percentage

of time with which it appears inside a sentence and across adjacent sentences 57

4.3 All class level relation sequences and their association ratio scores . . . . . 58

4.4 Simplified version of the class level relation sequences, without sentence

boundary decisions, and their association ratio scores . . . . . . . . . . . . . 62

4.5 Results for the comparison between the PDTB n-gram model and the baseline 70

4.6 Results for the comparison between the Wikipedia model and the PDTB model 70

4.7 Binary features used in the intra-sentence tagger. . . . . . . . . . . . . . . . 78

4.8 Features used in the adjacent sentence tagger. . . . . . . . . . . . . . . . . . 79

4.9 Partial match results on all relations in the PDTB. The Lin parser paper

does not report precision and recall . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Results for each of the two taggers separately . . . . . . . . . . . . . . . . . 82

4.11 Exact match results on all relations in the PDTB. The Lin parser paper does

not report precision and recall . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.12 Results for the same task when using the level 1 classes instead of the level

2 type relation categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Sample GEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Discourse connective templates for each discourse relation. . . . . . . . . . . 110

6.1 Possible discourse relations between common predicates of the biography

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Possible discourse relations between common predicates of the biography

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

viii



6.3 Preferences, with different criteria, given by the human annotators when

presented with two versions - the full system VS each of the baseline versions.

Statistically significant winning differences are marked with a dagger. . . . 129

6.4 Overall preferences, for each application and subject domain, given by the

human annotators when presented with two versions - the full system VS

each of the baseline versions. Statistically significant winning differences are

marked with a dagger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Overall ratings, with different criteria, given by the human annotators to each

version of the generation system. Ratings which are significantly different

when compared to those of the full system are marked with a dagger. . . . 132

6.6 Overall ratings, for each application and subject domain, given by the hu-

man annotators to each version of the generation system. Ratings which are

significantly different when compared to those of the full system are marked

with a dagger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1 Narrative roles assignment for the range of feature effect and importance . . 153

7.2 STTs for other core messages in the prediction justification application . . . 157

7.3 STTs for feature-role core messages in the prediction justification application 158

7.4 Possible discourse relations between pairs of messages given their STTs. The

arrows show the possible directions of the relations. . . . . . . . . . . . . . . 159

7.5 Features used by the stock price prediction classifier. . . . . . . . . . . . . . 160

7.6 Results of the task-based evaluation. Precision, Recall and F1 are measured

with respect to the positive (“buy”) class. . . . . . . . . . . . . . . . . . . . 162

ix



Acknowledgments

When I started the journey that ends with this dissertation, I could not possibly have

appreciated the time and effort that would go into it. At this point, I am compelled to

express the profound effect of the guidance, support and inspiration provided by others.

First, I would like to express my deep gratitude to my advisor, Kathy McKeown. Kathy

has been a patient, supportive, and above all insightful mentor. This thesis would not have

been possible without her guidance and advice, and the weight of her contribution to my

experience at Columbia and my growth as a researcher cannot be overstated. I also thank

Owen Rambow, who was an inspiring MS advisor and who continued to provide particularly

helpful comments and ideas throughout my PhD program. Finally, I would like to thank

the rest of my committee - Mike Collins, Julia Hirschberg and Drago Radev - for their very

thoughtful feedback on this thesis as well as their overall positive impact on me throughout

graduate school.

Many thanks to my collaborators - students, colleagues and mentors - beginning with

Terra Blevins, who was instrumental to a chapter of this thesis, and with Alfio Gliozzo

who impacted it through many fascinating conversations. To Jacob Andreas, Sam Brody,

Noemie Elhadad, Sara Rosenthal, Sid Patwardhan, Gavin Saldanha and Marlies Santos

Deas for rewarding research collaborations. My thanks go also to other past and present

faculty members of the NLP group and CCLS - Mona Diab, Nizar Habash, Smara Muresan

and Becky Passonneau - for their support and interest over the years.

As graduate students do, I spent a good part of my time chatting with colleagues about

our work and other topics, and in some cases forming lasting friendships. I want to thank

Kapil Thadani and Ioannis Paparrizos in particular for many hours spent brainstorming, de-

bating and obsessing together. Apoorv Agarwal, Yassine Benajiba, Debanjan Ghosh, Chris

Kedzie, Injung Kim, Hyunmin Lee, Jessica Ouyang, Yves Petinot, Vinod Prabhakaran

x



and Karl Stratos all deserve special thanks for special interactions, both professional and

personal. That said, I greatly enjoyed my interactions with many others at Columbia, in-

cluding but certainly not limited to Mohamed AlTantawy, Daniel Bauer, Shay Cohen, Bob

Coyne, Noura Farra, Hagen Fürstenau, Weiwei Guo, Chris Hidey, Mukund Jha, Melody Ju,

Weiyun Ma, Kevin McInerny, Kristen Parton, Raphael Pelossof, Axinia Radeva, Moham-
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Natural Language Generation (NLG) is the field of research concerned with automatically

producing human-readable text suited for a particular application. There are two main

approaches: traditional NLG, often simply referred to as generation and more recently as

concept-to-text generation, in which text is generated from abstract representations; and

text-to-text generation in which existing text is extracted and manipulated to generate a

desired text.

Concept-to-text generation (C2T) usually follows, at least to some extent, the model

of a generation pipeline. The traditional generation pipeline (Rambow and Korelsky, 1992;

Reiter and Dale, 1997) consists of three major independent steps: document planning (of-

ten split into content selection and discourse planning), where the entire “document” to

be generated is planned, i.e. the (abstract, semantic space) messages that comprise it are

chosen and arranged; micro-planning, where sentence boundaries are determined; and real-

ization, where the text is made concrete with lexical and syntactic choices. Underlying a

C2T system is its knowledge base, which consists of concepts and relations (in some form)

and often a type system.

C2T is more flexible than text-to-text generation (T2T), since any text can be generated

regardless of what is available. In practice, however, there are two major problems with

C2T: first, abstract semantic structures and knowledge bases must be created for each new

application domain; and second, rules for generating text documents from these abstract

structures must be created, and are often also domain-dependent. As a result, C2T is
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difficult to use except in special circumstances: small, closed domains; applications where

generated text is essentially templated; applications where the generated text is very short;

etc.

Starting in the early 2000’s, when Natural Language Processing as a field moved towards

corpus-driven approaches, T2T was gaining popularity as a way to leverage existing data

and generate complex, human-readable text for certain applications (in particular, summa-

rization and question answering). T2T is also relatively domain-agnostic, which makes it

more attractive. The main drawback of T2T is its inability to generate text for applications

where the expected output is not already available. In summarization, a full text exists

(either as one cohesive document or as snippets from separate documents) and needs to be

summarized; in question answering (QA), the answer exists somewhere (possibly in multi-

ple places) and needs to be found and presented as an answer (and possibly aggregated or

otherwise inferred). In most other applications, however, we want to automatically generate

text that simply does not exist anywhere yet, and in these cases we must resort to C2T

with its difficulties.

Note that applications such as summarization and QA describe the function of the

generated text as opposed to its subject domain. One of the main advantages of T2T is that

it is domain agnostic: the text retrieved is already conceptually, lexically and stylistically

within the domain, and usually nothing special needs to be done when using a T2T system

in a new subject domain.1

Applications that are typically only possible to approach with a C2T method are also

defined mainly by the function of the generated text. In some cases - indeed many of

the cases explored so far in the literature - the function is so specific that it specifies the

subject domain as well (e.g., description of software structures (Lavoie et al., 1997); weather

forecast (Reiter et al., 2005); football match logs (Bouayad-Agha et al., 2011)). In other,

more challenging applications, the domain is open-ended to some extent (e.g., biography

1It is important to distinguish between the subject domain and the genre of the text: while T2T ap-

proaches are not always genre-independent (e.g., they may be specialized for newswire text, encyclopedia

text etc.), they are generally domain-independent (e.g., it does not matter whether the news articles discuss

finance or foreign affairs).
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(Duboue et al., 2003); product description (Androutsopoulos et al., 2013)).

At this point, we should be more specific about the difficulties of C2T that we mentioned

earlier. C2T generation pipelines suffer from what we will refer to in this thesis as generation

bottlenecks. A bottleneck is a part of the generation pipeline that must be created for each

subject domain, even for the same application function. These bottlenecks exist in various

levels of the pipeline: the knowledge base that must contain concepts, entities and relations

relevant to the domain; the content selector, which should select messages important in

the domain; the discourse planner, which should know the discourse structures common in

the domain; and the realization component which must produce text using the style of the

domain. With a few notable exceptions (see Section 1.1), these bottlenecks are handled in

previous work either manually or with an automated approach specific to a subject domain.

For an application function where the goal is to create text that does not yet exist

anywhere, full T2T approaches are not useful. Corpus-driven and even partially T2T ap-

proaches, however, can be. Consider the example application of biography generation: while

it is true that it is in general not possible to find existing text describing most people, it is in

fact possible to find existing text on relevant domain entities; for example, there is probably

text describing the university a person graduated from (independently of that person). In

other words, while we must use C2T to create the overall structure and to generate much

of the central text for an application, we can use a general corpus in the subject domain

to extract domain-specific text (that is, specific to the subject domain, but agnostic to the

application function). Our generation framework in Chapter 5 uses such a hybrid approach

to tackle the bottleneck of getting domain-specific information by complementing a base

C2T pipeline with (manipulated) sentences extracted from a domain corpus.

Similarly, though less straightforwardly, a general corpus in the subject domain also

contains information that can help with the other bottlenecks we mentioned earlier. The

relevant entities and relations of the domain (e.g. cities, universities, political parties, and

relations between them), unique lexical terms (e.g. domain jargon and rare word senses),

and domain-specific patterns at both the sentence level (templates) and the document level

(discourse and ordering) are all hidden within the corpus.

In this thesis, we propose three domain-agnostic corpus-driven approaches to solving key
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generation bottlenecks: a method for mining paraphrasal templates (which can be used in

language realization) from a simple text corpus; a method for inferring taxonomic relations

between concepts (which assists in building a type system and in finding synonyms of known

concepts); and a method for extracting a statistical discourse model from a simple text cor-

pus (relying on our work on discourse parsing) and using it to improve discourse planning.

Each of these methods is a stand-alone contribution, and is evaluated by itself. We then

introduce a family of generation applications which we call Generation Endeavors with Mod-

ular Subjects (GEMS), and which includes many interesting NLG applications. This family

is unique in that while each application is a closed application function (e.g. biography),

it can be applied to an open set of subject domains (politicians, scientists. . . ). We intro-

duce a framework for building hybrid C2T/T2T generation systems for these applications

that adapts to new subject domains completely automatically, and describe three example

applications: biography generation, company description generation, and Machine Learning

prediction justification. We use the first two applications to evaluate our framework, as well

as the three methods we propose in the context of a larger generation framework. The third

is a novel contribution in its own right, and we evaluate its usefulness.

Table 1.1 lists the major contributions of this thesis, along with the corresponding

chapters and publications.

Contribution Chapters Publications

Data-

driven

Paraphrasal template

mining for realization

Chapter 2 (Biran et al., 2016)

generation Taxonomy induction Chapter 3 (Biran and McKeown, 2013b)

bottleneck

solutions

Corpus-driven discourse

planning + end-to-end

discourse parsing

Chapter 4 (Biran and McKeown, 2013a;

Biran and McKeown, 2015b;

Biran and McKeown, 2015a)

Hybrid, domain-agnostic generation

framework for GEMS

Chapters 5 - 6 TBD

ML prediction justification Chapter 7 (Biran and McKeown, 2014)

Table 1.1: List of contributions, with chapters and publications
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The thesis is organized as follows. In the first part, we describe our three data-driven

bottleneck solutions. Chapter 2 describes paraphrasal template mining; Chapter 3 intro-

duces taxonomy extraction; and Chapter 4 discusses discourse planning and our work on

discourse parsing supporting it.

In the second part, we show an example of how our work can be used for generation.

Chapter 5 defines the GEMS family of generation applications and describes the generation

framework. Chapter 6 describes two straightforward applications, biography and company

descriptions, which rely on RDF data, and evaluates the generation framework using these

applications. Chapter 7 introduces the Machine Learning prediction justification applica-

tion. Finally, in Chapter 8 we conclude and discuss both the limitations of our work and

potential future work.

1.1 Background

Natural Language Generation as a task dates back at least as far as the 1960’s, when early

approaches appeared, focusing on generating individual sentences. These were mostly cre-

ated for purely academic purposes (Yngve, 1961; Klein et al., 1963; Weizenbaum, 1966) but

also for some real-world applications like question answering (see survey in Simmons (1970))

and robotics (Coles, 1969). In the decade that followed, the focus slowly shifted towards

generation of longer texts and applications such as description generation (Carbonell and

Collina, 1973), story writing (Klein, 1973; Meehan, 1977) and expert system explanation

(Shortliffe and Buchanan, 1975; Swartout, 1981), as well as early proposals for generic

generation methods (Mann and Moore, 1981).

The next decade saw the appearance of more robust, generic approaches to genera-

tion, and a focus on document planning. McKeown (1985) introduced schemata, recursive

discourse plans that could be used to generate many kinds of texts, and was the first to in-

corporate a discourse planning stage in generation. Schemata became a standard approach

to generation and were used by many systems in the years that followed (Hovy, 1987;

Paris, 1988; McCoy, 1989; McKeown et al., 1997). Rhetorical Structure Theory (RST)

was introduced by Mann and Thompson (1987), and was subsequently used as a discourse
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planning framework by many systems as well (Hovy, 1991; Hovy, 1993; Moore and Paris,

1993; Mellish et al., 1998; Power, 2000; Bouayad-Agha et al., 2000). By the 1990’s, the

standard three-layered generation pipeline (consisting of document planning, micro-planning

and realization) was widely acknowledged and eventually formalized and elaborated on by

Reiter and Dale (1997), who proposed an abstract framework intended to generalize over

virtually all existing concept-to-text generation systems. In general, one of the clear trends

before the 2000’s was increasing generality, where systems and frameworks were proposed

that could handle increasingly many types of applications and a broader range of domains

(note the similarity in goal to this thesis). At the same time, standardized sentence-level

generation frameworks and libraries appeared and became widely used: notable examples

include KPML (Bateman, 1997), RealPro (Lavoie and Rambow, 1997) and the SURGE

realizer (Elhadad and Robin, 1996) based on Functional Unification Grammar (Shieber,

1986).

The movement towards generality has largely stopped in the 2000’s (with some excep-

tions - a generic architecture was proposed by Mellish et al. (2006), for example, but the

field was not eager to follow up). At the time, another trend was rapidly taking the lead

- corpus-driven, statistical methods, which rose due to the increasing availability of large

text corpora and were seen as a way around some generation bottlenecks. Concept-to-text

generation systems first started significantly incorporating statistical information derived

from text data by using it to score various possibilities of generated structures (such as

document plans, parse trees and lexical choices) and make probabilistic selections based on

similarity to the corpus, thereby solving the bottleneck requirement of having a generation

plan for any possible situation (Knight and Hatzivassiloglou, 1995; Langkilde and Knight,

1998). These approaches still relied on structured knowledge bases and static document

plans, but used corpus statistics to “close the gaps” where they were missing or incomplete.

In the years that followed, NLG took a more statistical, less structured direction. Fully

statistical (learned from data) approaches were proposed in the concept-to-text literature

for content selection (Duboue and McKeown, 2003; Barzilay and Lapata, 2005a; Kelly et

al., 2009), sentence ordering (Duboue and McKeown, 2001; Duboue and McKeown, 2002;

Dimitromanolaki and Androutsopoulos, 2003; Barzilay and Lee, 2004) and realization (Ban-



CHAPTER 1. INTRODUCTION 7

galore and Rambow, 2000; Langkilde-Geary, 2002; Guo et al., 2008; Filippova and Strube,

2009; White and Rajkumar, 2009).

Another facet of the corpus-driven trend was the rise of text-to-text generation, es-

pecially for summarization. T2T was actually explored very early on, both for summa-

rization/abstraction of database texts (Luhn, 1958; Edmundson and Oswald, 1959) and

for sentence transformation and shortening (Klein, 1965). However, these early attempts

were rare and unique, and despite some interest in specific applications by the Informa-

tion Retrieval community (Young and Hayes, 1985; Rau, 1988), it was not until the 1990’s

that T2T became a central part of the generation literature. Jones (1993) presented a first

solid definition of summarization (not yet acknowledged as a single application of the wider

text-to-text generation task) and proposed a framework for pursuing it. Early work follow-

ing that focused on single document summarization (Baldwin and Morton, 1998; Barzilay

and Elhadad, 1999; Berger and Mittal, 2000; Hatzivassiloglou et al., 2001), followed by

multi-document summarization as the web became prevalent (Radev and McKeown, 1998;

Amitay and Paris, 2000; Barzilay et al., 2002; Erkan and Radev, 2004; Conroy et al.,

2006; Daumé and Marcu, 2006; Biadsy et al., 2008). Although summarization has been

the primary application, T2T methods were quickly leveraged for other tasks, most notably

question answering (Blair-Goldensohn et al., 2003; Chali and Joty, 2008) and essay grading

and feedback (Burstein and Marcu, 2000). Statistical methods were proposed for subtasks

within text-to-text as well, in particular sentence ordering (Lapata, 2003; Bollegala et al.,

2005; Ji and Pulman, 2006; Donghong and Yu, 2008), sentence compression (McDonald,

2006; Clarke and Lapata, 2006; Filippova and Strube, 2008a; Clarke and Lapata, 2008;

Napoles et al., 2011) and sentence fusion (Filippova and Strube, 2008b; Thadani and McK-

eown, 2011; Thadani and McKeown, 2013).

Recent work on C2T generation, meanwhile, includes the development of several inter-

esting trajectories. One has been an increasing focus on generating text from raw data.

Although earlier examples exist (Kukich, 1983; Bourbeau et al., 1990; Sripada et al., 2004),

data-to-text generation became newly popularized by Reiter (2007) as an extension of the

traditional pipeline (knowledge base → messages → document plan → sentence plan →

text) with components that first transform raw numeric data into digestible conceptual
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information. This has expanded the range of NLG applications to include, for example,

sensor data description (Gatt et al., 2009; Van Der Meulen et al., 2010). In Chapter 7, we

describe the data-to-text application of justifying machine learning predictions. A some-

what related body of research includes recent work on generating descriptions of images

and videos (Kazemzadeh et al., 2014; Gkatzia et al., 2015).

Most relevant to our work, there has been some rekindled interest in generic NLG ap-

proaches, although different in flavor from the highly abstract specification frameworks

of Reiter and Dale (1997) and Mellish et al. (2006). Specifically, researchers have begun

looking at corpus-driven ways to automatically adapt generation systems for different do-

mains. Of particular note in that regard are the approaches of Angeli et al. (2010) and

Kondadadi et al. (2013) who leverage aligned text-data corpora to mine domain-specific

templates for realization and learn how to order sentences in the domain. These approaches

tackle problems similar to the ones we do in this thesis, but they rely on a corpus of sample

texts (of the kind that they are expected to generate) and knowledge bases corresponding

to these texts. In contrast, we focus on solving generation problems for which sample texts

do not exist at all. Other recent work that focuses on automatic system adaptation has

looked at adapting generation output to different user groups (Janarthanam and Lemon,

2010; Gkatzia et al., 2014); adapting summarization systems to different genres (Lloret

and Boldrini, 2015); adapting dialog generation systems to different applications (Rieser

and Lemon, 2011) and different domains (Walker et al., 2007); and parameterizing existing

hand-crafted generation systems to increase the range of domains they can handle (Lukin

et al., 2015).

A related trend, enabled by access to increasingly large semantic web repositories (Auer

et al., 2007; Suchanek et al., 2007; Bollacker et al., 2008) is concept-to-text generation

from RDF, OWL and similar semantic web data formats. Because so much diverse data

is available in these formats, there has been some work that puts particular emphasis on

presumably generic aspects of generation from semantic web data, such as sentence real-

ization and content selection (Power and Third, 2010; Bouayad-Agha et al., 2012; Dannélls

et al., 2012; Androutsopoulos et al., 2013). While this literature is not concerned with

domain adaptation and solving bottlenecks specifically, it complements our work well be-
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cause semantic web repositories are available for virtually any domain. In Chapter 6, we

describe two applications that generate texts from RDF data; while in our work we focused

on areas relevant to the bottlenecks we aim to solve, it can certainly be complemented by

RDF-specific approaches to, for example, realization.

Finally, another line of research that has come to prominence in recent years is concerned

with joint end-to-end generation methods, particularly using neural nets. This scheme re-

places the traditional pipeline architecture with a single statistical model that learns to

map structured data to generated text. This has typically been done with neural archi-

tectures such as LSTM (Potash et al., 2015; Wen et al., 2015; Wang et al., 2016) or other

attention-based neural models (Rush et al., 2015), but there have also been proposals for

new task-specific models (Yin et al., 2016), and for joint generation methods that do not

rely on neural models (Lampouras and Androutsopoulos, 2013; Dušek and Jurcicek, 2015).

In the dialog generation literature, active learning (Mairesse et al., 2010) has also been used.

While this line of work represents an alternative, unrelated approach to the one we operate

in (i.e., the pipeline approach), its prominence highlights current interest in our common

goal of fully automated creation of natural language generation systems for any domain.

1.2 Our Work in the Context of the Field

In the previous section, we discussed specific trends of NLG in their historical context. In

this section, we take a bird’s eye view of these trends, focusing on the overall trajectories

rather than on specific trends and short term focuses. Using this more abstract view,

we describe the evolution of NLG as a field and discuss its current direction, as well as

our expectation for its future directions, and place our work (in particular, the framework

described in Chapter 5 and the general approach of data-driven domain adaptation for

dealing with NLG bottlenecks) in the context of these directions.

In the 60 or so years since its origination, NLG has largely followed three general tra-

jectories: increased generated text size (and associated complexity); increased reliance on

statistical modeling and data-driven approaches as opposed to expert knowledge and hand

crafted rules; and systems that are increasingly generic and broader in scope (that is, they
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are capable of handling more genres and subject domains without reliance on manual work

or rare resources).

In each of the three aspects, new phases introduced new challenges. In the text size

aspect, for example, multi-sentence documents introduced the challenge of document plan-

ning, which did not exist when NLG was concerned with single sentences. NLP researchers

have only recently started looking at narrative modeling (Ouyang and McKeown, 2015),

the upcoming challenge for generating even longer documents such as books and large-scale

essays. Similarly, increased reliance on statistics poses challenges in modeling, which started

with relatively simple likelihood models (Knight and Hatzivassiloglou, 1995), through the

last two decades of mostly supervised, unstructured machine learning model use, and most

recently, end-to-end structured models (Lampouras and Androutsopoulos, 2013; Rush et

al., 2015). Finally, increasingly generic systems require increasing layers of abstraction (Re-

iter and Dale, 1997; Mellish et al., 2006) and, more recently, reliance on data-driven domain

adaptation (Angeli et al., 2010). Table 1.2 shows a timeline of the phases we have identified

in each of the trajectories, along with the challenges of each phase. The work in this thesis

belongs to the second phase in text size, the third phase in modeling, and the third stage

in scope.

It is interesting to explore the interaction among the three trajectories. Clearly, phases

in certain trends rely on progress in another: Phase 3 of the scope aspect (concrete, data-

driven generic frameworks) was not possible before Phase 3 of the modeling aspect (ML

task solutions) was already established. In addition to full dependence of this sort, there

are also cases of soft dependence, where new phases in certain trajectories would likely not

have been explored if it were not for the needs of new phases in another trajectory. For

example, it is unlikely that we would have seen scope move beyond Phase 1, and modeling

move beyond Phase 3, if we were still at Phase 1 of text size (i.e., if NLG was only concerned

with generating single sentences).

Often, when a new phase in a particular trajectory was first explored, authors have

reverted to earlier phases in one or both others. For example, the first statistical models

were applied to syntactic tree generation in single sentences in the 90’s (Knight and Hatzi-

vassiloglou, 1995; Langkilde and Knight, 1998), even though NLG had been at the phase
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Year Text size Modeling Scope

1960 - 1965 Phase 1: Generation of Phase 1: Hand- Phase 1: Manual

1965 - 1970 single sentences, including crafted rules domain adaptation,

1970 - 1975 short multi-sentence texts non-generic systems

1975 - 1980 without ordering/selection

1980 - 1985 (syntax, lexical choice)

1985 - 1990 Phase 2: Multi-

1990 - 1995 sentence documents

1995 - 2000 (content selection, Phase 2: statistical Phase 2: Descriptive

discourse planning, likelihood models generic frameworks

2000 - 2005 micro-planning) Phase 3: ML task (task abstraction)

2005 - 2010 solutions (mainly

2010 - 2015 unstructured) Phase 3: Concrete

Present Entering Phase 4: generic frameworks

Towards end-to-end (domain adaptation)

Future Phase 3: Books, large- structured models Phase 4: Fully

scale essays (narrative) generic systems

Table 1.2: Timeline of phases in three key aspects of NLG
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of generating long documents for over a decade. The first statistical models for sentence

ordering and discourse came several years later (Duboue and McKeown, 2001; Duboue and

McKeown, 2002). Similarly, the first generic frameworks focused on syntax of single sen-

tences, based on hand-crafted grammars (Elhadad and Robin, 1996; Bateman, 1997; Lavoie

and Rambow, 1997). Descriptions of generic frameworks for document-level generation sys-

tems rose to prominence around the same time (Reiter and Dale, 1997), but generic concrete

frameworks (which, unlike simply descriptive frameworks, are capable of producing systems

adapted to a particular domain or genre with minimal or no manual work) which rely on

aligned datasets have only recently started to appear (Angeli et al., 2010; Kondadadi et

al., 2013). Our work introduces the first, to our knowledge, concrete domain-adaptable

framework which relies only on simple text data.

The introduction of a concrete framework which relies only on simple data sets is a

crucial evolution within the current phase of the scope trajectory. Until fully generic sys-

tems become possible, the best approach for reducing manual work in the creation of new

generation systems remains data-driven domain-adaptable frameworks. In order for such

frameworks to be relevant for a wide range of applications, they cannot rely on aligned

data (as they have so far) or on otherwise special, rare data sets. Future concrete domain-

adaptable frameworks, if they are to be widely useful, will have to find ways (as we have

with our bottleneck solutions and hybrid generation approach) to extract the information

they need from easily obtainable simple text resources.



13

Part I

Data-Driven Methods for

Generation Bottlenecks



CHAPTER 2. PARAPHRASAL TEMPLATE EXTRACTION 14

Chapter 2

Paraphrasal Template Extraction

One of the main difficulties in Natural Language Generation is the surface realization of

messages: transforming a message from its internal representation to a natural language

phrase, sentence or larger structure expressing it. Often the simplest way to realize messages

is though the use of templates. For example, any message about the birth year and place

of any person can be expressed with the template “[Person] was born in [Place] in [Year]”.

Templates have the advantage that the generation system does not have to deal with the

internal syntax and coherence of each template, and can instead focus on document-level

discourse coherence and on local coreference issues. On the other hand, templates have

two major disadvantages. First, having a human manually compose a template for each

possible message is costly, especially when a generation system is relatively open-ended or

is expected to deal with many domains. In addition, a text generated using templates often

lacks variation, which means the system’s output will be repetitive, unlike natural text

produced by a human.

In this chapter we tackle a task aimed at solving both problems: automatically mining

paraphrasal templates, i.e. groups of templates which share the same slot types and which,

if their slots are filled with the same entities, result in paraphrases. We introduce an

unsupervised approach to paraphrasal template mining from the text of Wikipedia articles.

The work described in this chapter is also described in (Biran et al., 2016).

Most previous work on paraphrase detection focuses either on a corpus of aligned para-

phrase candidates or on such candidates extracted from a parallel or comparable corpus. In
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contrast, we are concerned with a very large dataset of templates extracted from a single

corpus, where any two templates are potential paraphrases. Specifically, paraphrasal tem-

plates can be extracted from sentences which are not in fact paraphrases; for example, the

sentences “The population of Missouri includes more than 1 million African Americans” and

“Roughly 185,000 Japanese Americans reside in Hawaii” can produce the templated para-

phrases “The population of [american state] includes more than [number] [ethnic group]”

and “Roughly [number] [ethnic group] reside in [american state]”. Looking for paraphrases

among templates, instead of among sentences, allows us to avoid using an aligned corpus.

Our approach consists of three stages. First, we process the entire corpus and determine

slot locations, transforming the sentences to templates (Section 2.2.1). Next, we find the

most appropriate type for each slot using a large taxonomy, and group together templates

which share the same set of types as potential paraphrases (Section 2.2.2). Finally, we

cluster the templates in each group into sets of paraphrasal templates (Section 2.2.3).

2.1 Related Work

To our knowledge, although several approaches exist which utilize paraphrasal templates in

some way, the task of extracting them has not been defined as such in the literature. The

reason seems to be a difference in priorities. In the context of NLG, Angeli et al. (2010) as

well as Kondadadi et al. (2013) used paraphrasal templates extracted from aligned corpora

of text and data representations in specific domains, which were grouped by the data types

they relate to. Duma and Klein (2013) extract templates from Wikipedia pages aligned

with RDF information from DBPedia, and although they do not explicitly mention aligning

multiple templates to the same set of RDF templates, the possibility seems to exist in their

framework. In contrast, we are interested in extracting paraphrasal templates from non-

aligned text for general NLG, as aligned corpora are difficult to obtain for most domains.

While template extraction has been a relatively small part of NLG research, it is very

prominent in the field of Information Extraction (IE), beginning with Hearst (1992). There,

however, the goal is to extract good data and not to extract templates that are good for

generation. Many pattern extraction (as it is more commonly referred to in IE) approaches
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focus on semantic patterns that are not coherent lexically or syntactically, and the idea

of paraphrasal templates is not important (Chambers and Jurafsky, 2011). One exception

which explicitly contains a paraphrase detection component is (Sekine, 2006).

Meanwhile, independently of templates, detecting paraphrases is an important, difficult

and well-researched problem of Natural Language Processing. It has implications for the

general study of semantics as well as many specific applications such as Question Answering

and Summarization. Research that focuses on mining paraphrases from large text corpora

is especially relevant for our work. Typically, these approaches utilize a parallel (Barzilay

and McKeown, 2001; Ibrahim et al., 2003; Pang et al., 2003; Quirk et al., 2004; Fujita et

al., 2012; Regneri and Wang, 2012) or comparable corpus (Shinyama et al., 2002; Barzilay

and Lee, 2003; Sekine, 2005; Shen et al., 2006; Zhao et al., 2009; Wang and Callison-

Burch, 2011), and there have been approaches that leverage bilingual aligned corpora as

well (Bannard and Callison-Burch, 2005; Madnani et al., 2008).

Of the above, two are particularly relevant. Barzilay and Lee (2003) produce slotted

lattices that are in some ways similar to templates, and their work can be seen as the most

closely related to ours. However, as they rely on a comparable corpus and produce untyped

slots, it is not directly comparable. In our approach, it is precisely the fact that we use a rich

type system that allows us to extract paraphrasal templates from sentences that are not,

by themselves, paraphrases and avoid using a comparable corpus. Sekine (2005) produces

typed phrase templates, but the approach does not allow learning non-trivial paraphrases

(that is, paraphrases that do not share the exact same keywords) from sentences that do not

share the same entities (thus remaining dependent on a comparable corpus), and the type

system is not very rich. In addition, that approach is limited to learning short paraphrases

of relations between two entities.

Another line of research is based on contextual similarity (Lin and Pantel, 2001; Paşca

and Dienes, 2005; Bhagat and Ravichandran, 2008). Here, shorter (phrase-level) para-

phrases are extracted from a single corpus when they appear in a similar lexical (and in

later approaches, also syntactic) context. The main drawbacks of these methods are their

inability to handle longer paraphrases and their tendency to find phrase pairs that are

semantically related but not real paraphrases (e.g. antonyms or taxonomic siblings).
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More recent work on paraphrase detection has, for the most part, focused on classify-

ing provided sentence pairs as paraphrases or not, using the Microsoft Paraphrase Corpus

(Dolan et al., 2004). Mihalcea et al. (2006) evaluated a wide range of lexical and semantic

measures of similarity and introduced a combined metric that outperformed all previous

measures. Madnani et al. (2012) showed that metrics from Machine Translation can be

used to find paraphrases with high accuracy. Another line of research uses the similarity

of texts in a latent space created through matrix factorization (Guo and Diab, 2012; Ji

and Eisenstein, 2013). Other approaches that have been explored are explicit alignment

models (Das and Smith, 2009), distributional memory tensors (Baroni and Lenci, 2010)

and syntax-aware representations of multi-word phrases using word embeddings (Socher et

al., 2011). Word embeddings were also used by Milajevs et al. (2014). These approaches

are not comparable to ours because they focus on classification, as opposed to mining, of

paraphrases.

Detecting paraphrases is closely related to research on the mathematical representation

of sentences and other short texts, which draws on a vast literature on semantics, includ-

ing but not limited to lexical, distributional and knowledge-based semantics. Of particular

interest to us is the work of Blacoe and Lapata (2012), which show that simple combina-

tion methods (e.g., vector multiplication) in classic vector space representations outperform

more sophisticated alternatives which take into account syntax and which use deep repre-

sentations (e.g. word embeddings, or the distributional memory approach). This finding

is appealing since classic vector space representation (distributional vectors) are easy to

obtain and are interpretable, making it possible to drill into errors.

2.2 Method

Our method relies on a type system which links entities to one another in a taxonomy. We

use a combination of WordNet (Fellbaum, 1998) and DBPedia (Auer et al., 2007), which

provides both a rich top-level type system with lexicalizations of multiple senses and a large

database of entities linked through the type system (the top-level DBPedia categories all

have cognates in WordNet, which make the two easy to combine). Leveraging the fact that
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DBPedia entities have corresponding Wikipedia pages, we also use the redirect terms for

those pages as alternative lexicalizations of the entity (e.g., the Wikipedia article “United

States” has “USA” as a redirect term, among others).

The three steps of our approach are described in detail below.

2.2.1 Creating Templates

The first step to creating the templates is to find entities, which are candidates to becoming

slots in the templates. Since we are trying to find sentence-level paraphrasal templates,

each sentence in the corpus is a potential template.

Entities are found in one of two ways. First, we use regular expressions to find open set

entities: dates, percentages, currencies, counters (e.g., “9th”) and general numbers. Those

special cases are immediately given their known type (e.g., “date” or “percentage”). These

are the only types of entities we allow without having the entity in the taxonomy.

Next, after POS-tagging the entire corpus, we look for candidate closed set entities in

the following patterns: terms that contain only NNP (including NNPS) tags; terms that

begin and end with an NNP and contain only NNP, TO, IN and DT tags; and terms that

contain only capitalized words, regardless of the POS tags. Of these candidates, we only

keep ones that appear in the taxonomy. Unlike the special cases above, the type of the slots

created from these general entities is not yet known and will be decided in the next step.

At the end of this step, we have a set of partially-typed templates: one made from each

sentence in the corpus, with its slots (but not their types in most cases) defined by the

location of entities. We remove from this set all templates which have fewer than two slots

as these are not likely to be interesting, and all templates which have more than five slots

to avoid excessively complicated templates.

We originally experimented with simply accepting any term that appears in the taxon-

omy as an entity. That method, however, resulted in a large number of both errors and

entities that were too general to be useful (e.g, “table”, “world” and similar terms are in

the taxonomy). Note that NER approaches, even relatively fine-grained ones, would not

give us the same richness of types that directly comparing to the taxonomy allows. The

next step, which is concerned with making decisions about the types of entities, requires
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that each entity we handle exist in the taxonomy.

2.2.2 Template Typing and Grouping

Determining the type of a slot in the template presents two difficulties. First, there is a

sense disambiuation problem, as many lexical terms have more than one sense (that is,

they can correspond to more than one entry in the taxonomy). Second, even if the sense

is known, it is not clear which level of the taxonomy the type should be chosen from. For

example, consider the sentence “[JFK] is [New York]’s largest airport” (the terms in square

brackets will become slots once their types are determined). “JFK” is ambiguous: it can

be an airport, a president, a school, etc. The first step in this process is, then, to determine

which of the possible senses of the term best fits the sentence. But once we determine that

the sense of “JFK” here is of an airport, there are different types we can choose. JFK is a

New York Airport, which is a type of Airport, which is a type of Air Field, which is a type

of Facility and so on. The specificity of the type we choose will determine the correctness

of the template, and also which other templates we can consider as potential paraphrases.

Our solution is a two-stage distributional approach: choosing the sense, and then choos-

ing the type level that best fit the context of the slot. In each stage, we construct a

pseudo − sentence (a collection of words in arbitrary, non-grammatical order) from words

used in the taxonomy to describe each option (a sense in the first stage, and a type level

in the second stage), and then use their vector representations to find the option that best

matches the context.

Following the observation of Blacoe and Lapata (2012) that simple similarity metrics in

traditional vector representations match and even outperform more sophisticated represen-

tations in finding relations among short texts as long as multiplication is used in forming

vector representations for the texts, we use traditional context vectors as the basis of our

comparisons in both stages. We collect context vectors from the entire English Wikipedia

corpus, with a token window of 5. To avoid noise from rarely occurring words and reduce

the size of the vectors, we remove any feature with a count below a threshold of log10(Σ)

where Σ is the sum of all feature counts in the vector. Finally, the vector features are
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weighted with (normalized) TF*IDF.1

For a multi-word collection (e.g. a pseudo-sentence) ψ, we define the features of the

combined vector Vψ using the vectors of member words Vw as:

Vjψ = (
∏
w∈ψ
Vjw)

1
|S| (2.1)

Where Vjw is the value of the jth feature of Vw.

To choose the sense of the slot (the first stage), we start with S, the set of all possible

senses (in the taxonomy) for the entity in the slot. We create a pseudo-sentence ψs from

the primary lexicalizations of all types in the hierarchy above each sense s - e.g., for the

airport sense of JFK we create a single pseudo-sentence ψJFK−airport−sense consisting of

the terms “New York airport”, “airport”, “air field”, “facility” and so on.2 We create a

vector representation Vψs for each ψs using Equation 2.1. Then, we create a pseudo-sentence

ψcontext for the context of the slot, composed of the words in a 5-word window to the left

and right of the slot in the original sentence, and create the vector Vψcontext . We choose the

sense ŝ with the highest cosine similarity to the context:

ŝ = argmax
s∈S

cos(Vψs ,Vψcontext)

Note that this is a deep similarity - the similarity of the (corpus) context of the sense

and the (corpus) context of the slot context; the words in the sentence themselves are not

used directly.

We use the lexicalizations of all types in the hierarchy to achieve a more robust vector

representation that has higher values for features that co-occur with many levels in the

sense’s hierarchy. For example, we can imagine that “airplane” will co-occur with many of

the types for the JFK airport sense, but “La Guardia” will not (helping to lower the score

of the first, too-specific sense of “New York airport”) and neither will features that co-occur

with other senses of a particular type - e.g., “Apple” for the “airport” type.3

1A “term” being a single feature count, and a “document” being a vector

2But we exclude a fixed, small set of the most abstract types from the first few levels of the WordNet

hierarchy, as these turn out to never be useful

3AirPort is the name of an Apple product
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Once the sense is chosen, we choose the proper type level to use (the second stage).

Here we create a pseudo-sentence for each type level separately, composed of all possible

lexicalizations for the type. For example, the “air field” type contains the lexicalizations

“air field”, “landing field”, and “flying field”. These pseudo-sentences are then compared

to the context in the same way as above, and the one with highest similarity is chosen. The

reason for using all lexicalizations is similar to the one for using all types when determining

the sense: to create a more robust representation that down-scores arbitrary co-occurrences.

At the end of this step, the templates are fully typed. Before continuing to the next step

of finding paraphrases, we group all potential paraphrases together. Potential paraphrases

are simply groups of templates which share exactly the same set of slot types (regardless of

ordering).

2.2.3 Finding Paraphrases within Groups

Each group of potential paraphrases may contain multiple sub-groups such that each of the

members of the subgroup is a paraphrase of all the others. In this last stage, we use a

clustering algorithm to find these sub-groups.

We define the distance between any two templates in a group as the Euclidean distance

between the vectors (created using Equation 2.1) of the two templates with the entity slots

removed (that is, the pseudo-sentences created with all words in the template outside of

the slots). We tried other distance metrics as well (for example, averaging the distances

between the contexts surrounding each pair of corresponding slots in both templates) but

the Euclidean distance seemed to work best.

Using this metric, we apply single-linkage agglomerative clustering, with the stopping

criteria defined as a threshold τ for the maximum sum of squared errors (SSE) within any

cluster. Specifically, the algorithm stops linking if the cluster C that would be created by

the next link satisfies:

log(
C∑
v

d(v, µC)2) ≥ τ

Where µC is the centroid of C and d is the Euclidean distance. The logarithm is added

for convenience, since the SSE can get quite large and we want to keep τ on a smaller scale.
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The intuition behind this algorithm is that some paraphrases will be very similar (lexi-

cally or on a deeper level) and easy to find, while some will be more difficult to distinguish

from template pairs that are related but not paraphrasal. The single-linkage approach is

essentially transductive, allowing the most obvious clusters to emerge first and avoiding the

creation of a central model that will become less precise over time. The threshold is a direct

mechanism for controlling the trade-off between precision and recall.

At the end of this step, any pair of templates within the same cluster is considered a

paraphrase. Clusters that contain only a single template are discarded (in groups that have

high distances among their member templates, often the entire group is discarded since

even a single link violates the threshold).

2.3 Evaluation

To evaluate our method, we applied it to the six domains described in Table 2.1. We tried

to choose a set of domains that are diverse in topic, size and degree of repeated structure

across documents. For each domain, we collected a corpus composed of relevant Wikipedia

articles (as described in the table) and used the method described in Sections 2.2.1-2.2.3

to extract paraphrasal templates. We used Wikipedia for convenience, since it allows us

to easily select domain corpora, but there is nothing in our approach that is specific to

Wikipedia; it can be applied to any text corpus.

We sampled 400 pairs of paraphrases extracted from each domain and used this set

of 2400 pairs to conduct a crowd-sourced human evaluation on CrowdFlower. For each

template pair, we randomly selected one and used its original entities in both templates to

create two sentences about the same set of entities. The annotators were presented with

this pair and asked to score the extent to which they are paraphrases on a scale from 1 to

5. Table 2.2 shows the labels and a brief version of the explanations provided for each. To

ensure the quality of annotations, we used a set of hidden test questions throughout the

evaluation and rejected the contributions of annotators which did not get at least 70% of

the test questions correctly. Of those that did perform well on the test questions, we had

three annotators score each pair and used the average as the final score for the pair. In
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Domain Description Size Source article link

NBA NBA teams 30 National_Basketball_Association

States US states 50 N/A

AuMa Automobile manufactur-

ers

241 List_of_automobile_manufacturers

Metal Heavy Metal bands (origi-

nal movement, 1967-1981)

291 List_of_heavy_metal_bands

CWB Battles of the American

Civil War

446 List_of_American_Civil_War_battles

Marvel Superheroes from the

Marvel Comics universe

932 Category:Marvel_Comics_superheroes

Table 2.1: Evaluation domains. Article links preceded by https://en.wikipedia.org/wiki/

Score Label Explanation

5 Perfect Paraphrase The two sentences are equivalent in meaning (but allow

differences in e.g. tense, wordiness or sentiment)

4 Almost Paraphrase The two sentences are equivalent in meaning with one

minor difference (e.g., change or remove one word)

3 Somewhat Paraphrase The two sentences are equivalent in meaning with a few

minor differences, or are complex sentences with a part

that is a paraphrase and a part that is not

2 Related The sentences are related in meaning, but are not para-

phrases

1 Unrelated The meanings of the sentences are unrelated

Table 2.2: Annotation score labels and explanations
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39.4% of the cases, all three annotators agreed; two annotators agreed in another 47% of the

cases, and in the remaining 13.6% there was complete disagreement. The inter-annotator

agreement for the two annotators that had the highest overlap (27 annotated pairs), using

Cohen’s Kappa, was κ = 0.35.

Figure 2.1: The average scores for each domain, for a range of threshold choices. The

number in parentheses for each threshold is the number of paraphrases generated

The overall results are shown in Figure 2.1. Note that because of our clustering approach,

we have a choice of similarity threshold. The results are shown across a range of thresholds

from 8 to 11 - it is clear from the figure that the threshold provides a way to control the

trade-off between the number of paraphrases generated and their precision. Table 2.3 shows

the numeric details, including the number of paraphrases generated, for each domain with

each threshold, highlighting those of our preferred threshold of 9.5.

The number of paraphrase clusters found changes with the threshold. For the 9.5 thresh-
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Thr. Domain Size Avg. %3+ %4+ Thr. Domain Size Avg. %3+ %4+

8 NBA 5 4.9 100% 100% 8.5 NBA 11 4.8 100% 100%

States 64 4.8 100% 99% States 85 4.8 100% 96%

AuMa 9 4.4 100% 89% AuMa 9 4.4 100% 89%

Metal 61 3.8 88% 67% Metal 63 3.8 88% 67%

CWB 17 4.7 96% 96% CWB 19 4.7 96% 96%

Marvel 133 4.4 97% 87% Marvel 150 4.4 97% 87%

All 290 4.3 94% 82% All 337 4.3 95% 83%

9 NBA 14 4.7 100% 96% 9.5 NBA 30 4.1 88% 70%

States 103 4.7 99% 93% States 171 4.1 86% 76%

AuMa 13 4.0 96% 71% AuMa 58 3.5 80% 50%

Metal 67 3.8 88% 67% Metal 98 3.7 83% 63%

CWB 25 4.3 90% 79% CWB 81 3.6 75% 56%

Marvel 209 4.2 93% 78% Marvel 428 3.7 83% 63%

All 431 4.2 93% 79% All 866 3.8 82% 63%

10 NBA 125 3.4 77% 51% 10.5 NBA 255 3.4 78% 49%

States 360 3.5 72% 54% States 630 3.2 63% 46%

AuMa 204 3.2 75% 42% AuMa 371 3.1 68% 39%

Metal 223 3.3 74% 47% Metal 405 3.2 70% 43%

CWB 260 3.1 61% 36% CWB 424 2.9 58% 31%

Marvel 942 3.2 67% 40% Marvel 1630 3.1 65% 35%

All 2114 3.3 71% 45% All 3715 3.1 66% 40%

11 NBA 406 3.3 76% 48%

States 1019 3.0 59% 40%

AuMa 654 3.1 68% 36%

Metal 642 3.0 66% 37%

CWB 712 2.9 60% 30%

Marvel 2754 3.0 63% 33%

All 6187 3.1 65% 37%

Table 2.3: Size (number of paraphrase pairs generated), average score, % of pairs with a

score above 3 (paraphrases), and % of pairs with a score above 4 (high quality paraphrases)

for the different domains with different thresholds
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old we find 512 clusters over all domains, a little over 60% of the number of paraphrases.

The distribution of their sizes is Zipfian: a few very large clusters, dozens of increasingly

smaller medium-sized ones and a long tail of clusters that contain only two templates.

The vast majority of paraphrase pairs come from sentences that were not originally

paraphrases (i.e, sentences that originally had different entities). With a 9.5 threshold, 86%

of paraphrases answer that criteria. While that number varies somewhat across thresholds,

it is always above 80% and does not consistently increase or decrease as the threshold

increases.

While we wanted to show a meaningful comparison with another method from previous

work, none of them do what we are doing here - extraction of sentence-size paraphrasal

templates from a non-aligned corpus - and so a comparison using the same data would not

be fair (and in most cases, not possible). While it seems that providing the results of human

evaluation without comparison to prior methods is the norm in most relevant prior work

(Ibrahim et al., 2003; Paşca and Dienes, 2005; Bannard and Callison-Burch, 2005; Fujita

et al., 2012), we wanted to at least get some sense of where we stand in comparison to

other methods, and so we provide a list of (not directly comparable) results reported by

other authors in Table 2.4.4 While it is impossible to meaningfully compare and rate such

different methods, these numbers support the conclusion that our single-corpus, domain-

agnostic approach achieves a precision that is similar to or better than other methods. We

also include the paraphrase per sentence (PPS) value - the ratio of paraphrases extracted to

the number of input sentences of the corpus - for each method in the table. We intend this

figure as the closest thing to recall that we can conceive for mining paraphrases. However,

keep in mind that it is not a comparable figure across the methods, since different corpora

are used. In particular, it is expected to be significantly higher for parallel corpora, where

the entire corpus consists of potential paraphrases (and that fact is reflected in Table 2.4,

where some methods that use parallel corpora have a PPS that is an order of magnitude

4We always show the results of the best system described. Where needed, if results were reported in

a different way than simple percentages, we use averages and other appropriate measures. Some previous

work defines related sentences (as opposed to paraphrases) as positives and some does not; we do not change

their numbers to fit a single definition, but we use the harsher measure for our own results
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higher than other methods).

Corpus type Prec. PPS

This paper, τ = 8 Unaligned 94% 0.005

This paper, τ = 9.5 Unaligned 82% 0.013

This paper, τ = 11 Unaligned 65% 0.1

Barzilay and McKeown (2001) Parallel 86.5% 0.1 *

Ibrahim et al. (2003) Parallel 41.2% 0.11 *

Pang et al. (2003) Parallel 81.5% 0.33

Barzilay and Lee (2003) Comparable 78.5% 0.07

Bannard and Callison-Burch (2005) Parallel bilingual 61.9% n/a **

Zhao et al. (2009) Parallel or Comparable 70.6% n/a **

Wang and Callison-Burch (2011) Comparable 67% 0.01

Fujita et al. (2012) Parallel bilingual + unaligned 58% 0.34

Regneri and Wang (2012) Parallel 79% 0.17

* These papers do not report the number of sentences in the corpus, but do report enough for us to

estimate it (e.g. the number of documents or the size in MB)

**These papers do not report the number of paraphrases extracted, or such a number does not exist in

their approach

Table 2.4: Comparison with the precision and paraphrases generated per input sentence

(PPS) of relevant prior work

2.3.1 Discussion and Examples

The first thing to note about the results shown in Figure 2.1 is that even for the highest

threshold considered, which gives us approximately a ×20 improvement in size over the

smallest threshold considered, all domains except CWB achieve an average score higher

than 3, meaning most of the pairs extracted are paraphrases (CWB is close - a little over

2.9 on average). For the lowest threshold considered, all domains are at a precision above

88%, and for three of them it is 100%. In general, across all domains, there seems to be
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a significant drop in precision (and a significant boost in size) for thresholds between 9

and 10, while the precisions and sizes are fairly stable for thresholds between 8 and 9 and

between 10 and 11. This result is encouraging: since the method seems to behave fairly

similarly for different domains with regard to changes in the threshold, we should be able

to expect similar behavior for new domains as the threshold is adjusted.

The magnitude of precision across domains is another matter. It is clear from the

results that some domains are more difficult than others. The Metal domain seems to be

the hardest: it never achieves an average score higher than 3.8. For the highest threshold,

however, Metal is not different from most of the others, while CWB is significantly lower

in precision. The reason seems to be the styles of the domain articles: some domains

tend to have a more structured form. For example, each article in the States domain will

discuss the economy, demographics, formation etc. of the state, and we are more likely

to find paraphrases there (simply by virtue of there being 50 × 49 possible candidates for

each of these). Articles in the Metal domain are much less structured, and there are fewer

obvious paraphrase candidates. In CWB articles, there are a few repetitive themes: the

outcome of the battle, the casualties, the generals involved etc., but beyond that it is fairly

unstructured. This “structurality” of the domain also affects the number of paraphrases

that can be found, as evident from the number of paraphrases found in the states domain

in Table 2.3 as compared with the (much larger) Metal and CWB domains.

Table 2.5 shows a number of examples from each domain, along with the score given

to each by the annotators. In an informal error analysis, we saw a few scenarios recurring

in low-scored pairs. The Metal example at the bottom of Table 2.5 is a double case of

bad sense disambiguation: the album in the second sentence (“Pyromania” in the original)

happened to have a name that is also a pathological state. In addition, the number in the

second sentence really was a date (“1980”). If we had correctly assigned the senses, these

two templates would not be paraphrase candidates. The process of grouping by type is an

important part of improving precision: two unrelated sentences can be misleadingly similar

in the vector space, but it is less likely to have two sentences with the exact same entity

types and a high vector similarity that are not close in meaning.

Another scenario is the one seen in the NBA example that was scored as 1. Here the
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Sc. Domain Templates

5 States Per dollar of federal tax collected in [date], [american state] citizens received approximately

[money] in the way of federal spending.

In [date] the federal government spent [money] on [american state] for every dollar of tax

revenue collected from the state.

AuMa Designed as a competitor to the [car 1], [car 2] and [car 3].

It is expected to rival the [car 1], [car 2], and [car 3].

4 CWB Federal casualties were heavy with at least [number 1] killed or mortally wounded, [number

2] wounded , and [number 3] made prisoner.

Federal losses were [number 1] killed, [number 2] wounded, and [number 3] unaccounted

for – primarily prisoners.

NBA For the [date] season, the [basketball team] moved into their new arena , the [place], with

a seating capacity of [number].

As a result of their success on the court, the [basketball team] moved into the [place] in

[date], which seats over [number] fans.

3 Marvel [imaginary being 1] approached [imaginary being 2], hunting for leads about the where-

abouts of the X-Men.

[imaginary being 1] and [imaginary being 2] eventually found the X-Men and became full

time members.

Metal In [date], [band] recorded their third studio album, “[album]”, which was produced by

Kornelije Kovač.

[band] released their next full-length studio album, “[album]” in [date].

2 Auma [company] and its subsidiaries created a variety of initiatives in the social sphere, initially

in [country] and then internationally as the company expanded.

[company] participated in [country]’s unprecedented economic growth of the 1950s and

1960s.

Marvel Using her powers of psychological deduction, she picked up on [first name 1]’s attraction

towards her, and then [first name 2] admits she is attracted to him as well.

While [first name 1] became shy, reserved and bookish, [first name 2] became athletically

inclined, aggressive, and arrogant.

1 NBA Though the [date] 76ers exceeded many on-court expectations, there was a great deal of

behind-the-scenes tension between [person], his players, and the front office.

After an [date] start, with [person] already hurt, these critics seemed to have been proven

right.

Metal Within [number] hours of the statement, he died of bronchial pneumonia, which was brought

on as a complication of [pathological state].

With the album’s massive success, “[pathological state]” was the catalyst for the [number]

pop-metal movement.

Table 2.5: Examples of template pairs and their scores
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senses were chosen correctly, but the level of the hierarchy chosen for the person slot was too

high. If instead we had chosen basketball coach and basketball player for the two sentences

respectively, they would not be considered as paraphrase candidates (and note that both

meanings are implied by the templates). This sort of error does not create a problem (in our

evaluation, at least) if the more accurate sense is the same in both sentences - for example,

in the other NBA example (which scored 4), the place slot could be more accurately replaced

with sports arena in both templates.

Cases where the types are chosen correctly do not always result in perfect paraphrases,

but are typically at least related (e.g. in the examples that scored 2, and to a lesser extent

those that scored 3). That scenario can be controlled using a lower threshold, with the

downside that the number of paraphrases found decreases.

2.4 Conclusion and Future Work

In this chapter, we developed a method for extracting paraphrasal templates from a plain

text corpus in three steps: templatizing the sentences of the corpus; finding the most

appropriate type for each slot; and clustering groups of templates that share the same set

of types into paraphrasal sub-groups. We conducted a crowd-sourced human evaluation

and showed that our method performs similarly to or better than prior work on mining

paraphrases, with three major improvements:

1. We do not rely on a parallel or comparable corpus, which are not as easily obtained

2. We produce typed templates that utilize a rich, fine-grained type system, which can

make them more suitable for generation

3. By using such a type system we are able to find paraphrases from sentence pairs that

are not, before templatization, really paraphrases

Many, if not most, of the worst misidentifications seem to be the result of errors in the

second stage of the approach - disambiguating the sense and specificity of the slot types.

In this paper we focused on a traditional distributional approach that has the advantage of

being explainable, but it would be interesting and useful to explore other options such as
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word embeddings, matrix factorization and semantic similarity metrics. We leave these to

future work.

Another task for future work is semantic alignment. Our approach discovers para-

phrasal templates without aligning them to a semantic meaning representation. These are

perfectly usable by summarization, question answering, and other text-to-text generation

applications; Chapter 5 describes how we use them within a hybrid concept-to-text and

text-to-text generation pipeline. However, it would be useful for traditional concept-to-text

generation and other applications to have each cluster of templates aligned to a semantic

representation of the meaning expressed. Since we already discover all the entity types

involved, all that is missing is the proposition (or frame, or set of propositions); this seems

to be a straightforward, though not necessarily easy, task to tackle in the future.
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Chapter 3

Taxonomy Induction

Thesauri are useful resources for many NLP applications. Most relevant to our purposes,

taxonomic thesauri which contain synonymy and hypernymy relations are important for

NLG systems which must make decisions regarding lexical choice, aggregation and message

construction. WordNet (Fellbaum, 1998) is one such thesaurus which has many uses in

generation (Jing, 1998), but its set of concepts (called synsets) is quite limited. It does not

contain many domain-specific concepts, nor does it contain technical and cultural concepts

that emerged very recently. This chapter describes our approach to automatically building

a large, WordNet-like taxonomic thesaurus from Wikipedia. This work is also described in

(Biran and McKeown, 2013b).

The English Wikipedia has over 4 million articles, and over 8.6 million titles if redirects,

which are alternative titles for the articles, are included. These titles are essentially lexical

terms referring to concepts. Crucially, it contains articles describing concepts from a large

variety of subject domains and is very quickly updated with articles about new concepts. In

this chapter, we’ll use the science domain as an example - an interesting domain for a couple

of reasons. First, it is a fast-paced domain: many new technologies came to prominence

in the last decade, and WordNet does not contain those. For example, Wikipedia contains

articles with titles such as Supersymmetric String Theory, Gorilla Glass and Sentiment

Analysis, all of which are missing from WordNet. Second, unlike many domains which are

more entity-focused, it heavily involves concepts in addition to entities.

While there have been attempts to build ontologies from Wikipedia, these tended to
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focus (in their optimization and evaluation) on entities such as people, places and events.

There is still a need for a WordNet-like taxonomy which contains accurate synonymy and

hypernymy relations for highly specialized terms from specialized domains such as the var-

ious sub-domains of science.

Unlike most previous approaches, which tend to rely on WordNet’s hierarchy and/or on

Wikipedia’s pseudo-hierarchy of categories, we frame the problem as a binary classification

task for a pair of Wikipedia article titles - deciding whether the term representing the

concept in the first article is a hypernym of the term representing the second or not. This

enables us to handle specialized concepts which are far from the established concepts in the

WordNet hierarchy.

WordNet-like taxonomies behave in some ways as a dictionary, and in others as an

ontology. To avoid confusion, we define the main terms we use in this chapter and what

they correspond to:

• A concept in computational ontologies is a unique semantic entity. We assume that

WordNet synsets correspond to concepts. Another assumption we make is that each

Wikipedia article describes something analogous to a concept; this assumption does

not work for some types of articles (e.g. Template articles), and we remove such

articles before processing, as explained in Section 3.2.

• A term is a lexical entity (word or combination of words) used to refer to a concept.

Each WordNet synset contains multiple lexicalizations (synonyms) which all refer to

the concept represented by the synset. We treat Wikipedia article titles as terms refer-

ring to the concept described in the article. In addition to the main title, Wikipedia

has multiple additional redirect titles referring to each article. We do not a priori

treat these as synonyms, as they are often hypernyms, hyponyms or even terms refer-

ring to distinct (though related) concepts (for example, as of the time we performed

the experiments described in this chapter, Disambiguation redirects to Word Sense

Disambiguation; nano-SIM redirects to Subscriber Identity Module (SIM); and Sheep

Sounds redirects to Sheep).

• Relations in this chapter are semantic relations between pairs of terms - specifically,
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synonymy and hypernymy. This is in contrast to the use of the word in ontologies

where relations occur between pairs of concepts.

The following are a few examples of relations from the science domain that do not appear

in WordNet and which our method correctly finds:

• Gene Silencing is a hypernym of RNA Interference

• Graph Property is a hypernym of Clustering Coefficient

• Conditional Random Field and CRF are synonyms

We will use these examples to illustrate the limitations of other methods in the following

section.

3.1 Related Work

There have been several endeavors to extend WordNet with concepts from Wikipedia. Be-

cause WordNet has some of the properties of an ontology, most work on extending WordNet

with Wikipedia concepts was in the context of creating an ontology. Although our work

is different in that we focus on extending only the taxonomic relations between the terms,

this related work is still very relevant. There have also been attempts to create ontologies

directly from Wikipedia in various ways, and we discuss those as well.

There have been three main approaches to building ontologies from Wikipedia. The

first is the one which was used to build Yago (Suchanek et al., 2007), a large ontology

(over 10 million concepts) based on WordNet and extended with concepts from Wikipedia

and other resources. Its hypernymy hierarchy (a relation called subClassOf) is derived by

matching articles with existing WordNet synsets using the lexical and syntactic properties

of the title. This approach works well for some complex entities: a title like “American

people in Japan” contains the head compound people which matches the WordNet synset

Person/Human. It does not work as well for concepts that are not entity-focused (e.g., sets

of entities or entity types), where titles tend to be less clearly related. For example, Yago

contains the concepts Clustering Coefficient and RNA Interference, because they are titles
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of Wikipedia articles; but these concepts are not part of the subClassOf hierarchy, because

their titles are not lexically similar to Graph Property and Gene Silencing, respectively.

Another approach is to build ontologies from the infoboxes of Wikipedia articles. Perhaps

the most famous is DBPedia (Auer et al., 2007), an ongoing community effort maintaining

a knowledge base of over 4.5 million entities. DBPedia utilizes scraping algorithms to

extract (as well as post-process) structured data from the infoboxes of Wikipedia pages and

transform them to RDF triples. Wu and Weld (2008) use Markov Logic Networks to link

entities and properties extracted from infoboxes to WordNet and create a full ontology (the

DBPedia team does this, and other linking of DBPedia with other resources, manually).

While infoboxes are very useful, as they contain structural human-curated information,

their main drawback is their relative sparsity. They commonly occur in articles of popular

entities (people, places and so on), but not in the articles of less popular entities, and not

in most non-entity concepts (for example, the three scientific concepts we mentioned at the

end of the last chapter cannot be found in any infobox-derived ontology).

The third approach is to use the category hierarchy of Wikipedia. Categories are hand-

curated tags given to Wikipedia articles, which have a somewhat hierarchical structure (they

are not a true hierarchy: there are cross-references and even cycles in the category graph).

Ponzetto and Navigli (2009) link Wikipedia categories to existing WordNet synsets, lever-

aging the category structure to enrich WordNet with concepts from Wikipedia. Wikipedia

categories are mostly thematic, with no strict hierarchical structure and do not represent a

taxonomy, but they do tend to be somewhat hierarchical for concepts low in the hierarchy

(i.e., more specific concepts). For example, Public transport in Stockholm is in the category

Public transport in Sweden which is in the category Public transport, and the latter corre-

sponds to a synset in WordNet. However, this is not true for many concepts in specialized

domains (e.g. scientific domains), where even the more general concept does not appear

in WordNet. For example, Clustering coefficient is in the category Graph invariants, but

the categories above that are purely thematic, and WordNet does not contain a synset for

Graph invariant. Similarly, the term CRF is the title of a disambiguation page, which does

not belong to any categories and so would not be linked to Conditional Random Field.

Syed and Finin (2010) build a taxonomy by matching each Wikipedia article to a Word-
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Net synset as a hypernym-like superclass. Their method relies on the synset-category map-

pings of (Ponzetto and Navigli, 2009), extending it with information obtained from the

hyperlink structure of the Wikipedia articles. However, this approach is still limited by the

choice of categories for each article. In addition, it does not work as well for articles with

a small number of hyperlinks, which is typical of more specialized domain articles.

In addition to not being optimal for specialized domains, these three approaches all

have in common that in attempting to extend WordNet using Wikipedia they rely on

the structural information in WordNet directly (the only exception is DBPedia, where the

linking was done manually). This generally means that the further down the hierarchy a

term is (that is, the further it gets from the most specific hypernym available in WordNet)

the less accurate the constructed taxonomy becomes with regard to its relations. This

again works well for some entities, where WordNet contains reasonably specific concepts

(e.g., occupations and nationalities for people, industries for organizations) but not too well

for specialized domain concepts.

In contrast, in our approach, WordNet is only used to provide the labels for very few

relations (5, 000) that are used in training and (separately) in evaluation. However, these

relations are all considered individually. We do not rely on the WordNet hierarchical struc-

ture as a whole; instead, we learn to classify the relation between a pair of terms using

only information from their Wikipedia article content. This makes our method more ro-

bust with regard to very specific concepts. Evaluating other methods using gold data from

WordNet may be biased, because concepts from WordNet (even if they are not used di-

rectly in ontology construction) are inevitably close to other concepts in WordNet. It can

be expected that for more highly specialized concepts, these methods will not perform as

well. In our approach, there is nothing special about a relation whose concepts appear in

WordNet, and performance on those should give a good indication of performance on other

relations (perhaps with the caveat that concepts which appear in WordNet may have larger

corresponding articles on average).

One other work that (like us) takes the approach of classifying the relation between

two terms is (Do and Roth, 2010). However, their method relies on Wikipedia’s categories,

which as mentioned earlier is problematic for specialized domain concepts. In addition,



CHAPTER 3. TAXONOMY INDUCTION 37

they do not utilize the important link structure of Wikipedia.

In addition to ontology and taxonomy building, there is work mapping words from

Wikipedia articles to particular senses within WordNet using WSD techniques (Mihalcea,

2007; Milne and Witten, 2008). While superficially related, these are not relevant since

they only match articles to existing WordNet synsets. In contrast, we create a thesaurus

specifically containing terms that are not in WordNet.

There is also literature on classifying taxonomic relations based on textual patterns in

any corpus (Caraballo, 1999; Girju et al., 2003; Buitelaar et al., 2005; Snow et al., 2006).

While these methods have the potential of reaching concepts and entities that ours cannot

(since we are limited by the articles that exist in Wikipedia), they are far less precise and

would be difficult to use for most NLP needs (e.g., for generation) in practice.

3.2 Method

Since we want our terms from Wikipedia to refer to concepts, we remove from the Wikipedia

corpus all the pages whose title begins with a Wikipedia special prefix. These prefixes are

single words followed by a colon, and denote a special type of Wikipedia page, such as File,

Category or Template. We also remove all pages whose title does not contain at least one

English letter character.

We define a Wikipedia term as any Wikipedia article title and any redirect title which

passes the filters above. This lexical definition is motivated by the need to find synonymy

and hypernymy. It also makes evaluation (using the gold data in WordNet) more straightfor-

ward. To keep things simple, we ignore senses, assuming that each lexical term corresponds

to a singular sense or to the most common sense. While word sense disambiguation has been

a major part of some related work, it is less crucial for our purposes since the Wikipedia

article almost always describes the most common sense (Mihalcea, 2007). In addition, spe-

cific terms (i.e., terms which are not in WordNet) are less likely to be ambiguous than

general terms. We hypothesize that the Wikipedia article itself describes the concept that

is referred to by the term.

We define a WordNet term as any term (synonym) participating in any noun synset
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in WordNet. Wikipedia terms are then matched to WordNet terms lexically, with some

pre-processing: we lowercase the Wikipedia titles, replace underscores with spaces, remove

diacritics from unicode characters and remove text in parentheses (which are commonly

used in Wikipedia to disambiguate senses).

Using our definition, there are 117,092 WordNet terms. The total number of potential

terms from Wikipedia1 is 9,096,022, which covers 73.62% of the WordNet terms. WordNet

has 494,892 hypernym and synonym relations between all terms. The set of all potential

relations from the Wikipedia term set (which is 9, 096, 0222 in size) covers 63.71% of those.

To conveniently define our task, we introduce the taxonomic relation of synoronymy

(from ancient Greek σύνoρo - boundary). Synoronymy designates a term as the lower

boundary on the taxonomic line for another term, i.e., term A is at least a synonym, and

possibly a hypernym, of term B. Logically, synoronymy is defined as:

Synoronym(A,B) ⇐⇒ Synonym(A,B) ∨Hypernym(A,B)

Using that definition, we formulate our task as a binary classification over all potential

relations from the Wikipedia term set: for each ordered pair of terms, we classify whether

the first is a synoronym of the second or not. We perform this classification for both possible

orderings of each term pair, and derive the usual taxonomic relations from the two results:

two-way synoronymy is synonymy, and one-way synoronymy is hypernymy (in the same

direction). We evaluate our performance in this task on a dataset sampled from that subset

of the Wikipedia terms which also exist in WordNet.

To determine the relations for all Wikipedia terms, we would be required to evaluate

over 82 trillion potential relation data points, and be forced to either somehow reduce the

space or parallelize aggressively (and still need to be very patient). For our purposes, we

will always work with significantly smaller domains, where the space is small enough to

work with (for example, see the way we use this method for lexical choice and taxonomic

message building in Chapter 5). In our evaluation in this chapter we present results both

on domain-specific subsets and on general sampled subsets.

1As of April, 2013
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For the remainder of this section, we describe the features used by our classifier. In the

next section we will describe the experimental setup in more detail.

3.2.1 Features

We extract fourteen features of four general types. For most of these, it is essential that

each term in the pair corresponds to a Wikipedia article. Each term matches either the

article title, or a redirect title that redirects to the article. From here on, we will refer to

terms and articles interchangeably (e.g., “the first article” instead of “the article referred

to by the first term” in a pair of terms to be classified), with the understanding that the

article in question is always the one whose title (or redirect title) is the term. The features

are described in this section and summarized in Table 3.1.

Type Feature

Hyperlink First links to second

Second links to first

Outgoing link similarity

Outgoing links in first shared by second

Outgoing links in second shared by first

Incoming link similarity

Incoming links in first shared by second

Incoming links in second shared by first

Text Bag-of-words similarity

Redirect First redirects to second

Second redirects to first

Both redirect to third

Titles Length difference

Word overlap

Table 3.1: The features used in the taxonomic relation classifier
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3.2.1.1 Features from the hyperlink structure

One of the powerful aspects of Wikipedia is its hyperlink structure. Given the assumption

that article A links to article B only if the information in B is related to or somehow

assists in understanding the information in A, the intuition is that two articles having

a semantic relation will more often link to one another, as well as to the same (third)

articles, than will two unrelated articles. The Wikipedia hyperlink structure has been

used to compute similarity between articles, for example by Syed and Finin (2010) and

Yazdani and Popescu-Belis (2010).

We utilize the natural graph structure of hyperlinks between Wikipedia articles to build

the following eight features:

1. First article links to second (yes or no)

2. Second article links to first (yes or no)

3. The cosine similarity between the outgoing links of the articles

4. The ratio of outgoing links in the first article shared by the second article

5. The ratio of outgoing links in the second article shared by the first article

6. The cosine similarity between the incoming links of the articles

7. The ratio of incoming links in the first article shared by the second article

8. The ratio of incoming links in the second article shared by the first article

Wikipedia links contain two bits of information: the title of the article they link to, and

the text of the hyperlink as it appears in the referring article. For features (1) and (2), we

allow both: that is, even if a hyperlink links to a third article, but uses the relevant article’s

title in the text,2 we count that as a link to the relevant article. For the other features, we

use only the title of the actual linked articles. The reason is that in features (1) and (2)

we want to measure something different than in the rest: whether or not one of the articles

2For example, a link for the article International Phonetic Alphabet may have only “pronunciation” in

the text, which is the title of an article about the phenomenon which is modeled by the IPA
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mentions the other directly (hyponyms often mention their hypernyms, while hypernyms

sometimes list their hyponyms). An article being mentioned by name in a hyperlink, even

when the link goes elsewhere, answers that criteria. The other features are intended to

capture the similarity of the two articles based on how related the links to/from them are,

and so using the text is less relevant (and that information would be captured to some

extent by the feature in the next category instead).

3.2.1.2 Features from the text of the articles

For each article, we build a bag-of-words vector. These vectors are used to compute the

cosine similarity between the two articles of a pair, which we use as a feature.

The intuition behind this central feature is that articles having a semantic similarity will

also have a higher lexical similarity. This is the same intuition behind distributional similar-

ity (Church and Hanks, 1990), which is that terms surrounded by similar context tend to be

semantically related. In this case, the context does not surround the terms but is in the body

of the articles corresponding to them. Lexical similarity between Wikipedia articles has been

used successfully to link articles, for example by Yazdani and Popescu-Belis (2010).

3.2.1.3 Features from the redirect structure

Wikipedia contains a list of redirects from multiple alternative titles to each article. We

use those to build three binary features:

1. The first term redirects to the second term’s article (yes or no)

2. The second term redirects to the first term’s article (yes or no)

3. Both terms redirect to the same, third article (yes or no)

As mentioned earlier, redirect titles are often synonyms, hypernyms or hyponyms of the

main title of the article they redirect to. While it is not consistent enough to use as a rule,

this structure can be taken advantage of in features.
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3.2.1.4 Features from the terms (i.e. the article titles)

We derive two features from the terms themselves (which correspond to article titles or

redirect titles):

1. The difference between the number of words in the two terms

2. The number of words which overlap in the two terms

In some cases, the terms themselves can point at the relation among them. In particular,

hypernyms are sometimes lexical subsets of their hyponyms (String Theory is a hypernym

of Super String Theory; Leukemia is a hypernym of Lymphocytic Leukemia which in turn is

a hypernym of B-cell Chronic Lymphocytic Leukemia).

3.3 Evaluation

Our training, development and test data sets all consist of ordered pairs of terms from

Wikipedia which also appear in WordNet. The label is positive if the first term in the pair

is a synoronym of the second. The positive instances are taken from the hypernymy and

synonymy relations in WordNet. To get negative samples, we randomly paired terms from

WordNet that have no relation between them.

We train a linear-kernel SVM classifier on a small balanced training set of 5, 000 labeled

pairs. We initially experimented with a much larger set of 100, 000 pairs, but found the

difference in results on the development set to be insignificant. We used a balanced devel-

opment set of 186, 000 pairs in tuning. We evaluate on a large unbalanced test dataset of 10

million pairs. Using the number of WordNet’s total potential relations (117, 0922) and the

number of its true relations (494,892), we estimate the ratio of real relations in the natural

set of all potential relations to be around 0.0036%. We multiply this fraction by 1, 000

to make the ratio of positive samples in our test set more significant (while still keeping

it small). This multiplication can be excused as an estimate of the order of magnitude of

the expected ratio is in a domain-specific dataset (as shown in the next paragraph). The

test set is then built using 360,000 sampled true relations from WordNet, while the rest are

randomly paired concepts (which appear in WordNet but have no relation between them).
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To illustrate our performance on a domain-specific subset, we also constructed a science

test set using Wikipedia’s category hierarchy. In this data set, we included only terms

with corresponding articles in a category which is a descendent of the Science category at

a depth of no more than 20, but are not descendants of one of the following categories

with a depth of 5 or less: People, Places, History, Chronology, Music, Film and Sports.

These exclusions are required because descendants of the Science category include articles

for entities such as scientists and universities, certain historical dates/eras, and expansions

of the technologies used in the music, film and sports industries to include entities from

these fields (songs, bands, movies...) which then completely overwhelm the data set in

size. The depth restrictions are necessary because the category graph is cyclic. In addition

to illustrating our system’s performance in a specific domain, this test set is important

in that it features negative samples that are not entirely random, since they are at least

thematically related.3 The size of this set is 258,971, and it is unbalanced with about 10%

positive samples. Note that we use the same classifier (trained on the same unrestricted

training set) when evaluating on all test sets, including this one.

To illustrate our approach’s advantage over naive methods, we include the results for

two baselines. The first uses only the term names and makes predictions based on the

Levenshtein distance between them (predicting synonym for distance < 8, hypernym for

distance < 12, and none otherwise). The second predicts the relation type based on the

lexical cosine similarity between the articles (predicting synonym for similarity > 0.1, hy-

pernym for > 0.05, and none otherwise). The thresholds in both baselines were manually

tuned to optimize f-measure on the development set.

In addition, we compare our performance with that provided by querying two leading

publicly available ontologies that were constructed using Wikipedia’s category hierarchy

and infoboxes: Yago (Suchanek et al., 2007) and DBPedia (Auer et al., 2007).

We show three binary evaluations for each data set. The main evaluation, where a

positive answer means the (ordered) pair has a synoronymy relation, is shown in Table 3.2.

3Some examples of thematically related concepts that are not taxonomically linked are siblings (Canine

: Feline), intersecting but distinct concepts (Biochemistry : Bioengineering), and meronyms (Vertebrate :

Vertebra)
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The hypernymy evaluation in Table 3.3 and the synonymy evaluation in Table 3.4 are

additional evaluations over those pairs that were judged as having a synoronymy relation

in the first evaluation, and a positive answer means the pair is a hypernym or a synonym,

respectively. These evaluations show the actual taxonomic accuracy we achieve. Recall

that we mark as synonyms those pairs that are determined to have synoronymy in both

directions, while those that have it only in one direction are hypernyms. The synonymy

evaluation does not include the ontologies as baselines, since they do not contain synonyms.

We found the results to be statistically significant using a standard t-test.

3.4 Analysis

The first thing to note is that in general, the SVM classifier operates as high-precision,

lower-recall system. On the synonymy task, precision is extremely high (just under 100%)

while retaining a reasonable recall even on the large test set. This is important, since a

high precision is crucial to maintaining coherence in tasks such as lexical choice.

The classifier beats both baselines on the main task. The lexical baseline does quite well

on the synonymy task, but its performance deteriorates on the unbalanced test sets while

the classifiers’ performance actually significantly increases due to its high-precision nature.

The lexical baseline is much worse at the hypernymy task than at the synonymy task.

While the ontologies (Yago and DBPedia) offer incredibly high precision in all cases,

their recall is low (often less than 1% in DBPedia). This is because they focus on entities that

are well defined through the category hierarchy and/or infoboxes, which most Wikipedia

articles are not.

Overall, the classifier beats both baselines and both ontologies in both tasks on both

test sets. Most importantly, we achieve a relatively high performance on the domain-

specific test set, which is our main goal: an approach that can automatically build accurate

domain-specific taxonomies for use in generation tasks such as lexical choice, aggregation

and message building.

Crucially, the training data does not have to be domain-specific: our approach achieves

good performance on a domain-specific test set, even when trained on a small data set
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Dev P Dev R Dev F Test P Test R Test F Sci P Sci R Sci F

Naive base 57.41 69.44 62.85 4.76 69.38 8.91 13.74 80.08 23.45

Lex. base 97.14 17.89 30.21 54.31 16.23 24.99 70.22 19.13 30.06

DBPedia 100 0.25 0.5 96.33 0.26 0.52 98.72 1.78 3.5

Yago 100 15.23 26.44 99.96 14.5 25.33 100 29.19 45.19

SVM 98.75 46.18 62.93 66.03 42.95 52.05 64.81 61.23 62.97

Table 3.2: Precision, Recall and F-measure obtained for each data set for the main task

(synoronymy). Results are shown for the development set, the large general test set, and

the science test set.

Dev P Dev R Dev F Test P Test R Test F Sci P Sci R Sci F

Naive base 26.46 37 30.85 1.81 37.78 3.46 7.15 38.22 12.04

Lex. base 55.84 0.89 1.75 10.25 0.88 1.63 31.52 2.24 4.19

DBPedia 99.54 0.49 0.97 95.98 0.48 0.95 98.72 2.36 4.6

Yago 99.68 29.67 45.73 99.41 26.42 41.74 99.91 38.34 55.42

SVM 46.12 99.96 63.12 27.74 99.79 43.41 55.47 99.33 71.19

Table 3.3: Precision, Recall and F-measure obtained for each data set for the hypernymy

task. Results are shown for the development set, the large general test set, and the science

test set.

Dev P Dev R Dev F Test P Test R Test F Sci P Sci R Sci F

Naive base 50.76 68.61 58.35 7.02 66.19 12.7 7.65 64.26 13.67

Lex. base 68.41 97.83 80.52 43.49 97.75 60.2 23.99 92.31 38.08

SVM 99.92 30.15 46.33 99.65 44.58 61.6 97.65 56.12 71.28

Table 3.4: Precision, Recall and F-measure obtained for each data set for the synonymy

task. Results are shown for the development set, the large general test set, and the science

test set.
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sampled from the entire set of WordNet lexicalizations (this 5, 000 instance set is very

unlikely to have more than a few scientific concepts, at most).

3.4.1 Feature Analysis

To better understand how the different features contribute to classification, we evaluated

classifiers that were trained with a single feature on the science test set (for the main

synoronymy task). The results are shown in Table 3.5.

P R F

First links to second 96.9 29.53 45.27

Second links to first 96.38 27.93 43.31

Outgoing link similarity 9.98 100 18.15

Out. links in 1st shared by 2nd 60.58 37.43 46.27

Out. links in 2nd shared by 1st 9.98 100 18.15

Incoming link similarity 77.35 43.09 55.34

Inc. links in 1st shared by 2nd 83.2 35.72 49.98

Inc. links in 2nd shared by 1st 75.93 18.89 30.25

Bag-of-words similarity 80.29 15.77 26.36

First redirects to second 100 0.26 0.53

Second redirects to first 100 0.31 0.61

Both redirect to third 100 0.29 0.57

Length difference 10.16 95.4 18.36

Word overlap 96.89 14.96 25.92

Table 3.5: Precision, Recall and F-measure obtained with a single feature for the main task

on the science test set.

One pattern that emerges is that link features are the most useful, with the exception

of two of the outgoing link features: outgoing link similarity and outgoing links in second

shared by first. In fact, for those two, the classifier simply marks every pair as a synoronym.

The third outgoing link feature, outgoing links in first shared by second, is useful. This
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makes sense: the outgoing links from the potential hypernym article (the “first”) should

be repeated by the hyponym article (the “second”) to a high degree. We expect the article

“Marsupial”, for example, to contain many of the links in “Mammal”: general biology and

evolutionary terms, terms related to all vertebrates, etc; but the opposite is not true - many

links in “Marsupial” will be specific to that type of mammal rather than to mammals in

general.

Outgoing links in some sense model what the article is about; incoming link features, on

the other hand, are all important because they model something different: what the article

is relevant to. Hyponyms and their hypernyms will often be relevant to the same things,

and indeed the most powerful feature is exactly that - the incoming link similarity. Finally,

the two features looking at whether or not the articles link to one another are important

indicators for the obvious reason that articles that are taxonomically related are more likely

to be linked.

Most other features, namely the three redirect features, word overlap and to some extend

also bag-of-words similarity operate as high-precision, low recall assisting features. These

features are good at identifying particular special cases - high lexical similarity, highly

similar title names (which are often specifications, e.g. “Physics” and “Particle Physics”),

and cases where the terms are tied by a redirect relationship. Those are all strong but

uncommon indicators for a taxonomic relationship. The last feature, length difference, does

not give much improvement over marking all pairs as having a relation.

3.5 Output and Error Analysis

In this section we provide some examples of correct and incorrect decisions made by the clas-

sifier, not necessarily from the scientific domain, and provide some informal error analysis.

The examples are presented in Table 3.6.

The lower five rows of Table 3.6 are examples of incorrect decisions. In two of these cases,

we believe that it is in fact WordNet that is wrong in its classification: Werlhof’s Disease or

Idiopathic Thrombocytopenic Purpura is indeed a specific type of Thrombocytopenic Purpura,

as our classifier predicts, and Dinornis Giganteus is a subspecies of Giant Moa (Dinornis).
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First term Second term Real rel. Predicted rel.

arthropod genus genus phalangium hypernym hypernym

metacarpophalangeal joint knuckle joint hypernym hypernym

living dead zombie synonym synonym

vldl very low density lipoprotein synonym synonym

bleeding haemorrhage synonym synonym

gear rigging hypernym none

articles of confederation mahican none hypernym

giant moa dinornis giganteus synonym none

thrombocytopenic purpura werlhof’s disease synonym hypernym

shopping list grocery list hypernym synonym

Table 3.6: Examples of correct and incorrect decisions made by classifier.

Such errors in WordNet may have some effect on our results.

In the case of Articles of Confederation and Mahican, a Native American tribe, it seems

that the classifier was thwarted by accidentally similar content in the two articles, which

both describe the American Revolutionary war and the 13 first states (and contain many

similar links to these topics). In the case of gear and rigging, the fact we chose to ignore

senses comes into play: the sense in which gear is a hypernym is not the common one

(which the Wikipedia article describes). We believe that in more specialized concepts, this

problem will not occur often. Grocery List, in Wikipedia, is a redirect title which redirects

to the article Shopping List. In this case, Wikipedia lacks the semantic subtleties that are

captured in WordNet.

3.6 Conclusion and Future Work

In this chapter we described a simple supervised method of classifying pairs of Wikipedia

article titles in terms of the relation among them, covering synonymy and hypernymy. Our

approach significantly outperforms the baselines on simulated target data, and achieves very

high precision. Unlike previously described approaches, it does not rely on the WordNet
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hierarchy as a whole, but only on the properties of the individual pair. It retains a good

performance on a domain-specific data set, even when trained on general, out-of-domain

data.

Our method can be used for a number of NLG tasks. Chapter 5 describes how we use

it for lexical choice and for creating taxonomic messages. In addition, although we do not

pursue it in this thesis, it could be used for aggregation or fusion, which is an interesting

direction for future work.

Aggregation is the task of deciding that multiple messages should be realized in the

same sentence because of semantic relatedness (Dalianis and Hovy, 1996). In text-to-text

generation, a related problem is fusion decision: the task of deciding whether two sentences

are related enough to merge. Given two such sentences, we can find the noun terms in

each and use our classifier to discover the relations between all cross-sentence pairs, which

is useful in determining the similarity of content between the sentences. There is no need

to construct a taxonomy in advance for this particular application. The relations can also

be used in realizing the aggregation: synonyms can be collapsed into one sentence with a

conjunction, and two terms sharing a hypernym can be collapsed in the same way, being

replaced with the hypernym. For example, given two sentences such as:

• RNA interference has become a valuable research tool, both in cell culture and in living

organisms

• siRNA transfection has become a major instrument in research with potential appli-

cations in gene-therapy

and the knowledge that gene silencing is a hypernym of both RNA interference and siRNA

transfection, as well as the knowledge that tool and instrument are synonyms, we may want

to produce a sentence like

• Various forms of gene silencing have become valuable research tools
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Chapter 4

Discourse Planning

Discourse planning is a subtask of Natural Language Generation, concerned with determin-

ing the ordering of messages in a document and the discourse relations that hold among

them (Reiter and Dale, 2000). In pipeline-style architectures of NLG, it is often placed

after content selection but before micro-planning. Thus, the input is a set of unordered,

unrealized messages, and the output is a set of ordered unrealized messages with specified

discourse relations between them.

Early approaches used manually written rules, often based on schemas (McKeown, 1985)

or on Rhetorical Structure Theory (RST) (Mann and Thompson, 1987; Hovy, 1993; Power,

2000). In the 2000’s, various statistical approaches to discourse planning have emerged

(Duboue and McKeown, 2001; Dimitromanolaki and Androutsopoulos, 2003; Soricut and

Marcu, 2006; Konstas and Lapata, 2013), while statistical approaches to content order-

ing also became popular in the summarization literature (Barzilay et al., 2001; Lapata,

2003; Bollegala et al., 2005). These approaches overwhelmingly focus on determining

the best order of messages using semantic conent, while discourse relations are in most

cases either determined by manually-written derivation rules (or, uniquely in the case of

Konstas and Lapata (2013), by derivation rules with weights learned from an aligned cor-

pus) or completely ignored.

Discourse planning, particularly with non-trivial discourse relation planning, is difficult

because it is as domain-dependent as realization and content determination, albeit in subtler

ways (see, for example, Kittredge et al. (1991)). Different genres (e.g., newswire, encyclope-
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dia, blogs) have different styles of discourse in general, and different subject domains within

the genres (e.g., financial news vs. entertainment news; biographic encyclopedia entries vs.

entries describing scientific concepts; personal blogs vs. political blogs) have different styles

specifically. Most discourse planning approaches either rely on a manually created set of

domain-specific rules to generate discourse structures, or feature corpus-driven approaches

to content ordering that largely ignore discourse structure.

Meanwhile, researchers working on discourse relation disambiguation have observed that

the sequence of discourse relations itself, independently of content, helps in disambiguating

adjacent relations (Wellner et al., 2006; Pitler et al., 2008). Sequential discourse information

has been used successfully in discourse parsing (Ghosh et al., 2011; Feng and Hirst, 2014),

and discourse structure was shown to be as important for text coherence as entity-based

content structure (Lin et al., 2011; Feng et al., 2014). Surprisingly, so far, discourse sequen-

tial information from existing discourse-annotated corpora, such as the Penn Discourse

Treebank (PDTB) (Prasad et al., 2008) has not been used in generation.

In this chapter, we describe a corpus-driven approach to discourse planning that jointly

determines the ordering of the messages and the discourse relations between them using a

learned n-gram model of discourse relations (which, when learned from a domain-specific

corpus, represents the discourse style of the domain through the sequences of relations

commonly found in the corpus). We present an evaluation which shows the importance

of discourse style for generation and the effect of the domain on the desirable style. This

model and evaluation are also described in Biran and McKeown (2015a).

In order to make this approach generally useful for generation, particularly in the con-

text of our framework presented in the second part on this thesis, we must be able to

automatically extract the discourse structure of arbitrary domain corpora. Therefore, it

is crucial to have an efficient way to perform non-hierarchical (sequential) parsing of dis-

course relations. Recently, this task has been referred to as shallow discourse parsing, in

particular in the 2015 CoNLL shared task (Xue et al., 2015). We describe our work on

shallow discourse parsing at the end of this chapter, in Section 4.5. It is also described in

Biran and McKeown (2015b) and in Biran and McKeown (2013a).
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4.1 Related Work

Planning the discourse structure of generated text as a task has been tackled since the

1980’s. Prior to that, NLG was mainly focused on generating single phrases or sentences;

early systems that generated longer texts (Meehan, 1977; Swartout, 1981; Mann and Moore,

1981) had no explicit notion of discourse, and ordering was either fixed (in canned text) or

fell out of the content selection algorithm. The fact that there are recognizable patterns in

discourse coherence which can be used in generation has been explored as early as (Hobbs,

1979), however.

Early approaches to discourse planning relied on manually prepared sets of rules that

completely determined the discourse structure - ordering and relations - of the text. Schemata

(McKeown, 1985) were the earliest discourse plans, utilizing a combination of rhetorical

predicates described by Grimes (1975) and Williams (1890), and were used in many early

systems (Hovy, 1987; Paris, 1988; McCoy, 1989; McKeown et al., 1997). Afterwards, dis-

course plans based on RST (Mann and Thompson, 1987) became popular (Hovy, 1991;

Hovy, 1993; Moore and Paris, 1993; Mellish et al., 1998; Power, 2000; Bouayad-Agha et

al., 2000). While not dealing with (large-scale) discourse plans specifically, it is also worth

noting Elhadad and McKeown (1990) who presented a framework for generating discourse

connectives individually, i.e. not as a way to lexicalize a rhetorical relation but as unique

phenomenon, each with its own set of rules. Other early rule-based approaches to content

planning focused more on achieving communicative goals and less on discourse coherence

specifically (Appelt, 1985; Cawsey, 1992).

The first to describe a statistical approach to learning the ordering of generated mes-

sages were Duboue and McKeown (2001), who used an aligned semantic representation of

the content of medical transcripts to extract content ordering patterns and constraints

on the ordering of generated transcripts. In (Duboue and McKeown, 2002), they uti-

lize genetic search algorithms to learn schema-like planners within the constraints (al-

though the planners may include discourse information, it is not learned by this approach

- the genetic algorithms are scored by a function that only takes ordering into account).

Dimitromanolaki and Androutsopoulos (2003) learned to order a fixed number of facts with

unique types by assigning a type classifier to each fact slot in the text and using features
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built from fact properties and from the sequence information.

Meanwhile, researchers working on multi-document summarization have explored ap-

proaches to sentence ordering in an output summary. Barzilay et al. (2001) defined the

sentence ordering task and suggested baseline heuristic approaches based on chronology

and content of the input documents. Heuristic approaches to sentence ordering were

also employed by Kan and McKeown (2002) and by Okazaki et al. (2004). Statistical ap-

proaches followed: Lapata (2003) learned to order sentences by looking at feature co-

occurrence in human-written texts, while Bollegala et al. (2005) defined five ordering “ex-

perts” strategies based on the previous approaches and learn the weights for each from a

corpus of news articles aligned with human-selected summaries. Other approaches include

Ji and Pulman (2006) who used the history of selected sentences to improve ordering and

Donghong and Yu (2008) who proposed using sentence feature adjacency information in

learning to order sentences. Nishikawa et al. (2010) use features from multiple previous ap-

proaches, and use Integer Linear Programming to jointly learn both sentence selection and

ordering. It is worth noting that Madnani et al. (2007) concluded based on variability stud-

ies that in general, there are multiple equally good orderings for a set of sentences extracted

from multiple documents, so learning ordering models directly from reference summaries

may be flawed in that it implicitly treats as incorrect other possible orderings.

Work on content-based coherence models (Barzilay and Lee, 2004; Barzilay and Lapata,

2005b; Soricut and Marcu, 2006; Karamanis et al., 2009) has generally also been evaluated

using the sentence ordering task. In this line of research, which is based on insight from

Centering Theory (Grosz et al., 1995), ordering is determined purely on the basis of textual

content - lexical items, entities, etc - as opposed to the contextual information that the

approaches in the previous paragraph rely on (e.g., chronology or ordering in the input

documents). This notion of coherence is often referred to as local coherence, as opposed

to the global coherence which is captured by RST and other theories of document-level

discourse. It has been asserted by Marcu (1997) that global coherence can be derived from

local coherence. Later work on coherence (Lin et al., 2011; Feng et al., 2014) have focused

on local discourse coherence: models of coherence that are based on local (sentence-level)

discourse relations, as opposed to lexical content, and found that discourse information is
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as important to the notion of local coherence as entity and other lexical information.

Recently there has been more interest in end-to-end concept-to-text generation, espe-

cially approaches that learn to generate from aligned corpora of data records and text

(Reiter et al., 2005; Belz, 2008; Chen and Mooney, 2008; Kim and Mooney, 2010; Angeli et

al., 2010; Konstas and Lapata, 2012; Kondadadi et al., 2013). These approaches typically

contain a number of learned models that are used in a sequence of local decisions, and over-

whelmingly focus on content selection and realization, neglecting discourse and ordering

(partially because they focus on narrow domains with a rigid structure, such as weather

forecasts and sportscasting, where aligned corpora are available). One notable exception is

Konstas and Lapata (2013), who use the aligned corpus to learn a set of global derivation

rules based on RST as well as ordering rules based on content sequences.

Our work in this chapter differs from previous work in that we propose a statistical

generative model based on local discourse coherence - i.e., a local model of coherence which

is based not on content but on sentence-level discourse relations.

4.2 Motivation: Sequences of Discourse Relations

In this chapter, we utilize the discourse theory of the Penn Discourse Treebank (PDTB)

(Prasad et al., 2008). The PDTB theory of discourse has three main advantages over other

frameworks such as Rhetorical Structure Theory (RST) (Mann and Thompson, 1987) and

Segmented Discourse Representation Theory (SDRT) (Asher and Lascarides, 2003): first,

it is based on a predicate-argument representation, which means it does not rely on a fully

hierarchical document structure. This lenience allows us to develop the more local model of

discourse that we describe in the rest of this section and utilize in the rest of this chapter.

Second, it features a hierarchical set of discourse relation categories - i.e., each relation

can be viewed on an increasingly fine-grained (or abstract, going the other way) scale.

This allows us to model discourse structure with varying levels of specificity, depending on

the difficulty of the task or the extent to which we wish to focus on the specific relation

categories. Table 4.1 shows the first two levels of the category hierarchy (the first level

category is called the class and the second level category is called the type of the relation).



CHAPTER 4. DISCOURSE PLANNING 55

The third, most specific level (called the subtype) is not shown, and we do not use it in

this chapter since many of its categories are too rare to be useful. Finally, the PDTB is

the largest annotated corpus of discourse in existence, and is aligned to the Penn Treebank

(Marcus et al., 1993) which contains gold syntax parses of the same documents.

Class (Level 1) Type (Level 2)

Comparison Concession Pragmatic Concession

Contrast Pragmatic Contrast

Contingency Cause Pragmatic Cause

Condition Pragmatic Condition

Expansion Alternative Instantiation

Conjunction List

Exception Restatement

Temporal Asynchronous Synchrony

Table 4.1: The PDTB relation category hierarchy, with level 1 classes and level 2 types.

The level 3 subtypes are not shown

PDTB discourse relations can be viewed as a triple: relation type, argument 1 and

argument 2 (using only these three properties, we can abstract over both explicit and

implicit relations). While in principle, the discourse structure theory of PDTB allows for

the two arguments of a discourse relation to be located anywhere, in practice 92.9% of

the relations annotated either a) are wholly contained in a single sentence, or b) span two

adjacent sentences, with each argument contained in one of the sentences.1

Given this information, we can reformulate (the vast majority of) the discourse struc-

ture of a document as two intertwined sequences of discourse relations: the sequence of

intra-sentence relations and the sequence of between-sentence relations (with NoRel being

a legal discourse relation type in both sequences: in the intra-sentence case, it denotes a sen-

tence without an internal explicit relation). Figure 4.1 illustrates this view of the discourse

1It should be noted that by the definition given in the annotation manual, all implicit relations in PDTB

exist between arguments contained within two adjacent sentences.
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structure of a document.

Figure 4.1: A sequential formulation of PDTB discourse structure

This view is useful because it transforms a complex structure into a simpler, linear one.

It allows us to utilize a straightforward statistical model for discourse planning as described

in the main part of this chapter, and to take advantage of sequential models for end-to-end

discourse parsing as described in Section 4.5.

Table 4.2 shows the percentages with which each relation (using the second-level type

of the relation) appear within sentences and across sentences in the PDTB. Clearly, many

relations have a strong preference for appearing in one of the two forms.

To further motivate working with this formulation, we conducted a study of relation

co-occurence in PDTB using the association ratio (Church and Hanks, 1990):

α(x, y) = log
f(x, y)

f(x)f(y)

Where f(x) is the frequency of relation x, and f(x, y) is the frequency of the relation

sequence x, y. The association ratio is reminiscent of mutual information, but is different

in that it is ordered and non-transitive: f(x, y) 6= f(y, x), and therefore α(x, y) 6= α(y, x).

We calculated the association ratio for all sequences of two relations (including their form -

intra-sentence or across sentences) in the PDTB for both the first level relation classes and

the second level relation types.

Table 4.3 shows all sequences of class level relations and their association ratio scores.

Some interesting patterns emerge, and we discuss some examples below. Note that an asso-

ciation ratio of 0 is exactly random, while higher positive ratios mean stronger associations
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Relation # in PDTB % intra-sentence % across sentences

expansion.conjunction 7661 38% 62%

contingency.cause 5989 45% 55%

comparison.contrast 5367 39% 61%

entrel 5130 11% 89%

expansion.restatement 3101 28% 72%

temporal.asynchronous 2665 68% 32%

expansion.instantiation 1625 17% 83%

temporal.synchrony 1533 85% 15%

contingency.condition 1353 99% 1%

comparison.concession 1261 56% 44%

expansion.alternative 510 57% 43%

expansion.list 487 43% 57%

comparison (no type specified) 477 35% 65%

expansion (no type specified) 110 35% 65%

contingency.pragmatic cause 71 49% 51%

contingency.pragmatic condition 67 96% 4%

comparison.pragmatic contrast 21 43% 57%

expansion.exception 16 69% 31%

comparison.pragmatic concession 8 50% 50%

temporal (no type specified) 6 83% 17%

contingency (no type specified) 2 50% 50%

Table 4.2: The number of times a relation type appears in PDTB, and the percentage of

time with which it appears inside a sentence and across adjacent sentences



CHAPTER 4. DISCOURSE PLANNING 58

Form Relation 1 Relation 2 α Form Relation 1 Relation 2 α

across temporal temporal 1.624 intra temporal temporal 1.49

↓ comparison contingency 1.19 ↓ comparison contingency 0.986

intra contingency comparison 1.124 across contingency comparison 0.973

contingency contingency 1.06 temporal contingency 0.947

temporal expansion 0.93 temporal comparison 0.935

contingency expansion 0.926 contingency contingency 0.842

contingency temporal 0.924 expansion comparison 0.841

comparison expansion 0.848 expansion norel 0.742

expansion comparison 0.82 comparison norel 0.725

expansion expansion 0.806 norel expansion 0.715

comparison temporal 0.737 contingency norel 0.713

expansion temporal 0.722 expansion temporal 0.707

norel norel 0.719 temporal expansion 0.698

expansion norel 0.677 norel norel 0.692

expansion contingency 0.629 norel temporal 0.664

comparison norel 0.626 comparison comparison 0.662

norel comparison 0.618 norel contingency 0.647

comparison comparison 0.616 norel comparison 0.636

norel expansion 0.616 comparison expansion 0.62

norel contingency 0.613 expansion contingency 0.613

temporal norel 0.592 contingency expansion 0.595

contingency norel 0.576 expansion expansion 0.59

norel temporal 0.563 temporal norel 0.587

temporal contingency 0.542 contingency temporal 0.269

temporal comparison 0.371 comparison temporal 0.233

Table 4.3: All class level relation sequences and their association ratio scores
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and negative ratios mean anti-associations. There are no anti-associations in the class level

sequences, presumably because of the small number of relations, but they do exist in the

type level sequences.

Temporal relations are highly associated to themselves, in either form; expansion rela-

tions, on the other hand, are much more highly associated in the across→ intra form than in

the intra→ across form (that is, in a cross-sentence expansion relation, the second sentence

is more likely to contain an internal expansion relation than the first). Contingency and

comparison are highly associated with each other in either form, while comparison is not

associated with itself in either form and contingency is associated with itself more strongly

in the across → intra form.

Across-sentences temporal relations (which are not as common as within-sentence ones,

as seen in Table 4.2) are highly associated with sentences that are an internal expansion

relation (in addition to those that have an internal temporal relation), and exhibit the

weakest of all sequence associations to comparisons and contingencies. Intra-sentence tem-

poral relations, however, are very strongly associated with cross-sentence comparisons and

contingencies. This result in particular shows the value of viewing relations as we do - a

sequence like contingency-temporal behaves in the complete opposite way in the two forms.

To illustrate the difference between the forms, consider the following sentence pair:

1. The sun rises in the east.

2. Therefore, it is morning in New York before San Francisco.

These two sentences exhibit a cross-sentence contingency relation, and the second sen-

tence contains a temporal relation. Compare that with the following sentence pair:

1. It is morning in New York.

2. It will only later be morning in San Francisco, because the sun rises in the east.

Here we have a cross-sentence temporal relation, and the second sentence contains a

contingency relation. This pair is not as natural sounding (and other formulations that

retain a cross-sentence temporal relation, for example placing the contingency within the
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first sentence or changing the connective from “because” to “therefore”, will sound even

less natural) and our analysis suggests that this is a general rule for discourse units that

contain both a temporal and a contingency relation.

NoRel across sentences is much more associated with the first sentence having an expan-

sion, contingency or comparison relation than a temporal relation. Sentences with internal

temporal relations clearly tend to have relations with the sentences that follow them (es-

pecially temporal, contingency or comparison relations - not so much expansion relations).

Sentences with intra NoRel relations (i.e., sentences that have no internal explicit relation)

typically appear before sentences with which they have no relation or an expansion relation.

The results of this study are even more striking (albeit much more complex to follow

because of the sheer number of possible sequences) for the more fine-grained type level

relation sequences (and unlike the class level sequences, contains some anti-associations).

List relations are, as expected, very strongly associated to one another in any form. Another

related and strongly associated sequence is a cross-sentence instantiation with a list inside

the second sentence; interestingly, the opposite form (intra-sentence instantiation and cross-

sentence list) is strongly anti-associated. Pragmatic cause across sentences is associated

with concession or instantiation in the second sentence, and with temporal relations in

the first sentence. Cross-sentence concessions are associated with alternatives in the second

sentence and (separately) restatements in the first sentence (authors concede a point against

an original idea and offer an alternative in the first case; in the second, they concede a point

by restating it). There is also some strong anti-association in this set of sequences, notably

cross-sentence lists with intra-sentence contingency relations and cross-sentence synchrony

with concessions and restatements. The full list of association ratios for the type level

relation sequences is quite long and can be found in Appendix A.

The structure shown in Figure 4.1 is very useful for our parsing approach, described at

the end of this chapter, and the information in Table 4.2 and Table 4.3 motivates it and

can be used in microplanning decisions. For the purpose of discourse planning, however,

we want to simplify the structure further so we can work at the message level. Figure 4.2

shows a simplified version which does not include sentence boundary decisions. We will use

this version as our definition of a discourse plan in this chapter.
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Figure 4.2: A linear discourse plan

While we lose some association information with this simplification, the relative rankings

of most associations are still the same (with much smaller values), as shown in Table 4.4

4.3 Discourse Planning

One component of what makes a good discourse plan is the sequence of content: some

content is more central and should appear earlier, for example; and some predicates and

objects are semantically related and should appear near one another. Another component is

the sequence of discourse relations, as shown in the previous section and as noted in previous

studies of text coherence (Lin et al., 2011; Feng et al., 2014). Previous work on discourse

planning has focused heavily on the first component, either completely ignoring the second

or adding it as an afterthought. Motivated by the analysis in the previous section, we go the

opposite route and define a discourse-focused sequential approach to discourse planning. In

our method, we use only the sequence of relations to explicitly model the discourse plan,

and expect that content coherence will be implicitly encoded in that sequence through the

data structure we use to encode potential relations.
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Relation 1 Relation 2 α Relation 1 Relation 2 α

temporal temporal 0.411 expansion expansion -0.003

comparison contingency 0.285 expansion comparison -0.015

contingency comparison 0.14 expansion temporal -0.029

norel contingency 0.097 temporal expansion -0.052

norel expansion 0.089 temporal comparison -0.063

comparison norel 0.084 contingency expansion -0.078

contingency contingency 0.059 comparison expansion -0.109

norel temporal 0.055 norel norel -0.131

norel comparison 0.054 comparison comparison -0.164

temporal norel 0.049 temporal contingency -0.172

contingency norel 0.049 contingency temporal -0.196

expansion norel 0.046 expansion contingency -0.216

comparison temporal -0.31

Table 4.4: Simplified version of the class level relation sequences, without sentence boundary

decisions, and their association ratio scores
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Our approach relies on a data structure called the Multigraph of Possible Relations

(MPR). The idea behind this data structure is that while we do not know a priori the

best discourse plan for a set of selected messages (i.e., the best order and set of discourse

relations to impose on the messages), in concept-to-text systems we do know which relations

should be possible between any pair of messages (and conversely, which relations would be

impossible). Discourse relations can be either semantic (e.g., a real-world causality between

events described in a pair of messages) or pragmatic (e.g., one of the messages describes an

event that motivates including the other message in the text). Possible relations of the first

type are implied in the semantics of the messages themselves, while possible relations of the

second type are related to discourse intentions and therefore dependent on the application.

The next section describes how we build the MPR in a simple system we created to evaluate

our discourse planning approach, and Chapter 5 describes how we can build it more generally

in a complex generation framework.

The MPR is a directed multigraph where each vertex corresponds to a message and each

edge corresponds to a (directed) relation that can possibly exist between a pair of messages.

Each edge has a type label, and multiple edges can exist in the same direction between a

pair of messages if they have different types. Figure 4.3 shows a sample MPR with five

messages. Note that while we do not show them in the figure, each pair of messages also

has implicit NoRel edges going in both directions between them.

We formulate the discourse planning task as the task of finding the best Hamiltonian

path through the MPR (because of the implicit NoRel relations, the MPR is fully connected

so a Hamiltonian path always exists). Any Hamiltonian path in the MPR creates a complete

discourse plan, as defined in Figure 4.2, containing all selected messages. The best path is

simply the one that maximizes the likelihood of its associated discourse plan. In order to

quantify the likelihood of a sequence of relations, we build an n-gram model of discourse

relations from a discourse-annotated corpus.

An n-gram model measures the transitional probabilities for sequences of the units that

the n-grams are composed of. In this case, the units are discourse relations. The probability

of a particular sequence of relations of length n+ 1 given an existing subsequence of length

n is computed as a fraction of the number of times it appears in the corpus and the number
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Figure 4.3: A sample Multigraph of Possible Relations
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of times the subsequence appears in the corpus, i.e.

P (ri|ri−n, ..., ri−1) =
C(ri−n, ..., ri−1, ri)

C(ri−n, ..., ri−1)

Where C(s) is the number of times sequence s appears in the corpus. Using this model

to generate a discourse plan given a Multigraph of Possible Relations is a stochastic process:

at each stage, we choose the next relation edge out of the last chosen message vertex based

on the selected sequence of relation edges and the probabilities for the next relation in the

model. When an edge is selected, the vertex it leads to is used and other edges leading to it

can no longer be selected. The first vertex is often known in advance in real-life generation

systems, as we discuss in Chapter 5; if it is not known, the process should be repeated with

each possible initial vertex to determine the best sequence.

4.4 Evaluation: RDF Comparison Stories

To evaluate our discourse planning approach, we present an NLG framework that generates

texts from existing semantic web ontologies using an n-gram model of discourse relations

over constructed MPRs. Through a crowd-sourced human evaluation, we show that the

ordering of our documents and the choice of discourse relations is significantly better when

using this model, and that the genre of the corpus used to build the model makes a difference

in human satisfaction.

In this section, we generate comparison stories, describing and comparing two similar

entities, from an RDF ontology. The RDF semantic representation is commonly used in

semantic web resources and free ontologies. An RDF message (called a triple) has three

parts: a subject, a predicate and an object. For each story, we consider any triple whose

subject is one of the participating entities as a potential message to be generated. We do

only minimal processing on these messages: where two triples have the same subject and

predicate but different objects, we merge them into a single message with multiple objects;

and where two triples have the same subject and object but different predicates, we merge

them into a single message with multiple predicates.
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Next, we build the set of potential discourse relations between all messages. For the

purposes of this study, we use the PDTB class-level relations, of which there are four:

expansion, comparison, contingency and temporal. We do not differentiate between explicit

and implicit relations, and treat entrel as a type of expansion when building the model.

Potential discourse relations are implied in the semantics of the triples: messages that

contain the same predicate and object may have an expansion relation among them (e.g.

“John has a ball. Mary also has a ball”). Messages that contain the same predicate but

different subjects and objects may have a comparison relation (e.g. “John likes apples but

Mary likes oranges”).

Specific predicate pairs will also have specific potential relations among them - for ex-

ample, “birth place” and “residence” have a temporal relation (when applied to the same

subject). The same is true for contingency relations (e.g., “city” and “country” for the

same subject - if the subject is in a city, it implies which country it is in). We manually

annotated the 59 predicate pairs in the domains we evaluated that had potential temporal

and contingency relations, as well as 8 pairs with special potential comparison relations

(e.g., “birth place” and “residence” if the subject is the same but the object is not).

Once the potential relations are identified, we build the MPR - a directed multigraph

where each vertex is a message and each edge is a potential relation.

Once the graph is ready, we perform content selection. Given a desired number of

messages to generate, we choose the set of messages that maximizes the number of edges in

the resulting subgraph (thus ensuring that the selected messages are discourse-coherent).

If there are multiple such sets, we choose one at random.

After the content selection phase, we apply our discourse planning approach as described

in the previous section (we discuss which n-gram models we use later in this section).

The next phase is microplanning. For each of the four discourse relations we use, we

selected a few explicit connectives from the PDTB that are often used to convey them. We

specifically chose connectives that apply to the entire range of class-level relations (e.g.,

for comparison we chose “while” - since it applies to both contrast and concession in the

PDTB, but not “in contrast” which applies only to the former). We also chose only those

connectives which have one of the following two structures:
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1. ARG1 connective ARG2

2. ARG1. Connective, ARG2

During realization, we arbitrarily choose a connective to realize the relation.

Since the ordering and relations between messages is determined by the discourse plan,

microplanning falls naturally out of it: sentence breaks occur where the connective pattern

creates them, or where there is no relation between adjacent messages.

To realize the messages themselves, we follow a single pattern: “the [predicate(s)] of

[subject] (is/are) [object(s)]”. Simple rules are used to pluralize the predicate when there

are multiple objects and to create lists of multiples objects or predicates where needed.

One method for evaluating a discourse plan independently of content is to produce pairs

of generated short text documents, each containing the same content, but with different

ordering and relations (as dictated by the discourse plan). The only obvious way to decide

which text is better is to have human judges make that decision. It is important to minimize

the effects of other qualities of the texts (differences in content, word choice, grammatical

style, etc.) as much as possible, so that the judgment is based only on the differences in order

and discourse. The basic formulations we described for the various stages of NLG produce

texts that are rich enough to be acceptable for human readers, but which have relatively

little variation in grammatical and lexical quality. This crucial combination allows us to

perform a human study to specifically evaluate the discourse planning component.

We used DBPedia (Auer et al., 2007) - an RDF ontology extracted from Wikipedia -

to generate content. Each document generated was a comparison story of two entities in a

single category. The messages in the stories were selected from the set of triples where one

of the entities was the subject. In order to experiment with different domains, we used four

different categories:

1. Office Holder (i.e., a person holding office such as a President or a Judge)

2. River

3. Television Show

4. Military Unit
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The country of Y los declaro marido y mu-

jer is Venezuela, so that the language of

Y los declaro marido y mujer is Spanish.

Additionally, the language of Corazón In-

domable is Spanish. The country of Corazón

Indomable is Mexico.

(a)

The country of Y los declaro marido y mu-

jer is Venezuela. In turn, the country of

Corazón Indomable is Mexico, so the lan-

guage of Corazón Indomable is Spanish.

In addition, the language of Y los declaro

marido y mujer is Spanish.

(b)

Figure 4.4: Sample pair of comparison stories, for the TV shows Y los declaro marido y

mujer and Corazón Indomable

The entity pairs from each category were chosen at random but were required to have

at least 8 predicates and 3 objects in common, so that they were somewhat semantically

related.

To ensure that human judges can easily tell the differences between the stories on a

sentential level, we limited the size of each story to 4 messages. For each pair of stories,

everything but the discourse plan (i.e. the content selection, the realization of messages

and the lexical choice of connectives) was identical. Figure 4.4 shows an example pair of

stories, and their discourse plans, from the TV Show category.
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While it is not always clear on first glance which of these comparison stories is better,

they exhibit differences in the order of the messages and in the sequence of relations. Based

on our association ratio study and the n-gram models we create (as described below), we

expect story (b) to be preferable to human annotators, which turns out to be true in this

case (and as we show in our results, the model-generated plans are preferable to human

annotators in most cases).

We conducted two crowd sourced experiments on the CrowdFlower platform. Each

question consisted of two short stories that are completely identical in content, but each

generated with a different discourse planner. The human judge was asked to decide which

of the stories has a better flow (or whether they are equally good), and then to give each of

the stories a score from 1 to 5, paying specific attention to the ordering of the prepositions

and the relations between them. The stories were presented in a random order and were

not given labels, beyond Text 1 and Text 2, to avoid bias. We generated 125 pairs of stories

from each category - a total of 500 - for each experiment.

Each question was presented to three judges. In each experiment, there was complete

disagreement among the three annotators in approximately 15% of the questions, and those

were discarded. In approximately 20% there was complete agreement, and in the rest of

the questions there were two judges who agreed and one who disagreed. We also computed

inter-annotator agreement using Cohen’s Kappa for 217 pairs of judges who both answered

at least 10 of the same questions. The average kappa value was 0.5, suggesting reasonable

agreement.

In the first experiment, we compared stories generated by a planner using an n-gram

model extracted from the PDTB with stories generated by a baseline planner, where all

edges have identical probabilities. The results are shown in Table 4.5.

In the second experiment, we used a PDTB shallow discourse parser we developed,

and which is described in the next section, to create a discourse-annotated version of the

English Wikipedia. We then compared stories generated by a planner using an n-gram

model extracted from the parsed Wikipedia corpus with those generated by a planner using

the PDTB model. The results are shown in Table 4.6. The differences in total results in

both tables are statistically significant (p < 0.05).



CHAPTER 4. DISCOURSE PLANNING 70

Quality comparison Avg. score

Base Equal PDTB Base PDTB

Of. Holder 27.4% 30.2% 42.5% 3.67 3.76

TV Show 34.3% 25.7% 40% 3.79 3.8

Mil. Unit 32.3% 23.2% 44.4% 3.69 3.84

River 39.2% 23.5% 37.3% 3.71 3.72

Total 34% 25% 41% 3.72 3.78

Table 4.5: Results for the comparison between the PDTB n-gram model and the baseline

Quality comparison Avg. score

PDTB Equal Wiki PDTB Wiki

Of. Holder 33.6% 14.5% 51.8% 3.51 3.65

TV Show 43.2% 8.1% 48.6% 3.62 3.65

Mil. Unit 40.4% 14.4% 45.2% 3.65 3.67

River 41.1% 11.2% 47.7% 3.68 3.7

Total 39.6% 12% 48.4% 3.61 3.67

Table 4.6: Results for the comparison between the Wikipedia model and the PDTB model
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The results in Table 4.5 show that the judges preferred the stories created by the n-

gram model-based planner to those created by the baseline planner, both in terms of the

three-way decision and in terms of the numeric score. This is true for the total set as well

as every specific topic, except for River. This may be because the predicates in the River

category are much more cohesive than in other categories: virtually all predicates related

to rivers describe an aspect of the location of the river. That fact may make it easier for

a random planner to produce a story that seems coherent. Note, however, that while the

judges preferred the baseline story more often in the River questions, the average score is

higher for the model, which suggests that when the baseline was better it was only mildly

so, while when the model was better is was significantly so.

The results in Table 4.6 show that the Wikipedia-based model produces better results

than the PDTB-based model. We hypothesize that it is for two reasons. First, Wikipedia

contains definitional texts and is closer in style and content to the stories we produce than

the PDTB, which contains WSJ articles. Temporal relations constitute about 10% of both

corpora, but contingency and comparison relations each make up almost 20% of the PDTB,

while in Wikipedia they span only 10% and 12% of the corpus, respectively, making the

share of expansion relations much larger. Second, since the PDTB is small, higher-order

n-grams are sparsely found, which can add noise to the model. The Wikipedia corpus is

significantly larger and does not suffer from this problem. On the other hand, of course,

the Wikipedia corpus contains noise introduced by the automatic discourse parser.

The differences in average scores seen in the experiments are relatively small (but sig-

nificant). That is expected, since we have eliminated the content coherence factor, which

is known to be important. In addition, while judges were specifically asked to focus on the

order of messages and relations between them, there is inevitably some noise due to acci-

dental lexical or syntactic mismatches, ordering that is awkward content-wise, and other

side-effects of the generation framework we employed.
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4.5 Discourse Parsing

In order to extract the statistical discourse model described in the previous section from a

plain text corpus, we must first automatically annotate the corpus with sequential discourse

structure of the type we described in Section 4.2. In this section, we describe our shallow

discourse parser, also described in (Biran and McKeown, 2015b). It utilizes a sequential

model and produces a sequence of intra-sentence and adjacent sentence relations (in addition

to other information, such as argument locations and connectives for explicit relation), in

accordance with the structure shown in Figure 4.1, and is particularly useful for learning

n-gram models of discourse of the kind we use for discourse planning in this chapter. The

parser described in this section is publicly available at www.cs.columbia.edu/~orb.

Discourse structure is an important part of what makes a text coherent. Discourse

parsing is the task of automatically determining the discourse structure of a text according

to a particular theory of discourse (in our case, the PDTB). The ability to parse an en-

tire document is crucial for understanding its linguistic structure and the intentions of its

authors.

Discourse parsing is a difficult task. While some discourse relations have explicit lexical

cues called discourse connectives or markers, such as “because” and “but”, these are often

ambiguous: they may apply to more than one relation category, or they may be used in a

way that has nothing to do with discourse at all. In addition, many relations are not marked

by connectives in text, and disambiguating these implicit relations is difficult even when it

is known a relation exists. Adding to the difficulty is the fact that the arguments of the

relation (there are usually two, although some frameworks allow more for certain relations)

do not necessarily correspond to sentences or clauses, and may not even be contiguous under

some theories.

Over the years, multiple theories of discourse have been proposed. Unlike RST and other

frameworks, the discourse structure of PDTB is not fully hierarchical, so that documents

in general do not have a tree-like structure. Instead, it has a predicate-argument structure,

which in practice is very local (the arguments overwhelmingly appear near each other, as

explained in Section 4.2). This is a crucial detail which allows our method to work on

PDTB documents.
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While there has been much work recently on disambiguating discourse relations in the

PDTB, most have not been full parsing systems. That is, they operate in an experimental

environment where some information is given (for example, some systems disambiguate only

implicit relations, where it is assumed that the arguments of the relation have been identified

and that the relation is known to be implicit (Pitler and Nenkova, 2009; Park and Cardie,

2012)). Full systems, in contrast, operate on unannotated text documents producing the

full discourse structure of the text, including both implicit and explicit relations, and so

can be realistically used in NLP applications. Although not strictly parsing in the case of

PDTB, such systems perform what has been called the end-to-end discourse parsing task.

Interest in full discourse parsing in the PDTB has been increasing, and it has been featured

as a CoNLL shared task.

The only published work, to our knowledge, which provides end-to-end PDTB discourse

parsing is (Lin et al., 2014); they use a four-stage architecture where each stage carries

out one subtask in identifying discourse relations (e.g., explicit or implicit). The parser is

evaluated in terms of exact match and partial match. Unlike exact match results, which are

considered correct only if both the relation type and the exact span of its arguments are

identified correctly, partial match results are correct as long as the relation type is correctly

identified and each proposed argument shares at least one noun and verb with the true

argument. We believe that partial match results are best to focus on at this point in time,

since current performance on exact match results is too low to be useful. Many current

NLP applications (such as summarization and question answering) focus on sentences or

clauses anyway and would find this formulation natural.

In this section, we present a simple yet powerful sequential approach to PDTB discourse

parsing, utilizing two CRFs and features that are designed to discriminate both explicit

and implicit relations. We surpass state-of-the-art performance with a simpler structure,

less hand-crafted rules for special scenarios and with an approach that makes adding new

features extremely easy.



CHAPTER 4. DISCOURSE PLANNING 74

4.5.1 Related Work

Early data-driven work on discourse parsing has focused on frameworks such as RST, us-

ing the small RST Discourse Treebank (Carlson et al., 2001). Marcu (1997) and later

Soricut and Marcu (2003) developed methods for parsing documents into the RST dis-

course representation. There has also been more recent work on end-to-end RST-style

parsing (LeThanh et al., 2004; duVerle and Prendinger, 2009).

Recently, there has been more focus on the PDTB (Prasad et al., 2008), the largest

annotated discourse corpus currently in existence. Most work so far has focused on solving

specific subtasks of the overall parsing task. Pitler and Nenkova (2009) focused on explicit

relations and found that they are relatively easy to disambiguate using syntactic features.

Wellner (2009) used both lexical and syntactic features to identify the arguments of a rela-

tion. Identifying and disambiguating implicit relations has been the hardest task to achieve

good performance at, and is an active area of research. Pitler et al. (2009) were the first to

identify implicit relations in the PDTB in a realistic setting, and later work has improved

on their methods as well as introducing new ideas (Lin et al., 2009; Zhou et al., 2010; Park

and Cardie, 2012; Biran and McKeown, 2013a; Li and Nenkova, 2014a).

Most recently, Lin et al. (2014) have introduced and evaluated the first system which

provides end-to-end discourse parsing over PDTB (the Lin parser). In their work, they

have combined much of the earlier work on specific subtasks, utilizing a connective dis-

ambiguation component and an explicit relation disambiguation component inspired by

Pitler and Nenkova (2009)’s method, as well as an implicit relation disambiguation com-

ponent descending from their own previous work (Lin et al., 2009). Their approach is to

decipher the document in a structured way, in four steps: first, identify explicit discourse

connectives; second, identify the text spans of the arguments (in PDTB, there are always

two arguments, arg1 and arg2) corresponding to the connective; third, identify the type

of relation between the arguments (the third step completes the subtask of finding explicit

relations); and fourth, for every adjacent pair of sentences, identify which type of implicit

relation - relations where there is no connective - exists between them (or, if none does,

identify the relation as EntRel - meaning the sentences share an entity but not a relation,
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or NoRel - meaning they share nothing at all).2

While the structured approach of the Lin parser has many advantages in that it attempts

to solve the sub-tasks of discourse parsing in an organized, intuitive way, it has some

disadvantages. One is that because of the pipeline structure, errors propagate from step

to step. For example, if a (truly) implicit relation was incorrectly identified as an explicit

relation because of a false connective, the features used by the implicit relation identifier

that may correctly discriminate its type will not get a chance to be used. If argument spans

are incorrectly identified, the explicit relation disambiguator will be handicapped since it

mostly employs features based on the lexical and syntactic structure of the arguments.

Another disadvantage is the fact that in the structured approach, potential relations

are considered individually, although adjacent relations can intuitively be indicators of the

relation type.

Finally, building such a system requires significant design and engineering, and making

changes that are not localized to a specific component can be difficult and time-consuming.

At this point in time, when work on discourse parsing in PDTB is at its early stage, a more

flexible and easily extensible approach would be beneficial to the community.

4.5.2 Method

As described in Section 4.2, PDTB discourse relations can be seen as a triple: relation type,

argument 1 and argument 2. In principle, the two arguments of a discourse relation can be

located anywhere, but in practice almost 93% of the relations annotated are either intra-

sentence relations (both arguments completely contained within one sentence) or adjacent

sentence relations (each argument completely contained in one of two adjacent sentences).

Given this information, and the understanding that the sequence of discourse relations

can be useful for determining the type of a relation, we reformulate the task of parsing the

PDTB discourse relations as the combination of two tagging tasks. For each document,

we separately tag the sequence of sentences for intra-sentence relations, and the sequence

2There is also a fifth step, identifying spans that attribute a statement to a source, e.g. “B.P. explains that

...”. Attribution span detection is a secondary task which is evaluated separately from the main discourse

structure pipeline, and we are not concerned with it here.
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of adjacent sentence pairs for cross-sentence relations. While intra-sentence relations are

always explicit, adjacent sentence relations may be explicit, implicit, or fall into the PDTB’s

AltLex or EntRel categories. Unlike previous work, we use a single method to disambiguate

all adjacent sentence relations. We call this approach to discourse parsing the Two Taggers

approach.

As a result, we have a sequence of sentences, each tagged with the relation that exists

within it and each adjacent pair tagged with the relation that exists between them (i.e., the

structure in Figure 4.1). In order to transform this structure to a full discourse parse, we

must also identify the arguments and their spans. Since our goal is a simpler system and

our focus is on partial match results, we avoid using a complicated syntactic rule system

for each possible scenario in favor of a few simple rules. For adjacent sentence relations, we

mark arg1 as being the entire first sentence and arg2 as being the entire second sentence

(under partial match, this turns out to be correct in all but 0.002% of relations in the

training set). For single-sentence relations, we distinguish among two cases: if the first

word of the sentence is an intra-sentence initial connective3 then we identify arg2 from the

beginning of the sentence until the end of the first VP, and arg1 from there to the end of

the sentence. Otherwise we identify arg1 from the beginning of the sentence to the middle

connective (if there are more than one) and arg2 from there to the end of the sentence.

While this approach ignores many complexities of the true argument structure of PDTB

(for example, arguments may be nested, and a sentence may include text that is not inside

an argument), it works well for partial match. In fact, as we show in our evaluation, it is

also not too far behind the state of the art on a slightly more lenient version of exact match.

We use Pitler and Nenkova (2009)’s high performing connective classifier (F1 above 95) to

distinguish discourse connectives from their non-discourse counterparts.

The PDTB relation categories are hierarchical, and we are interested in finding the

type, or second-level categories, of which there are 16 (plus EntRel and NoRel, for a total

of 18). The first level (the class, of which there are 4) is too coarse to be useful for many

applications, and the third level (the subtype, of which there are 25) is too fine-grained and

3After, although, as, because, before, except, if, since, though, unless, until, when, whereas, and while (as

well as variations such as if and when).
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difficult to disambiguate. Table 4.1 shows the hierarchy of 4 classes and 16 types. The Lin

parser also deals with type-level categories, but almost all other previous work has focused

on the significantly easier class-level categories.

Treating discourse parsing as a tagging problem has many advantages. Tagging tasks

have been widely explored in NLP and there are many off-the-shelf tools and methods for

tackling them. Many generic taggers that can be applied to this task with minimal effort

are available to researchers, while generic parsers do no exist. Tagging is a simpler and often

more tractable task than parsing, and it can be done using sequential classifiers, which are

both fast and powerful.

There are also some limitations to the tagging approach. As mentioned earlier, some

rare relations span more than two sentences, or sentences that are not adjacent. In addition,

there are (also rare) situations where there are multiple relations in a single sentence, and

with our approach we can at most tag one correctly. Because of these two limitations,

we have an upper bound on F-measure performance of 89.4 in the PDTB corpus. Since

current state-of-the-art performance is far below this level, we do not view this as an urgent

problem. At any rate, additional specialized approaches can be added to correctly handle

those rare cases.

We use Conditional Random Fields (CRFs) to implement both taggers. CRFs were first

introduced by Lafferty et al. (2001) and have been successfully used for many NLP tagging

tasks such as named entity recognition (McCallum and Li, 2003) and shallow parsing (Sha

and Pereira, 2003). We use simple linear-chain CRFs for both taggers. In the linear-chain

CRF model, the posterior probabilities for an ordered sequence input x = {x1, . . . , x|x|} of

tag labels y = {y1, . . . , y|x|} are defined as

P (y|x) ∝
|x|∏
i=1

exp

(
K∑
k=1

θkΦk(yi−1,x)

)
where θk are weights corresponding to the features Φk. The feature values at index i of the

sequence may be computed based on the previous tag in the sequence yi−1 and the entire

sequence x. The weights θk are estimated using gradient descent to maximize the likelihood

of the input.

In our formulation, each x is a PDTB document, consisting of a sequence of sentences
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(for the intra-sentence relation tagger) or a sequence of sentence pairs (for the adjacent

sentence relation tagger). y consists of all type-level discourse relation categories.

In our experiments, we used a maximum likelihood prior and limited the gradient descent

to a maximum of 200 epochs instead of waiting for it to converge.

While CRFs have been used in the past for subtasks of RST discourse parsing (Feng

and Hirst, 2014) and for finding the arguments of explicit relations in PDTB (Ghosh et al.,

2011), no sequential approaches have ever been used in a way that models the sequential

dependency between PDTB relations. Previous work (Pitler et al., 2009; Zhou et al., 2010)

has utilized features that consider adjacent lexical information in relation type classification,

but true sequential or joint classifications have not been attempted.

4.5.2.1 Features

The intra-sentence tagger deals only with explicit relations, and as such focuses on features

related to discourse connectives. We use Pitler and Nenkova (2009)’s connective classifier

to identify discourse connectives within the sentence, and for each connective generate the

set of binary features shown in Table 4.7, all of which are features used in explicit relation

detection by Pitler and Nenkova (2009) or by Lin et al. (2014).

Connective Connective’s syntactic category

Previous word + connective Parent’s category

Connective + next word Left sibling’s category

Path to root Right sibling’s category

Compressed path to root

Table 4.7: Binary features used in the intra-sentence tagger.

The adjacent sentence tagger utilizes a larger variety of features, designed to disam-

biguate relations across sentences that may be explicit, implicit, AltLex or EntRel.

We divide the adjacent tagger’s features into four thematic types: lexical, connective-

related, syntactic and structural features. The full list of features is shown in Table 4.8,

and we describe the non-obvious ones below.
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Lexical Connective Syntactic Structural

Unigrams Connective Production Angles Paragraph Split

Word Pair Similarity Prev. Word + Connective Short Document

Word Pair Similarity Avg.

Document Centrality

Expanded Shared Words

Table 4.8: Features used in the adjacent sentence tagger.

Connective features are created for any connective found in each sentence separately

using Pitler and Nenkova (2009)’s connective classifier.

The structural short document binary feature encodes whether or not the document has

3 sentences or less. The intuition here is that short documents are much less likely to have

certain relation types (e.g., argumentative ones).

Syntactic features are derived from the parse tree of the sentence. We use the Stanford

Parser (Klein and Manning, 2003) to derive the trees. Lin et al. (2009) introduced the pro-

duction rule features, which are some of the strongest for implicit relation disambiguation.

Production rules are all parent-children relations in the constituent parse of a sentence,

e.g. [VP → NP PP NP]. The binary feature formulation includes the existence of each rule

in arg1, in arg2, and in both. Li and Nenkova (2014b) hypothesized that production rules

are too sparse, and found that using their production stick features achieved higher perfor-

mance. Unlike a production rule, which relates to all children of a parent, a production stick

is a parent-single child relation. We experimented with both feature sets, and found that

we achieve the best performance with a novel middle-ground formulation. Production

angles are a family of features indicating the appearance of syntactic triples: a parent and

two adjacent children. In cases where a parent has only one child, as in the lexical leaf

nodes of the tree, we produce a stick-like feature (e.g. [NP → resources]. The triples are

formed using the label of each node and the descendant directionality. For example, VP ←

VP → NP is a parent VP with adjacent children, VP and NP. We use features for angles

in each sentence separately, as well as for angles that are shared by both.

Centrality in document is a simplistic form of topic similarity: the cosine similarity
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of the sentence pair to the document as a whole. The intuition is that certain relations (e.g.,

argumentative relations such as causality and concession) would tend to be more common

around the main topic of the document.

We include features for words that are shared by both sentences called expanded

shared words - expanded because we use WordNet (Fellbaum, 1998) to expand the usual

list of words in each sentence with all synonyms and immediate hypernyms of each word’s

most frequent sense.

The word pair similarity features is the set of aggregated features described in

Biran and McKeown (2013a), which utilize sets of word pairs that were mined from unan-

notated corpora around each discourse connective. The word pair scores within the set

are given by TF*IDF and treated as a vector. The feature value is the cosine similarity

of the connective’s vector to the vector of word pairs extracted from the pair of adjacent

sentences, where each pair contains one word from each sentence. It models the similarity

of the sentence pair to a sentence where the connective is used directly, and is intended to

help in identifying implicit relations. In contrast to previous formulations of word pair fea-

tures (Marcu and Echihabi, 2002; Blair-Goldensohn et al., 2007; Pitler and Nenkova, 2009),

ours is a dense set of features which is less prone to the lexical sparsity of the relatively

small PDTB. The word pair similarity average for connective pair is a variant where

we get the similarities of the adjacent sentence pair to the word pair sets of a couple of

connectives (we use every possible combination of two connectives) and use the average as

the feature value. The idea is that if two connectives are related to the same relation type,

a high average similarity to both may be a stronger indicator for that relation.

In addition to the features described above, the CRFs utilize sequential features in both

the intra-sentence tagger and the adjacent sentence tagger. Sequential features are the

transitional features that consider the previous tag in the sequence. The same sequential

features are used in both taggers.

We use two basic pieces of information from the previous tag: the previous tag type

is the type (second-level relation category) of the previous tag, while the previous tag

class is the class (first-level relation category) of the previous tag.
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4.5.3 Evaluation

Following Lin et al. (2014) and other previous work, we use sections 2-21 of the PDTB as

the training set, section 22 as the development set, and section 23 as the test set. Since

we use an automatic parser for our syntactic features, our results are equivalent to Lin

et al.’s “Partial, Auto + EP” overall results for partial match, and to their “Exact, Auto

+ EP” results for exact match. We consider the results using gold standard parses to be

less important for an end-to-end system, the main function of which is an out of the box

document parsing tool. The evaluation metric in all experiments, following Lin et al., is the

micro-averaged F1 score.

We show our final partial match results on the test set in Table 4.9, compared with the

Lin Parser performance. We also compare our approach with the results achieved by using

the exact same formulation and features (other than the sequential features, of course) in

two Logistic Regression classifiers, to show that the sequential approach is in fact helpful.

To illustrate the effect of our simplistic argument span identification rules, we also show

results without span matching, where argument spans are presumed to always partially

match if the sentence/sentences and relation type are correctly identified.

Prec. Recall F1

Two classifiers 46.12 31.68 37.56

Lin Parser 38.18

Two Taggers 48.52 33.06 39.33

No span matching 48.72 33.32 39.57

Upper bound 100 80.82 89.40

Table 4.9: Partial match results on all relations in the PDTB. The Lin parser paper does

not report precision and recall

The results of each tagger individually are shown in Table 4.10. Note that the overall

results are compared against all true relations in the document, including those that our

method inherently cannot identify (hence the upper bound), while the individual tagger

results are only in the context of the individual tagging task. This is why the recall of the
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end-to-end results is smaller than the recall of either of the individual taggers.

Prec. Recall F1

Intra-sent. tagger 66.36 49.82 56.91

Intra-sent. classifier 66.19 48.77 56.16

Adj. sent. tagger 40.31 36.53 38.33

Adj. sent. classifier 37.13 34.21 35.61

Table 4.10: Results for each of the two taggers separately

While we are focused on partial match results, we also show exact match results in

Table 4.11. In error analysis we noticed that many of our errors on exact match arise because

we include in the span another discourse connective, or an initial word like “Eventually” or

“Admittedly” in a non-discourse usage. We therefore include another set of results we call

“almost-exact match” which allows a match if there is at most one word at the beginning

or the end of the span that does not match. Using this less strict definition, we reach a

performance that comes close to the Lin parser exact match results.

Prec. Recall F1

2T exact match 14.47 5.93 8.41

2T almost-exact match 29.61 14.75 19.69

Lin Parser 20.64

Table 4.11: Exact match results on all relations in the PDTB. The Lin parser paper does

not report precision and recall

To emphasize how much harder it is to identify the more fine-grained level 2 relation

types than it is to identify the coarser level 1 classes, we also provide results on the class-level

discourse parsing task in Table 4.12.
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Prec. Recall F1

Two Taggers 62.56 44.3 51.87

Upper bound 100 80.82 89.40

Table 4.12: Results for the same task when using the level 1 classes instead of the level 2

type relation categories

4.5.4 Discussion

As seen in Table 4.9, we achieve higher performance than the Lin parser on partial match

results. This is despite the fact that we use fewer manually-crafted rules and do not rely on

a complex argument span identification component. Moreover, the two taggers are clearly

stronger than two classifiers with identical features, especially for the adjacent sentence

task, which shows that there is value to the sequential approach.

It is clear from Table 4.10 that identifying relations in adjacent sentence pairs is a more

difficult task than identifying them inside a single sentence. This makes sense because single

sentence relations are always explicit in the PDTB while most adjacent sentence relations

are implicit. It is well established that implicit relations are much harder to disambiguate

than explicit ones. While we cannot provide an evaluation for implicit relations only - it

is not clear how to fairly define false positives since we tag the entire document without

differentiating between explicit and implicit relations - we can provide a lower bound for our

performance by using only implicit relations to collect the true positives and false negatives,

and all tagged relations to collect false positives.

Our lower bound F-measure for implicit relations is 28.32.4 In the Lin parser, the F-

measure performance of the implicit relation classifier is 25.46, while the explicit relation

classifier has an F-measure over 80. These numbers imply that our method is especially

advantageous for implicit relations, while explicit relations may be harder to disambiguate

without the specialized argument location/span identification step taken by the Lin parser.

In addition, the relations that our approach inherently cannot handle are all explicit.

It is interesting to note that the difference between the taggers and the classifiers is

4Precision is 28.02 and recall is 28.63.
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much larger for the adjacent sentence pairs, meaning that the sequential features are very

strong in the adjacent sentences tagger. This may indicate that intra-sentence relations

are more “stand-alone” in nature while inter-sentence relations are more connected with

the rest of the document. This result, and the fact that our performance on intra-sentence

relations are not as high as previous results on explicit relations, suggest that one promising

path for future work is the combination of a more structured intra-sentence explicit relation

approach (one that would, among other advantages, allow finding multiple relations within

the same sentence) with a sequential adjacent-sentence approach. Our performance suggests

that this separation (intra-sentence and adjacent sentence) in methodology, which allows a

sequential view, may in some cases be more useful than the traditional explicit vs. implicit

separation.

Our approach beats state-of-the-art performance using partial match, which is the nat-

ural evaluation to use at this point in time given exact match performance (this view has

been expressed by Lin et al. (2014) as well). While we do not achieve the same results on

exact match, which is to be expected given our very simple approach to argument span iden-

tification, Table 4.11 shows that we come very close if a slightly less restrictive evaluation

is used. This reaffirms the conclusion that exact match is a very difficult task: even with

complex hand-crafted syntactic rules, correctly identified spans are relatively simple cases

which can also be identified (if a single word error is allowed) by a much simpler method.

Table 4.12 illustrates how much harder the type-level parsing task is than the class-level

parsing task. In our discourse planning experiments earlier in this chapter, we used our

parser in the class-level mode to create a more accurate n-gram model from a discourse

parse of Wikipedia.

4.6 Conclusion and Future Work

In this chapter we introduced an approach to discourse planning that relies on a potential

discourse multigraph, allowing for an n-gram model of relations to drive the discourse plan

and efficiently determine both the ordering and the relations between messages. In contrast

to previous work on content planning (which used manually-created global models) and
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coherence modeling (which use learned content-based local models), we utilize a learned

local discourse coherence model. This model can be learned from a text corpus annotated

with shallow (local) discourse relation, and we presented an end-to-end discourse parser

that is specifically suited to creating such annotated documents.

To motivate our method, we conducted an association ratio study of discourse relation

pairs and showed that there is useful coherence information in local discourse sequences.

To evaluate our method, we conducted two experiments, comparing stories generated with

different discourse planners. The first shows that an n-gram model-based planner signifi-

cantly outperforms the random baseline. The second suggests that using an n-gram model

derived from a corpus that is larger and closer in style and content, though less accurately

annotated, can further improve results.

In the generation system we used for our evaluations, as well as for the generation

framework described in Chapter 5, entity-based local coherence is partially encoded in the

entity-based way we build the MPR. In Chapter 5 we also supplement it with a more direct,

external measure of entity coherence. In future work, it would be interesting to explicitly

model it and combine it with our discourse-based view of coherence to create a unified

statistical discourse planner. It would also be interesting to explore additional stochastic

models of discourse that look at other, non-sequential collocational information.
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Generation
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Chapter 5

Generation Framework

In this part of the thesis we are concerned with a family of generation applications we

call Generation Endeavors with Modular Subjects, or GEMS. As its name suggests, this

family consists of generation applications which can each be implemented with a range

of subject domains. This chapter describes a general framework for setting up GEMS

applications - i.e., creating generation systems capable of handling a GEMS application

for multiple domains. The framework requires limited manual work to be done only once

for each application; adapting the application to new subject domains can then be done

automatically, requiring only a domain corpus.

For example, consider the GEMS application “product description”: we have a database

of products, each with a set of features and specifications, and we want to automatically

describe them. The products belong to different types: books, cameras, cars, insurance

packages, etc. In some sense, all product descriptions are the same. They’ll mention the

important features of the product, what differentiates it from other similar products, and

perhaps some background to help the consumer decide what is important. They may also

mention the price of the product in comparison to others, ratings that the product received

from various rating agencies, and why these agencies are good. In another sense, however,

descriptions of cameras will be very different from descriptions of insurance packages. In

particular, when it comes to explaining the product features and giving some background

about it - anything beyond the simple names and numbers that exist in the database - we

will want to see very different text for each product type. For cameras, we should talk
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about lenses and shutters (not only what the particular camera has, but relevant back-

ground knowledge as well: why is one lens better than another? what are the advantages

of a mechanical shutter?) while for insurance packages we should talk about coverage

and benefits (why and where is flood insurance important?). “Product description” is the

application in this example, while “cameras” and “insurance” are two of many possible

subject domains. Table 5.1 lists several example GEMS applications, showing their global

(domain-independent) themes and a few sample subject domains.

Application Description Global Themes Sample Domains

Product

description

Generate a description

for a new product

Product feature;

Seller; Price; Rat-

ing agency

Books; Cameras; Cars;

Insurance Packages

Biography Generate the biography

of an accomplished per-

son

Experience;

Achievement;

Award; Colleague

Jazz Musicians; Com-

puter Scientists; Politi-

cians; Military Officers

Scientific Pa-

per Explana-

tion

Generate an explana-

tion (for a layperson) of

a scientific paper

Problem; Ap-

proach; Related

approach; Result

NLP; Molecular Biol-

ogy; Solid-state Physics

Company de-

scription

Generate a description

for a company

Executive;

Founder; Product

Computer Hardware;

Oil and Gas; Financial

Investment; Retail

MMORPG

Character

Description

Generate a description

of a character in an on-

line multiplayer RPG

Race; Class; Pro-

fession; Relation-

ship

Different game worlds

Machine

Learning

prediction

justification

Generate a justification

for the prediction of

a Machine Learning

model

Prediction;

Model; Feature

Movie recommendation;

Stock price prediction;

Medical diagnosis

Table 5.1: Sample GEMS
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The reason our framework is able to adapt to new subject domains automatically is that

it relies on hybrid concept-to-text and text-to-text generation: part of the generated text

consists of C2T messages (messages that are created from structured data according to a

recipe or algorithm that is unique to the application), while another part comes from T2T

messages (messages that are extracted from a corpus, although we use our work on para-

phrase mining in Chapter 2 to modify and add variation to those extracted messages). The

special structure of the GEMS family allows us to define the recipes required for C2T gen-

eration, and the abstract recipes for automatically extracting the information required for

T2T generation from a new subject domain corpus, only once per application. In addition,

we use our data-driven methods from Chapters 2-4 to automatically extract paraphrases,

discourse models and a taxonomy from the domain corpus, which further refine the ways in

which text is generated differently for each subject domain.

Figure 5.1 shows a high level view of the way the framework operates, and is also an

overview of the structure of this chapter beyond the next two sections which deal with

definitions and a more detailed overview:

• Part 1 (on top, in red) is the abstract definition of a generation system for a GEMS

application, and is described in Section 5.3. This is the only part which requires

manual work - specifically, the creation of a few algorithms - and occurs once per

application (e.g. once for the product description application).

• Part 2 (in the middle, in blue) is the adaptation of the application to a particular

subject domain, which results in a domain-specific generation system. It includes, for

example, extracting paraphrasal templates, a discourse model and a language model.

This happens once per domain (e.g., once for cameras, once for cars, etc) and is

completely automatic, except that a subject domain corpus must be provided. This

part is described in Section 5.4.

• Part 3 (on the bottom, in green) describes the process of generating text given instance

data in a domain-specific generation system. This part is the one using the algorithms

defined in part 1 and the models/data extracted in part 2. This part is described in

Section 5.5.
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The gray part of the figure (data-driven bottleneck solutions) are the methods described

earlier in this thesis, in Chapters 2- 4.

Figure 5.1: High level overview on the framework.

The main contributions of this framework are the hybrid C2T-T2T generation approach -

a new idea that has only recently started being explored, e.g. by Saldanha et al. (2016); and

the elimination of manual work when adapting to new domains. The framework introduces

a powerful tool for defining abstract generation systems that can be used in any domain for

which a simple text corpus can be found.

In chapter 6, we demonstrate and evaluate our framework through two of the more

straightforward applications on the list - biographies and company descriptions. In chap-

ter 7, we demonstrate and evaluate it for the last application on this list - generating

justifications for Machine Learning predictions - a more specialized application for which

there are currently no other generation systems as far as we know.

5.1 Definitions

This section provides definitions for the central terms and concepts used in this chapter.



CHAPTER 5. GENERATION FRAMEWORK 91

5.1.1 The Three Users

Throughout this chapter, we will refer to three types of users associated with this framework,

with varying levels of required expertise.

The application designer is an NLG researcher or engineer who adopts the framework

for a new GEMS application (without worrying about which subject domains it will be

applied to). This person must be a programmer, have NLG knowledge, and be familiar

with the framework described in this chapter. She should be familiar with the application

in general, but does not need to be an expert in any of the possible subject domains to

which the application may apply.

The subject domain designer is someone who adopts an existing GEMS application for

a new subject domain. The technical requirements from this person may change from one

GEMS application to the next (depending on the sort of information expected from an

instance in the application), but he does not need to have any knowledge of NLG or NLP,

and may not need to be a programmer. In the RDF applications presented in Chapter 6,

for example, the only requirement of this person is to be able to execute command line

programs and point them to a list of entities, so it can be anyone with a minimal technical

ability (of course, a user interface can always be built by the application designer to alleviate

even this requirement). In the prediction justification application of Chapter 7, in contrast,

the subject domain designer (who adapts the application for justifying the predictions of a

particular classifier) needs to be able to provide the feature values and other information

about each prediction, either programmatically or via XML.

The end user is the person for whom the text is generated. This person only needs to

be literate (in English) and be capable of understanding text about the particular subject

domain. For some subject domains (e.g., a medical condition prediction domain in the

prediction justification application presented in Chapter 7) this user should be an expert in

the subject domain (e.g., a medical doctor).

A major theme of the framework we describe in this chapter is making the job of

the subject domain designer, in particular, extremely easy. Once a GEMS application is

defined by the application designer, adopting it to any new subject domain should be a

fully automated process which requires no more than providing a corpus (or a proxy to
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automatically obtaining a corpus, such as a list of entities in the applications described in

Chapter 6).

The next section (5.2) provides an overview of the framework, including the respon-

sibilities of the different users. Section 5.3 describes the steps required for the definition

of a GEMS application by the application designer. The following section (5.4) describes

the models built and information extracted by the automated subject domain preparation

step, initiated by the subject domain designer. Finally, Section 5.5 describes the genera-

tion pipeline used to generate text about an instance within a subject domain in a GEMS

application.

5.1.2 The GEMS Application

GEMS is a family of generation applications, distinguished from other generation applica-

tions by the following:

1. A GEMS application is associated with a (closed or open) set of possible subject

domains

2. The core structure (structure of central messages, types of central entity etc.) of the

application can be defined abstractly without referring to the possible subject domains

3. Without knowing the subject domain, a GEMS application is a fully functional gen-

eration system. Knowledge of the subject domain can enhance it as described in this

chapter

More formally, a GEMS application A defines a set of possible subject domains ∆A, 1

which could be an open set, and each δ ∈ ∆A contains a set of possible instances Iδ; and

a set of functions ΦA which contains the following mapping functions (in this chapter, we

use E to denote the set of all entities, D to denote the set of all discourse relations, and M

to denote the set of all messages; we formally define a message later in this section):

1A note on notation: throughout this chapter, we will use superscripts on sets, variables and functions

to denote membership - so, e.g, ∆A is the ∆ of A as opposed to the ∆ of another application.
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1. A mapping from any subject domain δ to a set of core entities for the subject domain:

CoreEntA : {δ|δ ∈ ∆A} → EN

2. A mapping from an instance � (we use � to denote an instance and reserve the use

of i for counters) to a set of core messages for the instance:

CoreMesA : {�|∃δ ∈ ∆A : � ∈ Iδ} →MN

Note that CoreMesA essentially defines what an instance in the domain includes (i.e.,

what sort of information is needed to create core messages for an instance).

While the previous two functions are both necessary and sufficient to define a GEMS

application, in our framework we add another pair of optional functions. In contrast to

the first two, which are dependent on the application, the next two should in principle

be independent (i.e. they should be defined for language in general, regardless of the

application). However, they are difficult general NLP problems which become significantly

easier when the application is known, and can positively affect the quality of generated text:

3. An (optional) mapping from any message to an intrinsic preference score:

BasePrefA : M→ R

4. An (optional) mapping from any pair of messages to a set of possible discourse relations

between them:

DiscRelA : M2 → DN

Together, these four members of ΦA are the functions which must be provided by the

application designer for a working GEMS application system. They constitute the whole of

the manual work that needs to be done for a new application, which can then be applied

to any subject domain (given a domain corpus).

5.1.3 Semantic Data Structures

Our main semantic structure is the Semantic Typed Template (STT). An STT τ is a tuple

〈V τ , Rτ , Lτ 〉 consisting of a set of vertices labeled with entity types V τ = {vτ1 , . . . , vτn}, a

set of edges labeled with relations among the vertices Rτ = {rτ1 , . . . , rτm} and a set of lexical

templates Lτ = {lτ1 , . . . , lτk}. The lexical templates Lτ are all assumed to be lexicalizations
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of the semantics of the STT and paraphrases of each other, and must be phrases or sentences

(that is, multiple-sentence lexicalizations are not allowed). The STT represents both the

meaning and some possible realizations of a sentence-level atomic unit of semantics, while

not directly modeling the meaning in any way other than through the graph embodied in

V τ and Rτ . Instead, the meaning is grounded in the lexical template set.

A message µ, in turn, is a tuple 〈τµ, Eµ〉 which consists of an STT τµ and a set of entities

Eµ = {eµ1 , . . . , e
µ
n} . The set of types V τµ constrains the number and types of entities that

are allowed to participate in Eµ, and the set of relations Rτ
µ

further constrains the entities

that are allowed to participate (the entities must have the proper relations among them).

Note that STTs, and by extension messages, are not true semantic structures in that

they do not model the semantics explicitly. Instead, we rely on the paraphrasal nature of

the lexicalizations to ensure that whenever a message (that is, an STT with specific entities)

is realized, it always conveys the same meaning. There is some semantic representation in

the form of entity types and the relations between them, but it does not generally cover the

entire semantics of the STT.

5.2 Framework Overview

Figure 5.2 shows the entire pipeline for the GEMS generation framework. The arrows

represent dependency.

The two columns at the right side of the figure show the levels of the pipeline. The left

column is the description of each level, and the right column shows who is responsible for

providing the content for the label. The algorithms in the Application Definition level are

provided by the application designer; the domain corpus in the Subject Domain Definition

level is provided by the subject domain designer; the Instance Data is provided as an

input for each instance. Other than those, every component in the diagram is produced

automatically.

The top two levels are the definition levels, where a human is involved. The first is

described in Section 5.3. The second is trivial, since the domain designer need only provide

a domain corpus. The third one is the preparation level which runs automatically for each
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Figure 5.2: A framework for setting up and generating GEMS.
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domain, given a domain corpus - this level is described in Section 5.4. Below that are the

pipeline levels, which run once for each instance to be generated, and are described in detail

in Section 5.5.

5.3 Defining an Application

Defining a new GEMS application is the responsibility of the application designer. It is a

process that requires some thought regarding the scope and purpose of the application. We

list a few of the relevant questions below.

• What is a subject domain in this application? the objective here is to maximize di-

vergence in content and style across subject domains. For example, in a biography

application, it makes more sense to think of different professions as different subject

domains rather than, say, nationalities, because good biographies for different profes-

sions tend to diverge more (e.g., focus on different aspects of the person’s traits and

history; offer elaborations on different aspects; etc). In some cases the set of subject

domains is a closed set, as in the set of industries for company descriptions. In other

cases, as in the prediction justification domain (where a subject domain is any trained

classifier), the set is much larger and open-ended.

• What is an instance in this application? i.e., what is a single occurrence of generation?

note that this definition is completely independent of the subject domain. In the

biography application, it is a single person; in the prediction justification application,

it is a single prediction. A related question is what sort of information is provided

with each instance: in the biography application, we expect RDF triples describing the

person; in the prediction justification application, we require the prediction and the

values of the features and other parameters of the model which made the prediction.

• What are the core frames or relations of the application? these will appear in every

subject domain and much of the narrative will be structured around them. In the

biography domain, for example, we think of birth, death, family, demographics etc

as central in any biography, regardless of the subject domain (i.e., profession). In
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the prediction justification domain, the relations of features to the prediction will be

central to any justification, regardless of the classifier.

In more practical terms, the application designer needs to implement the four algorithms

CoreEntA, CoreMesA, BasePrefA and DiscRelA, described in Section 5.1 (although the last

two are optional). We describe each in a subsection below, and provide concrete examples

in the next two chapters.

5.3.1 Core Entities Definition Algorithm (CoreEntA)

Each subject domain has a set of core entities: entities that are central to the domain and

which serve as starting points for extracting domain-specific STTs, messages and additional

entities. Section 5.4 describes how these entities are used for extracting domain messages,

and Section 5.5 describes how they are given more weight in the content selection phase of

the generation pipeline. Broadly, these are the entities which will take more prominence

within a generated text, will be elaborated on and drive the narrative.

CoreEntA is simply an algorithm that, given a subject domain for the application (with

its associated domain corpus) generates a list of core entities for the domain.

For example, in a domain of the biography application (i.e., a profession), these are

all the people with that particular profession (note that in this particular case these core

entities also happen to be the instances of the domain, but that is not the case in all

applications). In a domain of the prediction justification application (i.e., a classifier),

these are the features used by the classifier.

5.3.2 Core Message Selection Algorithm (CoreMesA)

As described earlier in this chapter, each instance (for any subject domain) has a set of

associated core messages, which can then be expanded by the pipeline with domain-specific

messages. The application designer is responsible for creating an algorithm for selecting

the core messages of each instance. Generally, these will come from whatever information

the instance contains, so an important part of defining CoreMesA is defining what sort of

information we can expect an instance to contain.
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In some applications this is easy, as in Chapter 6 where we simply select the messages

corresponding to the RDF triples of the instance entity. In other cases, as in the justification

narratives of Chapter 7, it can be a complex research task: it is far from trivial to convert

the values of features which we can expect each instance to contain to meaningful messages

about the prediction.

Part of defining the core messages is defining the core STTs used by these messages,

which represent the fundamental frames or relations expressed by this application. This

can be a small manually-written set (as we have done in the justification application in

Chapter 7), or it can be a template or algorithm used to derive them from the data of a

subject domain (as we show in the RDF applications of Chapter 6). In principle, they can

also be mined from an external source similarly to how we extract domain STTs in the next

section.

5.3.3 Base Preference Score Algorithm (BasePrefA)

An optional but powerful way to increase the quality of generated texts is to define an

intrinsic base preference score for each message in the application. This score is used in

the content selection phase of the pipeline, where it augments the generic entity coherence

preference score we utilize. In the next chapter, we describe an example where the length

of the message and the number of entities that match an RDF object are combined to

approximate the likelihood that an extracted message is relevant and succinct.

If BasePrefA is not defined, we use a default formulation where the base preference

scores are 1 for core messages and −1 for domain messages. It is crucial that BasePrefA

has both positive and negative values, as explained in Section 5.5

5.3.4 Possible Discourse Relations Algorithm (DiscRelA)

While we have generic ways of inferring possible expansion and comparison between mes-

sages, temporal and contingency relations (and certain instances of the other relations as

well) are often tied to the deeper semantics of the messages. An optional way to diver-

sify the style and discourse structure of the generated text is to define possible discourse

relations between types of messages in the application.
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For example, in the RDF applications described in the next chapter, there are limited

lists of RDF predicates within each application that we can manually define potential dis-

course relations over. In the justification application described in Chapter 7, certain types

of STT combinations intrinsically entail discourse relations between them.

5.4 Preparing a New Subject Domain

Preparing a new subject domain requires the subject domain designer to provide a domain

corpus. Paraphrasal templates (as described in Chapter 2), a taxonomy (Chapter 3) and

a discourse model (Chapter 4) are extracted automatically from the corpus as described

in previous chapters, as well as a language model for realization. Domain-specific STTs,

entities and messages are automatically extracted as well.

In all three of our example GEMS applications in this thesis, we use Wikipedia as our

source for domain corpora. While it is convenient for many reasons, and we take advantage

of this convenience, there is nothing in the framework that requires the subject domain

corpus to be a Wikipedia corpus. Note, however, that the application designer can make

it a requirement that all subject domain corpora for a specific application come from a

particular source or genre, as in our RDF applications (which require the corpus to be a

Wikipedia corpus so that it matches the RDF data from DBPedia).

5.4.1 Extracting Domain STTs, Entities and Messages

The first step given a new subject domain and corpus is to extract definitional sentences. A

definitional sentence is any sentence in the corpus which contains a core entity, based on the

definition of core domain entities given by the application designer (CoreEntA). For exam-

ple, in the company descriptions application, in the hardware subject domain, definitional

sentences for the core entity Apple may include “Apple is an American multinational tech-

nology company” and “In 1984, Apple launched the Macintosh, the first personal computer

to be sold without a programming language at all”.

Each definitional sentence is templatized (as described in Chapter 2), resulting in a

template and a set of entities. The entities in each definitional sentence are registered as
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additional domain entities. For the template itself, we use the paraphrasal template mining

method described in Chapter 2 to compare it with existing STTs (both core STTs defined

in advance by the application designer and STTs previously extracted by this step). If the

template is found to be a paraphrasal template for an existing STT, it is added as a new

lexicalization for that STT. Otherwise it is registered as a new STT.

In addition, a domain message is registered with the STT and the entities found in the

definitional sentence (these messages may participate in a generated instance if the message

expansion component chooses them). This gives us the set of domain messages, Dδ, which

we will use in the generation pipeline.

5.4.2 Extracting the Domain Taxonomy

The taxonomy is extracted from an expanded Wikipedia corpus. We find entities in the

domain corpus using the approach discussed in Chapter 2 (this is a side effect of extract-

ing paraphrasal templates). Those entities are matched to Wikipedia articles, and any

Wikipedia article mentioned more than once in the domain corpus becomes a part of the

expanded corpus. We then apply our taxonomic classifier, described in Chapter 3, to all

pairs of articles in this expanded corpus to build a domain taxonomy.

The taxonomy synonyms are used in the generation pipeline for lexical choice as de-

scribed later in this chapter. In addition, the hypernyms can be used to generate taxonomic

domain messages for core entities; those may or may not be interesting, depending on the

application. In the prediction justification application we use these to define and provide

more information on the features of a classifier. In the RDF applications we leave out

these messages as they are unlikely to be useful (after all, no one needs to see a taxonomic

definition of a person or a company). If the application designer decides to use taxonomic

messages, they are created for each hyponym-hypernym pair in the extracted taxonomy

where the hyponym is a core entity. These messages use a special, fixed STT that takes

two entities of any type, and contains only a single template: “[V τ
1 ] is a type of [V τ

2 ]”. The

messages are then added to the pool of domain messages (and may or may not be selected

for generation by the pipeline).
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5.4.3 Extracting the Discourse Planning Model

A discourse planning model is extracted from the domain corpus as described in Chapter 4.

We use our discourse parser to annotate the entire corpus with discourse relations and build

the n-gram model of relations that is used by the generation pipeline in Section 5.5.

5.4.4 Extracting the Language Model

The language model used in the realization component of the pipeline is not a typical n-

gram model. We are not trying to generate words within a sentence. Instead, we have a

set of templates for each message to generate (which corresponds to a sentence or phrase in

the final text) and we want to choose one that best fits the context. For this purpose, we

define and extract three cross-sentence language models.

The first language model is a cross-sentence word pair model for pairs of words that

appear in adjacent sentences. The probability that a word w appears in a sentence if word

v appears in the previous sentence, independently of everything else, is

P (w|v) =
Count(v, w)

Count(v)

For the probability of a particular template T given a selected previous sentence S, we

take the average over all word pairs:

PLM1(T |S) =

∑
(w,v)∈{T ×S} P (w|v)

|{T × S}|

The second language model is a POS bigram pair model. It treats POS bigrams as

individual words in the first model; in other words, PLM2(T |S) is defined in the same

way as PLM1(T |S), except that w and v stand for POS bigrams (instead of words) in the

candidate template and the selected previous sentence, respectively.

The third language model is a sentence length model. Here we compute the expected

length of a sentence T given the length of the previous sentence S as

E[#T |#S] =

∑
{σi:#σi−1=#S}#σi

|{σi : #σi−1 = #S}|
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where #S is the length of sentence S in words. We then smooth this expectation estimate

using the estimates of nearby lengths:

Ẽ[#T |#S] =

∑#S+3
i=#S−3E[#T |i]

7

Based on this smoothed expectation, we define the probability of a template T given a

selected previous sentence S:

PLM3(T |S)
∆
=

1

(#T − Ẽ[#T |#S])2

This definition is not intended to have a true probabilistic interpretation, but it preserves

an order of likelihood since it increases monotonically as the length of T gets closer to the

expected values.

These three models are then used in Section 5.5 to provide rankings of all possible

templates for a message to generate.

5.5 Generation Pipeline

In this section, we describe how an NLG system created by this framework (for a particular

GEMS application and subject domain) operates. That is, we describe the process of

generating text for an instance � of subject domain δ in a GEMS application A (this

section heavily relies on the definitions in Section 5.1).

The generation pipeline is shown in Figure 5.3, side by side with a traditional NLG

pipeline showing which generation subtasks our components correspond to. The pipeline

contains four components: core message selection, subject domain message selection, dis-

course planning and realization. Each one of the components is described individually

below.

5.5.1 Core Message Selection

The core message selection component is application-dependent. Each GEMS application

contains an algorithm CoreMesA (as described in Section 5.1), written by the application
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Figure 5.3: Our framework’s generation pipeline, compared with the traditional NLG

pipeline
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designer, which maps the data of the instance into a set of core messages. Chapters 6 and 7

provide two examples of such an algorithm.

This component is conceptually similar to part of the content selection problem in

general NLG applications. In a GEMS application, because of the unique structure of a

well-defined task that can be applied to multiple subject domains, we can separate the

content selection problem into two. The first (this component) is application-dependent

and domain-agnostic (so it only needs to be defined once for each application), and handles

the skeleton or core structure of the generated text; the second (the next component),

which handles additional domain-specific content, is data-driven and does not need to be

re-defined for new applications or domains.

5.5.2 Subject Domain Message Selection

The application designer also provides an algorithm CoreEntA which determines the set of

core entities of the subject domain. From CoreEntA(δ) and the set of core messages given

by CoreMesA(�) we have the set of core entities which participate in the core messages,

E� = {e|e ∈ CoreEntA(δ), ∃m ∈ CoreMesA(�) : e ∈ Em}.

We also have the set of domain messages for the subject domain, M δ, which are prepared

(extracted from the domain corpus) ahead of time as described in Section 5.4. The set of

potential domain messages is the subset of M δ containing messages which have a core entity

in common with the selected core messages: P� = {p|p ∈ M δ, ∃e ∈ Ep : e ∈ E�}. In this

stage of the pipeline, we select a subset of P� to include in the generated text.

To select the subset of domain messages, we utilize the energy minimization framework

described by Barzilay and Lapata (2005a). They describe a formulation that allows efficient

optimization of what they call independent scores of content units and link scores among

them through the energy minimization framework. The function to minimize is:

∑
p∈S

indN (p) +
∑
p∈N

indS(p) +
∑
λ∈L

∑
pi∈S
pj∈N

linkλ(pi, pj)

where S is the subset of P� that is selected for generation, N is the subset not selected

(N = P� \ S), indS(p) is p’s intrinsic tendency to be selected, indN (p) is p’s intrinsic
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tendency to not be selected, L is the set of possible link types between messages and

linkλ(pi, pj) is the dependency score for the link of type λ between pi and pj . A globally

optimal partition of P� to S and N can be found in polynomial time by constructing a

particular kind of graph and finding a minimal cut partition (Greig et al., 1989).

We define the individual preference scores ind(p) as an average of the similarity of p

to each of the core messages in CoreMesA(�) using the Jaccard coefficient as a similarity

score:

ind(p) =

∑
m∈CoreMesA(�) J(p,m)

|CoreMesA(�)|
where

J(p,m) =
Ep ∩ Em

Ep ∪ Em

Then, we use BasePrefA(p), the base intrinsic score provided by the application designer

(see Section 5.1) to find indS(p) and indN (p):

indS(p) =


BasePrefA(p)× ind(p) if BasePrefA(p) ≥ 0

0 otherwise

indN (p) =


BasePrefA(p)

ind(p) if BasePrefA(p) < 0

0 otherwise

The intuition is that potential messages which have more in common with the core

messages are more likely to be important. BasePrefA(p) provides the base preference,

which is either positive or negative (by default, all domain messages have a negative base

preference). If all base preferences were positive, the optimization above would always

choose all available messages. With negative scores, only sets of messages which have high

link scores and/or links to positive messages are selected.

The link scores link(pi, pj) (we only use one type of link score, so the λ subscript

is unnecessary) are defined using a type similarity score. In contrast to the individual

preference scores, where we want to maximize the entity overlap with the core messages

(after all, we would not want to include messages about completely new entities with no
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link to the core of the generated text), we should not encourage the domain messages to

all share the same set of entities. Instead, we focus on a softer semantic similarity: shared

entity types. This score enhances the coherence of the generated text (for example, by

encouraging a focus on the executives of a company in a particular instance, and on its

products in another) but allows a flexible range of messages to be selected. The link score

definition is

link(pi, pj) =

∑
(ei,ej)∈{Epi×Epj } typesim(ei, ej)

|{Epi × Epj}|
where

typesim(ei, ej) =


1 if type(ei) = type(ej)

0 otherwise

and where the type of an entity type(e) is defined by the external taxonomy described in

Chapter 2 (as opposed to the domain taxonomy which we extract ourselves).

Denoting the subset of P� selected by this process as selected(P�), at the end of this

process, we have M� = CoreMesA(�) ∪ selected(P�) - the full set of messages to be

generated.

5.5.3 Discourse Planning

The discourse planning component transforms the unordered set of messages M� into an

ordered sequence of paragraphs P� = (p1, . . . , pk) where each paragraph pi is an ordered

discourse sequence pi = (m1, r1,m2, r2, . . . , rn−1,mn), where the alternating mi and ri are

messages and discourse relations, respectively.

First, we calculate the semantic similarity of each pair of messages in M� as follows:

sim(mi,mj) = cos(Vψmi ,Vψmj )link(mi,mj)

where ψmi is the pseudo-sentence of message mi, constructed by concatenating all of its tem-

plates; Vψmi is the vector representing ψmi , constructed via Equation 2.1; and link(mi,mj)

is defined as in the previous component. Essentially, this is a combination of the entity

type-based semantic similarity and the distributional similarity of the lexicalizations.



CHAPTER 5. GENERATION FRAMEWORK 107

We use single-linkage agglomerative clustering (with a stopping criteria of sim(mi,mj) ≤

0.05) to group the messages into semantic groups of messages that are similar in topic.

Then, for each semantic group, we build a Multigraph of Possible Relations (MPR) as

described in Chapter 4. In this thesis, we use the four class-level discourse relations for

the PDTB: expansion, comparison, contingency and temporal. To build the MPR, we use

the application-specific DiscRelA mapping function provided by the application designer,

as well as the following global rules:

1. If τmi = τmj and Emi ∩ Emj = ∅ (that is, the STTs of mi and mj are the same

but they have no entities in common) then there is a potential comparison relation

between them

2. If J(mi,mj) ≥ 0.5 then there is a potential expansion relation between them

3. All messages have a potential norel relation between them

Once the MPR is built, we use the discourse model extracted from the domain corpus

in Section 5.4 to generate a discourse sequence as described in Chapter 4. However, in

contrast to the evaluation in Chapter 4 where we focused only on discourse coherence, here

we want to utilize entity coherence in addition to discourse sequence coherence. We augment

the probabilities coming from the discourse n-gram model P δD(ri|Ri−1), where Ri−1 is the

sequence of relations chosen so far, with the entity coherence score J(mi,mi−1), so that the

probability of each edge in the graph is given by

P (ri|Ri−1,mi,mi−1) = P δD(ri|Ri−1)J(mi,mi−1)

The discourse sequence is created stochastically from the MPR using these probabilities.

Then, we break the discourse sequence into paragraphs that do not contain norel relations.

Concatenating all of the paragraphs built from the discourse sequences of all semantic

groups, we have an unordered set of paragraphs P�, where each pi is an ordered discourse

sequence of messages and relations.

To order the paragraphs, we use the following importance score:



CHAPTER 5. GENERATION FRAMEWORK 108

imp(pi) =

∑
m∈pi |{e|e ∈ E

m, e ∈ CoreEntA(δ)}|BasePrefA(m)

|pi|

which is the average number of core entities in a message of pi, weighted by the optional

base preference score BasePrefA(m). The paragraphs are then sorted in decreasing order

using this score, so that the paragraphs containing the most important messages tend to

appear earlier in the text.

5.5.4 Realization

At this stage, we have the ordered set of paragraphs P� to be realized. Recall that each para-

graph pi is an ordered set of messages and discourse relations, (m1, r1,m2, r2, . . . , rn−1,mn).

To generate a paragraph, we iterate through the messages and make three decisions for each:

1. Select a template to use for realizing the message

2. Make lexical choice changes

3. Select a discourse connective, or choose not to use one, for each discourse relation

(this is done for the relation preceding the message, so it does not apply to the first

message in the sequence)

5.5.4.1 Template Selection

Selecting a template is done using the three language models prepared ahead of time, as

described in Section 5.4. We build a ranker from each one of the models, and choose the

template (lexicalization) from {l ∈ Lτmi} that maximizes the the sum of ranks given the

previously realized sentence (in the paragraph) s:

l̂ = argmax
l∈Lτmi

(
rank

(
PLM1(l|s)

)
+ rank

(
PLM2(l|s)

)
+ rank

(
PLM3(l|s)

))
Once the template is chosen, we fill the slots with the entities Emi to transform it into

a sentence.
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5.5.4.2 Lexical Choice

At this stage, we have a sentence that was created from a template. The template has a

fixed set of words, which we may want to change in some cases - specifically when they

seem to fit the context more smoothly than the original choices.

We iterate through every n-gram (for n ≤ 4) g in the sentence, in order, and find its

synonyms in the domain taxonomy (extracted as described in Section 5.4). We now have

the set G = g ∪ synonyms(g), which are the possible lexical choices for g. We choose the

lexicalization as:

ĝ = argmax
g̃∈G

cos(Vg̃,Vcontext(g))η

where Vg̃ is the vector of n-gram g̃ constructed using Equation 2.1, and context(g) is an

n-gram containing the 5 tokens to the left and right of g in the original sentence (that is,

regardless of any lexical choices already made). η is a tuned parameter intended to make it

harder for alternative lexical choices to be made. η = 1 for g, and we set it to 0.75 for all

members of synonyms(g).

Note that for the vast majority of n-grams in any sentence, synonyms(g) is empty and

this process is trivial since there are no choices other than the original g.

5.5.4.3 Discourse Connectives

At this point we have the final lexical form of the message, and the last task is to link it

with the previous sentence. We have a set of discourse connective templates for each one

of the 4 class-level PDTB relations (Table 5.2 shows the list of connective templates), and

we know the relation between the message and the previous message. We randomly select

a connective, with a 50% chance of having no connective and a uniform distribution among

the connectives for the relation, with the following modifications:

• If the two sentences together are larger than 40 words, connective templates that do

not include a sentence boundary have a 0% chance of being selected (to avoid long,

cumbersome sentences)
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Relation Connective templates Relation Connective templates

Expansion mi and mj Contingency Because mi, mj

mi. Additionally, mj Since mi, mj

mi. Also, mj mi, so mj

mi. Besides, mj mi, so that mj

mi. Furthermore, mj mi, therefore mj

mi. In addition, mj mi, thus mj

mi. Moreover, mj mi, which means that mj

Comparison mi. In comparison, mj Temporal mi. Afterwards, mj

mi. In contrast, mj mi. Eventually, mj

mi. However, mj mi. Finally, mj

mi. In turn, mj mi. Then, mj

Although mi, mj mi. Later, mj

While mi, mj mi. Next, mj

Whereas mi, mj mi. Subsequently, mj

Table 5.2: Discourse connective templates for each discourse relation.
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• A connective that has already been chosen in the paragraph gets half the chance

of being chosen again, and this effect is cumulative (to avoid repetitive connective

choices)

• The chance that no connective will be chosen is increased by an additional 10% if a

connective was chosen for the relation immediately preceding this one, and this effect

is cumulative (so long chains of sentences with connectives in between them is less

likely)

At the end of this step, all paragraphs are generated with fully lexicalized sentences and

discourse connectives.

5.6 Conclusion

In this chapter, we introduced and defined a family of generation applications called Gener-

ation Endeavors with Modular Subjects (GEMS). We described a framework that leverages

the unique structure of these applications to allow automatic creation of domain-adapted

hybrid C2T-T2T generation systems for new subject domains if a few abstract functions

are defined by an application designer, once per application. This framework drastically

reduces the amount of manual work required in building general generation systems.

Our framework consists of three very different life-cycle parts: the definition of the ap-

plication by an application designer, the adaptation of the application to a new domain,

and the generation of an instance by an adapted application. In virtually all previous

approaches, the first two parts are unified into one: the building of the generation sys-

tem. Because of this lack of separation, generation systems exist on a range between very

general-purpose systems that are very repetitive (because they do not contain the nuances

of different domains), and domain-specific systems that need to be rebuilt for each new

domain. In our framework, the bottlenecks which exist in creating generation systems for

new domains are confined to the second part, leaving the first part (which requires the

work of a human application designer) relatively small and well-defined. We then use the

approaches we described earlier in the thesis to solve the bottlenecks of the second part in

an automated, data-driven way.
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The framework relies on the data-driven methods we introduced in the first part of the

thesis, and should be viewed as one example of how they can be used to solve bottlenecks

in NLG. That said, those methods do not exist specifically for this framework and can be

used in many other ways by other generation systems and frameworks.

In the following two chapters we will describe three examples of GEMS applications and

evaluate their output as produced by this framework for multiple subject domains.
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Chapter 6

Semantic Web Applications and

Evaluation

In this chapter, we introduce two examples of GEMS applications that generate descriptions

from semantic web data: biography and company description. We describe the algorithms

that define these applications and adapt each to two subject domains. We then show

examples of text generated for each subject domain in each applications, and use the four

scenarios to evaluate our framework and its components in a human study.

The two GEMS applications described in this chapter can be said to belong to a sub-

family of GEMS: applications which generate descriptions of entities based on RDF (Re-

source Description Framework) data. This special family allows even greater automation of

the system creation process than that described in the previous chapter. Specifically, the

mapping functions CoreEntA, CoreMesA and BasePrefA can be defined abstractly for this

entire family.

6.1 General RDF Applications Definitions

Before we go into the definition of an RDF application, we shall introduce RDF itself. RDF

is a framework for organizing data which revolves around the concept of triples. Each triple

contains a subject, a predicate and an object. In this chapter, we will use the notation st, pt

and ot to denote the subject, predicate and object of triple t, respectively. In this chapter,
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we use DBPedia (Auer et al., 2007) as our source of RDF data.

Each RDF application is defined by a core entity type ηA, and a domain-differentiating

predicate πA. For the biography application, ηB = person and πB = occupation, and for

the company description application ηC = company and πC = industry. Intuitively, ηA

represents the type of entities that can be instances of the application (and that we can use

this application to generate a description about), and πA is the predicate which governs

the separation of entities of type ηA into different subject domains within the application.

Each subject domain δ is defined by a type σδ which corresponds to a possible object of

predicate πA. For example, in the biography application, possible σδ’s are occupations such

as politician, scientist and athlete. Each instance in a domain of an RDF application (for

example, “Barack Obama” in the politician domain of the biography application) is defined

by an entity e� (recall that we use � as the symbol for an instance), where type(e�) = ηA

and there exists a triple t such that the predicate pt = πA, the subject st = e� and the

object ot = σδ.

The sets of RDF triples for an application A, a subject domain δ and an instance � are

defined, respectively, as:

• RDF triples for application A: TA = {t|type(st) = ηA}

• RDF triples for subject domain δA: T δ = {t|t ∈ TA,∃t̃ ∈ TA : st̃ = st, pt̃ = πA, ot̃ =

σδ}

• RDF triples for instance �: T� = {t|t ∈ T δ, st = e�}

Now, using these definitions, we can abstractly define three of the four functions in ΦA

for all RDF applications.

CoreEntA, the function which defines the core entities of each subject domain, is defined

as CoreEntA(δ) = {e|∃t ∈ T δ : e = st}. In other words, all entities which are subjects in

at least one triple of the subject domain triple set T δ. Based on the definition of T δ,

the core entities in the subject domain are then all entities which satisfy the application

type requirements (e.g., being a person in the biography application) as well as the domain

predicate argument requirement (e.g., being a scientist in the scientists subject domain).
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CoreMesA, the function which defines the core messages of each instance, is defined as

CoreMesA(�) = {rdfmessage(t)|t ∈ T�}. That is, for each instance, we produce one core

message from each RDF triple that has the instance’s entity as the subject.

To create a message from an RDF triple, we first match it to an STT based on the

predicate. Each predicate that participates in T δ becomes an STT τ with two entity types

(the type of the core entity and the type of the object) in V τ ; a single relation between the

two types (the predicate) in Rτ ; and a set of simple initial templates in Lτ :

• The (PREDICATE) of [vτ1 ] is [vτ2 ]

• [vτ1 ] ’s (PREDICATE) is [vτ2 ]

where (PREDICATE) is replaced with the relevant predicate. Additional templates are

then found using paraphrasal template mining as described in the previous chapter. We

also create plural versions for cases where vτ2 is a list of entities.

For example, in the biography domain, we create an STT τ for the birthDate pred-

icate with V τ = {person, date}; Rτ = {vτ1 birthDate vτ2}; and an initial template set

Lτ = {“The birth date of [vτ1 ] is [vτ2 ]”, “[vτ1 ]’s birth date is [vτ2 ]”}. In the preparation stage

described in the previous chapter Lτ may be expanded with paraphrasal templates found

in the corpus, for example “[vτ1 ] was born in [vτ2 ]”.

We then create a message that contains the relevant predicate STT and the entities

in the triple. In case there are multiple triples with the same subject and predicate but

different objects, we create a single message out of them with a plural version of the STT

and define the second entity as the list of all objects.

BasePrefA defines the base preference score of each message. We define the preference

score of any core message as 1, and the preference score of domain messages as follows. Let

Mµ be the set of entities in message µ that are matched by at least one triple in T δ. That

is, if the definitional sentence the message was extracted from contains a subject-object

pair that exists in any triple in T δ, both the subject and the object will be members of

Mµ. Another way of saying this is that Mµ consists of the subset of Eµ whose members

participate in any relation in Rτ
µ
. Then, we define the preference score as:
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BasePrefA(µ) =


|Rτµ | if Mµ = Eµ

−|Eµ \Mµ|#L
τµ

10 otherwise

where #Lτ
µ

is the average length in words of the templates of the STT τµ. This definition

results in a positive preference for any message where all entities participate in a relation,

whose weight is the number of relations it covers (note that the score of 1 for core messages

falls out of this equation, since they represent a single triple by definition); conversely,

messages which have entities that do not participate in a relation (unaccounted entities) have

a negative preference score which increases in magnitude with the number of unaccounted

entities and with the length of the templates realizing them. The intuition is that a long

message containing many entities that match no triples is unlikely to be relevant.

In our experiments in this chapter, we extract the domain corpus for each subject domain

by collecting the Wikipedia articles of all core entities for that subject domain, which further

automates the process. However, there is nothing about RDF applications that requires the

corpus to be collected in this way.

6.2 Specific Application Definitions and Subject Domains

In this section we provide descriptions of the two RDF applications we are concerned with

in this chapter, as well as the specific definitions not covered in the previous section. In

addition, we introduce two subject domains for each application, which we will use to

generate the texts used in the evaluation later in this chapter. We provide an example of

generated text for each subject domain in the next section.

6.2.1 Biography

The biography application is aimed at generating descriptions of the life, accomplishments

and significance of noted individuals. Because of the focus on accomplishments, the subject

domains are separated by occupation. Generated biographies can (and should) look quite

different for different occupations. The two subject domains we picked to illustrate this

application are politicians and models.
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We refer to the biography application as B. The basic definitions of this RDF application

are:

• ηB = person

• πB = occupation (∆B = {politician,model, scientist, athlete...})

We also define DiscRelB, the function that determines possible discourse relations be-

tween messages, using some of the more common predicate pairs in the RDF triples of this

application. Table 6.1 shows the possible discourse relations between the predicate pairs.

DiscRelB(mi,mj) contains all discourse relations shown in Table 6.1 between the predicate

corresponding to τmi and the predicate corresponding to τmj if both mi and mj are core

messages (which are always created from a single predicate), and {norel} otherwise.

Predicate pair Possible discourse relations

birthDate, deathDate temporal

birthPlace, residence temporal, comparison

birthPlace, deathPlace temporal, comparison

deathPlace, restingPlace temporal, comparison

birthPlace, nationality contingency

birthPlace, citizenship contingency

ethnicity, religion contingency

predecessor, successor temporal, comparison

influencer, influenced temporal

doctoralAdvisor, doctoralStudent temporal

Table 6.1: Possible discourse relations between common predicates of the biography appli-

cation

6.2.2 Company Descriptions

The company descriptions application is aimed at generating descriptions of companies and

their history, products, key executives, etc. The subject domains are separated by industry.
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The two subject domains we picked to illustrate this application are the automotive and

video game industries.

We refer to the company descriptions application as C. The basic definitions of this

RDF application are:

• ηC = company

• πC = industry (∆C = {automotive, videogame, bank, film...})

We also define DiscRelC , the function that determines possible discourse relations be-

tween messages, in the same way we did for the biography application - using some of the

more common predicate pairs in the RDF triples of this application. Table 6.2 shows the

possible discourse relations between the predicate pairs.

Predicate pair Possible discourse relations

foundationPlace, location temporal

division, owner comparison

division, parentCompany comparison

subsidiary, owner comparison

subsidiary, parentCompany comparison

founder, owner comparison

revenue, netIncome comparison

revenue, operatingIncome comparison

netIncome, operatingIncome comparison

foundingDate, extinctionDate temporal, comparison

Table 6.2: Possible discourse relations between common predicates of the biography appli-

cation

6.3 Examples

In this section, we present four examples of generated texts, one from each application and

domain. The examples are:
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1. Figure 6.1, showing a biography of a model, Candice Bergen.

2. Figure 6.3, showing a biography of a politician, Vicente Fox.

3. Figure 6.4, showing a company description of an automotive company, Lexus.

4. Figure 6.5, showing a company description of a video games company, Sega.

To show how different components contributed to the generated text, we mark sentences

which were generated from extracted (T2T) domain messages in bold, and sentences which

were generated from core messages but used an extracted paraphrasal template in italics.

Sentences in unmarked typeface are those that were generated from core messages using one

of the default templates. Underlined terms are those that were inserted by lexical choice

(and replace some other, original term).

For ease of analysis, we put endlines between sentences of the same paragraphs (so each

sentence starts on a new line) and an empty line between paragraphs. Each sentence is

marked with a number to make discussion simpler.

The first example in Figure 6.1, a biography of the model Candice Bergen, is a relatively

short one (and therefore easy to follow) and contains many of the phenomena we want to

discuss. First, note the topical divisions of sentences into paragraphs: recall from Chap-

ter 5 that paragraph boundaries are created by a combination of distributional and type

dissimilarity, in addition to where no discourse relations are available. This particular text

is too short for the discourse model to have a significant effect on intra-paragraph ordering

(we will discuss it with the following examples), but it does create the separation of the first

and second paragraph (because there is no possible discourse relation between sentence 2

and 3 in this case, although perhaps there should be).

Next, note the paraphrasal templates used for the core messages in sentences 1 and 2.

Without the extracted templates, these sentences would have been realized by C2T as “the

birth name of Candice Bergen is ‘Candice Patricia Bergen’ ” and “the birth place of Candice

Bergen is Beverly Hills, California”, so clearly the extracted templates make the text better,

and the realization language model accurately selects them in this case. Sentence 4 is based

on a domain message, and extracted as-is from the domain corpus. This is an example

of the hybrid (C2T - T2T) nature of our approach. The other sentences are default core
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1. Candice Bergen began life as “Candice Patricia Bergen”.

2. Candice Bergen was born and raised in Beverly Hills, California.

3. The birth date of Candice Bergen is 1946-05-09.

4. Candice Bergen started her acting with advertisements in 1965.

5. The parents of Candice Bergen are Frances Bergen and Edgar Bergen.

6. The alma mater of Candice Bergen is University of Pennsylvania.

7. Candice Bergen’s occupation is Model.

Figure 6.1: Sample generated text for the biography application in the model domain.

message realizations. We think that the addition of the templates and extracted sentences

make these appear more natural (imagine the alternative - 6 sentences all using the same

two default templates in a sequence).

One problem that is immediately visible in this example (and will be seen again in the

other examples), and that is clearly a weakness of our approach, is the repetition of proper

nouns due to the lack of pronouns and aggregation (although our approach does have a form

of aggregation through certain discourse connectives, it does not take care of the proper

noun repetition problem). Almost every sentence in our generated texts contains the name

of the main entity explicitly. This is something that we think should be handled in a post-

processing step, and will be a relatively low-hanging fruit for improving the quality of the

generated texts in future work. For example, Figure 6.2 shows the same Candice Bergen

text with a rule for pronoun addition: the full name of the entity is used in the first sentence

of each paragraph, and is replaced with a pronoun for all other sentences in the paragraph.

While not perfect, even this simple heuristic enhances the readability of the text. The

evaluations in this chapter, however, were done without any sort of post-processing.

The second example, the biography of Vicente Fox in Figure 6.3, is twice as long as

the first one. It contains both more core messages and more extracted domain messages.

Because of its length (and in particular, the length of its main paragraph), discourse plan-
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1. Candice Bergen began life as “Candice Patricia Bergen”.

2. She was born and raised in Beverly Hills, California.

3. The birth date of Candice Bergen is 1946-05-09.

4. She started her acting with advertisements in 1965.

5. The parents of Candice Bergen are Frances Bergen and Edgar Bergen.

6. The alma mater of Candice Bergen is University of Pennsylvania.

7. Her occupation is Model.

Figure 6.2: The same biography, model sample with pronouns added.

ning plays a more central part. The paragraphs are still topical: the first (short) one about

his birth, the second single-sentence paragraph about his successors (and perhaps this one

should not have been separated out from the next one). The third, main paragraph is

about his background and political career, and the fourth is about his marriages. Look-

ing more closely into the third paragraph, the ordering is not perfect but there is some

reasonable order. For example, sentences 4 through 6 are about his background, while sen-

tences 7 through 10 are about his political career. The two domain messages (sentences 9

and 10) complement the general information of the core messages (7-8) with more detailed

information. The same thing happens in the last paragraph, with the domain messages

11-12 and the core message 13. Two of the discourse relations in this example are realized

with connectives: the expansion between the messages of sentences 9 and 10 (realized with

“moreover”), and the expansion between the two messages aggregated together as sentence

5 (realized with “and”). The other relations in the text (all expansions, in this case) were

realized as implicit relations, without connectives.

One problem that can be seen in this example is the repetition of information in the

first paragraph: the second sentence was extracted from the corpus, while the first sentence

comes from the RDF triples. They contain (partially) the same information, but they were

not matched as paraphrases because they do not contain the exact same entities. We leave
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1. Vicente Fox’s birth places are San Francisco del Rincón and Guanajuato.

2. Vicente Fox was born in Guanajuato on July 2, 1942, the second of nine

children.

3. The successors of Vicente Fox are Ramón Mart́ın Huerta and Felipe Calderón.

4. The occupations of Vicente Fox are Politician and Businessperson.

5. The birth date of Vicente Fox is 1942-07-02, and Vicente Fox’s religion is Catholic

Church.

6. Vicente Fox’s alma maters are Harvard Business School and Universidad Iberoameri-

cana.

7. The party of Vicente Fox is National Action Party.

8. Vicente Fox’s offices are (alongside Pier Ferdinando Casini), Governor of Guanajuato

and Co-President of Centrist Democrat International.

9. On July 7, 1997, Vicente Fox decided to run for President of Mexico.

10. Moreover, during his campaign for president, Vicente Fox became well

known for his unique cowboy style and popular charisma.

11. Vicente Fox married a receptionist at Coca-Cola, Lilian de la Con-

cha.

12. Vicente Fox married for the second time while in office as President.

13. The spouse of Vicente Fox is Marta Sahagún.

Figure 6.3: Sample generated text for the biography application in the politician domain.
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solving issues like this to future work.

The next example, in Figure 6.4, is the first company description example, and much

longer than the first two. It contains a description of the automotive company Lexus. Here,

the number of extracted domain messages is vastly larger, and the large paragraphs are

mainly composed of those (including two paragraphs that are completely made of domain

messages). The paragraphs are visibly less well-composed here, as size increases complexity,

but there is still reasonable order. The fourth paragraph (sentences 4-7) is mostly about

the founding of the company; the one following that (8-9) is about the product naming

scheme; the next one (10-17) mostly about background and history, while the last one (18-

23) contains background as well but has local foci on operations and on hybrid vehicles.

Obviously, some sentences could be better located: sentence 11, for example, should be part

of the fourth paragraph (4-7); sentences 12 and 15 should possibly also be moved to the end

of that paragraph. Sentence 16 should be moved to the last paragraph, next to the others

dealing with hybrid vehicles. Also, note the lexical choice injections in sentence 7 (where

marque was chosen to replace the original synonym brand) and 22 (where cars was chosen

to replace vehicles) .

Finally, the last example is shown in Figure 6.5, with a description of the video games

producer Sega. This is another long text with many domain messages. There are a few

interesting things in this description. First, note the comparison relation, marked with

the discourse connective in comparison, in sentence 4: while there are few non-expansion

relations in our chosen examples (and as we discuss in Chapter 4, expansion relations

generally dominate Wikipedia), they do exist and are not always marked with an explicit

connective. It is important to remember that although discourse connectives are not always

used, the discourse model relies on discourse relations to determine ordering - these are just

not always visible in the text.

Second, note the paraphrasal template in sentence 6. It is used to generate the relation

foundingYear, but is not exactly correct: Sega was not formed as a mobile game development

company. If we could remove the adjective mobile, it would be perfectly correct. This is an

interesting direction for future work. Of course, errors like this are inevitable when using a

statistical method for paraphrasing - but this example highlights the importance of using a
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1. The product of Lexus is Luxury vehicle.

2. Lexus’ homepage is http://www.lexus-int.com/.

3. Lexus is headquartered in Nagoya, Japan.

4. The founding year of Lexus is 1989.

5. That same year, Lexus also became one of the first marques to debut a certified pre-owned

program, with the aim of improving trade-in model values.

6. Despite being an upstart, Lexus established instant customer loyalty and its debut was

generally regarded as a major shock to the pedigree luxury marques.

7. They also represent their Lexus marque in other sports car racing categories.

8. Lexus production models are named alphanumerically using two-letter designations fol-

lowed by three digits.

9. The first letter indicates relative status in the Lexus model range, and the second letter

refers to car body style or type.

10. Lexus’ key persons are General manager, Chief executive officer and Vice president.

11. Lexus is founded by Eiji Toyoda.

12. From its inception, Lexus has been advertised to luxury consumers using specific mar-

keting strategies, with a consistent motif used for the brand’s advertisements.

13. In industry ratings of build quality, owner satisfaction, and reliability, Lexus vehicles

have outperformed other manufacturers in successive years.

14. Lexus produces its highest-performance models under its F brand division.

15. The launch of Lexus was heralded by a multimillion dollar advertising campaign in both

television and print media.

16. Continuously variable transmissions, regenerative brakes, and electric motors have been

used on all Lexus hybrid models.

17. Other officially sanctioned regional distributors have sold Lexus models prior to the

launch of, or in absence of, a dedicated dealership network.

18. Financial data of Lexus operations are not disclosed publicly.

19. Lexus sales operations vary in structure by region.

20. Lexus models sold in Japan featured higher specifications and a price premium compared

with their discontinued Toyota counterparts.

21. By the mid-1990s, Infiniti was lagging behind Lexus and Acura in sales.

22. Toyota is also pushing hybrid cars in the US such as the Prius, Camry Hybrid, Highlander

Hybrid, and various Lexus products.

23. It labeled such technology in Toyota cars as “Hybrid Synergy Drive” and in Lexus

versions as “Lexus Hybrid Drive”.

Figure 6.4: Sample generated text for the company descriptions application in the automo-

tive domain.
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1. Sega’s key persons are Yu Suzuki and David Rosen.

2. Sega’s homepages are http://www.sega.co.jp/, http://www.sega.co.uk/, http://www.sega.com/ and

http://www.playsega.com/.

3. Sega’s net income is 41,500,000,000 JPY.

4. In comparison, Sega’s revenue is 396,700,000,000 JPY.

5. In addition, Sega has around 2208 employees.

6. Sega was founded in 1940 as a mobile game development and publishing company.

7. But it surely is the best segment in Sega from an investors point of view as the profitability

is still much higher than that of the general market.

8. Sega has had a long history of different slogans and ad campaigns.

9. The location country of Sega is Japan.

10. Their strategy was to make the hardware reject any cartridge that did not include a Sega

trademark.

11. If an unlicensed company included this trademark in their game, Sega could sue the

company for trademark infringement.

12. Sega is closing and reopening facilities on an ongoing basis using a scrap and rebuild

strategy.

13. The location city of Sega is Ōta, Tokyo.

14. Sega’s Consumer Business segment is producing and distributing games for consoles and

pc.

15. In addition, Sega has also been publishing games from independent studios, and is currently

considering turning them into franchises.

16. They were both very involved in the arcade business, and Sega’s fame also comes from

their console systems.

17. With the merger, Sega reabsorbed its second party studios and began to reorganize them.

18. The foundation places of Sega are United States and Honolulu.

19. The shift to software development affected Sega’s Australian operations.

20. Someone yelling “SEGA!”.

21. Do me a favor, plug me into a Sega.

22. Sega does what Nintendo won’t!

23. The latter was canceled for undisclosed reasons by Sega.

24. To be this good takes AGES, To be this good takes SEGA.

25. These have been the cornerstone of an internal shift within Sega to appeal to a more

Oriental and Western audience.

Figure 6.5: Sample generated text for the company descriptions application in the video

games domain.
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domain-specific corpus. If we had extracted paraphrasal templates from a general company

corpus, we would likely get many more such errors and they would be further from the

truth (“Sega was founded in 1940 as a chain of pizza restaurants”). Similar problems would

occur if we had trained our discourse model or taxonomy on a more general corpus.

Another interesting phenomenon in this text is the last paragraph. This consists mostly

of extracted domain messages that are actually slogans used by Sega. It so happens that

the Wikipedia article about Sega, which is part of the domain corpus, contains a long

discussion about its advertising strategy and slogans. These slogans often contain the name

Sega, which identifies them as being about the core entity and makes them candidate domain

messages; they tend to not include other entities and to be very short, which increases their

base preference score and makes them more likely to be selected; and they are similar in the

vector space which helps clustering them in a single paragraph. If we could move sentence

8 to this paragraph, it could become a very interesting and relevant one. As it is, it likely

makes little sense to most readers.

6.4 Evaluation

To evaluate our RDF applications we conducted a crowd-sourced human experiment. We

picked 100 instances from each subject domain of each application, for a total of 400 (we

picked the instances that had the most RDF triples in each subject domain). Then, we

generated 5 versions for each instance:

1. A full-system version

2. A version that excludes the paraphrasal template mining component (so core messages

only had the two manually-created templates, and domain messages only had a single

template each)

3. A version that excludes the taxonomy (so there was no lexical choice, and we always

used the original lexicalization of the template)

4. A version that excludes the discourse model (so discourse planning was done using

only entity coherence scores)
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5. A baseline version that is fully C2T instead of hybrid (i.e., only core messages were

generated, without any extracted domain messages) and excludes the above three

components

Using these 5 versions, we devised 9 questions for each instance. 5 questions where the

annotator sees a single generated text (one from each version), and is asked to rate it along

several criteria (see below); and 4 questions where the annotator sees two generated texts

about the same instance (one is the full system version, and the other is one of the other

four versions) and is asked which is better, again along several criteria. The questions were

presented in random order, the systems were anonymized and each question was presented to

three annotators. For the four comparison questions, we used the majority vote (and threw

out results where there was total disagreement between the annotators, which happened

12% of the time for the baseline version, and 17− 21% of the time for the other variants).

For the five rating questions, we used the average but ignored ratings which were more than

1 point away from both other ratings for the text (we would completely throw out results

where that was true for all ratings, i.e. 1-3-5, but that never occurred in practice). This

is in the spirit of the typical approach for binary crowd-sourced evaluations, where three

annotators answer the same question and the majority answer is used where disagreement

occurs, effectively throwing away the minority answer. This mechanism is designed to

filter out noisy answers by annotators who are gaming the task or otherwise not earnestly

answering the question, which is unfortunately always a risk with crowd-sourcing.

The purpose of this evaluation is to show that each of the three data-driven methods

described in the first part of this thesis have a positive affect on text generated for an instance

in a new subject domain, where adaptation to a new domain is completely automated (in

part, by using those three methods). The baseline system is intended to show that beyond

the contribution of our data-driven methods, the general approach of hybrid C2T-T2T

generation embedded in the framework we proposed in the previous section is a useful way

to generate text in previously unseen domains.

At each question, we asked the annotators to rate (or rank) the text (or pair of texts

from two versions) along four criteria:
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1. The content of the text, i.e. the information it contains and how relevant it is for

understanding the topic

2. The ordering of the text, i.e. how well are sentences and paragraphs positioned with

respect to one another (we specifically mentioned two sub-criteria here: more impor-

tant sentences and paragraphs should in general appear earlier, and sentences that

are related to each other should tend to appear together)

3. The style of the text, i.e. how close (or far) it is to a well-written description by a

human

4. The overall satisfiability of the text, i.e. how happy are you in general with this text

as a description of the person/company in question (we told the annotators that this

does not necessarily have to be directly related to the other criteria)

We show the results of the comparison experiment (where we presented the annotators

with two texts and asked them to tell us their preference along the criteria) in Table 6.3. The

results in this table are for both applications and all four subject domains. Each comparison

(e.g., “No Hybrid VS Full System” shows the breakdown of preference by annotators when

they were shown texts generated by the two variants: how many (in percentage) preferred

the baseline system (e.g. No Hybrid), how many preferred the full system, and how many

thought they were equal. We also show the winning difference between the two systems,

i.e. those who thought that the full system was better than the baseline minus those

who thought the opposite, and we measure statistical significance on these differences.

Statistically significant results are marked with a dagger.

Table 6.4 shows the breakdown of the overall criteria results into the different applica-

tions and domains. Note that it does not contain values for the No Taxonomy variant of the

system for the biography domains. We did not use this system for evaluating biographies

because in the biography domains, the generated taxonomies are very small and contain

less than 10 synonyms each. The No Taxonomy variant, therefore, produces text that is

virtually identical to that of the full system variant. We believe the reason for this drastic

difference between the applications (the taxonomies of the company description application,

in contrast, contain over a hundred synonyms each) is the way we create an expanded corpus
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Preference Content Ordering Style Overall

No Hybrid 20% 27% 24% 22%

No Hybrid Equal 14% 11% 20% 14%

VS Full System Full System 66% 62% 56% 64%

Full - baseline win diff. 46% † 35% † 32% † 42% †

No Paraphrases 29% 33% 29% 30%

No Paraphrases Equal 31% 26% 28% 27%

VS Full System Full System 40% 41% 43% 43%

Full - baseline win diff. 11% † 8% † 14% † 13% †

No Taxonomy 29% 34% 36% 34%

No Taxonomy Equal 37% 29% 29% 27%

VS Full System Full System 34% 37% 35% 39%

Full - baseline win diff. 5% 3% -1% 5%

No Discourse Model 33% 34% 32% 34%

No Discourse Model Equal 30% 22% 26% 23%

VS Full System Full System 37% 44% 42% 43%

Full - baseline win diff. 4% 10% † 10% 9% †

Table 6.3: Preferences, with different criteria, given by the human annotators when pre-

sented with two versions - the full system VS each of the baseline versions. Statistically

significant winning differences are marked with a dagger.
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to extract the taxonomy from. Recall (from Chapter 5) that we extract the taxonomy from

a corpus of Wikipedia articles that contains all articles which are mentioned at least twice

in the domain corpus, which often means they are mentioned in two different documents of

the corpus (in our experiments, these documents are themselves Wikipedia articles). From

an informal review of the articles composing those corpora, we believe the difference is that

what people (the core entities of the biography application) of the same profession have in

common, at least when they are described in the domain corpus, are entities: specific places,

institutions, and other people, while companies tend to have in common types of entities

such as the type of their products (e.g. cars) and the titles of their executives (e.g. CEO),

and concepts such as brand, headquarters and division. Specific entities tend to have less

synonyms than types and concepts, and they are less likely to appear twice within a corpus,

which is why we get a smaller taxonomy for biography domains. Obviously biographies also

contain, at least conceptually, types (university, city, family member...) and concepts; it is

just that they are not usually mentioned explicitly in the text. We think that is because

those concepts tend to be more obvious to the reader. For example, text about a company

will mention its product name but also the type of the product (not all companies make

the same product); text about a person will mention the university he graduated from but

not necessarily the fact that it is a university (because it is obvious).

The results of the ratings experiment (where we presented the annotators with a single

text and asked them to rate it along the criteria) are shown in Table 6.5. As with the

previous experiment, these results are for both applications and all four subject domains,

and we show the breakdown of the overall results into the different applications and domains

in Table 6.6. Ratings for baseline systems which are statistically significant with respect to

the full system ratings are marked with a dagger.

6.4.1 Discussion

The most striking result of Table 6.3 is that the full system is overwhelmingly favored by

annotators over the non-hybrid baseline, with a 32% − 46% lead in all categories. This

result, more than anything, shows the value of our framework and the hybrid approach.

The full system was particularly better than this baseline in content, which is generally
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Biography Company Desc.

Auto- Video

Preference Politician Model motive Games Total

No Hybrid No Hybrid 29% 27% 16% 18% 22%

VS Equal 23% 15% 7% 11% 14%

Full System Full 48% 58% 77% 71% 64%

Full - baseline win diff. 19% † 31% † 61% † 53% † 42% †

No No Paraphrases 31% 29% 29% 31% 30%

Paraphrases Equal 29% 30% 25% 26% 27%

VS Full 40% 41% 46% 43% 43%

Full System Full - baseline win diff. 9% 12% 17% † 12% † 13% †

No No Taxonomy – – 39% 29% 34%

Taxonomy Equal – – 26% 29% 27%

VS Full – – 35% 42% 39%

Full System Full - baseline win diff. – – -4% 13% 5%

No No Discourse Model 36% 31% 37% 32% 34%

Discourse Equal 21% 27% 22% 24% 23%

Model VS Full 43% 42% 41% 44% 43%

Full System Full - baseline win diff. 7% 11% 4% 12% 9% †

Table 6.4: Overall preferences, for each application and subject domain, given by the human

annotators when presented with two versions - the full system VS each of the baseline

versions. Statistically significant winning differences are marked with a dagger.
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Content Ordering Style Overall

No Hybrid 3.46 † 3.19 † 3.29 † 3.3 †

No Paraphrases 3.59 3.19 3.33 3.38

No Taxonomy 3.6 3.29 3.46 3.46

No Discourse Model 3.58 3.14 3.34 3.38

Full 3.59 3.24 3.34 3.4

Table 6.5: Overall ratings, with different criteria, given by the human annotators to each

version of the generation system. Ratings which are significantly different when compared

to those of the full system are marked with a dagger.

Biography Company Description

Politician Model Automotive Video Games Total

No Hybrid 3.11 3.27 3.48 3.33 3.3 †

No Paraphrases 3.15 3.34 3.54 3.5 3.38

No Taxonomy – – 3.46 3.45 3.46

No Discourse Model 3.17 3.3 3.53 3.51 3.38

Full 3.24 3.36 3.5 3.51 3.4

Table 6.6: Overall ratings, for each application and subject domain, given by the human

annotators to each version of the generation system. Ratings which are significantly different

when compared to those of the full system are marked with a dagger.



CHAPTER 6. SEMANTIC WEB APPLICATIONS AND EVALUATION 133

expected since it by definition contains less content than the full system (it only generates

the core messages); note, however, that this result suggests that the domain messages that

are being extracted and selected are relevant and enhance the reader’s satisfaction with the

text. The baseline (which, in addition to not using extracted domain messages, also does not

use the extracted paraphrasal templates, taxonomy, and discourse model) also loses heavily

to the full system in ordering and style, as well as overall. In all criteria, the percentage

of annotators who thought the texts were equally good was very low (11% − 20%), which

means the difference was very visible.

While the effect of removing a single component is not as dramatic as removing all three

in addition to the domain messages, it is clearly visible in the preferences of Table 6.3. All

three reduced versions (No Paraphrases, No Taxonomy and No Discourse Model) lose to the

full system in every criteria, often in double digits, with the sole exception of style for the No

Taxonomy version, which was very slightly preferred to the full system. Note however that

the results of the comparison with the No Taxonomy system are not statistically significant.

The most meaningful component overall is the paraphrasal templates: the No Paraphrases

version loses to the full system more heavily than either of the other two in content, style and

overall. This result is not surprising since this component has the most dramatic effect on

the text itself (as it changes the templates that are used to convey the information, enhances

the diversity of the text and potentially merges together domain messages that are duplicates

of each other), and it suggests that the paraphrasal templates we find are generally more

satisfying than the default. Also not surprising is the fact that the No Discourse Model

variant is the one that loses most on ordering among the three. While the difference is not

as dramatic here, it is statistically significant and shows that our automatically extracted

domain-specific discourse model helps in producing a more satisfying ordering of the text.

Finally, the No Taxonomy variant performs most similarly to the full system, with more

annotators marking it as equal than any other system, with the smallest differences (all at

5% or less) in all criteria, and with none of the results being statistically significant. This

result is also somewhat expected, since the taxonomy is used only for lexical choice for a

limited set of terms, which does not affect all texts across the board like the paraphrases

or the discourse model. Instead, it applies relatively rare, surgical changes to specific terms
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where another synonymous term fits the context better. While the effect is predictably

smaller than that of the other components, and the lack of significance makes it risky to

draw conclusions, it seems to be mostly positive. We also take it to be a good sign that

the two system variants that are most alike (that is, produce the most similar texts) are

those with the smallest differences between them in terms of preference: it serves as a sort

of experimental control group, and provides further evidence that the differences (for all

variants) represent true differences in preference rather than arbitrary differences coming

from the stochastic nature of the generation process.

Section 6.4.2 contains examples of actual output from this experiment, which materi-

alize the differences between the variants of the system. It also includes some additional

discussion and error analysis.

As seen in Table 6.4, there are significant differences between the (overall) preferences

across different applications and domains. The difference in preference between the full

system and the No Hybrid baseline are much more pronounced in company description

domains than in biography domains (although the full system wins decisively across all

domains). In both company description domains, more than 70% of the annotators preferred

the output of the full system, while less than 20% preferred the baseline. We think this

happens because of the difference in the magnitude of triples relating to people and to

companies in DBPedia: people have on average 1.65 times the number of triples associated

with them than companies (a company has on average 11.4 triples, while a person has on

average 18.8 triples). What this means is that the core messages, which come from the

triples, are more numerous and more satisfying for biographies than they are for company

descriptions, which is why the baseline does better in biographies. If our hypothesis is

correct, it is evidence that the hybrid approach is particularly suited to applications where

the C2T component is handicapped by relatively impoverished data.

The differences for the three removed-component variants of the full system are more

subtle, but still visible. Most strikingly, video games seems to be a better domain than

automotive from our full system’s point of view: overall satisfaction with No Discourse

Model is almost as good as with the full system for automotive, and No Taxonomy actually

does a little better than the full system (although again, these results are not significant
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and we should be careful not to draw conclusions from these numbers). Note, however, that

this effect is reversed with No Paraphrases: the full system wins more often in automotive

than it does in video games (although it clearly wins in both, with a double-digit lead), and

unlike the other two variants, these are significant results. We are not sure why that is the

case, but it is clear that different domains behave differently in subtle ways.

The differences in ratings given by the annotators to the different variants, shown in

Table 6.5, are small in comparison with the direct comparison results. We expected this

trend and view the ratings as a secondary evaluation since it is a more difficult and am-

biguous task. Note, also, that while the differences in ratings are statistically significant

between the full system and the No Hybrid baseline, they are not significant for any other

pair. Nevertheless, the differences in ratings between the baseline and the full system are

further evidence to the claim that user satisfaction is generally increased when the hybrid

approach and the three components are used, even when texts are not shown side-by-side

and annotators have to provide a score without any context. In fact, the No Hybrid baseline

receives the lowest overall scores in all criteria, except in the ordering criteria where it re-

ceives the second-lowest score (and the No Discourse Model variant, which has exactly the

same ordering algorithm but more moving elements because of the added domain messages,

gets the lowest score). We will not discuss the results of the three variants, since they are

very far from being statistically significant, and for the same reason we will not discuss

the breakdown of ratings results across applications and domains in Table 6.6 (none of the

results in that table are significant, except for the total ratings of the baseline). Overall,

it seems that the rating task is much harder, in the sense that human ratings (without the

context of direct comparison) have a large variance. Compare it with the similar study we

performed for the discourse planning model in Chapter 4: there, we asked the annotators

to provide a rating for two texts together with their comparison, and the results were both

significant and more interesting. Note, however, that out-of-context human ratings are not

completely arbitrary: for the two most different variants, namely the full system and the

baseline, the annotators consistently and significantly gave the full system higher ratings.
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6.4.2 Examples and Error Analysis

In this section we show a few examples of output that was scored by annotators in the first

experiment of the evaluation of Chapter 6 (that is, the experiment where the annotators

were shown two variants of the same output side by side, and were asked to choose which

was better in four criteria). The first two examples are typical, and are intended to make

concrete the differences among the versions that contributed to the results of Table 6.3. In

both of those examples, the full system is scored higher than the variant. The following

examples are non-typical, where the variant was seen as equal to or better than the full

system: these serve as informal error analysis of some cases we have repeatedly in the

results.

Figure 6.6 shows the output of the biography for politician Marine Le Pen of the full

system and the non-hybrid baseline. As in the examples shown in Chapter 6, we mark sen-

tences which were generated from extracted (T2T) domain messages in bold, and sentences

which were generated from core messages but used an extracted paraphrasal template in

italics. Sentences in unmarked typeface are those that were generated from core messages

using one of the default templates. Underlined terms are those that were inserted by lexical

choice using the taxonomy.

The main advantage of the full system is clear when looking at these two variants: it

simply has much more content. The full system output contains six sentences (messages)

more than the baseline output, and they are clearly relevant to the biography. The entire

last paragraph, concerned with Le Pen’s policies and positions - clearly an important part

of a politician’s biography - is missing from the baseline. These messages were extracted

from the domain corpus, and show the power of the hybrid approach. In addition to

the final paragraph, two extracted messages are included which are concerned with Le

Pen’s controversial history, and together with the RDF-derived message about her offices,

they comprise a paragraph generally about her political background (with the addition

of a sentence about her birth name). This is typical of the way that extracted messages

contribute to the organization of the text in addition to the content: in the baseline version,

the offices message is lumped together with messages about her background in general (alma

mater, birth date, religion, partner etc). This demonstrates how the full system consistently
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Full system output:

Marine Le Pen’s birth places are Neuilly-sur-Seine

and France. Marine Le Pen’s residences are Millas,

Hénin-Beaumont and Saint-Cloud.

The birth name of Marine Le Pen is Marion

Anne Perrine Le Pen. Marine Le Pen’s offices are

Leader of the National Front, Municipal Councillor,

Member of the European Parliament and Regional

Councillor. Marine Le Pen’s ups and downs

in the political arena follow those of the

National Front at the time. Marine Le Pen

stirred up controversy during the internal

campaign.

The homepage of Marine Le Pen is

http://www.marinelepen.fr/.

The alma mater of Marine Le Pen is Panthéon-

Assas University. Marine Le Pen’s birth date was

1968-08-05. Marine Le Pen’s religion is Catholic

Church. Marine Le Pen’s occupation is Politician.

Marine Le Pen’s partner is Louis Aliot.

Marine Le Pen regularly denounces sharp

rises in energy prices which has “harmful con-

sequences on the purchasing power of the

working and middle-class families”. Marine

Le Pen denounces the current corporate tax

as “a crying injustice”. Marine Le Pen ad-

vocates to “vote for the abolition of the law

enabling the regularization of the illegal im-

migrants”. Marine Le Pen seeks to establish

a moratorium on legal immigration.

Baseline output:

Marine Le Pen’s party is National Front. Marine

Le Pen’s occupation is Politician. Marine Le Pen’s

homepage is http://www.marinelepen.fr/. Marine

Le Pen’s offices are Leader of the National Front,

Municipal Councillor, Member of the European

Parliament and Regional Councillor. Marine Le

Pen’s birth name is Marion Anne Perrine Le Pen.

Marine Le Pen’s religion is Catholic Church. Marine

Le Pen’s alma mater is Panthéon-Assas University.

Marine Le Pen’s birth date was 1968-08-05. Marine

Le Pen’s partner is Louis Aliot.

The birth places of Marine Le Pen are Neuilly-sur-

Seine and France. Marine Le Pen’s residences are

Millas, H’enin-Beaumont and Saint-Cloud.

Figure 6.6: Output for Marine Le Pen.
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outperforms the baseline in the ordering and style criteria, in addition to content and overall.

Figure 6.7 shows the output of the company descriptions for video game developer

Taito Corporation of the full system and the no-paraphrases variant. Unlike the non-

hybrid baseline, in this case the two outputs contain exactly the same information and have

almost the same organization of the text (in the last paragraph, the ordering of messages

is slightly different). The way in which the text is realized, however, is very different in the

last paragraph. The full system realizes four of the six messages in that paragraph using

extracted templates, including merging two messages into a single template in one case

(“Taito Corporation was founded in 1953 by Michael Kogan”, instead of the two separate

sentences in the no-paraphrases baseline). The single-sentence messages also look better

with their paraphrased versions: “Taito Corporation has around 662 employees” instead of

the awkward-sounding “Taito Corporation’s number of employees is 662”.

Full system output:

The homepage of Taito Corporation is

http://www.taito.com.

The products of Taito Corporation are Lufia,

Bubble Bobble, Cooking Mama, Space Invaders,

Chase H.Q., Gun Fight and Puzzle Bobble.

Taito Corporation was founded in 1953 by Michael

Kogan. Taito Corporation has around 662 employ-

ees. Taito Corporation’s location is Shibuya, Tokyo,

Japan. Taito Corporation currently has a sub-

sidiary in Beijing, China. Taito Corporation was

merged with “Square Enix”.

No-paraphrases output:

Taito Corporation’s homepage is

http://www.taito.com.

The products of Taito Corporation are Lufia,

Bubble Bobble, Cooking Mama, Space Invaders,

Chase H.Q., Gun Fight and Puzzle Bobble.

Taito Corporation’s founding year is 1953. The

founder of Taito Corporation is Michael Kogan.

Taito Corporation’s owner is Square Enix. Taito

Corporation currently has a subsidiary in

Beijing, China. Taito Corporation’s location is

Shibuya, Tokyo, Japan. Taito Corporation’s num-

ber of employees is 662.

Figure 6.7: Output for Taito Corporation.

While the previous two examples illustrate the typical strengths of the full system, they

are not seen in all cases. Figure 6.8 shows the output of the company descriptions for

automotive producer Škoda Auto of the full system and the non-hybrid baseline. Although
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Full system output:

Škoda Auto is well known within the Czech

Republic for its adverts that make use of

repetitive beats. The location city of Škoda Auto

is Mladá Boleslav. The founders of Škoda Auto are

Václav Laurin and Václav Klement. Škoda Auto

is a part of Volkswagen Group. Škoda Auto was

established in 1895. The key persons of Škoda Auto

are Winfried Vahland and Martin Winterkorn.

Škoda Auto’s product is Automobile. Škoda Auto’s

net income is 712,000,000 EUR. The revenue of

Škoda Auto is 10,400,000,000 EUR.

Škoda Auto’s homepage is http://skoda-auto.com.

Baseline output:

The key persons of Škoda Auto are Winfried

Vahland and Martin Winterkorn. The founding

year of Škoda Auto is 1895. The founders of Škoda

Auto are Václav Laurin and Václav Klement. The

parent company of Škoda Auto is Volkswagen

Group. The location city of Škoda Auto is Mladá

Boleslav.

Škoda Auto’s homepage is http://skoda-auto.com.

The product of Škoda Auto is Automobile. Škoda

Auto’s revenue is 10,400,000,000 EUR. The net in-

come of Škoda Auto is 712,000,000 EUR.

Figure 6.8: Output for Škoda Auto.

it is not a typical output in general (for most outputs, the full system clearly produces a

better text than the baseline, as in Figure 6.6), it is typical of what we see in error analysis

for the case where the full system does not beat the baseline. Essentially, for this particular

entity, there was little in the way of domain messages to find in the corpus - the full system

output in this case contains only one message which is not included in the baseline output

(the first sentence of the first paragraph), and this message was not found by annotators to

be particularly important to the text, so that the baseline version actually won in the content

criterion. In addition, although the full system uses extracted paraphrases for two messages

(“Škoda Auto is a part of Volkswagen Group” instead of “The parent company of Škoda

Auto is Volkswagen Group”, and “Škoda Auto was established in 1895” instead of “The

founding year of Škoda Auto is 1895”), the annotators did not find them to be stylistically

better than the default versions, deeming the two texts equal in the style criteria. Finally,

the opinions on the ordering criteria were mixed. ordering decisions (which are determined

by the discourse plan), unlike other decisions in the framework, are made stochastically,

which makes it harder to analyze the results of a single output. One thing to keep in mind
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is that the choice of templates for different messages can have an effect on the ordering.

For example, the choice of template in the sentence “Škoda Auto was established in 1895”

(instead of the one using the term “founding year”) probably contributed to having that

message separated from the message about the founders of the company, because of a lower

vector similarity. A majority of annotators (two out of three) agreed that the baseline wins

overall in this case.

Full system output:

Holly Madison’s occupations are Television presenter

and Model. Holly Madison’s alma mater is Portland

State University. Holly Madison’s partner is Hugh

Hefner.

The birth date of Holly Madison was 1979-12-23.

Holly Madison started modeling in 1998. em Holly

Madison began life as “Holly Sue Cullen”.

The homepage of Holly Madison is

http://www.hollymadison.com.

The birth place of Holly Madison is Astoria, Oregon.

Later, the residence of Holly Madison is Las Vegas

Valley.

Holly Madison’s height is 1.702.

No-discourse output:

Holly Madison’s birth date was 1979-12-23. Holly

Madison started modeling in 1998. Holly Madison

began life as “Holly Sue Cullen”.

Holly Madison’s homepage is

http://www.hollymadison.com.

The occupations of Holly Madison are Television pre-

senter and Model. The alma mater of Holly Madison

is Portland State University. Holly Madison’s part-

ner is Hugh Hefner.

The residence of Holly Madison is Las Vegas Valley.

The birth place of Holly Madison is Astoria, Oregon.

Holly Madison’s height is 1.702.

Figure 6.9: Output for Holly Madison.

Finally, Figure 6.9 shows a typical negative example for the discourse model component.

The text shown is the output of the biography for model Holly Madison of the full system

and the no-discourse variant. Two of the three annotators who saw these outputs thought

they were equal in terms of ordering (and everything else, for that matter). It is not

difficult to see why: since the paragraphs in this example are very short, the internal

ordering (which is determined by the discourse model) makes little difference. In terms of

discourse relations, only one is made explicit with a connective: the temporal relation in

the second-to-last paragraph. The use of this connective (“later”) is fairly awkward in this

context, but this in itself did not seem to bother the annotators (but it also did not invoke

a positive reaction). In all cases we have looked at where the no-discourse variant beat the
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full system, or was deemed equal, the paragraphs tend to be short and few (if any) discourse

relations are made explicit.

6.5 Conclusion

In this chapter, we introduced and defined two GEMS applications - biography and company

descriptions - belonging to a sub-family of GEMS which we call RDF applications. For

each of these applications, we (automatically) adapted two subject domains using a domain

corpus as described in the previous chapter, and used our framework to generate texts

(biographies and company descriptions) in each of the four domains.

In a crowd-sourced human evaluation, we showed that our full framework, using hybrid

generation and the three data-driven bottleneck solutions we presented in this thesis, vastly

outperforms a C2T baseline with access to the same input data. In addition, we showed that

at least two of the three solutions we introduced in the first part of this thesis significantly

increase overall user satisfaction with the generated text, and specifically increase it in the

criteria we expect it to (i.e., the paraphrasal templates help with content and style while the

discourse model helps with ordering). While results were less conclusive for the taxonomy

as a solution for lexical choice, it seems to have a positive effect.

Within this thesis, the main purpose of this chapter is to provide examples of imple-

menting traditional generation applications using the GEMS framework and to evaluate

the contribution of the three data-driven solutions we proposed earlier in the thesis and of

the framework itself. In general, however, we believe that this special sub-family, namely

RDF applications, in conjunction with our GEMS framework, can prove a useful tool for

almost fully automated generation of the description of virtually any RDF entity (or, at

the very least, a powerful starting point). The automated part of the definitions we provide

in this chapter can be used as-is for creating applications for describing products, institu-

tions, sports teams, animals, video games, and any number of other entity types. It is a

step towards truly generic generation systems that can work for any application and in any

domain.

While the RDF applications family is large and diverse, it has its limits. An obvious
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one is that for many applications, there is no RDF or similar source from which the core

data can be retrieved in an easy-to-digest format; another is that many applications do not

fit into the theme of describing a well defined entity. The GEMS framework, however, can

handle such applications. The next chapter describes an important application which does

not conform to these constraints and shows how it fits into the GEMS framework.
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Chapter 7

Machine Learning Prediction

Justification

Machine learning systems are increasingly used by humans to assist them in decision making.

The systems produce predictions or recommendations which are then considered by a human

decision-maker, and it is important that the prediction can be justified: the user will want

to understand why the system produced its recommendation before making a decision.

For the rule-based expert systems that were prevalent in past decades, it is often enough

to explain how the system reached its conclusion. The human user will be able to under-

stand the set of rules governing the prediction, and given the proper information about the

particular situation leading to a specific prediction (the relevant states of the data and the

chain of rules that led to the final decision), will be able to make up her mind about the

prediction’s validity. This is called the “glass box” model,1 in contrast to the “black box”

model where explanation is not given.

Recently, machine learning techniques have all but replaced rule-based methods, often

resulting in increased accuracy and an ability to handle more complex problems. In contrast

to rule-based expert systems, justifying the predictions of machine learning models is not a

straightforward task: it is no longer the case that explaining how a prediction was reached

automatically justifies it to the user. Due to the complex, quantitative and unintuitive

1It is also sometimes called the “white box” model
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nature of many machine learning models,2 it is unreasonable to expect that users who are

not machine learning experts, even if they are experts in the domain of the prediction, will

understand how the model works, regardless of how transparently it is presented. In other

words, the glass box model is no longer useful for most users.

A black box with no justification at all, however, is even worse. We propose what

might be called a “self-explaining box” model, where Natural Language Generation (NLG)

is used to produce simple, short, qualitative and intuitive justifications for machine learning

predictions, relying on the domain knowledge embodied in the features.

This chapter describes our approach to Machine Learning Prediction Justification gen-

eration, relying on the GEMS generation framework described in Chapter 5. We describe

the core message selection algorithm and the core types and templates, and present an

evaluation of this system in multiple subject domains. We have made this work available

as a library called PreJu, which is described in Section 7.5. PreJu allows engineers to eas-

ily adapt this GEMS application to new prediction subject domains and features both a

stand-alone mode where configuration and input are given externally in XML files and an

API which allows programmatic usage with existing ML libraries.

7.1 Related Work

Related work for producing justifications (or more commonly explanations, which are pre-

sumed to be justifying) come from multiple fields. Historically, explanations first appeared

in the context of rule-based expert systems, and were mostly treated as a systems design

task (i.e., the task of designing a system capable of producing explanations and drill-down

into its decisions). In some fields - especially the medical - probabilistic decision-making

systems are still called expert systems and are treated as a continuation of that line of

research, and explanation of these systems is treated somewhat similarly. In the machine

learning literature, explanation is often understood in the sense of visualizing the state of

a model to conveniently show how a decision was reached, or in the sense of explaining the

internals of complex models in simpler terms. In the 2000’s justification has also been of

2One notable exception is a shallow decision tree
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particular importance in the field of recommender systems, where a ML or other proba-

bilistic system needs to justify its recommendation to many users. It is there that we find

a concept of justification that most resembles our work. We will discuss related work in

each one of these fields in a separate subsection, following a survey of more general work

below. Finally, in recent years, explanation and justification have also been explored in

the ubiquitous computing community with the rise of context-aware applications (Tullio et

al., 2007; Lim and Dey, 2010; Lim, 2012). We will not explore that literature beyond this

mention, as it is concerned with a constantly changing interactive environment and is thus

quite different from what we do.

Explanation has been shown to be important for user acceptance and satisfaction in a

number of studies. In one early study, physicians rated the ability to explain decisions as

the most highly desirable feature of a decision-assisting system (Teach and Shortliffe, 1981).

(Ye and Johnson, 1995) experimented with three types of explanations for an expert system

- trace, justification and strategy - and found that explanations in general and justifications

in particular make the generated advice more acceptable to users.

There has also been some theoretical work on explanation (note that the terms expla-

nation and justification are sometimes used interchangeably in the literature, and theoret-

ical work is often in fact concerned with justification). In the context of expert systems,

Johnson and Johnson (1993) presented a short survey of accounts of explanation in philoso-

phy, psychology and cognitive science and found that they fall into three categories: associa-

tions between antecedent and consequent; contrasts and differences; and causal mechanisms.

Based on that insight and a study of contemporary systems with explanation facilities, they

developed a theory of task-based explanation. In the context of recommender systems,

Yetim (2008) proposed a framework of justification-type explanation, which defines the

components of a justification based on Toulmin (1958)’s model of argument and a classifi-

cation of justification types based on Habermas (1984)’s discourse theory.

Corfield (2010) aims to philosophically formalize justifications for the accuracy of ma-

chine learning models by classifying them into four types of reasonings. While out of scope

for our work (as it deals with the justification of models, and not of individual predictions),

it nonetheless provides an interesting view on the sort of reasoning that underlies the trust
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that machine learning experts have in the predictions of their classifiers.

7.1.1 Expert Systems

The need for explaining the decisions of expert systems has been discussed as early as

the 1970’s (Shortliffe and Buchanan, 1975) in the context of MYCIN, a medical diagnosis

system. XPLAIN (Swartout, 1983) was an early framework for creating expert systems with

explanation capabilities, and was one of the first to stress the importance of explanations

that are not merely traces, but also contain justifications. EES (Swartout et al., 1991)

is a later example of such a framework, again with a focus on justifications. Both were

exclusively for rule-based systems and relied on a domain-specific taxonomic knowledge base

and a separate logic/strategic knowledge base. Barzilay et al. (1998) further separated the

knowledge into three layers, adding the communication layer to the previously described

domain and strategic layers. Separating the communication layer from the rest of the system

was intended to allow a communication expert (such as a NLG expert) to create solutions

that were independent of the specific system and domain. Another relatively late example

of a framework for rule-based expert system explanation is (El-Beltagy et al., 1999). Their

framework is agent-based and focused on systems which employ dialog explanations.

The expert systems literature does not end with the rule-based systems of the 80’s

and 90’s. In some domains probabilistic decision-making systems, often based on Bayesian

networks (BN), are still referred to as expert systems and regarded as successors of earlier

rule-based systems. The (scarce) work on explanation for these BN systems self-describes

as expert systems explanation. Lacave and Dı́ez (2002) present a survey of methods of

explanation for Bayesian networks and an excellent analysis of the methods in terms of

several properties of explanation. Of particular interest is their classification of the focus

of explanation into an explanation of the reasoning, the model, and the evidence for the

decision. The first (explaining the reasoning) is particularly suited to rule-based systems,

including those that use rules probabilistically. An explanation of the model is static and

useful in an early introduction-to-the-system stage. Our work would fall into the third class,

also called abductive reasoning, as we produce a justification by explaining the evidence.

Druzdzel (1996) notes that probability theory is not a good model for human reasoning,
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and that probabilistic justifications are therefore not desirable. Instead, he proposes a map-

ping of probability ranges to verbal qualifiers (“unlikely”, “very likely”, “certain” etc) for

expressing predictions along with a simple description of dependencies among nodes in the

network, and a description of evidence causality (“decreased likelihood of excessive oil con-

sumption is evidence against worn piston rings”). This work, while using only canned text,

failing to define the roles of different types of evidence, relying exclusively on a manually-

defined knowledge base, and providing no evaluation of its proposed solution, attempts to

solve problems similar to those we focus on. Most work on explanation in Bayesian networks

has been within the narrow context of a particular system, and relies on producing canned

text showing the actual posterior probabilities of each node and providing no explanation

for what the nodes themselves symbolize, assuming that their names are enough (individual

nodes are often symptoms, in the medical domain, or simple physical evidence, e.g. “valve

open”, in other domains) (Druzdzel and Henrion, 1990; Haddawy et al., 1997; Yap et al.,

2008; Helldin and Riveiro, 2009).

7.1.2 Machine Learning

In the machine learning literature, work on explanation has often focused on producing

visualizations of the prediction in order to assist machine learning experts in evaluating

the correctness of the model. One very common visualization technique is nomograms. It

was first applied to logistic regression models by Lubsen et al. (1978), and later to Naive

Bayes (Možina et al., 2004), SVM (Jakulin et al., 2005) and other models. An example

of a nomogram can be seen in Figure 7.1.3 Szafron et al. (2003) proposed a more detailed

visualization-based explanation framework for Naive Bayes classifiers.

Other work has focused on interpreting the predictions of specific complex models, often

by proposing to isolate the contributions of individual features to the prediction. Such

proposals were made for Bayesian networks (Suermondt, 1992), multi-layer Perceptrons

(Feraud and Clerot, 2002), SVMs (Carrizosa et al., 2006), RBF networks (Robnik-Šikonja et

al., 2011) and general hierarchical networks (Landecker et al., 2013). Martens et al. (2008)

3Image taken from a public forum post by Aleks Jakulin at http://www.stat.columbia.edu/~cook/

movabletype/archives/2006/05/
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Figure 7.1: Example nomogram for a logistic regression model of credit risk.

proposed to interpret the predictions of an SVM classifier by extracting logical rules of the

form {feature1 = value1 ∧ · · · ∧ featurek = valuek} → class for a small maximum number

of features k. This method was later used for CRFs as well (Seth and Bhattacharyya, 2011).

In addition to model-specific methods, there have been a few suggestions for model-

agnostic frameworks. Robnik-Sikonja and Kononenko (2008) propose measuring the effect

of an individual feature on an unknown classifier’s prediction by checking what the pre-

diction would have been if that feature value was absent and comparing the two using

various distance measures. The effects are then displayed visually to explain the main

contributors towards a prediction or to compare the effect of the feature in various mod-

els. This method was extended to include regression models in (Kononenko et al., 2013).

Baehrens et al. (2010) describe an alternative approach using explanation vectors (class

probability gradients) which highlight the effect of the most important features.

The work presented in (Robnik-Sikonja and Kononenko, 2008) is also interesting because

of its classification of explanation types. The authors differentiate between two levels of

explanation: the domain level and the model level. They define domain level explanation as

an explanation of the true causality between the independent variables and the dependent

variables, which is not knowable in realistic settings, while a model level explanation is

an explanation of the way that the model arrives at a prediction. Given this definition,

the correctness of the prediction and the correctness of the model-level explanation are

orthogonal. In better models (those which model the domain better, approximated as
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those that have higher prediction accuracies), correct model-level explanations will tend

towards being correct domain-level explanations as well. This is the only work we know of

that explicitly acknowledges that good explanations (correct model-level explanations) are

not necessarily correct explanations (correct domain-level explanations). The term domain

level is somewhat unfortunate, because their work is still geared towards machine learning

experts and focuses on the model alone, containing no links to actual domain entities. In

our language, we would rather talk about domain explanation as an explanation of the

features in domain terms, tying feature values to real-world entities.

7.1.3 Recommender Systems

Recommender systems are online services that serve a large number of users and provide

individualized recommendations for media or products. It is usually desirable to produce a

short and intuitive justification to help the users decide whether to follow the recommen-

dation or not.

Herlocker et al. (2000) conducted an experiment measuring user satisfaction with a va-

riety of justification types for a collaborative filtering (neighbor-based) movie recommen-

dation system. They found that the most satisfying were simple and conclusive methods,

such as simply stating the neighbors’ ratings or showing a histogram of them, focusing on

single strong features like a favorite actor, and even simply stating the past performance

of the system. Surprisingly, justification types incorporating ML concepts such as model

confidence and types showing complex justifications such as a full neighbor graph scored

lower than the baseline black box. In another experiment presented by the authors, 86% of

users stated they wanted the form of justification they were shown added to the system.

Other studies from the early 2000’s have also shown that users are overwhelmingly more

satisfied with systems that contain some form of justification (Sinha and Swearingen, 2002).

Tintarev and Masthoff (2007) presented a survey of explanation in recommender sys-

tems and identify seven distinct benefits of explanation: transparency, scrutability (enables

the user to point out errors), trust, persuasiveness (user more likely to follow system deci-

sions), effectiveness (helps the user make better decisions), efficiency (helps the user make

decisions faster), and satisfaction. They note that existing work at the time of their survey
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have overwhelmingly focused on evaluating trust, persuasiveness, effectiveness and efficiency.

This highlights the inconsistency in the literature when using the terms explanation and

justification: the four benefits that have been studied most in the context of explanation are

in fact benefits of any kind of justification, while the first two - transparency and scrutability

- are benefits only of explanation.

Symeonidis et al. (2009) presented a style of justification that focused on a single most

important feature with some additional context (the user’s past history with regards to that

feature). A user study showed that this justification style was significantly more satisfy-

ing to users than previous methods. Papadimitriou et al. (2012) defined a classification of

recommender system explanations (which they call justifiable recommendations) into three

types: those based on previous items chosen by the user, those based on choices of similar

users, and those based on features. They also defined a hybrid type which combines two

or more of the above, and following a user study concluded that feature-based explana-

tions were the best of the three core types, and that hybrid explanations were best overall.

Bilgic and Mooney (2005) noted that previous studies have often evaluated the persuasive-

ness of the justification and not its justifiability (which they tied with post-consumption

satisfaction). Their experiments showed that for justifiability, feature-based justifications

were superior to neighbor-based and user-history-based ones.

7.2 Core Message Selection: Justification Narratives

In this section we motivate and describe the core message selection algorithm we use for

the ML Prediction Justification implementation of the GEMS generation framework. Parts

of this work are described in Biran and McKeown (2014).

In machine learning, unlike rule-based or knowledge-based expert systems, it is not

reasonable to expect non-experts to understand the details of how a prediction was made.

It is still important, however, that they understand the variables affecting the current

prediction enough to satisfy the question of justification. It has been shown that evidence-

based causal models of justification are often more satisfactory to users than full glass box

models (Herlocker et al., 2000), and that replacing numeric values with qualifying linguistic
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expressions (high, strong, etc) also enhances satisfaction (Druzdzel, 1996; Herlocker et al.,

2000; Lacave and Dı́ez, 2002). The independent variables used in machine learning models

often correspond to real-world evidence that non-experts understand well, and a justification

for a prediction can rely on these variables, their importance to the model, their effect on

the prediction, and their interactions.

A robust method of automatically generating prediction justification for non-experts,

then, should focus on selecting the most important pieces of evidence for a particular pre-

diction and on analyzing and presenting their roles in the prediction. The selected evidence

should be presented to the user in a way that is invariant across different models and readily

understandable by a non-expert.

We have created a framework for producing justification narratives from machine learn-

ing predictions (Biran and McKeown, 2014). Each narrative is essentially composed of a

subset of the relevant features, where each feature has a discrete role. The framework en-

ables us to more easily decide what an appropriate feature subset looks like and to present

it in a way that is more qualitative than quantitative. This plays a somewhat similar

role as the Signal Analysis and Data Interpretation modules described in Reiter (2007) for

data-to-text generation systems.

7.2.1 Narrative Roles

The first step in producing a narrative is determining the role of each feature. Following

some of the examples found in the machine learning explanation literature (Robnik-Sikonja

and Kononenko, 2008; Carrizosa et al., 2006; Yap et al., 2008), we identify two central

concepts that can be defined for many different types of classifiers, namely the effect of a

feature on the prediction (its actual contribution towards or against predicting the predicted

class) and the feature’s importance in the model (the expected effect of the feature for

a prediction of the particular class, which is not dependent on its value in the current

prediction).

In our work, we focus on linear classifiers which utilize linear discriminant functions.

This family contains many of the most commonly-used machine learning classifiers, includ-

ing Logistic Regression, Perceptrons and Linear SVMs, and log-linear models such as Naive
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Bayes can also be formulated in a way that fits this framework. We leave the task of fitting

more complex models (such as Kernel SVMs and Neural Networks) to future work, making

note of the fact that there has been some work on determining the effect of features in

various complex models (Carrizosa et al., 2006; Yap et al., 2008) as well as suggestions for

model-agnostic definitions (Robnik-Sikonja and Kononenko, 2008; Kononenko et al., 2013).

A linear discriminant function for data instance x in the general multi-class linear clas-

sifier is

f(y, x) =
∑
i

θyixi

Where each xi is a feature value and the coefficients θyi have been learned from the

training data for each class y using some learning algorithm, and may include an intercept.4

5 The classifier predicts the class of the instance as the one that maximizes the predictor

function, possibly through a monotonic non-linear distortion function ϕ:

ŷ = argmax
y

ϕ (f(y, x))

= argmax
y

f(y, x)

In some models, the function ϕ used to determine the class has a probabilistic interpre-

tation (e.g., the logistic function in Logistic Regression). This is not a requirement for our

approach, which is valid as long as the argmax formulation holds. We are also indifferent

to regularization methods that may be used in training the models, since we rely only on

the final coefficients and feature values in defining the role of each feature.

The linear effect of a feature i towards or against predicting class y for a data instance

is the product of the feature’s coefficient and its value in the instance:

4This is a generalization of the binary classifier case, where there is only one coefficient vector θ for

the positive class, and we can think of the negative class implicitly having a coefficient vector which is the

negation of the positive class coefficients

5There is also an alternative formulation where multi-class predictions are obtained though voting among

a set of binary classifiers. We do not attempt to handle such voted constructions
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aaaaaaaaa
Importance

Effect High

positive
Low

High

negative

High positive Normal evidence Missing evidence Contrarian counter-evidence

Low Exceptional evidence Negligible Exceptional counter-evidence

High negative Contrarian evidence Missing counter-evidence Normal counter-evidence

Table 7.1: Narrative roles assignment for the range of feature effect and importance

Effectyi = θyixi

While its importance, the expected effect for predictions of the class, can be estimated

using the mean feature value for the class (Xy is the set of all instances in the training set

with class y):

Importanceyi = θyi

∑
x∈Xy

xi

|Xy|

Using these two concepts, we assign a narrative role for each feature. Narrative roles

are assigned based on the sign and magnitude of the importance and effect of a feature

towards the predicted class. They represent semantically clear concepts that non-experts

readily understand, and are rooted in the true details of the prediction. Table 7.1 shows the

roles for all possible combinations. The role explanations and a few alternatives for defining

“high” and “low” in practice are described below.

7.2.1.1 Narrative Role Descriptions

Narrative roles can be broadly divided into three groups: evidence roles, missing evidence

roles, and counter-evidence roles.

Features having evidence roles are those that had a positive contribution toward making

the prediction. Normal evidence is evidence that is expected to be present in many

instances predicted to be in the class: with high importance, high effect is not surprising.

Exceptional evidence is evidence that is not usually expected to be present. With low
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importance, high effect means that the feature value is surprisingly high. Contrarian

evidence is strongly unexpected, since the effect has the opposite sign than expected. Note

that contrarian evidence (and contrarian counter-evidence) is only possible for features that

may have negative values, and may not appear in many real-world applications.

Features that have Missing evidence as a role are important features that were ex-

pected to contribute positively, but were weak for the particular instance. If a normally

high-effect feature had a low effect in the prediction, that is something we want to include

in the narrative because it means that the prediction was uncharacteristically made without

the important effect of that feature (depending on the prediction domain, this may tell the

human that this prediction is likely to be wrong. It may also signal the opposite - that the

evidence for the prediction is exceptionally sound). Similarly, missing counter-evidence

is given to features that were expected to contribute negatively but did not.

Finally, there are counter-evidence roles. Features having these roles contributed against

the prediction, although they were not strong enough to prevent it. Normal counter-

evidence is expected: it is normal for the feature to have a high negative effect, even if

the positive effects from other features ultimately overpower it. Exceptional counter-

evidence is not expected. Finally, contrarian counter-evidence means that a feature

we normally expect to contribute positively contributes negatively instead.

7.2.1.2 Quantizing Effect and Importance

Table 7.1 assumes that we have quantized the importance and effect values of the features

into high positive, high negative and low. We use the following method to quantize the

values.

To quantize importance, we first separate the features with positive and negative im-

portances. For each one of these groups, we rank the features in order of their (absolute)

importance values, and starting with the highest, we iterate through them and assign high

importance to each feature we encounter until the ratio of the total importance value of

the high importance features and the total importance value of all features is equal to or

greater than a tunable parameter τ . In our experiments in this chapter, we set τ = 75%.

In other words, the smallest set of features that together have an importance equal to 75%
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of the total importance of the features (on the positive side, and separately on the negative

side) are determined to have high importance, while all others have a low importance.

Once importance is quantized, we find a threshold (one for the positives, one for the

negatives) midway between the highest importance of a low importance feature and the

lowest importance of a high importance feature (essentially maximizing the margin between

the two groups). This threshold is used to determine the effect of features for each instance:

the feature effect is high if it is on the high side of the threshold, and low otherwise.

7.2.2 Key Feature Selection

Once the roles are determined, we use them to select the set of key features for the prediction.

These are the features that represent the most important evidence which a user will need

to see in order to make up his mind about the prediction.

The appropriate way to select the key features depends on the application. As a general

rule, we would want to keep the expected number of selected features to a reasonable

size that allows generating a justification which a human can reasonably consume. If the

feature space is small and/or sparse, it may make sense to select all features that have any

role other than negligible. For example, an e-mail spam classifier which relies on ngram

features might take this approach and present the important ngrams which contributed to

the decision (“the text of the email contains the terms ‘Nigerian Prince’ and ‘bank account’

but not the terms ‘joke’ or ‘Facebook post’, which makes it spam”).

Some consumer-facing applications (e.g., recommender systems) may want to select a

fixed number of features to show as evidence to the user, and may want to constrain their

roles (only showing the evidence roles in the first column of table 7.1, for example). A music

recommendation stream, for example, will want to show quick and simple justifications for

each suggestion and may choose only the top two evidence features (“You should listen to

this band because it plays Heavy Metal and is based in New York”).

In other cases, we may want to choose the top features from each role group (where

the top is determined by a ranking of effect for evidence and counter evidence, and by

importance for missing evidence). For example, a classifier used by medical professionals to

assess the condition of a patient given symptoms might choose this approach to provide a
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more complete view of the classification (“The patient’s condition appears to be influenza.

The main evidence symptoms are a mild fever, sore throat and nausea. Missing evidence

symptoms include cough and upset stomach. The strongest counter-evidence symptom is a

mild skin rash which is more associated with other conditions”);

The above are all examples of key feature selection strategies. In PreJu, the justification

library we describe in section 7.5, we provide a range of strategies, and it is up to the user

to select (in configuration) which is the appropriate one to use. A user with programming

knowledge can also write and use her own strategies. The default strategy, and the one we

use in the evaluation at the end of this chapter, is the one that selects all non-negligible

features as key features.

It is important to note that key feature selection is completely unrelated to feature

selection in the Machine Learning sense. Feature selection techniques operate at the model

level, selecting the most predictive and least repetitive features overall so that other features

can be excluded from model training. Key feature selection operates at the prediction level

on a model that has already been trained, and is concerned with features that are key for

the particular prediction only.

7.3 GEMS Definition

In this section we describe the definition of the Justification Prediction GEMS application

in terms of the framework of Chapter 5. We shall refer to the this application as J .

CoreEntJ , the function which defines the core entities of the domain, is simple in this

application: for each domain (i.e. a classifier), the core entities are the features participating

in the classifier.

CoreMesJ , the function which defines the core messages of each instance, implements

the justification narrative approach described in the previous section. The justification

narrative of the instance determines the key features K� (as in the previous two chapters,

we use � as the symbol for an instance) and their roles in the prediction R�. For each key

feature ki in K� we build a message mi with STT τmi = rolestt(ri) and a single-entity

set Emi = {ki}. The rolestt(ri) mapping chooses the relevant STT from Table 7.3 based
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on the role of the key feature. In other words, we create one message for each key feature,

describing its role in the prediction. In addition, we create a single message describing the

result of the prediction and a single message describing the main evidence from the key

feature with the highest effect, using the STTs in Table 7.2.

STT Description Entities+Relations Templates

Prediction a (Model) a predicts that c is b

b (Value) according to a , c is b

c (Thing) c is b according to a

a madePrediction b c , given by a , is b

a predictsAbout c

Main Evidence a (Feature) the main evidence for the prediction is in a

the prediction was made mostly because of the evidence

in a

the evidence in a constitutes the main reason for the pre-

diction

a constitutes the main evidence for the prediction

Table 7.2: STTs for other core messages in the prediction justification application

BasePrefJ , the function which defines the base preference scores of the messages, is also

simple in this application: all domain messages have a base preference of −0.5 while core

messages have a preference of 1.

DiscRelJ is the function which defines the possible discourse relations between messages.

Possible relations are defined for pairs of core messages based on their STTs, as shown in

Table 7.4.

7.4 Evaluation

In contrast to the previous chapter, where we evaluated the benefits of the GEMS framework

in general and of the various methods we proposed in this thesis, here we are concerned

with evaluating the justification application. In particular, we want to see if our generated

justifications really help the end-user in correctly deciding whether or not the prediction is

correct.
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STT Description Entities+Relations Templates

Expected Evidence a (Feature) there is strong evidence in a, which is normal

normal strong evidence exists in a

a exhibits normal strong evidence

Expected Counter- a (Feature) there is strong counter-evidence in a, which is normal

Evidence normal strong counter-evidence exists in a

a exhibits normal strong counter-evidence

Missing Evidence a (Feature) normally , there would be strong evidence in a, but it is

missing in this case

although normally there would be strongevidence in a, in

this case it is missing

Missing Counter-

Evidence

a (Feature) normally , there would be strong counter-evidence in a,

but it is missing in this case

although normally there would be strong counter-

evidence in a, in this case it is missing

Exceptional Evi-

dence

a (Feature) normally, a does not provide strong evidence, but in this

case it does

a provides unusually strong evidence

unusually strong evidence exists in a

there is strong evidence in a, which is unusual

Exceptional

Counter-Evidence

a (Feature) normally, a does not provide strong counter-evidence, but

in this case it does

a provides unusually strong counter-evidence

unusually strong counter-evidence exists in a

there is strong counter-evidence in a, which is unusual

Contrarian Evidence a (Feature) normally a provides counter-evidence, but in this case it

does the opposite

a exhibits strong evidence, although usually it provides

counter-evidence

Contrarian Counter-

Evidence

a (Feature) normally a provides evidence, but in this case it does the

opposite

a exhibits strong counter-evidence, although usually it

provides evidence

Table 7.3: STTs for feature-role core messages in the prediction justification application
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First Message STT Second Message STT Possible Discourse Relations

Main Evidence Prediction contingency →

Expected Evidence Expected Counter-Evidence comparison ↔

Expected Evidence Missing Evidence comparison ↔

Expected Evidence Exceptional Counter-Evidence comparison ↔

Expected Evidence Contrarian Counter-Evidence comparison ↔

Missing Counter-Evidence Expected Counter-Evidence comparison ↔

Missing Counter-Evidence Missing Evidence comparison ↔

Missing Counter-Evidence Exceptional Counter-Evidence comparison ↔

Missing Counter-Evidence Contrarian Counter-Evidence comparison ↔

Exceptional Evidence Expected Counter-Evidence comparison ↔

Exceptional Evidence Missing Evidence comparison ↔

Exceptional Evidence Exceptional Counter-Evidence comparison ↔

Exceptional Evidence Contrarian Counter-Evidence comparison ↔

Contrarian Evidence Expected Counter-Evidence comparison ↔

Contrarian Evidence Missing Evidence comparison ↔

Contrarian Evidence Exceptional Counter-Evidence comparison ↔

Contrarian Evidence Contrarian Counter-Evidence comparison ↔

Expected Evidence Missing Counter-Evidence expansion ↔

Expected Evidence Exceptional Evidence expansion ↔

Expected Evidence Contrarian Evidence expansion ↔

Missing Counter-Evidence Exceptional Evidence expansion ↔

Missing Counter-Evidence Contrarian Evidence expansion ↔

Exceptional Evidence Contrarian Evidence expansion ↔

Expected Counter-Evidence Missing Evidence expansion ↔

Expected Counter-Evidence Exceptional Counter-Evidence expansion ↔

Expected Counter-Evidence Contrarian Counter-Evidence expansion ↔

Missing Evidence Exceptional Counter-Evidence expansion ↔

Missing Evidence Contrarian Counter-Evidence expansion ↔

Exceptional Counter-Evidence Contrarian Counter-Evidence expansion ↔

Table 7.4: Possible discourse relations between pairs of messages given their STTs. The

arrows show the possible directions of the relations.
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For this purpose, we devised a task based evaluation. Our subject domain in this

evaluation is a stock price prediction classifier which predicts whether the price of a stock

is going to rise or fall in the following 10 business days (that is, whether the close price

after 10 business days will be higher or lower than the current close price). The classifier

uses the 23 features shown in Table 7.5 and is trained on two years of daily pricing data

for the S&P500 companies, available on Yahoo! Finance. The accuracy of the classifier

(for the same S&P500 companies, for predictions made on the day following the training

period) is 58.5% (F1 is 68.7). In our evaluation, we present a prediction about the price of

an anonymized stock to a human, along with a justification or a baseline and ask whether

she would buy or avoid this stock. The task in this evaluation is to make as much money

as possible betting on the stocks; we hypothesize that humans who saw our generated

justification will make more accurate decisions, and therefore make more money, than those

who saw the baseline.

Technical 2 day high to current price ratio 2 day momentum

Analysis 5 day high to current price ratio 5 day momentum

Signals 10 day high to current price ratio 10 day momentum

30 day high to current price ratio 30 day momentum

Prior 2 day returns neutralized 2 day returns

Returns 5 day returns neutralized 5 day returns

10 day returns neutralized 10 day returns

Valuation price/earnings ratio price/sales ratio

Multiples price/book ratio dividend yield

ev/ebitda ratio return on assets

return on equity return on revenue

debt to equity ratio

Table 7.5: Features used by the stock price prediction classifier.

Foe each prediction in our evaluation, we create four justification versions. One is the

baseline, where we give only the prediction and no justification. In the second, we give the

prediction along with a graphical representation of the effect of key features that the user

can look at. In the third, we give the prediction along with a textual justification, and in
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the fourth, we provide both the graphical representation and the textual justification. In

that way, we evaluate the relative importance of the textual justification we propose in this

chapter and a more traditional (in the Machine Learning literature) graphical visualization

- although the graphical visualization still relies on our justification narratives, since it

differentiates between key features and others (using the narrative roles). An example of

the full justification, with the textual and graphical components, is shown in Figure 7.2.

The text-only and graphical-only versions look the same, except they consist of only one of

the parts.

Figure 7.2: Example of a full justification produced for a prediction in the evaluation.

We used predictions made by the classifier for 487 members of the S&P500 (we were

missing pricing data for the other 13) on July 7th, 2016 predicting the difference in price

on July 21st, 2016. We then conducted a crowd-sourced experiment where annotators were

shown the prediction for one of the stocks (they were anonymized to avoid bias from any

real-world knowledge the annotators may have had) along with one of the four justification

options: prediction only; graphical only; text only; or text + graphical. The annotators

were asked three questions: whether they would buy or avoid the stock, given the prediction
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and justification they saw; whether or not the information provided helped them in making

their choice; and to what extent (on a scale of 1-5) they were satisfied with the information

they were presented. To keep it interesting and encourage the annotators to behave like

investors, we offered (relatively) large bonuses to the two annotators who made the most

virtual money in the evaluation.

The results are shown in Table 7.6. We show the average accuracy, precision, recall,

F1 and financial returns achieved by the annotators for each justification category (these

were measured based on the agreement of the annotator’s choice with the true returns

of the stock, regardless of the classifier’s prediction), as well as the ratio of annotators’

agreement with the prediction for each justification category. In addition, we show the

ratio of annotators who said the information helped them in making the decision, and the

average satisfaction rating for each category.

Prediction only Graphical only Text only Text + Graphical

Accuracy 23.85% 28.67% 29.1% 32.17%

Precision 56.57 63.16 64.57 68.09

Recall 15.51 23.27 22.71 26.59

F1 24.35 34.01 33.61 38.25

Returns 1.71% 2.1% 2.79% 2.42%

Agreement w/ Prediction 85.22% 81.93% 83.98% 81.31%

Help 45.79% 78.44% 75.36% 84.39%

Satisfaction 2.54 3.17 3.21 3.38

Table 7.6: Results of the task-based evaluation. Precision, Recall and F1 are measured with

respect to the positive (“buy”) class.

For the accuracy metrics, all differences between categories are statistically significant

with the exception of the difference between graphical only and text only, and the difference

between text + graphical and text only. For “help” and satisfaction, all differences are

statistically significant except for the difference between graphical only and text only.
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7.4.1 Discussion

The first thing to notice in Table 7.6 is that having any kind of justification significantly

increases all accuracy measures as well as the financial returns achieved by the annotators.

It also reduces the agreement with the prediction of the classifier, which suggests that the

justification is doing what it is intended to: give annotators enough information to decide

(in some cases) that the classifier is wrong.

It is interesting to see how low the annotators’ recall is with respect to precision. This

suggests that the annotators’ behaved like fearful investors: they chose to “buy” a stock

more rarely. The classifier itself predicted that stocks will rise and fall approximately

equally for the test period (in fact, with a slight advantage to rising) - this, combined

with the relatively high agreement annotators had with the prediction, suggests that most

deviations from the classifier’s prediction were to not buy a stock even when it predicted it

will rise, presumably because the justification was not convincing enough.

Looking at the three types of justification (graphical, textual, and both), it is clear

that having a combined textual and graphical justification achieves the best results on

all accuracy measures. While the returns achieved with text-only are higher than those

achieved by the combined justification, keep in mind that the returns are heavily affected

by the amount by which each stock increases or decreases, which is not modeled in any way

by the classifier or the justification, and so are more volatile than the accuracy metrics.

However, the accuracy differences between the textual and combined justification are not

statistically significant.

Unfortunately, we were not able to show statistical significance for any of the differences

between the graphical-only and the textual-only variations. It seems that different annota-

tors have different preferences. It is clear, however, that having both is significantly better

than having just the graphical justification, on all counts - accuracy metrics (including ac-

tual financial returns), helpfulness, and satisfaction - which shows the value of using NLG

for justifying predictions.
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7.5 PreJu

PreJu is a Java package that generates justifications for classifier predictions using the

method and definitions described in this chapter and the framework described in Chapter 5.

We have made it publicly available6 for researchers who are interested in justifying their

classifiers’ predictions.

PreJu works in one of two ways: as a stand-alone configurable tool, it accepts input in

the form of XML providing the effect and importance scores of the features, leaving the

implementation details to the user, and allows the configuration of key feature selection,

output types and other parameters via XML. As an API, it provides simple interfaces

for producing justifications programmatically and currently contains implementations for

Weka’s Logistic Regression and SMO classifiers as integrated input sources.

Adapting PreJu to a new classifier is highly automated and simple. The user provides a

training set in a standard XML format and a domain corpus; the former is used to extract

the feature list and assign importance scores to the features as described in this chapter,

while the latter is used to extract domain-specific information and models as described in

Chapter 5.

7.6 Conclusion and Future Work

In this chapter, we tackled the relatively unexplored task of ML prediction justification via

NLG. We leveraged our GEMS framework for this purpose and proposed a novel method

of determining the core information (and consequently, core messages) of the prediction

justification task using narrative roles. We then adapted our application to a stock price

prediction classifier and conducted a human study which showed our generated justification

significantly enhances users’ ability to determine whether or not the classifier prediction

is accurate, as well as their satisfaction and inclination to say the justification is helpful.

These effects hold when comparing a text-only justification to no justification, and also

when comparing a text+graphical justification to a graphical-only justification, suggesting

that the textual part is key to all three evaluation metrics. We made our justification

6At http://www.cs.columbia.edu/~orb/preju/



CHAPTER 7. MACHINE LEARNING PREDICTION JUSTIFICATION 165

method publicly available as a Java package.

Unlike the RDF applications described in the previous chapter, the data for each instance

in this application comes directly from the classifier, and it does not come in a form that

is ready to be converted into messages. Our justification narratives method was created

especially in order to close that gap. Also unlike RDF applications (which are essentially

applications for creating an entity description), this application is not something that has

been widely considered in the NLG literature. We consider the work in this chapter to be

a contribution in its own right (that is, independently of the GEMS framework and the

NLG bottleneck solutions), as a novel method for creating NLG justifications of classifier

predictions.

While the work in this chapter provides a solid proof of concept, there are many obvious

ways to improve our method in future work. We list the ones we view as most important

below:

• One phenomenon we neglect in our handling of feature contributions is the case of

highly-correlated features. In such a case, we may miss some very important evidence

because it has been separated into multiple features, all of which have relatively low

weights in the classifier. A solution to this would be to use a feature aggregation

method which combines highly correlated features into groups. A more optimal (from

the classifier’s point of view) solution, though more problematic from an interpretabil-

ity point of view, would be a transformation such as Principal Components Analysis.

• PreJu is ready to use, but it requires a bit of work on the user’s part to convert

prediction values into XML, unless they happen to be using certain Weka classifiers.

Adapting additional classifiers (and additional ML packages) is just a matter of time,

but can really enhance its usability.

• Our method operates in a straightforward way with linear classifiers, but adapting

it to other types of models is a very interesting and important problem. Regression

models, Kernel SVMs and Neural Nets are just a few examples.
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Chapter 8

Conclusions, Limitations and

Future Work

In this chapter, we summarize the contributions presented in this thesis and the conclusions

we draw from our experiments. We also discuss the limitations of our work and go over

future work directions in more detail.

This thesis contains five major contributions. The first three - our approaches to para-

phrasal template extraction, taxonomy induction and statistical discourse planning - are

methods for solving various bottlenecks in concept-to-text generation, but they also have

relevance independently of generation. The fourth is a framework for creating domain-

adaptable, hybrid (C2T-T2T) NLG systems for a particular family of applications. The

fifth is a novel approach to justifying predictions made by machine learning models using

NLG.

Our approach to mining paraphrasal templates from a simple text corpus was

presented in Chapter 2. To our knowledge, this is the first approach to paraphrase mining

that does not rely on an aligned corpus, which vastly increases the amount of data and

the range of domains it can be applied to. It is also unique in that it finds paraphrasal

templates from sentences that were not originally paraphrases, and produces templates that

utilize a rich type-system which is both much larger than those used previously, and features

a hierarchical structure. In addition, our experiments in Chapter 6 show that using this
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approach to solve the bottleneck of finding domain-specific templates to use in generation

significantly enhances user satisfaction with the generated text.

Our approach to automatically extracting a taxonomic thesaurus from Wikipedia,

presented in Chapter 3, provides significantly higher performance for extracting taxonomic

structure from Wikipedia than two leading extracted ontologies. In particular, it provides

drastically higher recall while still keeping precision relatively high (and extremely high

for synonyms). While the experiments in Chapter 6 show inconclusive results about the

effect of using it to solve the bottleneck of domain-specific lexical choice in generation, it

constitutes a contribution to the literature of taxonomy and ontology induction.

Our work on statistical discourse planning and sequential discourse parsing

was discussed in Chapter 4. The main contribution in that chapter is a statistical model

of discourse planning that jointly determines the order of and discourse relations between

messages, and that can be extracted from a text corpus annotated with discourse relations.

We show that this model significantly enhances user satisfaction with generated text, both

in independent experiments in Chapter 4 and in the experiments of Chapter 6. This effect

was stable both when only the discourse model was used to determine the document plan

(in Chapter 4) and when it was used in conjunction with distributional and entity-based

coherence (in Chapter 6). In order to automatically annotate text documents with discourse

relations, we presented an efficient approach to discourse parsing which reformulates the

task as a tagging task and achieves state of the art performance with a simpler model

that does not include multiple hand-tuned components. We thus make a contribution to

discourse parsing in addition to our work on discourse planning.

The three data-driven solutions to generation bottlenecks above constitute the first part

of the thesis. In the second part, we focused on a generation framework that leverages those

solutions, as well as hybrid C2T and T2T generation (which tackles another bottleneck, of

obtaining domain-specific content), to allow fully automatic domain adaptation. We showed

the power of this approach by implementing and evaluating two applications that generate

descriptions of semantic web entities - illustrating how easy and quick it is to create such

applications and how they can be automatically adapted to new domains - and by leveraging

it to tackle the novel and difficult generation application of prediction justification.
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We introduced our framework for automatically domain-adaptable hybrid gen-

eration systems and defined the GEMS family of generation applications it applies to in

Chapter 5. Chapter 6 shows how this framework can be used for two previously-explored

generation applications and describes our experiments which show the value of the hybrid

approach, as well as the value of the bottleneck solutions we proposed in the first part of

the thesis. In addition to the contribution of the hybrid approach, a main contribution of

these two chapters is a framework for creating what might be called meta-systems: a base

system for a generation application that can then be automatically adapted to any subject

domain. Another contribution of Chapter 6 is the definition of a family of applications

which generate descriptions of semantic web entities (relying on RDF data which is pub-

licly available for many domains), and building on the generation framework of Chapter 5

to make the creation of new meta-systems of this type almost completely automated.

Finally, we presented a novel approach to generating justifications for machine

learning predictions in Chapter 7, using the framework described in the previous chap-

ters. This is an important yet under-researched topic, particularly in the NLG community.

We showed that using our justification significantly enhances the ability of users to correctly

identify correct and incorrect classifier predictions, as well as their satisfaction, even if they

are also provided a graphical representation. We also created, and made publicly available,

a library that allows the use of this justification framework by other researchers.

8.1 Limitations and Future Work

In this section we discuss the limitations of our work - in particular, of the generation

framework described in the second part of the thesis - and some directions for future work.

The framework has two major intended limitations. First, it is limited to handing GEMS

applications as defined in Chapter 5, and not other types of applications. In particular, it

would not provide a major value over a manually created generation system with applica-

tions that have only one pre-set subject domain (e.g., weather reports), and it would not be

able to handle situations where the application itself changes for different subject domains;

for example, we cannot use it for an “essay writing” application with different academic
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fields as subject domains, because writing an essay on a literature topic is not the same task

as writing an essay on a math topic (literature essays are interpretive and critical, while

math essays rely on formal proofs). In contrast, in a GEMS application, the core task is

the same for each domain while secondary content, discourse and lexical style and other

aspects of the text are specific to the domain.

Second, the framework is focused on informative text, and would not in its present form

be suited for applications that have to do, for example, with storytelling or dialog. We think

it may be possible to create frameworks such as this for other application types, although

it would require a deep rethinking of the way we have created the framework.

There is a generation bottleneck for which we did not propose a data-driven approach:

content selection. In the framework, content selection occurs in two places. First, the se-

lection of core content messages is delegated to an algorithm provided by the application

designer (CoreMesA). Second, the selection of additional domain messages relies on two

types of scores: individual preference scores, which are again requested from the application

designer (BasePrefA) and then modified in a generic way based on their relevance to core

messages; and link scores, which are derived in a generic way based on their similarity.

A data-driven solution that could extract the preference and link scores from the domain

corpus would both make the generated text better (since content selection will be more

suited to the specific domain) and reduce the amount of work required from the applica-

tion designer (BasePrefA would no longer be needed, and perhaps CoreMesA can be made

simpler - it can simply provide all possible core messages, which can then be selected by a

domain-specific extracted model).

Another function that the framework relies on the application designer for is DiscRelA,

which gives possible discourse relations between a pair of messages, beyond those that are

discovered generically. We think this can also be extracted from the domain corpus (by

mining features of sentences that have discourse relations between them - for example,

prominent predicate or verbs), and doing so would both further reduce the work required

from the application designer and result in more interesting texts.

There are other obvious paths for improving and enhancing the generation framework.

One candidate that we think can make a big difference with relatively little effort is an
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increased focus on post-processing. Replacing repetitive proper nouns with pronouns (as

discussed in Chapter 6), aggregating sentences and shortening very long sentences (compres-

sion) or paragraphs (splitting) are all examples of post-processing steps that could enhance

the readability of the text.

While the paraphrasal template mining approach provides variation in style and prevents

repetition, we think it could be made even more powerful if it can be improved to produce

“deep templates”, or templates with more semantic structure. If we can identify not only the

slots of the template, but also some of the hidden relations between the participating entities

(a structure similar to a frame), we could use this structure to create more informed models

of ordering and content selection, and end up with a full representation of the generated text

(that is, a representation that contains both semantic and discourse relations). In addition,

it may help in making the paraphrasal template mining method itself more precise.

8.2 Final Conclusions

We view our work in this thesis as a step towards fully generic, fully automated frameworks

of generation. While generation systems that are truly generic (all-in-one systems that

can generate any text given some semantic representation) are not likely to be possible

in the near future, generic data-driven frameworks that automatically create non-generic

generation systems (instead of relying on a human programmer to create them) can be a

satisfying approximation. As we demonstrated in the second part of this thesis, it is possible

(with some constraints!) to automatically adapt generation meta-systems to a new domain,

and as we show with the even more constrained set of generation applications we considered

in Chapter 6, it is sometimes possible to automate even the creation of the meta-systems.

Frameworks like ours make tractable certain generation applications that previously

were not. The justification application we discuss in Chapter 7 is one such example, as it

would not be practical to manually adapt a generation system to each classifier that we

want to be able to justify.

Such frameworks have to rely on data-driven solutions for generation bottlenecks. As we

show in this thesis, hybrid C2T-T2T generation provides a powerful solution for the domain
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content bottleneck. Our proposed methods in the first part of the thesis successfully tackle

other difficult bottlenecks: obtaining domain-specific paraphrasal templates; obtaining a

domain taxonomy and thesaurus; and obtaining a domain-specific discourse model. Other

bottlenecks exist, and our methods are not perfect, so there is still more work to be done

in this arena.

We have made available much of the code, results and resources described in this thesis.

It is currently compiled and organized at http://www.cs.columbia.edu/~orb. For other

resources, as well as for questions regarding any of them, please contact the author.
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Ondrej Dušek and Filip Jurcicek. 2015. Training a natural language generator from un-
aligned data.

David A. duVerle and Helmut Prendinger. 2009. A novel discourse parser based on support
vector machine classification. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09, pages 665–673, Stroudsburg,
PA, USA. Association for Computational Linguistics.

H.P. Edmundson and V.A. Oswald. 1959. Automatic Indexing and Abstracting of the
Contents of Documents. Planning Research Corporation.

Samhaa R. El-Beltagy, Ahmed A. Rafea, and Ahmed H. Sameh. 1999. An agent based ap-
proach to expert system explanation. In Amruth N. Kumar and Ingrid Russell, editors,
FLAIRS Conference, pages 153–159. AAAI Press.

Michael Elhadad and Kathleen R. McKeown. 1990. Generating connectives. In Proceedings
of the 13th Conference on Computational Linguistics - Volume 3, COLING ’90, pages
97–101, Stroudsburg, PA, USA. Association for Computational Linguistics.

Michael Elhadad and Jacques Robin. 1996. An overview of surge: a reusable comprehensive
syntactic realization component. Technical report.
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and Steve Young. 2010. Phrase-based statistical language generation using graphical
models and active learning. In Proceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL ’10, pages 1552–1561, Stroudsburg, PA, USA.
Association for Computational Linguistics.

William C Mann and James A Moore. 1981. Computer generation of multiparagraph
english text. Computational Linguistics, 7(1):17–29.

William C. Mann and Sandra A. Thompson. 1987. Rhetorical Structure Theory: A theory
of text organization. Technical Report ISI/RS-87-190, ISI.

Daniel Marcu and Abdessamad Echihabi. 2002. An unsupervised approach to recognizing
discourse relations. In ACL, pages 368–375. ACL.

Daniel Marcu. 1997. The rhetorical parsing, summarization, and generation of natural
language texts. Technical report.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a
large annotated corpus of english: The penn treebank. Comput. Linguist., 19(2):313–
330, June.

David Martens, Johan Huysmans, Rudy Setiono, Jan Vanthienen, and Bart Baesens. 2008.
Rule extraction from support vector machines: An overview of issues and application
in credit scoring. In Joachim Diederich, editor, Rule Extraction from Support Vector
Machines, volume 80 of Studies in Computational Intelligence, pages 33–63. Springer
Berlin Heidelberg.

Andrew McCallum and Wei Li. 2003. Early results for named entity recognition with
conditional random fields, feature induction and web-enhanced lexicons. In Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 - Volume
4, CONLL ’03, pages 188–191, Stroudsburg, PA, USA. Association for Computational
Linguistics.



Bibliography 187

Kathleen F. McCoy. 1989. Generating context-sensitive responses to object-related mis-
conceptions. Artificial Intelligence, 41(2):157 – 195.

Ryan McDonald. 2006. Discriminative sentence compression with soft syntactic evidence.
In In Proceedings of EACL.

Kathleen R. McKeown, Shimei Pan, James Shaw, Desmond A. Jordan, and Barry A. Allen.
1997. Language generation for multimedia healthcare briefings. In Proceedings of the
Fifth Conference on Applied Natural Language Processing, ANLC ’97, pages 277–282,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Kathleen R. McKeown. 1985. Discourse strategies for generating natural-language text.
Artif. Intell., 27(1):1–41, September.

James R. Meehan. 1977. Tale-spin, an interactive program that writes stories. In Pro-
ceedings of the 5th International Joint Conference on Artificial Intelligence - Volume 1,
IJCAI’77, pages 91–98, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Chris Mellish, Alistair Knott, and Jon Oberlander. 1998. Experiments using stochastic
search for text planning. In Proceedings of International Conference on Natural Lan-
guage Generation.

Chris Mellish, Donia Scott, Lynne Cahill, Daniel Paiva, Roger Evans, and Mike Reape.
2006. A reference architecture for natural language generation systems. Nat. Lang.
Eng., 12(1):1–34, March.

Rada Mihalcea, Courtney Corley, and Carlo Strapparava. 2006. Corpus-based and
knowledge-based measures of text semantic similarity. In Proceedings of the 21st Na-
tional Conference on Artificial Intelligence - Volume 1, AAAI’06, pages 775–780. AAAI
Press.

Rada Mihalcea. 2007. Using wikipedia for automatic word sense disambiguation. In Pro-
ceedings of the North American Chapter of the Association for Computational Linguis-
tics (NAACL), Stroudsburg, PA, USA. Association for Computational Linguistics.

D. Milajevs, D. Kartsaklis, M. Sadrzadeh, and M. Purver. 2014. Evaluating neural word
representations in tensor-based compositional settings. In Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguis-
tics, Association for Computational Linguistics.

David Milne and Ian H. Witten. 2008. Learning to link with wikipedia. In Proceedings of
the 17th ACM conference on Information and knowledge management, CIKM ’08, pages
509–518, New York, NY, USA. ACM.

Johanna D. Moore and Cécile L. Paris. 1993. Planning text for advisory dialogues: Captur-
ing intentional and rhetorical information. Comput. Linguist., 19(4):651–694, December.
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Appendix A

Type Level Relation Sequences

Association Ratios

All class level relation sequences and their association ratio scores, for the across → intra

form:

Relation 1 Relation 2 α

expansion.list expansion.list 3.775

contingency.pragmatic cause expansion.instantiation 2.819

expansion.instantiation expansion.list 2.66

contingency.pragmatic cause comparison.concession 2.412

expansion.alternative entrel 2

temporal.asynchronous temporal.asynchronous 1.978

contingency.pragmatic cause expansion.conjunction 1.973

temporal.synchrony expansion.instantiation 1.961

comparison.concession expansion.alternative 1.791

contingency.pragmatic cause temporal.asynchronous 1.636

temporal.asynchronous contingency.pragmatic cause 1.621

expansion.alternative expansion.restatement 1.539

comparison.concession expansion.instantiation 1.532

temporal.synchrony entrel 1.463
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comparison.contrast contingency.condition 1.444

temporal.synchrony temporal.synchrony 1.376

expansion.restatement expansion.list 1.373

contingency.cause contingency.pragmatic condition 1.338

temporal.asynchronous temporal.synchrony 1.321

expansion.instantiation expansion.conjunction 1.316

contingency.pragmatic cause contingency.condition 1.265

contingency.cause contingency.condition 1.252

expansion.instantiation temporal.asynchronous 1.242

expansion.restatement expansion.conjunction 1.242

temporal.synchrony expansion.list 1.215

expansion.restatement comparison.contrast 1.181

expansion.instantiation comparison.contrast 1.178

contingency.cause comparison.concession 1.161

temporal.asynchronous expansion.conjunction 1.143

contingency.cause comparison.contrast 1.126

comparison.contrast expansion.instantiation 1.113

comparison.contrast contingency.cause 1.111

entrel entrel 1.109

contingency.cause expansion.conjunction 1.105

expansion.list comparison.concession 1.098

comparison.concession contingency.cause 1.082

expansion.instantiation temporal.synchrony 1.06

comparison.concession expansion.conjunction 1.058

entrel contingency.pragmatic condition 1.055

temporal.asynchronous expansion.alternative 1.055

contingency.cause expansion.alternative 1.051

comparison.concession expansion.restatement 1.042

comparison.concession comparison.concession 1.019

expansion.restatement entrel 1.014
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comparison.concession contingency.condition 1.007

expansion.restatement expansion.alternative 1.002

contingency.cause temporal.synchrony 0.991

comparison.concession temporal.asynchronous 0.991

expansion.conjunction contingency.pragmatic cause 0.99

comparison.concession expansion.list 0.968

temporal.synchrony expansion.alternative 0.94

contingency.cause contingency.cause 0.933

comparison.contrast expansion.alternative 0.922

expansion.instantiation comparison.concession 0.919

expansion.restatement contingency.condition 0.918

norel expansion.instantiation 0.914

norel expansion.restatement 0.912

expansion.restatement comparison.concession 0.889

contingency.cause entrel 0.881

expansion.restatement contingency.cause 0.88

expansion.restatement temporal.asynchronous 0.874

temporal.asynchronous contingency.condition 0.87

contingency.cause temporal.asynchronous 0.869

expansion.instantiation contingency.cause 0.868

comparison.contrast expansion.conjunction 0.868

expansion.conjunction comparison.concession 0.855

expansion.alternative expansion.conjunction 0.854

comparison.concession temporal.synchrony 0.841

expansion.conjunction expansion.restatement 0.834

expansion.conjunction entrel 0.829

temporal.asynchronous expansion.restatement 0.829

expansion.instantiation entrel 0.828

expansion.restatement temporal.synchrony 0.817

norel contingency.pragmatic cause 0.817
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expansion.list temporal.synchrony 0.815

expansion.instantiation expansion.restatement 0.808

comparison.contrast comparison.contrast 0.785

norel expansion.alternative 0.766

expansion.conjunction contingency.condition 0.762

entrel comparison.contrast 0.736

expansion.alternative norel 0.73

entrel norel 0.729

expansion.conjunction expansion.conjunction 0.723

norel norel 0.719

temporal.synchrony norel 0.711

comparison.contrast temporal.asynchronous 0.708

expansion.list norel 0.706

expansion.conjunction comparison.contrast 0.703

temporal.asynchronous entrel 0.703

expansion.conjunction norel 0.698

entrel expansion.conjunction 0.697

norel contingency.cause 0.692

entrel temporal.asynchronous 0.687

expansion.instantiation contingency.condition 0.666

expansion.instantiation contingency.pragmatic condition 0.656

expansion.conjunction temporal.synchrony 0.652

entrel comparison.concession 0.647

contingency.pragmatic cause contingency.cause 0.646

entrel contingency.pragmatic cause 0.641

norel contingency.pragmatic condition 0.64

temporal.synchrony contingency.cause 0.636

comparison.contrast norel 0.634

norel comparison.concession 0.627

entrel contingency.condition 0.627
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comparison.contrast temporal.synchrony 0.625

expansion.alternative temporal.asynchronous 0.623

expansion.list contingency.cause 0.614

expansion.conjunction temporal.asynchronous 0.611

expansion.conjunction contingency.cause 0.609

comparison.concession norel 0.607

norel comparison.contrast 0.603

expansion.restatement norel 0.593

expansion.instantiation expansion.alternative 0.593

norel temporal.synchrony 0.589

contingency.cause norel 0.577

temporal.synchrony expansion.conjunction 0.576

norel entrel 0.561

temporal.asynchronous norel 0.556

norel temporal.asynchronous 0.543

expansion.instantiation norel 0.531

expansion.conjunction expansion.list 0.517

expansion.instantiation expansion.instantiation 0.516

expansion.alternative contingency.cause 0.508

contingency.cause expansion.instantiation 0.504

comparison.contrast contingency.pragmatic condition 0.5

norel expansion.conjunction 0.49

entrel temporal.synchrony 0.48

temporal.synchrony comparison.contrast 0.478

temporal.asynchronous contingency.cause 0.463

comparison.contrast expansion.restatement 0.455

temporal.synchrony comparison.concession 0.455

temporal.asynchronous comparison.concession 0.437

norel contingency.condition 0.437

contingency.pragmatic cause norel 0.436
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expansion.conjunction expansion.alternative 0.424

norel expansion.list 0.382

temporal.synchrony temporal.asynchronous 0.373

comparison.contrast entrel 0.346

contingency.cause expansion.restatement 0.332

expansion.list temporal.asynchronous 0.323

comparison.contrast contingency.pragmatic cause 0.309

temporal.asynchronous comparison.contrast 0.305

expansion.alternative comparison.contrast 0.281

comparison.contrast comparison.concession 0.27

comparison.contrast expansion.list 0.242

contingency.cause contingency.pragmatic cause 0.23

expansion.list comparison.contrast 0.204

entrel contingency.cause 0.2

expansion.conjunction expansion.instantiation 0.164

expansion.restatement contingency.pragmatic condition 0.149

expansion.list expansion.conjunction 0.149

comparison.concession comparison.contrast 0.125

comparison.concession entrel 0.117

expansion.conjunction contingency.pragmatic condition 0.082

expansion.alternative contingency.condition 0.028

expansion.alternative temporal.synchrony 0.016

expansion.restatement expansion.instantiation 0.008

entrel expansion.instantiation -0.002

expansion.restatement expansion.restatement -0.035

entrel expansion.alternative -0.058

entrel expansion.restatement -0.269

expansion.list contingency.condition -0.272

entrel expansion.list -0.342

contingency.cause expansion.list -0.348



APPENDIX A. TYPE LEVEL RELATION SEQUENCES ASSOCIATION RATIOS 202

expansion.list expansion.restatement -0.37

temporal.asynchronous expansion.instantiation -0.409

All class level relation sequences and their association ratio scores, for the intra→ across

form:

Relation 1 Relation 2 α

expansion.list expansion.list 3.581

temporal.synchrony contingency.pragmatic cause 2.351

expansion.list temporal.synchrony 2.314

expansion.instantiation expansion.list 1.976

contingency.pragmatic cause comparison.concession 1.952

contingency.pragmatic condition expansion.restatement 1.759

temporal.asynchronous temporal.asynchronous 1.741

expansion.restatement comparison.concession 1.671

expansion.alternative expansion.alternative 1.659

expansion.alternative temporal.synchrony 1.633

contingency.pragmatic cause temporal.asynchronous 1.621

expansion.instantiation expansion.alternative 1.582

expansion.restatement expansion.alternative 1.539

expansion.instantiation comparison.concession 1.532

entrel temporal.synchrony 1.463

contingency.pragmatic condition comparison.concession 1.45

temporal.synchrony temporal.asynchronous 1.392

contingency.cause expansion.alternative 1.355

comparison.contrast expansion.alternative 1.293

entrel entrel 1.205

temporal.asynchronous temporal.synchrony 1.184

temporal.synchrony contingency.cause 1.157
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comparison.concession contingency.cause 1.144

contingency.condition expansion.alternative 1.127

comparison.concession comparison.concession 1.125

expansion.conjunction temporal.synchrony 1.115

expansion.alternative comparison.concession 1.098

comparison.concession expansion.restatement 1.077

expansion.instantiation comparison.contrast 1.052

expansion.instantiation expansion.conjunction 1.04

entrel comparison.concession 1.034

contingency.condition expansion.conjunction 1.026

contingency.cause comparison.contrast 1.005

temporal.asynchronous comparison.concession 0.991

contingency.pragmatic cause expansion.conjunction 0.99

expansion.alternative contingency.cause 0.986

contingency.condition comparison.contrast 0.974

comparison.concession expansion.instantiation 0.973

temporal.synchrony expansion.list 0.969

contingency.pragmatic cause norel 0.96

entrel expansion.restatement 0.957

temporal.synchrony comparison.contrast 0.948

comparison.contrast expansion.instantiation 0.941

temporal.asynchronous comparison.contrast 0.926

comparison.contrast contingency.cause 0.916

expansion.conjunction comparison.contrast 0.9

contingency.condition contingency.cause 0.895

temporal.synchrony expansion.conjunction 0.87

expansion.conjunction expansion.conjunction 0.866

contingency.condition comparison.concession 0.853

contingency.cause contingency.cause 0.848

expansion.restatement comparison.contrast 0.846
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norel contingency.pragmatic cause 0.841

contingency.cause comparison.concession 0.841

temporal.asynchronous expansion.conjunction 0.83

contingency.pragmatic condition contingency.cause 0.827

expansion.alternative expansion.instantiation 0.816

expansion.restatement contingency.cause 0.796

comparison.concession expansion.conjunction 0.786

expansion.restatement norel 0.78

expansion.list norel 0.78

expansion.alternative temporal.asynchronous 0.767

norel entrel 0.767

expansion.instantiation contingency.cause 0.766

comparison.contrast norel 0.765

expansion.conjunction norel 0.757

temporal.asynchronous contingency.cause 0.756

norel expansion.list 0.747

contingency.cause norel 0.746

contingency.cause expansion.conjunction 0.745

expansion.instantiation expansion.instantiation 0.739

norel expansion.instantiation 0.734

expansion.alternative norel 0.731

norel expansion.restatement 0.719

temporal.asynchronous expansion.restatement 0.717

entrel temporal.asynchronous 0.703

temporal.asynchronous entrel 0.697

contingency.condition temporal.synchrony 0.695

norel norel 0.692

expansion.conjunction temporal.asynchronous 0.691

comparison.contrast comparison.contrast 0.68

comparison.contrast expansion.conjunction 0.671
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norel temporal.synchrony 0.669

entrel norel 0.666

norel temporal.asynchronous 0.662

norel expansion.conjunction 0.659

comparison.concession norel 0.655

contingency.pragmatic cause expansion.restatement 0.651

contingency.condition norel 0.65

comparison.concession comparison.contrast 0.645

norel contingency.cause 0.644

norel comparison.contrast 0.64

expansion.restatement expansion.conjunction 0.639

norel comparison.concession 0.639

norel expansion.alternative 0.623

contingency.condition expansion.restatement 0.623

entrel expansion.conjunction 0.622

contingency.condition expansion.instantiation 0.62

expansion.list expansion.conjunction 0.612

temporal.synchrony expansion.instantiation 0.608

expansion.instantiation norel 0.605

expansion.conjunction expansion.alternative 0.603

expansion.conjunction contingency.cause 0.594

contingency.cause expansion.restatement 0.592

temporal.asynchronous norel 0.589

comparison.concession expansion.list 0.588

temporal.synchrony entrel 0.587

temporal.synchrony expansion.restatement 0.582

temporal.synchrony norel 0.581

expansion.instantiation expansion.restatement 0.568

comparison.contrast expansion.restatement 0.559

expansion.alternative comparison.contrast 0.554
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temporal.synchrony comparison.concession 0.554

contingency.pragmatic condition entrel 0.545

expansion.conjunction comparison.concession 0.524

contingency.pragmatic condition norel 0.522

contingency.pragmatic condition comparison.contrast 0.5

comparison.contrast comparison.concession 0.493

contingency.pragmatic condition expansion.conjunction 0.487

comparison.contrast temporal.synchrony 0.478

expansion.list comparison.contrast 0.424

expansion.alternative expansion.conjunction 0.424

entrel expansion.instantiation 0.423

contingency.cause expansion.instantiation 0.422

temporal.synchrony expansion.alternative 0.422

expansion.conjunction expansion.restatement 0.415

temporal.synchrony temporal.synchrony 0.395

temporal.asynchronous expansion.instantiation 0.389

comparison.contrast expansion.list 0.387

expansion.conjunction entrel 0.378

comparison.concession entrel 0.374

expansion.list entrel 0.351

expansion.restatement expansion.list 0.323

expansion.instantiation entrel 0.317

contingency.pragmatic cause comparison.contrast 0.309

contingency.cause temporal.synchrony 0.299

entrel contingency.cause 0.268

expansion.conjunction expansion.instantiation 0.264

expansion.restatement expansion.instantiation 0.249

contingency.cause entrel 0.246

comparison.contrast entrel 0.242

expansion.restatement temporal.asynchronous 0.241
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contingency.condition temporal.asynchronous 0.234

expansion.restatement expansion.restatement 0.227

expansion.alternative entrel 0.193

contingency.cause temporal.asynchronous 0.191

entrel comparison.contrast 0.179

comparison.contrast temporal.asynchronous 0.162

contingency.condition entrel 0.149

temporal.asynchronous expansion.alternative 0.112

comparison.concession temporal.asynchronous 0.1

expansion.alternative expansion.restatement 0.086

expansion.conjunction expansion.list -0.033

expansion.restatement entrel -0.097

expansion.restatement temporal.synchrony -0.097

temporal.asynchronous expansion.list -0.188

comparison.concession temporal.synchrony -0.238

expansion.list expansion.restatement -0.332

expansion.list contingency.cause -0.348

contingency.cause expansion.list -0.485

expansion.list expansion.instantiation -0.518

contingency.condition expansion.list -0.965


