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ABSTRACT

Prosody and Speaker State: Paralinguistics,

Pragmatics, and Proficiency

Jackson J. Liscombe

Prosody—suprasegmental characteristics of speech such as pitch, rhythm, and loudness—

is a rich source of information in spoken language and can tell a listener much about the

internal state of a speaker. This thesis explores the role of prosody in conveying three very

different types of speaker state: paralinguistic state, in particular emotion; pragmatic state,

in particular questioning; and the state of spoken language proficiency of non-native English

speakers.

Paralinguistics. Intonational features describing pitch contour shape were found to dis-

criminate emotion in terms of positive and negative affect. A procedure is described

for clustering groups of listeners according to perceptual emotion ratings that foster

further understanding of the relationship between acoustic-prosodic cues and emotion

perception.

Pragmatics. Student questions in a corpus of one-on-one tutorial dialogs were found to be

signaled primarily by phrase-final rising intonation, an important cue used in conjunc-

tion with lexico-pragmatic cues to differentiate the high rate of observed declarative

questions from proper declaratives. The automatic classification of question form and

function is explored.

Proficiency. Intonational features including syllable prominence, pitch accent, and bound-

ary tones were found to correlate with language proficiency assessment scores at a

strength equal to that of traditional fluency metrics. The combination of all prosodic

features further increased correlation strength, indicating that suprasegmental infor-

mation encodes different aspects of communicative competence.
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Prosody—suprasegmental characteristics of speech such as pitch, rhythm, and loudness—

is a rich source of information in spoken language. It signifies a myriad of things, some

of which are intentional, some of which are not, including the emotion of a speaker, the

pragmatic force behind an utterance, and demographic and cultural information about a

speaker. In short, prosody can tell a listener a lot about the internal state of a speaker,

whether these states be short-term or long-term processes. In this thesis we explore the role

of prosody in conveying three very different types of speaker state: emotion, question-status,

and non-native language proficiency.

In the first part of this thesis, we examine affective speaker state by characterizing

the prosodic cues present in emotional speech. Discrete emotions were found to be most

successfully characterized when they were defined using a perceptual, polythetic labeling

typology. As per past studies, global acoustic characteristics were found to be characteristic

of the activation level of emotion. Intonational features describing pitch contour shape were

found to further discriminate emotion by differentiating positive and negative emotions. A

procedure is described for clustering groups of listeners according to perceptual emotion

ratings that was found to foster further understanding of the relationship between prosodic

cues and emotion perception.

The role of prosody in signaling the form and function of questions is explored in the

second part of the thesis. Student questions in a corpus of one-on-one tutorial dialogs were

found to be signaled primarily by phrase-final rising intonation. This finding was partic-

ularly important because over half of all student questions were found to be syntactically

identical to declarative statements and intonation can be viewed as tool speakers might use

to differentiate the pragmatic force of each sentence type. Lexico-pragmatic and lexico-

syntactic features were found to be crucial for further differentiating the form and function

of student questions.

In the final part of the thesis we analyze how prosodic proficiency can be indicative of

the current level of communicative competence of non-native English speakers. Intonational

features including syllable prominence, pitch accent, and boundary tones were found to cor-

relate with human assessment scores to the same degree that more traditional fluency-based

metrics have been shown to do in the past. Furthermore, it was found that combination
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of all information (fluency, intonation, and rhythm) further increased the correlation, indi-

cating that various types of suprasegmental information convey the level of proficiency of

non-native speakers.

In each part of the thesis, we describe how prosodic cues can be successfully used

to automatically predict the internal state of a speaker by utilizing statistical machine

learning algorithms. Our goal in this thesis was to predict the emotion, question-status,

and proficiency of speakers for potential use in artificially intelligent applications, such as

Spoken Dialog Systems, Intelligent Tutoring Systems, and language learning software. This

work is seen as an ongoing effort to construct a model of the prosodic indicators of the

broader concept of metacognitive speaker state.
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To most linguists—and, more broadly, to anyone who thinks about language—speech is a

fascinating phenomenon because with it we can communicate meaning both by the words we

say and also by how we say them. Paralanguage is a term that, generally, describes nonver-

bal communication in human interaction, though it has actually been more loosely defined

than that in the past. Nöth (1990) identified several definitions of paralanguage proposed

in previous literature, including some that contradict each other in that they comprise both

human and nonhuman vocalization, vocal and nonvocal communication, suprasegmental

and segmental features, and certain communicative functions including emotion and per-

sonality. In this thesis we use the latter sense—primarily as a term that encompasses

affective communication or, more simply, emotion. Furthermore, though suprasegmental

information is often considered to be an important component of paralanguage, the two

are not synonymous. Suprasegmental describes language use that has a broader scope than

a single segment such as a sound or a word. It is a term often used to describe prosodic

information, such as pitch, intonation stress, rhythm, and duration. However, paralanguage

can be conveyed via both suprasegmental and segmental information. In the first part of

this thesis we present the findings of experiments designed to investigate the communication

of paralinguistic meaning via suprasegmental information. We paid particular attention to

the differences between intended and perceived emotion.

We introduce the topic by first describing the previous literature in Chapter 1. In Chap-

ter 2 we detail the corpora used for analysis and in Chapter 3 we describe the acoustic cues

examined. The remaining chapters are largely devoted to experiments designed to explore

the difference between intended emotions (Chapter 4) and perceived emotions (Chapter 5).

In the latter chapter we also present the results of listener clustering based on responses to

a survey in which listeners were asked to rate the emotional content of utterances. The last

two chapters are reserved for auxiliary investigations. In Chapter 6 we describe experiments

classifying emotion in two dimensions (activation and valency) and in Chapter 7 we report

on the correlation between abstract intonational units and emotions.
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Chapter 1

Previous Research on Emotional

Speech

Emotion is something intrinsically human and, as such, is part of our everyday interac-

tion. It has proved to be a fascinating subject to researchers of all persuasions—including

Socrates, Charles Darwin, and William James, to name just a very few—so much so that

tomes have been devoted to theoretical frameworks describing it (cf. Cornelius, 1996).

Despite such extensive exploration, or perhaps because of it, emotion remains somewhat

ambiguous to define. Kleinginna & Kleinginna (1981) conducted a meta-study of theoreti-

cal descriptions of emotion and found nearly one hundred different definitions. The goal of

this thesis is not to choose the “best” definition nor is it to provide the one hundred and

first definition. Despite an absence of agreement on an exact definition of the concept of

emotion or on the manifestations of different emotional states, researchers have been able to

successfully conduct research on emotion. This is partially because, when it comes to emo-

tion, people “know it when they feel it” even if they cannot provide a concise or complete

definition of it. Imprecise conceptualizations of emotion are usually sufficient for describing

precise phenomena related to emotion. For example, even if the emotion anger cannot be

defined satisfactorily in the classical sense, research has shown that certain physiological

changes occur in its presence, such as increased heart palpitation and breathing rate.

We have situated our work in a rather narrow sub-domain of emotion research. We
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empirically explored the nonverbal acoustic manifestations of emotion in a corpus of acted

speech. Even in this restricted domain, past research has been quite extensive, some dating

as far back as 70 years (Fairbanks & Pronovost, 1939), and we cannot provide an account

of all previous studies here. Instead, this section highlights several past studies that either

have made the most impact on the field or that are directly related to our own research.

Traditionally, empirical studies of the acoustic cues of emotional speech have favored

corpora designed to elicit emotion that is acted or simulated in some way. Corpora of this

type have been used for several reasons. First, hand-crafted corpora are rich in emotions

of interest to the researcher, precisely because they are designed to be so. Second, hand-

crafted corpora can be constructed in such a way as to control for certain variables. For

example, several past studies have instructed subjects to read or act a vignette with a

particular target emotion and, in the process, produce utterances for discrete emotions under

equivalent linguistic and contextual conditions (e.g., Davitz, 1964; Williams & Stevens, 1972;

Scherer et al., 1984; Johnstone & Scherer, 1999; Kienast & Sendlmeier, 2000; Batliner et al.,

2003; Liscombe et al., 2003; Väyrynen, 2005; Laukka et al., 2005, inter alia). In this way,

contextual information is controlled and one is able to isolate the role of acoustic information

in conveying emotion. Several studies have even made use of nonsensical utterances to factor

out all possible lexical or semantic effects (e.g., Scherer, 2000; Tato et al., 2002; Oudeyer,

2002; Bänziger & Scherer, 2005).

There is a well-worn criticism of using acted or elicited corpora for the study of nonverbal

acoustic communication of emotion. The argument is that acted emotion is not the same

as real-life emotion, and there appears to be some truth to this. Williams & Stevens (1972)

found that acted emotion tended to be more exaggerated than real-life emotion. However,

they also found that the relationship between acoustic correlates and acted emotions, though

accordingly exaggerated, were not contradictory to those found for real-life emotions. In

other words, while the absolute values of gradient acoustic cues for acted speech differed from

those found in a non-acted scenario, their relative values across emotions were equivalent. In

summary, we do not contest the criticism that acted emotion is not the same as non-acted

emotion. However, we believe that the relationship between acoustic cues and emotions

remains constant in both scenarios and that acted speech is a useful medium for drawing
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inferences about the acoustic cues of spoken emotion.

Global acoustic measurements of speech were found to play a role in discriminating

emotions in the earliest experiments (Fairbanks & Pronovost, 1939; Davitz, 1964) and these

results have been reduplicated time and time again in subsequent years. The global acoustic

measurements most often cited are generally those that quantify speaking rate and mean or

range of fundamental frequency (f0) and intensity.1 Most studies have found that anger,

fear, and happiness are characterized by high mean f0, large f0 variability, high mean

intensity, large intensity variability, and fast speaking rate; whereas, boredom and sadness

are characterized by the opposite (low f0 mean/variability, low intensity mean/variability,

and slow speaking rate). There have been several meta-studies in recent years comparing

past findings of empirical research in nonverbal communication of emotion (e.g., Johnstone

& Scherer, 2000; Cowie, 2000; Schröder, 2001), though Juslin & Laukka (2003) put forth one

of the most comprehensive. They composed a meta-analysis of over one hundred studies

conducted between 1939 and 2002. Table 1.1 generalizes the dominant findings across

studies.

Though significant acoustic correlates have been observed for discrete emotions, there

is a general consensus that acoustic features of this sort fall short of fully discriminating

discrete emotions. Emotion is generally thought to be composed of at least two dimensions:

Acoustic Feature

Emotion speaking rate mean intens. intens. variability mean f0 f0 variability

anger fast high high high high

fear fast low/high high high low/high

happiness fast high high high high

sadness slow low low low low

Table 1.1: Acoustic correlates of emotion based on a meta-analysis of over one hundred

empirical studies. Take from Juslin & Laukka (2003).

1Fundamental frequency and intensity are known correlates of perceived pitch and intensity, respectively.

Both will be defined in subsequent chapters.
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activation and valency. Activation describes the amount of energy expenditure involved

in handling a situation and/or its consequences. Global acoustic measurements are thought

to correlate with this dimension because it is intrinsically related to biological phenomena

and physiological state. As a person’s emotional state becomes more activated, his or her

breathing often increases and this has an effect on the how fast air is expelled (intensity)

and how fast the vocal folds vibrate (f0) (Williams & Stevens, 1972). In other words, some

acoustic correlates of emotion can be considered evolutionary reflexes (Johnstone & Scherer,

2000). However, describing emotion in terms of activation cannot fully differentiate even the

most colloquially familiar emotional states. The most notorious examples of this are anger

and happiness, both of which are highly activated and are known to correlate with high

f0, intensity, and speaking rate (see Table 1.1). They differ, of course, in that one conveys

negative affect and the other positive affect. This dimension is what is referred to as valency

and there is almost no consensus in the research community on how, or even if, acoustic cues

correlate with this dimension. Some have suggested that voice quality may play a role (e.g,

Scherer et al., 1984; Ladd et al., 1985; Zetterholm, 1999; Tato et al., 2002; Gobl & Chasaide,

2003; Fernandez, 2004; Turk et al., 2005), while others have suggested categorical intonation

units (e.g., Uldall, 1964; O’Connor & Arnold, 1973; Scherer et al., 1984; Mozziconacci &

Hermes, 1999; Wichmann, 2002; Pollermann, 2002).

Acoustic cues of the type we have discussed thus far can be considered phonetic descrip-

tors of speech. Mean f0, for example, is computed by measuring the rate of vibration of the

vocal folds and, as such, is a gradient variable whose specific values are not considered to

map directly to linguistic meaning. It is believed, however, that intonation—the shape of

the pitch contour—can be abstracted in such a way that it does, in fact, represent linguistic

(phonological) meaning. Of the one hundred studies addressed by Juslin & Laukka (2003),

fourteen explored the role of intonation in nonverbal communication of emotion, though

the authors noted that most of the studies in this latter group were fairly impressionistic

and hard to compare due to different intonation annotation schemes. They summarized

their findings by noting that anger, fear, and happiness are associated with “rising” into-

nation, whereas sadness is associated with “falling” intonation. This analysis implies that

intonation adds no discriminative information beyond the simpler measurements of global
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f0 behavior. However, a closer look at several of these studies reveals that there is con-

tention with respect to the role of context regarding intonation. We will examine a few

empirical experiments to highlight some of the findings, but note that there is by no means

a consensus.

Scherer et al. (1984) found that low and high intonational phrase boundary tones were

indicative of emotion in a corpus of 66 German utterances, but only when conditioned

by sentence type. Yes-no questions were found to be challenging when they co-occurred

with low boundary tones and agreeable when they co-occurred with high boundary tones.

The opposite pattern was found for wh-questions. When not conditioned by sentence type,

phrase-final intonation was found to have little effect on emotion perception. Wichmann

(2002) agreed with this assessment, in part. Intonation, claimed Wichmann, can convey

emotional meaning that is both independent of and dependent on context. Expressive

intonation is not conditioned on linguistic context because it describes the speaker’s inter-

nal state, whereas attitudinal intonation is defined in terms of speaker interaction and

therefore must be conditioned on things such as speech acts, events, prior knowledge, etc.

Wichmann agreed with Scherer et al.’s findings that intonation is interpreted emotionally

based on marked and unmarked expectations of sentence type, though offered no empirical

evidence of this.

In a more recent study, Bänziger & Scherer (2005) eschewed out of hand the usefulness

of categorical intonation labels and instead represented pitch contour information by quan-

titatively measuring the slope of the pitch rises to, and falls from, pitch peaks. In addition,

they measured the slope from the final pitch peak to the end of the phrase. It was found

that such information was useful solely in terms of activation. Uptrend—a progressive

increase in pitch until the final pitch peak—was found to signify despair and elation (high

activation); downtrend—a gradual fall preceded by an early high pitch peak—was indica-

tive of sadness and happiness (low activation). In addition, pitch falls from the last pitch

peak to the end of the phrase were found to be steeper for high activation emotions (anger

and joy) than for low activation emotions (fear and happiness).

Mozziconacci & Hermes (1999) labeled a corpus of Dutch acted speech with perceptual,

categorical intonation labels using IPO intonation grammar (’t Hart et al., 1990). Though
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the authors did not find a one-to-one relation between emotion and intonation pattern, they

did find that utterances with an early prominence-lending rise followed by a very late non-

prominence-lending rise were indicative of indignation. Furthermore, they found that a very

late non-prominence-lending fall was generally indicative of non-neutral affect. Though their

results were far from definitive, their findings were not conditioned by linguistic context, as

Scherer et al.’s were.

The experiments described in this thesis are similar to the studies cited above in several

respects. First, we extracted global acoustic cues from emotional utterances and correlated

their values with labels corresponding to emotional states and dimensions. We also con-

ducted machine learning experiments to predict emotional labels. However, whereas most

past studies have profiled emotions using all statistically significant correlations, our ap-

proach was novel in that we sought to identify the most important cues and represented

them as a set of minimally distinct features. Also, we explored the role of abstract intonation

labels in emotion classification, which few previous studies have done.

Our approach differed from past studies in another important way. We compared the

acoustic-prosodic cues associated with emotional states both as they were intended by the

speakers and as they were perceived by listeners. Though it has been quite common for

other research studies to evaluate perceived emotion by asking human listeners to judge

the emotional content of utterances, we know of few research studies that have explored

rater differences beyond reporting agreement among raters. Toivanen et al. (2005) is a

notable exception, but they limited their analysis to the confusion of intended and perceived

emotions based on gender. The authors reported that, on average, female listeners were 5%

more accurate than male listeners at perceiving the intended emotion of speakers, though

they performed no statistical analyses and were thus perhaps too broad in their conclusion

that women are more attuned than mean to the emotional state of others. In our analysis,

we looked at how listeners might be clustered into different groups based on their assessment

of emotional speech. In the process, we examined several potential ways that raters might

differ, including gender, though we did not segregate raters by gender a priori.
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Chapter 2

The EPSAT and CU EPSAT

Corpora

The Emotional Prosody Speech and Transcripts corpus (henceforth referred to as EPSAT)

was collected by a group of researchers at the University of Pennsylvania over an eight month

period in 2000-2001 (Liberman et al., 2002) and was made publicly available through the

Linguistic Data Consortium in 2002 (catalog number LDC2002S28; ISBN 1-58563-237-6).

The corpus was modeled after an earlier study conducted for German (Banse & Scherer,

1996).

EPSAT comprises recordings of 8 professional actors (5 female, 3 male), each a native

speaker of Standard American English, all of whom read semantically neutral phrases de-

signed to convey several emotions for research on the prosodic indicators of emotion. Phrase

length was normalized by providing actors with four syllable phrases only. The data were

further controlled for semantic content by restricting the domain to only dates and numbers.

In this way, the researchers hoped to isolate emotional prosody by disallowing linguistic cues

to emotion. An example of one of the phrases presented to the actors was: “Two-thousand

four.”

The actors were instructed to read the phrases aloud such that 14 distinct emotions were

conveyed, and were further provided with real-world contexts in which such an emotion

might be felicitous. The 14 emotions (plus neutral to indicate no overt conveyance of
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anxiety boredom cold-anger

contempt despair disgust

elation happiness hot-anger

interest neutral panic

pride sadness shame

Table 2.1: Emotion labels of the EPSAT corpus.

emotion) represented in the corpus are shown in Table 2.1. The data in EPSAT were

recorded directly on two channels with a sampling rate of 22,050 Hz. The two microphones

used were a stand-mounted boom Shure SN94 and a headset Seinnheiser HMD 410.

Each actor was encouraged to repeatedly utter a given phrase until he or she was satisfied

with the production, though all uttered phrases were included in the corpus, along with their

intended emotions. Consequently, the EPSAT corpus is quite large (approximately 2,400

utterances) and includes many utterances that may or may not convey the emotion listed as

the intended emotion. For these reasons—as well as empirical curiosity about the difference

between intended and perceived emotion, which we address at length in this chapter—we

identified a subset of the corpus for experimentation. In this chapter we refer to this smaller

corpus as CU EPSAT because selection was performed at Columbia University.

For the CU EPSAT corpus, the set of emotions was modified slightly in an attempt to

balance negative and positive emotions; these labels are shown in Table 2.2. In addition,

we selected only 2 male and 2 female speakers to balance for gender. The process by which

Positive Negative

confident angry

encouraging anxious

friendly bored

happy frustrated

interested sad

Table 2.2: Emotion labels of the CU EPSAT corpus.
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utterances were chosen was through agreement among three researchers (including the au-

thor). We listened to every utterance produced by each of the chosen speakers and selected

the best exemplars for each of the emotions in the new emotion label set. In addition, an

utterance that most convincingly conveyed no overt emotional content (neutral) was cho-

sen for each speaker. Given 11 utterances for 4 speakers, CU EPSAT contained 44 sound

tokens. Information uniquely identifying the utterances selected from EPSAT for use in

CU EPSAT can be found in Appendix A on page 194.
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Chapter 3

Extraction of Emotional Cues

The EPSAT corpus was designed to explore suprasegmental aspects of emotional speech.

In other words, since each token was an isolated number or date, no lexical, pragmatic or

otherwise contextual information was considered to be present. Accordingly, each actor had

to rely on acoustic-prosodic information alone for emotional conveyance. There has been

extensive quantitative exploration of acoustic-prosodic cues to emotion, dating back at least

as far as Davitz’s controlled experiments in the 1960s (Davitz, 1964). For the experiments

presented in the first part of the thesis, we extracted acoustic-prosodic features that have

most often been used in empirical emotion experiments in the past and and that have been

shown to most reliably correlate with spoken emotion. Table 3.1 on page 16 catalogs the

acoustic-prosodic features that were automatically extracted from each utterance in the

EPSAT corpus.

By and large, the feature set was divided into two main classes: measurements of inten-

sity and measurements of fundamental frequency (f0). Both information streams can be

reliably extracted from digitized speech and techniques for extracting them are implemented

in all modern speech analysis software programs. All features that relied on intensity and

fundamental frequency were extracted using Praat, a freely-available program for speech

analysis and synthesis.1

Intensity refers to the amplitude of sound waveforms (measured in decibels) and is

1For an overview of Praat functionality we refer the reader to Boersma (2001) and for information on

the extraction algorithms implemented in Praat, we refer the reader to Boersma (1993).
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Name Description

f0-mean mean f0

f0-min minimum f0

f0-max maximum f0

f0-range f0-max minus f0-min

f0-slope slope of linear regression line of f0 against time

f0-curve coefficient of quadratic regression curve of f0 against time

f0-rising the percentage of rising f0 between consecutive f0 samples

f0-voiced for all samples, the percentage that are voiced

db-mean mean intensity

db-min minimum intensity

db-max maximum intensity

db-range db-maximum minus db-minimum

Table 3.1: Acoustic-prosodic features extracted from all EPSAT utterances.

a well-known correlate of loudness. Fundamental frequency (f0) describes the rate at

which the vocal folds vibrate (measured in Hertz) and is a well-known correlate of pitch. The

mean, minimum, maximum, and range (maximum - minimum) of the intensity (db-mean,

db-min, db-max, db-range) and f0 (f0-mean, f0-min, f0-max, f0-range) measurements

for each utterance in the EPSAT corpus were calculated automatically. Intonation, or pitch

contour, was approximated in various ways. Several automatic measurements were calcu-

lated to indicate the global shape of the pitch contour. These features included the slope

of linear regression line of f0 against time (f0-slope), the coefficient of quadratic regres-

sion curve of f0 against time (f0-curve), and the percentage of rising f0 in the utterance

(f0-rising). The latter measurement was calculated by first recording the differences be-

tween all time-contiguous pairs of f0 measurements (f0 at frame t subtracted from f0 at

time t + 1). The percentage of positive differences—each indicating a pitch “rise”—was

then calculated against the total number of differences.

A final acoustic-prosodic feature—speaking rate (f0-voiced)—was approximated using

the output of Praat’s f0 extraction algorithm by calculating the percentage of voiced
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samples in each utterance in the following manner. Only voiced sounds produce reliable

f0 measurements because this is when the vocal folds are vibrating. Silence and voiceless

sounds do not provide reliable output and undefined values are indicated in these instances.

We generally had no internal silences in our data and so assumed that the ratio of voiceless

to voiced sounds was roughly constant across all utterances, especially considering that the

lexical content of the utterances was controlled. For these reasons, we believed f0-voiced

to be a reliable approximation of speaking rate.

Though raw features values are sometimes used in acoustic analyses, we z-score normal-

ized all feature values by actor. This was done so that feature values could be compared

and generalized across speakers. Furthermore, the aforementioned features were all consid-

ered to be automatically extracted from the speech source because no hand-labeling—in

the form of annotation or segmentation—was performed. These features were used in the

bulk of the experiments in this chapter. In Section 7.1 we report on experiments that used

hand-labeled intonational features in the form of ToBI phonemic tone labels.
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Chapter 4

Intended Emotion

The emotion labels of the EPSAT corpus corresponded to the intention of the actors. As

such, the labels did not necessarily correspond to the emotions that would be perceived by

a listener. This is generally the case when actors lack the skill to successfully convey the

emotions they intend, but may also be true in everyday life, even when a speaker truly

does feel the emotion they intend to convey (consciously or subconsciously). Identifying

the intended emotion of a speaker is a valid research endeavor, though in practice it is

often conflated with perceived emotional content, to detrimental effect. If the distinction

between intention and perception is not made then it is hard to generalize across studies.

If one corpus has been labeled with intended emotion and another with perceived emotion,

and if this distinction is not taken into account, then conclusions about emotional cues

can be drawn that are actually artifacts of the mismatch between what is intended and

what is perceived, rather than something inherent in emotion itself. In this chapter we

identify the acoustic-prosodic characteristics of intended emotions in the EPSAT corpus,

which we then compare and contrast with perceived emotions in the smaller CU EPSAT

corpus later on in Chapter 5. Through these analyses, we hoped to address the following

hypothesis:

Hypothesis 4.1 (EmoAcoust) Intended and perceived emotions may be characterized by

different acoustic-prosodic cues.



CHAPTER 4. INTENDED EMOTION 19

The intended emotion labels of the EPSAT corpus were monothetic. In other words,

the utterances associated with each emotion were considered to carry information that was

both necessary and sufficient for that emotion and, by implication, no other emotion. For

example, if an utterance was labeled as angry then it was also considered to convey no other

emotion. Such a typology of emotion labels is true of most corpora of acted emotion. A

monothetic label set eradicates the notion of label similarity, even though it is quite natural

for emotions to be grouped by similarity, most notoriously in terms of valency (positive vs.

negative affect). For example, elation and happiness are generally considered to be more

similar than are elation and sadness. A polythetic label typology, on the other hand,

is capable of capturing label similarity because the labels are defined in terms of a broad

set of criteria that are neither necessary nor sufficient. Instead, each utterance associated

with a label need only possess a certain minimal number of defining characteristics, but

none of the features has to be found in each member of the category. It was our hypothesis

that a monothetic labeling typology for emotion would obscure important characteristics

of emotions; namely, that emotions are inter-dependent and simultaneously present in an

utterance. We state this belief formally with the following hypothesis:

Hypothesis 4.2 (EmoIndpt) Emotions are not independent; they are inter-related.

Additionally, a monothetic typology imposed on a polythetic phenomenon introduces

the risk of improperly training computational models because similar classes cannot be

discriminated. If two emotions are quite similar then the acoustic cues can be expected

to be similar as well. Again, consider elation and happiness. Let us assume that an

utterance that conveys elation is often perceived to convey happiness as well. With

a monothetic labeling typology, the labels have been assigned to utterances that convey

both emotions somewhat randomly. A machine learning approach cannot be expected to

learn significant differentiating cues between the two, and classification performance can

be expected to suffer. In this chapter we report on machine learning experiments using

the EPSAT intended, monothetic feature set and, in Chapter 5, compare these results with

the results of similar experiments that used a perceived, polythetic emotion label set. We

hypothesized the following:
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Hypothesis 4.3 (EmoClass) A monothetic emotion label set performs worse in auto-

matic classification experiments than does a polythetic label set.

4.1 Automatic classification

We conducted a 15-way classification task using all utterances in the EPSAT corpus and

the intended, monothetic emotion label set. Ten-fold cross-validation was run using J4.8

decision trees on 2,050 utterances from 6 actors.1 We used the full set of acoustic-prosodic

features, as described in Table 3.1 on page 16. Table 4.1 below lists the classification

performance as F-measure (F) per emotion.2 The emotion most often classified correctly

Emotion F-measure

contempt 0.18

pride 0.19

interest 0.20

sadness 0.20

cold-anger 0.21

shame 0.22

despair 0.25

disgust 0.25

anxiety 0.28

elation 0.30

happiness 0.30

panic 0.39

neutral 0.40

boredom 0.41

hot-anger 0.53

Table 4.1: Classification performance of the EPSAT intended monothetic emotion labels.

1All machine learning experiments in this dissertation were conducted under the Weka software package

(Witten et al., 1999). The J4.8 decision tree algorithm is a Java-implemented version of the well-know C4.5

decision tree algorithm (Quinlan, 1993).
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was hot-anger (F = 0.53); the least was contempt (F = 0.18). Average F-measure across

all emotions was 0.29.

Though F-measure performance based on automatic classification indicated how pre-

dictable the intended emotions were given our classifier and feature set, it did not provide

insight into the most predictive features for emotion discrimination, nor did it allow us to

profile emotions based on the most significant acoustic-prosodic correlates of each emotion.

One way we gained insight into these matters was to examine the decisions learned when

training the decision tree. However, the resulting decision tree was much too complex to an-

alyze in any meaningful way (over 1,000 decisions were made). Notwithstanding, we could

still take note of the most informative features, which we did by using the correlation-based

feature subset selection algorithm of Hall (1998).3 The algorithm evaluates the worth of

a subset of features by considering the individual predictive ability of each feature along

with the degree of redundancy between features. Subsets of features that are highly corre-

lated with the class while having low inter-correlation are preferred. The preferred subset

observed using this technique correlated with the emotion labels with a strength of 0.234

and comprised the following features: {f0-mean, f0-min, f0-rising, db-min, db-range}.

In other words, mean and minimum pitch, as well as the proportion of rising pitch, were

the most important for distinguishing among emotions, as were the minimum and range of

intensity.

4.2 Emotion profiling

In order to discern the profile of each intended emotion according to its acoustic-prosodic

characteristics, we performed statistical tests to determine whether the mean feature values

associated with an emotion were statistically different from those of other emotions. Ta-

ble 4.2 lists, for each emotion, the mean values of all features under consideration. Since

feature values were z-score normalized, a value close to 0 indicated that the raw value was

near the mean value for this feature. A value of 1 or -1 indicated that the raw value was

2F-measure was calculated using the standard method: (2 · precision · recall)/(precision + recall).

3This algorithm is implemented as CfsSubsetEval() in Weka.
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anxiety -0.69 -0.43 0.14 -0.64 0.02 -0.43 -0.23 -0.28 0.09 0.18 0.21 -0.23

boredom -0.42 0.03 0.51 -0.72 -0.21 -0.83 -0.68 0.40 0.03 0.14 0.12 -0.08

cold-anger 0.16 -0.23 -0.22 0.30 -0.27 -0.20 -0.31 -0.13 -0.11 -0.11 0.12 -0.31

contempt -0.29 -0.39 -0.07 -0.17 -0.25 -0.54 -0.48 -0.37 -0.08 0.23 0.00 -0.13

despair -0.12 0.09 0.29 -0.31 0.15 -0.02 -0.06 -0.21 0.13 0.21 -0.07 -0.03

disgust 0.39 0.34 0.10 0.23 -0.04 -0.30 -0.34 0.05 0.08 -0.06 -0.15 -0.18

elation 0.73 0.62 -0.44 0.81 0.27 1.30 1.11 0.15 -0.14 -0.28 -0.02 0.60

happy -0.09 -0.34 -0.53 0.35 -0.08 0.36 0.37 0.15 -0.19 -0.32 -0.16 0.26

hot-anger 0.81 -0.08 -1.32 1.69 0.40 1.36 1.02 0.01 0.07 -0.36 -0.37 -0.02

interest -0.17 0.08 0.30 -0.35 -0.01 -0.10 -0.18 0.45 0.07 0.10 0.23 -0.02

neutral -0.27 0.30 0.64 -0.72 -0.11 -0.79 -0.60 -0.63 0.07 0.11 -0.05 0.45

panic 0.80 0.41 -0.19 0.78 0.29 1.46 1.66 -0.17 -0.34 -0.52 -0.57 0.19

pride -0.05 -0.19 -0.05 -0.04 -0.11 -0.31 -0.27 0.09 -0.01 0.17 0.03 0.04

sadness -0.54 -0.14 0.31 -0.63 0.16 -0.38 -0.45 0.07 0.31 0.31 0.29 -0.06

shame -0.12 0.17 0.65 -0.60 -0.17 -0.62 -0.56 0.12 0.05 0.14 0.28 -0.27

Table 4.2: Mean feature values (as z-scores) for each emotion in the EPSAT corpus.

one standard deviation above or below the mean, respectively. Mean z-score normalized

feature values were useful for painting an over-all picture of the relative acoustic-prosodic

properties of each emotion.

To examine significant differences between emotions using the mean feature values of

Table 4.2, we ran unpaired t-tests between all emotion pairs for each feature.4 Figures

4.1 and 4.2 (on pages 24 and 25, respectively) show graphically where each emotion lay

in the z-score space of each feature. Emotions were grouped together based on statisti-

cal differences between mean feature values (p < 0.01). The mean feature values of all

emotions in a group were statistically different from the means of all emotions in all other

groups. Each group is color-coded and separated by white space. For example, in Figure

4.1 (a), the result of running unpaired t-tests produced four statistically distinct groups

with respect to mean pitch (f0-mean). The emotions in the group with the highest mean

pitch—panic, hot-anger, and elation—had statistically different means from all other

emotions. However, the results of running similar tests for mean maximum pitch (f0-max)

4T-tests were unpaired because intended emotion labels were associated with different utterances and

therefor constituted independent sets of various sizes.
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showed no emergent groupings, as shown in Figure 4.1 (c). This indicated that f0-max was

a feature that did not help discriminate among the intended EPSAT emotions, given the

acoustic-prosodic evidence.

We considered each emergent group to be a natural classification of emotion given

a feature. Using this framework, we were able to quantize each group based on where

the feature values lay in z-score space. In other words, if there were two emergent groups

for a feature, then the group with the higher means was assigned a feature value of H for

that feature and the group with the lower means was given a feature value of L. When we

observed three statistically different groups we added a feature value of M for the group that

resided in the mid range of feature means. We also introduced MH and ML for features that

partitioned the emotion set into five natural classes for emotions that lay in the mid-high

and mid-low range, respectively. For example, we can see in Figure 4.2 (e) that maximum

intensity (db-max) could be considered a distinctive feature that partitioned the emotion

set into two classes: hot-anger, panic, and elation were in the group with high means

(H) and the remaining emotions were in the group with the low means (L). Features that

did not divide the emotions into different groups were not considered to be distinctive and

were not quantized. A view of the quantized values for all distinctive features given the

intended labels in the EPSAT corpus can be seen in Table 4.3 on page 26.

An ideal distinctive feature set would allow us to uniquely identify all emotions. The

dashed lines in Table 4.3 delineate emotions—or groups of emotions—that are discriminated

by their sequences of quantized feature values. Six emotions were uniquely identified in

this manner: hot-anger, elation, happy, boredom, panic, and neutral. The remaining

emotions, though not uniquely identified, could nevertheless be grouped into natural classes

of their own. One such group comprised {cold-anger, disgust}; the second, {despair,

interest, pride, contempt}; and the third, {sadness, anxiety, shame}.

In fact, it was not necessary to use the full set of distinctive features to achieve the

partitioning we observed in Table 4.3. In other words, it was not a minimally distinctive

set. A minimally distinctive set was found that required only four features. These sets

were either {f0-mean, f0-min, f0-rising, db-range} or {f0-mean, f0-range, f0-rising,

db-range}. These features corresponded almost exactly to the set of most influential fea-
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Figure 4.1: Statistically different groups of intended emotions based on t-tests of z-scored

feature means.
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Figure 4.2: Statistically different groups of intended emotions based on t-tests of z-scored

feature means.
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shame ML L H H H L L

boredom L L H H H L L

panic H H L H H H MH

neutral L L H L H L L

Table 4.3: Quantized feature values per intended emotion determined by statistically dif-

ferent means.
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Table 4.4: Emotion profiles using the minimally distinctive acoustic-prosodic feature set.
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tures found in our machine learning experiments. The only exception was db-min, which

was found to be important in the machine learning experiments but not in our descriptive

analysis here.

Emotion profiles based on minimally-distinctive features are shown in Table 4.4 on

page 26. The feature f0-rising was the only feature required to uniquely identify neutral

utterances, which were found to have less rising pitch relative to all other emotions. Simi-

larly, both f0-min and f0-range uniquely identified panic, which was the only emotion to

have high minimum pitch and low pitch range relative to the other emotions. The remain-

ing features—f0-mean and db-range—were by far the most distinctive features since they

alone were responsible for partitioning all other emotions in our set.

Utterances intended to convey hot-anger and elation had high mean pitch, but they

were distinguishable in that hot-anger had a larger intensity range than elation, though

both had a higher intensity range than the other emotions. Happy utterances tended to have

a mean pitch in the mid-high region and an intensity range in the mid region. Boredom

was uniquely identified as having both a low mean pitch and a narrow intensity range. The

remaining emotions lay in the mid-low mean pitch region, though intensity range divided

this group into three smaller groups.

4.3 Discussion

Given our feature set of automatically-derived acoustic features, we were able to uniquely

profile six emotions using statistical analyses of their mean feature values: hot-anger,

elation, happy, boredom, panic, and neutral. The remaining nine emotions, however,

were not able to be uniquely profiled, though we were able to partition them into three

groups: {cold-anger, disgust}; {despair, interest, pride, contempt}; and {sadness,

anxiety, shame}. While the group that comprised cold-anger and disgust seemed to be

quite coherent with respect to affect, the other two groups appeared less coherent in terms

of affective similarity.

The reasons for the observed emotion groupings were difficult to determine, though it has

been suggested by past studies of emotional speech that acoustic information is insufficient
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for complete emotion discrimination. For example, it has been claimed that that global

acoustic information of the sort we explored is only capable of discriminating along the

activation dimension of emotion (e.g., Davitz, 1964; Schröder et al., 2001). Nevertheless,

this notion was not entirely supported by our results. We observed that some emotions

that were similar in activation but quite different with respect to valency—hot-anger and

elation, for example—were in fact distinguishable by their acoustic cues, as identified by

our analytic approach.

Furthermore, it has also been suggested that the emotional force of utterances with

identical acoustic cues can change given different lexical, pragmatic, or discoursal contexts

(e.g., Cauldwell, 2000; Oudeyer, 2002). An explanation of why we did not find distinguish-

ing acoustic cues for some emotions might be due to the fact that there are not any; in

other words, these emotions can only be disambiguated by context. This claim suggests

that listeners would not be able to reliably identify some of the emotional content of the

utterances in the EPSAT corpus because, by design, all such contextual cues were absent.

In the next section we describe listener perception studies and will explore this topic further.

Another factor that might have contributed to our inability to fully differentiate the

EPSAT emotion labels is the degree to which the actors were consistent with their inten-

tions and vocalizations. It is impossible to know whether this was the case given only the

intentional labels of the EPSAT corpus, and this issue will also be revisited in Chapter 5,

where we report our findings of the analysis of perceived emotion.

The findings of the machine learning experiments and t-test quantification appear to

be somewhat inconsistent in that the former exhibited relatively low F-measures, while

the latter proved largely successful at discriminating emotions. However, the experimen-

tal frameworks of the analyses were different and thus the implications drawn from each

should also be different. The descriptive analysis took a global view of the data. With au-

tomatic classification, though, computational models must be tested on unseen data. Such

an approach introduces error in favor of presenting reasonable measurements of expected

classification accuracy on unseen data. In other words, the goal of automatic classification

is prediction rather than description. Also, our descriptive analysis looked only at mean

feature values, but there was considerable variation within utterances. So, even when mean
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feature values were statistically different, there would still be utterances associated with an

emotion that had feature values deviating from the mean, contributing to incorrect predic-

tion of the emotion of these utterances. Nevertheless, we noticed that the results of our

descriptive analysis were analogous to our automatic classification results. hot-anger had

the highest F-measure (0.53); an expected outcome given that there were several features

that uniquely identified it and the mean z-score values were most extreme for this emo-

tion. We also saw that classification of panic and neutral obtained some of the highest

F-measures and showed significant differences from other emotions using the t-test analysis.

In fact, we observed that the emotions that were uniquely identified via our quantized par-

titioning of the feature space were also the most correctly classified emotions in our machine

learning experiments. The least correctly classified emotions were those which could not be

uniquely identified by our feature space quantization.

There is a final point to make concerning the monothetic emotion labeling scheme of

the EPSAT corpus. Our descriptive analysis indicated that actor intentions were relatively

stable given that we were able to uniquely profile many emotions. However, the labeling

scheme forced the decision tree learner to make distinctions between potentially similar

emotions on somewhat arbitrary grounds. It was our hope that by conducting a perception

experiment that eliminated a monothetic label typology (and adopted a polythetic one) that

we would be able to train more accurate prediction models. We turn now to this study.
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Chapter 5

Perceived Emotion

In this chapter we describe a study we conducted using a subset of the EPSAT corpus—

referred to as the CU EPSAT corpus—which was described in detail in Chapter 2. We had

several goals, most of which were designed to answer the hypotheses put forth in Chapter 4,

though in general we sought to examine the differences between intended, monothetic and

perceived, polythetic emotion label sets and what effect, if any, different labeling schemes

had on the acoustic cues of spoken emotions. Additionally, in this chapter we describe a

technique we used for determining groups of listeners that, we believe, perceived emotion

in systematically different ways. We formulate our hypothesis thusly:

Hypothesis 5.1 (RaterClust) There are groups of raters who perceived emotion in sys-

tematically different ways.

5.1 Perception survey

We designed an Internet-based survey to elicit perceived emotional ratings of the CU EPSAT

corpus. Each subject participated in the study remotely using their personal computers.

After answering introductory questions about their language background and hearing abili-

ties, subjects were given written instructions describing the procedure. Subjects were asked

to rate each utterance—played out loud over headphones or speakers—on 10 emotional

scales: angry, anxious, bored, confident, encouraging, friendly, frustrated, happy,

interested, sad. For each emotion x, subjects were asked, “How x does this person
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sound?” Subject responses could include: “not at all,” “a little,” “somewhat,” “quite,” or

“extremely.” These responses were later converted to the following ordinal scale:

• 0 ⇔ “not at all”

• 1 ⇔ “a little”

• 2 ⇔ “somewhat”

• 3 ⇔ “quite”

• 4 ⇔ “extremely”

At the onset of the experiment, subjects were presented with 3 practice stimuli in fixed

order. Then the remaining 44 test stimuli of the CU EPSAT corpus were presented one by

one in random order. For each stimulus trial, a grid of blank radio-buttons appeared, as

depicted in Figure 5.1 on page 32. The sound file for each trial played repeatedly every two

seconds until the subject selected one response for each emotional scale. Subjects were not

allowed to skip any scales.

The order in which the emotional scales were presented was rotated among subjects.

Two randomized orders and their reverse orders were used. Each listener was presented

with one of these fixed orders, shifted by one at each new token in a cyclic fashion to avoid

any ordering effects.

All subjects were unpaid volunteer participants. Forty (40) native speakers of Standard

American English with no reported hearing impairment completed the survey: 17 female

and 23 male. All were 18 years of age or older, with a fairly even distribution among the

following age groups: 18-22 years old (10.0%), 23-27 years old (20.0%), 28-32 years old

(12.5%), 33-37 years old (7.5%), 38-42 years old (12.5%), 43-47 years old (20.0%), and over

48 years old (17.5%).

5.2 Rating correlation

The survey was designed to elicit polythetic perception ratings such that each utterance

was rated for all emotions simultaneously. Since perception ratings lay on an ordinal scale,

it was possible to examine the extent to which perceived emotions correlated with one
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Emotion Recognition Survey: Sound File 1 of 47

not at all a little somewhat quite extremely 
How frustrated does this person sound?
How confident does this person sound?
How interested does this person sound?
How sad does this person sound?
How happy does this person sound?
How friendly does this person sound?
How angry does this person sound?
How anxious does this person sound?
How bored does this person sound?
How encouraging does this person sound?

Play Next Item

User ID: 8668462401 
Having trouble with the survey? Please email the webmaster and include your user ID listed above. 
  

Figure 5.1: Sample page from the CU EPSAT web-based perception experiment.
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another given the subject ratings as evidence. In other words, if emotion x was perceived,

we investigated what this could tell us about the perception of emotion y.

Table 5.1 presents the Pearson product moment correlation matrix for all emotions

using ratings from every subject in the study. Only correlations significant at p < 0.001

are shown. Of the 45 comparisons, only four were found to be non-significant. This alone

supports Hypothesis 4.2: Emotions are not independent; they are inter-related. However,

we wanted to say more about exactly how emotions were correlated and to do so we will

discuss the correlations in more detail.

Table 5.1 is divided into quadrants by valency. The top right quadrant (red text) shows

correlation between what are traditionally considered to be negative and positive emotions,

whereas the top left quadrant (green text) contains correlation of negative emotions and the

bottom right quadrant (blue text) displays significant correlations for positive emotions. A

pattern quickly emerges: negative emotions negatively correlated with positive emotions,

whereas positive correlation was found between emotions of equivalent valency. The only

exception to this was the negative correlation observed between bored and anxious. Even

though both are considered to be negative emotions, the presence of one implied the absence

of the other.
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sad ns 0.44 0.26 0.22 -0.27 -0.32 -0.42 -0.32 -0.33

angry ns 0.70 0.21 -0.41 ns -0.37 -0.09 -0.32

bored 0.14 -0.14 -0.28 -0.17 -0.32 -0.42 -0.27

frustrated 0.32 -0.43 -0.09 -0.47 -0.16 -0.39

anxious -0.14 -0.25 -0.17 ns -0.14

friendly 0.44 0.77 0.59 0.75

confident 0.45 0.51 0.53

happy 0.58 0.73

interested 0.62

Table 5.1: Perceived emotion correlations (p < 0.001) based on CU EPSAT ratings.
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One might argue that strong negative correlations are indicative of a monothetic rela-

tionship between those emotions. For example, the fact that happy and frustrated were

negatively correlated (-0.47) implies that when one was perceived the other was not per-

ceived. In these cases it would be safe to adopt a monothetic labeling typology. However,

the wealth of strong positive correlations between the remaining emotions clearly suggests

that an utterance was rarely perceived to convey only one emotion, and thus motivates a

polythetic labeling scheme overall.

Another observation is that positive emotions inter-correlated with a higher degree of

strength than negative emotions did. Average correlation of positive emotions was 0.60;

average correlation for negative emotions was much lower at 0.27. This implies that our set

of negative emotions was more discrete than our set of positive emotions, a finding suggested

as well by Juslin & Laukka (2003) in their meta-analysis. In fact, when developing the label

set we found it much easier to arrive at a diverse set of colloquial terms for negative emotions

than for positive ones. It would not be unreasonable to suggest that—at least in modern

American culture—that there is a richer inventory of distinct negative emotions than there

are positive ones. It remains to be seen whether such a statement could be made for all

cultures, but it is an interesting finding nonetheless.

Correlations that were extremely strong—say, above 0.70—may suggest that that the

labels themselves were redundant. We observed such high correlation with all pairwise

combinations of happy, encouraging, and friendly. Similarly, angry and frustrated

had a correlation coefficient of 0.70. Does this imply that the labels themselves were not

discriminative, or is this an artifact of the way in which the actors produced the utterances,

and/or a limitation of using only an acoustic information channel? The answers to these

questions remain unclear, but regardless of the reasons, we expected to find similar acoustic

cues for these highly correlated emotions.

5.3 Label correspondence

We hypothesized that intended emotion labels would not necessarily correspond to per-

ceived emotion labels. In order to examine this, we recorded the frequency of co-occurrence
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between intended and perceived emotion labels for all 44 utterances in the CU EPSAT cor-

pus. Each cell in Table 5.2 lists the number of times an intended label co-occurred with

a perceived label divided by the total number of utterances with the intended label (N).

Though counts were normalized by row, the rows do not sum to 1 because an utterance

could be perceived as any number of our ten polythetic emotion labels. A perceived emo-

tion was considered to be present for an utterance if the majority of subject ratings were

between 1 and 4 for that emotion, indicating some degree of emotion perception. In the

cases where there were no correspondences, the table cells have been left blank. When the

intended and perceived emotion labels were the same, the proportion of correspondence is

indicated in red. An intended emotion that was correctly perceived on all utterances would

have a cell value of 1.0.

Overall, it seems, the actors tended to hit their marks: sadness, interest, hot-anger,

and boredom were perceived as such 100% of the time, anxiety was perceived 75% of the

Perceived Emotions
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anxiety .75 .25 .25 .75 .75 4

boredom 1.0 .50 .25 .75 4

cold-anger .50 1.0 1.0 2

contempt .66 .33 .33 .66 3

elation .66 .33 .66 .33 1.0 3

happy .11 1.0 .67 .89 .78 1.0 9

hot-anger 1.0 1.0 1.0 .33 3

interest .25 .25 .75 1.0 4

neutral .50 .75 .25 .50 .25 4

pride 1.0 .75 1.0 .75 1.0 4

sadness .75 .50 .50 1.0 4

Table 5.2: Proportion of intended emotion labels that corresponded to perceived labels.
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time, and happiness 78% of the time. However, cold-anger was only perceived as angry

half the time. The fact that all intended emotions corresponded to more than one perceived

emotion is not unexpected given that we have shown in Section 5.2 that emotions were

simultaneously perceived by raters. For example, the fact that hot-anger was perceived as

both angry and frustrated further supports the polythetic nature of emotions.

What was problematic was when we observed label correspondences that were contrary

to the perceived emotion correlations we reported earlier. For example, since anxiety

and confident were negatively correlated we would not expect both of them to be simul-

taneously perceived given an intended emotion. However, we note that this occurred a

quarter of the time. Anxiety was also perceived as friendly a quarter of the time as

well. Other troubling correspondences were boredom/confident (.50), elation/anxious

(.66), and happy/anxious (.11). It is clear, then, that the emotion that a speaker intended

to convey was not always the emotion that was perceived. Recall that we only compared

EPSAT utterances that were hand-picked precisely because they were perceived by three

researchers to be unambiguous and prototypical examples of the emotions in the perceived

emotion label set. The fact that we observed mismatch between speaker intention and lis-

tener perception cannot be attributed to bad tokens, and if we were to consider the entire

EPSAT corpus we would likely observe even more mismatch.

There are a few other interesting points about the correspondences. The first is the

abundant frequencies of perceived confident and interested labels. These occurred for

almost every emotion and would seem to suggest that these are not full-blown emotions, but

instead are representative of another sort of cognitive state, possibly attitude (Wichmann,

2000) or second-order emotions (Cowie, 2000).

Finally, it is very interesting to note that intended neutral utterances had a wide range

of perception. They were perceived as bored 50% of the time, confident 75% of the time,

friendly 25% of the time, interested 50% of the time, and sad 50% of the time. This is

a widely disparate group of perceived emotions and lends credence to the commonly-held

notion that there is no such thing as an emotionally-neutral utterance; rather, emotion is

omnipresent, intended or not.
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5.4 Rater behavior

We turn now to the rating behavior of 39 of the 40 subjects who participated in the per-

ception study.1 Not only were we interested in overall rating distribution, but we were also

concerned with the degree to which raters agreed with one another.

In total, we collected 17,160 ratings (44 utterances · 10 emotions · 39 raters) via our

perception study. The count of each rating is listed per emotion in Table 5.3. We observed

that roughly half of all ratings were considered to “not at all/’ convey the emotion surveyed

(rating 0), while the other half was split more evenly between the other four ratings, though

the counts generally declined as ratings became more extreme. The rating distributions

for individual emotions followed this pattern as well, with a few exceptions. The label

angry actually had a higher frequency of ratings with a value of 4 than those with a value

of 3. Additionally, rating distributions for interested and confident were drastically

Ordinal rating/Label

0/not at all 1/a little 2/somewhat 3/quite 4/extremely

E
m

o
ti

o
n

angry 1173 245 125 75 98

anxious 921 327 200 178 90

bored 1164 244 136 113 59

confident 438 299 444 411 124

encouraging 965 267 239 184 61

friendly 768 378 313 191 66

frustrated 918 307 244 162 85

happy 1014 246 218 143 95

interested 503 371 350 380 112

sad 1092 261 170 103 90

T
o
ta

l count 8956 2945 2439 1940 880

percentage 52.2 17.2 14.2 11.3 5.1

Table 5.3: Rating distribution of all raters over all utterances in the CU EPSAT corpus.

1One rater was excluded from all analyses reported here because of severely aberrant behavior.
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different than the distributions of the other emotions. For both, the rating frequency was

distributed much more evenly among the ratings than were the other emotions. This might

be indicative of the fact that these labels better represented attitude or mood, rather than

full-blown emotional states, as suggested previously. As we saw in the previous section,

most intended emotions were perceived as confident and interested, even when they

were simultaneously perceived to be other emotions, and irrespective of valency.

The preponderance of rating 0 can be explained in part by the design of the experi-

ment itself. We chose what we felt were particularly unambiguous examples of each of the

ten emotions, and chose an equal number of utterances per emotion. In the experiment,

though, subjects were asked to rate each utterance for every emotion, independent of other

emotions. Therefore, we might expect to find that any given utterance did not convey most

emotions. Since the experiment was designed such that each of the ten emotions was equally

represented, we would have expected that roughly 10% of all ratings for those utterances

would be in the range of 1 to 4. Stated differently, if the emotion labels were monothetic

we would predict that 90% of the ratings would be 0. This estimate is much higher that

the 52% we observed and further supports Hypothesis 4.2, that perceived emotions labels

were, in fact, polythetic.

In addition, our rating scale was designed to record the degree of perceived presence

of emotions, and not the converse. Therefore, ratings 1, 2, 3, and 4 were all used when

an emotion was perceived, whereas rating 0 was reserved for all possible degrees of the

absence of emotion.2 Using such a design produced an unbalanced scale and explains why

the distributions were so heavily skewed in favor of rating 0. We addressed this issue by

analyzing the data in a dichotomous fashion. In subsequently reported analyses we often

treated rating 0 differently from the non-zero ratings.

Figure 5.2 on page 40 shows the histogram of the frequency, per subject, of all ratings

with a value of 0. We noticed that while most raters tended to assign rating 0 half of the

time (M = 229.6, SD = 54.6, N = 440), the frequency range was actually quite large. The

2One could imagine a different study with the following four point scale, for example: (-2) extreme

absence of emotion . . . (-1) mild absence of emotion . . . (1) mild presence of emotion . . . (2) extreme presence

of emotion.
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most conservative rater assigned rating 0 only 30% of the time, whereas the most generous

chose it 78% of the time. There appeared to be a sizable subset of raters who chose rating 0

about 75% of the time. The distribution was not shown to be significantly different from the

expected normal distribution given the Kolmogorov-Smirnov Test of Composite Normality

(ks = 0.127, p = 0.5).

When we considered only ratings between 1 and 4, we observed that mean rating per

subject ranged from 1.5 to 2.7. Observed mean rating over all speakers was 2.1, with a

standard deviation of 0.3. Here, too, we found the distribution to be normal (ks = 0.120,

p = 0.5). A histogram of the mean positive ratings is presented in Figure 5.3 on page 40.

When an emotion was perceived, its strength was relatively weak. To use the parlance of

the survey itself, if an emotion was detected, it was judged, on average, to be “somewhat”

(rather than “a little”, “quite”, or “extremely”) present.

To summarize the general behavior of the subjects of the CU EPSAT perception study,

then, we conclude that it was relatively consistent. Half of the time emotions were not

perceived and, when they were, they were considered by subjects to be “somewhat” present.

This type of global analysis is contrary to our earlier hypothesis that raters perceived

emotions differently. What we can say is that raters were consistent with respect to the

frequency with which they perceived the presence of emotions and that—when an emotion

was perceived—they were consistent with respect to strength of that emotion. However,

the present analysis says nothing about whether the decisions made at the utterance level

were consistent across raters. We turn to this now.

5.5 Rater agreement

Kappa (κ) is a commonly used measurement for comparing the agreement of two labelers

on the same task. It is especially well regarded because it computes the probability that

two raters agree on a set of labels conditioned by what chance would afford given the

label distribution (Cohen, 1968). Traditionally, κ considers only exact label matches to be

correct, an assumption best suited for nominal data. For ordinal or ranked data, weighted κ

is often used because it assigns partial credit for ratings that are close on the ordinal scale.
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Figure 5.2: Histogram of the number of times each rater chose rating 0 (no emotion present)

in the CU EPSAT perception survey.
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Figure 5.3: Histogram of the mean rating considering only ratings between 1 and 4 (indi-

cating the degree of emotion present) for each rater in the CU EPSAT perception survey.
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We adopted quadratically-weighted κ, though we measured the agreement between

two raters in a slightly non-standard way. This algorithm is shown in pseudocode below.

Algorithm 1: ComputeKappaWeight(r1, r2)

r1 = rating of first rater

r2 = rating of second rater

\\ special case: emotion was perceived by one rater but not the other

if (r1 = 0 and r2 > 0) or (r1 > 0 and r2 = 0) then

return 0

end if

\\ normal case: quadratic weighting

diff = |r1− r2|

if diff = 0 then

return 1

else if diff = 1 then

return 0.89

else if diff = 2 then

return 0.56

else

return 0

end if

For pairs of ratings in the range of (1,4), agreement was calculated using standard quadratic

weighting: two ratings that did not differ at all were assigned an agreement score of 1; two

that differed by one rank received an agreement score of 0.89; two that differed by two ranks

were assigned an agreement score of 0.56, and two that differed by three ranks received an

agreement score of 0. We felt it was important to respect the theoretical distinction between

the perception of the absence of an emotion and the perception of the presence of an emotion.

Therefore, in the case where one rater chose rating 0 and the other did not, the agreement

score assigned would be 0, even if the non-zero rating was very close to 0 (for example, if the

rating were 1). If both raters chose “no at all” then they received an agreement score of 1

for that utterance. In this manner, we computed semi-quadratically-weighted κ (henceforth

referred to as κqw) between every pair of raters who participated in the survey.
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Figure 5.4: Histogram of inter-rater κqw measurements (M = 0.67, SD = 0.13, N = 780).

A histogram of all observed κqw scores (M = 0.67, SD = 0.13, N = 780) is shown in Fig-

ure 5.4. The distribution was found to be statistically different from the normal distribution

(ks = 0.098, p < 0.001), indicating a certain amount of heterogeneity in the distribution of

κqw scores. In other words, there appeared to be a certain amount of disagreement among

the ratings assigned to the utterances in the CU EPSAT corpus. Though most of the raters

seemed generally to agree, as seen by the largest mass centering around κqw ≈ 0.75, there

was a second mass observed around κqw ≈ 0.55. We interpret this to indicate that there was

a considerable number of raters who did not agree with one another. In the next section

we present results of automatic clustering experiments designed to determine whether rater

disagreements were random or systematic, thus addressing Hypothesis 5.1.
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5.6 Rater clustering

We chose to explore automatic clustering techniques as a way to determine whether raters

could be grouped together based on systematic emotion perception behavior. We were

motivated to do so based on our observation of the non-normal distribution of inter-rater

κqw measurements. As with all clustering techniques, a method of evaluating the similarity

between two items is necessary. We chose as our similarity metric κqw, described above.

The clustering algorithm is shown in pseudocode below.

Algorithm 2: ClusterRaters

R = set of raters

C = set of clusters

Chose initial cluster centroids; add these raters to C and remove from R.

for each rater r in R do

maxRater = 0

for each cluster c in C do

mean = mean κqw between r and all raters in c

if mean > maxMean then

maxMean = mean

maxCluster = c

end if

end for

add r to C[maxCluster]

end for

The algorithm considered all raters who had not yet been added to a cluster. For each

existing cluster, the mean κqw scores between the rater and all raters in each cluster were

calculated. The rater was added to the cluster with which it had the highest mean κqw.

This process was continued until there were no raters left to cluster.

The results of most clustering techniques are heavily influenced by the initial centroids

of each cluster. We adopted an approach by which we chose the number of clusters a priori

and took special care to seed the clusters with centroids that were as dissimilar from one

another as possible. We did so by first identifying the two raters with the lowest inter-rater
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κqw. Each of these was made the centroid of its own cluster. If more than two clusters

were desired, we chose as the centroid of the next cluster the rater whose average κqw when

compared with the current cluster centroids was smallest. In this way we ensured that the

initial clusters represented maximally dissimilar raters.

We report here experiments with two, three, and four clusters. One reason for limiting

the number of clusters was because, with only 39 raters, we felt that we could not properly

generalize any findings using more than four clusters. Table 5.4 describes the properties of

each cluster under each experimental design. We observed that under all conditions, the

number of raters in each cluster was uneven. Under each condition there was one cluster

that contained the overwhelming majority of the raters (a1, b1, and c1). From this we

confirmed what we put forth in the previous section—that most raters displayed similar

rating behavior. When clustering with two initial centroids, we observed that cluster a1

had a high mean inter-rater κqw (0.70) and that cluster a2 had a lower mean κqw (0.56),

but it also showed very small standard deviation (0.01), signifying a high degree of cluster-

internal homogeneity. The standard deviation of the raters in cluster a1, however, was

much higher (0.11) and thus motivated increasing the number of clusters. When we ran

no. of clusters cluster id mean κqw stdv κqw no. of raters

1 — 0.67 0.13 39

2
a1 0.70 0.11 36

a2 0.56 0.01 3

3

b1 0.73 0.09 34

b2 0.56 0.01 3

b3 0.57 NA 2

4

c1 0.76 0.08 28

c2 0.70 0.07 6

c3 0.56 0.01 3

c4 0.57 NA 2

Table 5.4: Results of automatic clustering of raters using κqw as the comparison metric for

two, three, and four clusters.
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the algorithm with three initial centroids we saw that the cluster with the largest amount

of raters (b1) had a lower standard deviation (0.09) and a higher mean κqw (0.76) than did

cluster a1. This trend continued when we clustered with four initial centroids; however,

here we noticed that the largest cluster had in fact been split into two clusters (c1 and c2),

each with a cluster-internal mean κqw greater than or equal to b1’s and a standard deviation

less than b1’s. In addition, both c1 and c2 were recorded to have higher inter-rater κqw

scores and lower standard deviation than did the entire group of raters together (M = 0.67,

SD = 0.13). What this indicated was that when four clusters were chosen a priori, a

clustering was found that divided the dominant rater behavior into two more homogeneous

groups of raters, albeit still unbalanced (c1 contained 28 raters while c2 only had 6). When

experiments were run with more than four clusters, each new centroid was always taken

from cluster c1 and segregated to its own centroid with no other raters added to it. The

implication here was that clustering equilibrium had been reached at four clusters.

Based on these observations, we felt that the clustering that resulted when running the

algorithm with four initial centroids was the best way to cluster the raters. This is the

rater grouping that we adopted and the one we will be discussing for the remainder of this

chapter. Unfortunately, the number of raters for clusters c2 and c3 were too few to run

statistical tests on, so we cannot discuss the possible implications of the behavior of these

raters, except for the fact that they were most similar to the other raters in their respective

clusters.

Given the high means and low standard deviations of clusters c1 and c2, we suspected

that the clusters were homogeneous and were indicative of a high rate of inter-cluster rater

agreement. In order to test this, we examined the histograms of the pairwise inter-rater

κqw within each cluster, shown in Figure 5.5 on page 46. Both clusters were, in fact,

normally distributed according to the Kolmogorov-Smirnov Test of Composite Normality

(c1: ks = 0.036, p = 0.5; c2: ks = 0.152, p = 0.5), which was not true of the unclustered

distribution (cf. Figure 5.4). This further supported our claim that clustering was appropri-

ate for the raters based on their perceptual ratings of emotions, because doing so resulted

in groups of raters that were more internally consistent than the entire group of raters was

on the whole.
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Figure 5.5: Histogram of pairwise rater κqw for those raters in clusters c1 and c2.
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5.7 Cluster profiling

Having identified two internally coherent clusters of raters, we wished to explore the specific

ways in which these clusters differed, motivated by the underlying hypothesis that clusters

could be differentiated by their demographic and behavioral makeup. In this section we

document our exploration of several hypotheses related to this notion and describe our

findings with respect to each.

Hypothesis 5.2 (ClustRaterSex) Clusters differed by the sex of the raters in each.

In both clusters, there were fewer female raters than there were male raters: 46% of the

raters in c1 were female compared with 33% in c2. This was also true of the experiment

overall (42.5% were female). However, the ratio of male to female raters in cluster c2 was 2

to 1, much higher than it was in cluster c1 (1.2 to 1). In other words, cluster c2 represented

a more male-dominated cluster than did cluster c1, though we were unable to verify the

statistical significance of this finding due to the small number of raters in cluster c2. We

must say, then, that these findings only tentatively support Hypothesis 5.2.

Hypothesis 5.3 (ClustRaterAge) Clusters differed by the age of the raters in each.

Table 5.5 lists the the age range distribution of the raters in each cluster. Again, due to

the small size of cluster c2 we were unable to test whether the distributions were statistically

different. Though the relative age distributions were not equivalent, both clusters showed

similar spreads of raters across all age ranges. For example, for both clusters approximately

half were under 38 years of age and the other half were older. Therefore, Hypothesis 5.3

could not be supported; age range of raters did not appear to be a distinguishing factor in

rater clustering.

Hypothesis 5.4 (ClustDegree) Clusters differed in the degree of perceived emotion re-

ported.

What of the degree to which raters assigned ratings? Was it the case that raters in

c1 were more generous or conservative with respect to their assignment of ratings than

were the raters in c2? In order to address this, we computed the mean rating of each
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c1 c2

age count percent count percent

18-22 1 3.6% 1 16.7%

23-27 6 21.4% 1 16.7%

28-32 5 17.9% 0 0.0%

33-37 2 7.1% 1 16.7%

38-42 2 7.1% 2 33.3%

43-47 7 25.0% 0 0.0%

>48 5 17.9% 1 16.7%

Table 5.5: Age range distribution of clusters c1 and c2.
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Figure 5.6: Histogram of mean ratings for clusters c1 and c2.
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utterance for each emotion (N = 10 emotions · 44 utterances = 440). Histograms of these

data are plotted for each cluster in Figure 5.6 on page 48. The distributions did not

appear radically different under visual inspection, though a t-test showed that the means

of the rating distributions were significantly different (t = 5.9, df = 439, p < 0.001). The

Kolmogorov-Smirnov Test of Composite Normality also showed that the distributions were

significantly different (ks = 0.12, p = 0.002). By visual analysis we can see that this was

due to a higher proportion of ratings in the range of 2-3 for cluster c1. In other words,

cluster c1 perceived significantly more emotions that were ‘quite’ present than did cluster

c2, thus lending support for Hypothesis 5.4.

Hypothesis 5.5 (ClustUtt) Clusters differed in their ratings on only some utterances.

Due to the fact that the cluster distributions of mean ratings, though statistically dif-

ferent, were not radically different, we suspected that raters in each cluster only differed

on some utterances, not all. To this end, we ran an analysis of variance (ANOVA) for ev-

ery utterance per emotion, comparing the ratings in both clusters. We observed that 19%

(84/440) were significantly different (df = 32, p < 0.05) with respect to the ratings assigned

by the raters in each cluster. Though most of time the raters in each cluster tended to

agree on the emotion perceived, we found a number of utterances and emotions for which

they disagreed. This finding supported Hypothesis 5.5 and subsequent analyses examined

cluster differences with respect to these 84 samples.

Hypothesis 5.6 (ClustSpeakerSex) The sex of both speakers and raters affected emo-

tion perception.

At this point we can revisit possible sex differences between the two clusters. We

examined the distribution of speaker/rater sex pairings over the 84 statistically different

utterances and emotions, a summary of which is shown in Table 5.6 on page 50. Surprisingly,

the 84 samples were spoken by the exact same number of male and female speakers, a clear

indication that Hypothesis 5.6 did not hold and that the combination of speaker and rater

sex had no influence on rating behavior.
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Hypothesis 5.7 (ClustEmo) Clusters differed in rating behavior by emotion.

We also examined whether the raters in the two clusters rated individual emotions differ-

ently. Table 5.7 shows each perceived emotion and the number of utterances for which mean

ratings were significantly different between clusters. All emotions labels were represented,

though the positive emotions far outweighed the negative ones by 2 to 1 (56 positive, 28

negative). This implied that raters differed in terms of how they perceived the valency of

emotions and that, specifically, raters disagreed more on ratings for positive emotions than

for negative ones. Though, it is important to note that the most conventionally prototypical

emotion—angry—was also highly disagreed upon between the two clusters.

Sex Cluster

speaker rater c1 c2

F F 546 (23.2%) 84 (16.7%)

M F 546 (23.2%) 84 (16.7%)

F M 630 (26.8%) 168 (33.3%)

M M 630 (26.8%) 168 (33.3%)

Table 5.6: Distribution of speaker/rater gender pairings over all 84 statistically different

inter-cluster utterances and over all emotions.

Positive Negative

Emotion Count Emotion Count

confident 16 angry 10

interested 12 bored 6

encouraging 12 anxious 5

friendly 9 frustrated 4

happy 7 sad 3

Table 5.7: Number of utterances with statistically different inter-cluster mean ratings per

perceived emotion.
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Positive Negative

Emotion Count Emotion Count

happy 31 anxiety 5

pride 16 boredom 4

interest 11 sadness 2

elation 8 hot-anger 2

contempt 2

cold-anger 2

Table 5.8: Number of utterances with statistically different inter-cluster mean ratings per

intended emotion.

Also of interest was the patterning among clusters with respect to the intended emotions

of the actors in the corpus. Table 5.8 above lists the number of utterances that were dis-

agreed upon by the two clusters, per emotion. Once again, there was more disagreement on

intended positive emotions than on intended negative ones (positive emotions outnumbered

negative emotions by almost 4 to 1). This behavior might be related to our earlier reported

finding of the high inter-correlation of positive emotions. These emotions might have been

harder to differentiate because of such strong co-occurrence. Alternatively, less effort might

have been made on the part of the actors to distinguish among positive emotions since they

were all so similar. Regardless, our observations lent support for Hypothesis 5.7 in that rater

differences did seem to be dependent on specific emotions, though we note that disagree-

ments may have been due more to a specific dimension of emotionality—valency—rather

than on an emotion-by-emotion basis.

To further explore how raters disagreed with respect to perceived emotion, we examined

the mean cluster rating of each emotion for the 84 different samples, as illustrated in Ta-

ble 5.9. A pattern emerged that was dependent on the valence of the perceived emotions.

For negative emotions, cluster c2 provided higher ratings than did cluster c1 and the inverse

was true for positive emotions. In other words, cluster c2 rated negative emotions as more

negative and positive emotions as less positive than did cluster c1. If one were inclined to

talk about personality types then one might say that the raters in cluster c2 appeared to
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Mean Rating Difference

Emotion c1 c2 c1 - c2

n
e
g
a
ti

v
e

angry 0.2 0.9 -0.7

sad 0.1 0.6 -0.5

frustrated 0.4 1.2 -0.8

bored 0.1 0.5 -0.4

anxious 0.5 1.4 -0.9

p
o
si

ti
v
e

friendly 2.0 0.9 1.1

confident 2.3 1.1 1.2

interested 2.6 1.4 1.2

happy 2.3 0.9 1.4

encouraging 1.8 0.5 1.3

Table 5.9: A comparison of mean ratings of perceived emotion between clusters c1 and c2.

be pessimists or introverts, always ready to perceive negative emotion, whereas the raters

of cluster c1 appeared to be optimists or extroverts, perceiving emotions—and the people

who are conveying them—in a positive light. However, since no personality tests were ad-

ministered for the subjects of the perception experiment, no such claims can be made with

any degree of scientific rigor.

To summarize our findings on cluster profiling, we report that most of the time the

raters in both clusters behaved consistently, though 19% of the time they showed significant

differences based on the ratings they provided. Though age and speaker sex played no part

in differentiating the clusters, cluster c2 did appear to be more male-dominated with respect

to rater sex. This cluster also tended to rate positive emotions as less positive and negative

emotions as more negative than did cluster c1. These findings indicate that, at least in our

data, coherent groups of people could be identified who perceived emotions differently and

that these differences were characterized largely in terms of valency.
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5.8 Automatic classification

In this section we present the results of machine learning experiments for the automatic

classification of the perceptual emotion labels. Our goal was to explore Hypothesis 4.3

that predicted that the automatic classification of perceived emotion labels would perform

better than the automatic classification of intended emotion labels because the latter set

was monothetic and forced unnatural distinctions between possibly very similar emotions.

A second hypothesis we wished to explore arose from the results of the rater clustering

experiment. Since two clusters of like-minded raters were found, we expected that automatic

classification using the perceptual emotion labels of each cluster would perform better than

when using the labels derived from all raters in aggregation. Stated formally, our hypothesis

was as follows:

Hypothesis 5.8 (ClustEmoClass) Automatic classification of perceptual emotion labels

of each rater cluster will perform better than perceptual emotion labels of all raters taken

together.

In order to address Hypothesis 4.3 we ran a machine learning experiment analogous

to the one that was undertaken for the intended emotion set, as reported in Section 4.1.

However, we had to dichotomize the ordinal ratings of the perceived emotion labels for

compatibility. If the rating for a particular emotion was 0 (“not at all”) then we considered

that that emotion was not perceived; if the rating was in the range of (1,4) then we con-

sidered that emotion to have been perceived. We ran 10-fold cross-validation experiments

to automatically classify the perceived emotions of each rater. Classification performance

is reported as F-measure and is shown in Table 5.10. As before, we used the J4.8 decision

tree learning algorithm as implemented in the Weka software package. Also present in

Table 5.10 are the F-measure performances of the intended emotion labels of the EPSAT

corpus, for comparison. When emotion labels were the same across sets they are shown

side-by-side.

When comparisons were possible between label sets, we noticed that using percep-

tual emotion labels lead to better performance for all but one emotion: angry. The

mean F-measure of the six corresponding emotions (angry, anxious, bored, sad, happy,
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Intended Perceived

Emotion F-measure Emotion F-measure

hot-anger 0.53 angry 0.29

anxiety 0.28 anxious 0.46

boredom 0.41 bored 0.44

sadness 0.20 sad 0.38

happiness 0.30 happy 0.49

interest 0.20 interested 0.75

— — confident 0.80

— — encouraging 0.49

— — friendly 0.55

— — frustrated 0.43

contempt 0.18 — —

despair 0.25 — —

disgust 0.25 — —

panic 0.39 — —

shame 0.22 — —

cold-anger 0.21 — —

neutral 0.40 — —

pride 0.19 — —

elation 0.30 — —

mean 0.29 mean 0.53

Table 5.10: Classification performance (F-measure) of intended and dichotomized perceived

emotion labels.
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interested) was 0.32 for the intended emotion label set and 0.47 for the perceived emo-

tion label set. When considering all the emotions of each labeling paradigm, the mean

performance for intended emotions was 0.29 and for perceived emotions was 0.51. The

classification of perceived emotions was more successful than the classification of intended

emotions, and we believe this was because of the polythetic nature of the former set. These

findings supported Hypothesis 4.3.

As a final note, the corpus size of each paradigm should be taken into account. The

corpus of intended emotions (EPSAT) was at least an order of magnitude larger than the

corpus of perceived emotions (CU EPSAT).3 In fact, the utterances used for automatic

classification of the EPSAT corpus outnumbered those of the CU EPSAT corpus by 55 to

1. This is relevant because increasing corpus size tends to yield higher prediction accuracy

due to the fact more training data contribute to more robust prediction models. So, it

is much more significant that the perceived emotion models, trained on far fewer data,

nevertheless outperformed the models trained on the more plentiful data of the EPSAT

corpus.

Having established that perceived polythetic emotion labels begot better classification

accuracy than intended monothetic emotion labels, we next turned our attention to classi-

fication of the degree of emotion provided by the two rater clusters. For these experiments

we changed the experimental design to model the ordinal ratings provided by the subjects

of the perception study. The pseudocode describing the classification algorithm is presented

on page 56. The first step was to chose the majority rating provided by a group of raters

(i.e, those of a cluster) for each emotion and each utterance. These majority ratings were

considered to be the degree of perception for each emotion. A two-step classification algo-

rithm was then administered in the following manner. First, with the same dichotomized

design described earlier, J4.8 decision trees were used to predict whether an emotion was

perceived or not. If an emotion was predicted, then a separate continuous classifier was used

to predict the degree to which the emotion was perceived by assigning a rating of 1, 2, 3, or

4. Linear regression was used as the the continuous prediction algorithm and—though con-

tinuous predictions were originally made—predictions were rounded to the nearest allowable

3The EPSAT corpus contained 2,400 utterances; the CU EPSAT corpus contained 44.



CHAPTER 5. PERCEIVED EMOTION 56

Algorithm 3: 2TierClassification

\\ make a dichotomized copy of the data:

for each rating r do

if r ∈ (1, 4) then

r ← emotion

else if r = 0 then

r ← no-emotion

end if

end for

\\ run machine learning experiments using leave-one-out cross-validation

for each emotion e do

for each utterance u do

train binary emotion classifier and get prediction p for utterance u

if p = no-emotion then

p← 0

else

\\ emotion was predicted so predict its degree

train a continuous classifier using utterances with ratings ∈ (1, 4)

get continuous prediction p for utterance u

p← p rounded to nearest integer ∈ (1, 4)

end if

end for

compute κqw between actual and predicted labels

end for
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integer rating in the range (1,4).

Performance was measured not by F-measure but by computing κqw between the actual

and predicted ratings. This was done for several reasons. First, F-measure can only be

reported for each label in a discrete label set. Since ordinal ratings are in fact related to

each other by definition, we did not wish to disregard such relationships. Additionally,

κqw was used previously to report rater agreement and we found it conceptually expedient

to compare the actual and predicted ratings, as we would two raters. Though adopting

κqw as the performance metric no longer afforded us the ability to compare our results

with the intended emotion experiments, this was not problematic because here we wished

only to compare classification performance of the rater clusters with performance without

clustering.

Table 5.11 presents the results of the experiments using the label sets of clusters c1

and c2 and all the unclustered raters as well. The average F-measures across all emotions

indicated that performance of cluster c1 (0.45) and cluster c2 (0.53) both outperformed

the unclustered label set (0.31). This finding supported Hypothesis 5.8 and was most likely

the result of the internal consistency of the label sets provided by clustering based on rater

behavior. However, our findings were tempered slightly by the fact that clustering did

not outperform the unclustered label in all cases. There were two emotions—angry and

encouraging—for which the κqw of the unclustered label set was actually larger than the

κqw of both c1 and c2. Also, there were two other emotions—sad and anxious—for which

performance was 0.00 for both the unclustered and cluster c1 data, though it was higher

for cluster c2. The same could be said of frustrated as well, whose performance was near

0.00 for cluster c1.

We noticed that cluster c1 performed similarly to the unclustered raters overall, which

was understandable given that cluster c1 effectively contained most of the raters. All label

sets performed better on the positive emotions than they did on the negative emotions.

Cluster c2, though, was much more robust with respect to valency. Average performance

on negative emotions (0.50) was only slightly less than on positive emotions (0.53). Contrast

this with cluster c1 where the observed mean F-measure for negative emotions (0.23) was

far below that of the positive emotions (0.67).
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Rater Group

Emotion unclustered c1 c2

N
eg

at
iv

e
sad 0.00 0.00 0.53

angry 0.40 0.39 0.34

anxious 0.00 0.00 0.61

bored 0.27 0.68 0.53

frustrated 0.00 0.07 0.50

negative means 0.13 0.23 0.50

P
os

it
iv

e

confident 0.55 0.92 0.94

encouraging 0.68 0.48 0.45

friendly 0.34 0.52 0.39

happy 0.17 0.45 0.30

interested 0.69 0.95 0.75

positive means 0.49 0.66 0.57

overall means 0.31 0.45 0.53

Table 5.11: Classification performance (κqw) of different perceived label sets.

All in all, given the results of our machine learning experiments, we conclude that the in-

ternal consistency created by automatic rater clustering produced perceptual emotion label

sets that were easier to learn. Generalized across all experiments, we observed that classifi-

cation performance for the clustered data outperformed the unclustered data. Furthermore,

cluster c2 performed the best overall and was the most consistent across all emotions.

5.9 Emotion profiling

In this section we describe how we profiled the intended emotions of the CU EPSAT corpus

according to their acoustic-prosodic cues using the majority rating given by the raters in

each cluster. We took the same approach that we took for the intended emotions of the

EPSAT corpus, as described in Section 4.2. In other words, mean z-score feature values
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were computed for each emotion and unpaired t-tests were performed to isolate significant

natural classes of emotions. Since our data were considerably fewer in the CU EPSAT

corpus than in the EPSAT corpus, we lowered the level of significance from p < 0.01 to

p < 0.05 for these t-tests.

The analytic results presented in this section were meant to compare emotion profiles

given different labeling schemes addressed our initial hypothesis that:

Hypothesis 4.1 (EmoAcoust) Intended and perceived emotions are characterized by dif-

ferent acoustic-prosodic cues.

Having found that there were different clusters, we also proposed a new but related

hypothesis:

Hypothesis 5.9 (PerceivedEmoAcoust) Perceptual emotion labels assigned by differ-

ent clusters of raters are cued by different acoustic-prosodic cues.

We refer the reader to Appendix B on page 197 for exhaustive results, including all

feature means and quantized feature profiles per emotion, per label set. As an overall

analysis, we list here only the minimally distinctive quantized feature values corresponding

to the natural classes that resulted from significant t-tests. In each experiment, the majority

rating of each utterance given each set of raters was considered to be the emotional label. If

most ratings were 0 then no emotion was considered to be perceived; otherwise the emotion

in question was considered to be present.

Table 5.12 displays the minimally distinctive quantized feature values when no clustering

was performed. We observed that f0-min and db-range were redundant for bored, sad,

frustrated, and angry. Both of these features are known to distinguish emotions in terms

of activation. Emotions with low activation tend to have low values for these features, and

as activation increases, so too does minimum pitch and intensity range.

Quite striking was the observation that f0-rising—the percentage of overall pitch

rise—separated emotions in terms of valency. Emotions with negative valency had a lower

percentage of rising intonation than emotions with positive valency did. Specifically, angry,

bored, sad, frustrated, and anxious each had a value of L, while both happy and
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f0-min L L M H H H H H H H

db-range L L M M H M M M M M

f0-rising L L L L L M M H H H

f0-curve M H M M M M L L L M

Table 5.12: Perceived emotion profiles (unclustered) using minimally distinctive feature set.

encouraging (which could not be distinguished given our feature set) had a value of H.

Emotions that lay in the mid range (M) were interested and confident. Though a perfect

dichotomy was not observed, we saw that no emotions that are commonly considered to be

negative were assigned to the same natural class as any that are commonly considered to

be positive, given the f0-rising quantization. This is something that could not be said

for any other feature examined.

It was illuminating to examine exactly how L and H f0-rising values were manifested

in the data. The percentages of rising pitch in the CU EPSAT corpus ranged from 16.2% to

65.5%, had a mean of 38.2%, and a standard deviation of 12.5%. This indicated that most

utterances tended to have more falling than rising pitch, on average. In fact, a z-score value

of 0 indicated that roughly a third (38.2%) of the pitch in an utterance was falling, a value

of -1 indicated that about a quarter (25.7%) was falling, and a value of 1 meant that half

(50.7%) was falling. Figure 5.7 on page 61 shows how some quantized f0-rising values

were manifested. As in (a), an f0-rising value of L showed little-to-no rising intonation;

only sequences of pitch falls were present. We can claim that this was the general pattern

for negative emotions. This was contrasted this with (b), in which such falls were present

but they were preceded by rising pitch before each fall. In (c) we notice another pattern

of H-valued f0-rising: a phrase-final rise. Both (b) and (c) were indicative of positive

emotions.

The f0-curve feature is a less intuitive feature to interpret, though it is important to do

so, since it was found to be a minimally distinctive feature for perceived emotion. The raw
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Figure 5.7: Examples of f0-rising quantizations.
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feature values were calculated by running polynomial linear regression over the pitch slope

and taking the coefficient of the polynomial term to describe the parabola of the fitted curve.

When the value was near zero the curve was flat; the farther away from zero the coefficient

became, the steeper the parabola. It was convex when negative and concave when positive.

In our data, the raw values were symmetrical; we observed approximately as many negative

values as positive ones. Therefore, z-score conversion was straightforward: 0 indicated

no curve, negative values indicated convex curves, and positive values indicated concave

curves. Through manual analysis, we noticed that large negative values were indicative of

utterances with utterance-final falling intonation and large pitch excursion, something we

might expect with emotions of high activation, which in fact we did observe considering that

happy, encouraging, and confident all had L values for f0-curve. However, we would

also expect angry to have such a value as well, which we did not observe.

What was most peculiar was the H value of the f0-curve for sad. It is critical to

understand why this would be the case considering that f0-curve minimally differentiated

sad and bored. It seemed counter intuitive, based on what we know about the acoustic

properties of emotion, to expect sad to have a large pitch range and phrase-final rising

intonation, as is suggested by the quantized feature value. Through manual analysis, we

observed that this was due to irregular voicing that caused very high pitch readings at the

beginning and end of the sad utterances. Such readings were actually pitch tracking errors—

errors that f0-curve was particularly susceptible to—and they occurred in all the data on

occasion. Sporadic mistracks lie well outside of average f0 behavior and don’t generally

affect global features based on it, such as mean pitch (f0-mean). For sad utterances,

though, we observed that such mistracks occurred more often than chance would allow. It

is an unintended yet beneficial consequence that f0-curve was able to identify sad in this

way. It would be more methodologically sound to have features that measured voice quality

directly, but these are notoriously hard to calculate without hand segmentation (ken, ).

As a side note, f0-slope was not as affected by pitch tracking errors because of the fact

that for sad they tended to occur at both the start and end of utterances, thus flattening

the pitch slope, which was not problematic because this is what we observed for sad even

without the presence of irregular voicing.
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Let us now examine the two clusters of raters we found and discussed previously in

Section 5.5. Table 5.13 lists the distinctive features for cluster c1 of the CU EPSAT corpus

raters. Using the emotion labels for this cluster, we were not able to uniquely identify

as many emotions as we were when we used labels generated from all the raters in the

entire perception experiment. No distinctions were found between frustrated/anxious,

interested/confident, or happy/encouraging. However, each of these emotion pairs are

to be quite similar in affect so this lead us to believe that the distinctive features we did find

were generally sound. We observed a similar emergent pattern in this distinctive feature

set as we did in the previous set; namely, that db-range discriminated emotions in terms

of activation: angry had the highest intensity range, whereas bored had the lowest. In the

case of cluster c1, though, we saw that f0-curve was not used to distinguish sad and bored,

instead each had different intensity ranges (bored utterances had a smaller intensity range

than did sad utterances). Also as before, f0-rising split the data unequivocally along

the valency dimension: all negative emotions were either L or ML (bored had more rising

intonation than did sad) and all positive emotions were either MH (interested, confident)

or H (happy, encouraging, friendly).

The feature measuring the slope of the linear regression line over the pitch—f0-slope—

emerged as a third critical feature with respect to the raters of cluster c1. We will describe it

here to illuminate the exact role that it played. On average, utterances had negative overall

pitch slopes: a z-score value of 0 indicated that an utterance had a pitch slope of -18.98 Hz.

Therefore, positive z-score values did not actually guarantee that an utterance had a rising
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db-range L ML MH MH H MH MH MH MH MH

f0-rising ML L L L L MH MH H H H

f0-slope H H H H H H H L L H

Table 5.13: Perceived emotion profiles for cluster c1 using the minimally distinctive feature

set.
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pitch slope. Instead, it usually indicated a flat or near-flat pitch slope. Negative z-score

values were indicative of steeply falling pitch slopes. We noticed also that the range of

quantized f0-slope values were somewhat restricted. The labels happy and encouraging

each had L values, indicating the presence of an utterance-final pitch fall and high non-

utterance-final pitch values that caused the pitch slope to be steep. All other emotions were

found to have H values for pitch slope; in other words, the regression slope was near flat.

Note that this could have resulted from two very different pitch contours. A pitch contour

that was generally flat overall would have such a regression line, but one with equal amounts

of rising and falling intonation at the beginning and end of the utterance would also result

in a flat slope. Thus, on its own, f0-slope only painted a partial picture of the role that

overall pitch contour played in cueing the perception of emotions. When considered in

conjunction with f0-rising, though, a sharper picture was rendered.

By abstracting f0-rising such that it could take two values—L and H—then there were

four possible f0-rising/f0-slope patterns that could be attributed to each utterance: L/L,

L/H, H/L, and H/H. The emotions observed to have these combinations were the following:

L/L : none.

L/H : bored, sad, frustrated, anxious, angry.

H/L : happy, encouraging.

H/H : friendly, interested, confident.

The L/L combination was not found to be distinctive for any emotion, though we observed

that all the negative emotions were L/H. In other words, pitch slope did not provide any ad-

ditional information in discriminating among the negative emotions; a low amount of rising

intonation was sufficient. However, the positive emotions displayed two very distinct pitch

contours. Though both had a high percentage of rising intonation (f0-rising = H), some

had a steeply falling pitch contour (f0-slope = L) whereas others had a relatively flat one

(f0-slope = H). Figure 5.8 shows typical pitch tracks for each of the f0-rising/f0-slope

quantization patterns in the CU EPSAT corpus. What we noticed was that L/H contours

had a wide pitch range with long upward sloping pitch to the pitch peaks and a steep fall to

the end of the phrase. This contrasted with H/H contours that differed only by the fact that
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Figure 5.8: Examples of f0-slope/f0-rising quantizations.

they had rising instead of falling intonation at the end utterances. This final rise tended

to flattened the overall pitch slope. The H/L contour also showed a flat pitch slope but for

a different reason: the pitch range was quite narrow. It is curious that we did not observe

any L/L patterns that we might expect of high activation, low valency emotions such as

angry. We expected, given what we had observed up to this point, that L/L contours would

look quite similar to L/H contours except that they would lack the rising intonation that

occurred before each fall.

Analyzing the combination of pitch slope features in this way provided insight into

the role of pitch contour in discriminating among discrete emotions and suggested that

categorizing pitch contour explicitly might be of use. In fact, each of the contours shown

in Figure 5.8 have distinct tone label sequences under the ToBI intonation annotation

framework. Roughly speaking H/L would be transcribed as /H* L-L%/, L/H as /L*+H (!H*)
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db-range L L M M M M M M M H

f0-rising L ML ML ML ML MH MH MH H H

Table 5.14: Perceived emotion profiles for cluster c2 using minimally distinctive feature set.

L-L%/, and H/H as /(H*) L* H-H%/. In Chapter 7 we report on our assessment of the role

of categorical intonation units in emotion discrimination.

So that we might compare the aforementioned feature space partitioning with the raters

of cluster c2, we conducted the same analyses using the emotion label set provided by that

cluster of raters. Table 5.14 lists the derived distinctive feature set along with their values

per emotion. In this case, we were less able to uniquely identify each emotion. To the extent

that we could discriminate, only two features were required: db-range and f0-rising. Once

again, f0-rising was found to discriminate on the basis of valency: sad had an f0-rising

value of L; bored, frustrated, anxious, and angry all had a value of ML; interested,

confident, and friendly were MH; and happy and encouraging were H. Intensity range

(db-range) showed the same pattern for sad and bored utterances that we saw in the two

previous perceptual label sets (not clustering and cluster c1), but perceived anger (angry)

was actually found to be in the mid-level for intensity range, along with all other emotions

except sad, bored, and encouraging. Perceived encouragement (encouraging) exhibited

the highest intensity range. This difference in the acoustic cues for encouraging and angry

emotion suggested that the raters did not attune to the same acoustic cues.

For a clearer picture of the differences between the raters in each cluster, we present an

abstract view of the quantized feature values for negative and positive emotions in Table

5.15. What we noticed with cluster c1 is that the two distinctive features operated on the

two dimensions of emotionality. Activation was signaled with db-range while valency was

signaled with f0-rising. Low percentages of rising intonation were indicative of nega-

tive emotions and their ranges of intensity further discriminated among negative emotions.

Though positive emotions all lay within the mid range for db-range, they were further dif-
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Cluster 1 Cluster 2

negative positive

db-range L →H M

f0-rising L M →H

negative positive

db-range L → M M →H

f0-rising L M →H

Table 5.15: Generalized quantized feature values for perceived emotions for clusters c1 and

c2.

ferentiated by the amount of rising intonation, ranging from mid to low. Thus, we observed

both dimensions at work orthogonally given the emotion labels of cluster c1. This is not

the observed pattern for the perception of emotion among the raters of cluster c2, though.

In fact, both features, though discriminative, operated in cadence. Positive emotions were

all found to have more rising intonation and a larger intensity range than negative emotions

did.

Table 5.16 on page 68 shows the quantized feature values for all distinctive features

using each of our four emotion label sets. We have listed only those emotions that occurred

in both the intended and perceived emotion sets. Some prominent similarities across all

experiments stand out. First, f0-mean, f0-min, f0-rising, db-min, db-max, and db-range

were found to be distinctive in all cases. Furthermore, bored was the most consistent

across studies. It was always found to have the lowest f0-mean, f0-min, db-max, and

db-range values; and the highest db-min value. The major difference was between the

intended and perceived emotion sets. Whereas all of our perception studies found that

raters perceived sad utterances to have a relatively low percentage of rising pitch, our

study of intended emotion found sad to have a high percentage of rising pitch. In fact, with

the intended emotions, f0-rising was only marginally distinctive—used only to identify

neutral—whereas it was a highly discriminative feature with the perceived emotions. This

was the largest discrepancy among the results. While features that measured global acoustic

features were relatively reliable across studies, the features that described the pitch contour

were found to be important only in the perceptual cases. This is an important distinction
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EPSAT MH ML - H - - H - - H L M

CU all H H - - - - H L - M M M

CU c1 H M - - - L H L - H MH MH

CU c2 MH H - - L L H H - H H M

i
n
t
e
r
e
s
t
e
d EPSAT ML L - H - - H - - H L ML

CU all H H - - - - M M - M M M

CU c1 H M - - - H MH L - H MH MH

CU c2 MH H - - L H MH H - H H M

s
a
d

EPSAT ML L - H - - H - - H L L

CU all M L - - - - L H - H L L

CU c1 L L - - - H L H - H ML ML

CU c2 ML M - - L H L H - H M L

b
o
r
e
d

EPSAT L L - H - - H - - H L L

CU all L L - - - - L H - H L L

CU c1 L L - - - H ML M - H L L

CU c2 L L - - L H ML H - H L L

a
n
g
r
y

EPSAT H MH - H - - H - - L H H

CU all H H - - - - L M - L H H

CU c1 H H - - - H L L - L H H

CU c2 MH H - - L H ML H - H H M

a
n
x
i
o
u
s

EPSAT ML L - H - - H - - H L L

CU all H H - - - - L M - M M M

CU c1 H M - - - H L M - H MH MH

CU c2 MH H - - L H ML H - H H M

Table 5.16: A comparison of the quantized feature values for emotions that are labeled

under all four experiment designs.
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because the latter features were found to discriminate on the valency dimension, whereas

the former discriminated on the activation dimension. To address our early hypothesis—

Hypothesis 4.1—we conclude that there were indeed different cues to emotion depending

on whether the emotions were labeled based on actor intention or listener perception. In

particular, listeners seemed to attune more to pitch contour of the utterances than did the

actors.

The main reason for this might be that people find it easiest to control the global acoustic

properties of speech rather than the pitch contour. Recall that each of the actors in the

EPSAT corpus were asked to produce the utterances several times. Across these utterances

it is very likely that they refined the pitch contour until they felt that the correct emotion

was conveyed, while they were able to be more consistent with global trends such as intensity

range. This would lead to the lower significant differences between the pitch contour features

and high significant difference between the global ones. We must acknowledge another factor

as well. The data in the EPSAT corpus were much more numerous than in the CU EPSAT

corpus. So the differences we found for the intended emotions could be considered more

robust than our findings for the perceived emotions. Though we lowered our threshold for

significance in the perception studies, we feel that the logical findings of the perceived studies

indicated that these were not simply due to chance. However, the CU EPSAT corpus was

also different from the EPSAT corpus in that utterances were preselected to be those that

were considered to be particularly well-conveyed whereas in the EPSAT corpus all the data

were included, even those that may not have conveyed the emotions well (even the actors

might agree on this). In sum, we feel that the well-motivated creation of the CU EPSAT

corpus makes up for its smaller size. Our findings differed depending on whether intended

and perceived emotion labels were considered, an indication of the care that must be taken

when labeling one’s data. We feel that perceived emotions are most applicable to Artificially

Intelligent applications and therefore we place the most importance on the findings we found

in those studies.
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5.10 Discussion

In this chapter we have explored in depth many aspects of perceived emotion. We described

a survey we conducted to elicit perceptual emotion ratings of the CU EPSAT corpus and

the analyses we did to characterize, not only the acoustic cues of emotions but also how

our raters systematically judged each emotion. Our experiments were conducted to address

several specific hypotheses we had, and we will briefly revisit each of these now.

We found that the acoustic cues of perceived and intended emotions differed (Hypoth-

esis 4.1) and that emotions were highly interrelated (Hypothesis 4.2). We claimed that

our monothetic label set comprising intended emotions, by not reflecting such correlation,

suffered theoretically because it failed to represent the true nature of emotions. This was

confirmed by the fact that classification performance using statistical machine learning was

much lower for the monothetic, intended label set than it was for the polythetic, perceived

label set, confirming Hypothesis 4.3. This was an important finding with relevance for

applications designed to predict spoken emotion, such as Spoken Dialog Systems.

We were able to identify two coherent groups of listeners (Hypothesis 5.1) based on

their rating behavior on a substantial subset of utterances (Hypothesis 5.5). The two

groups differed with respect to the strength of perceived valency (Hypotheses 5.4 and 5.7).

Though there was a clear dominant behavior representing the “standard” listener, we found

that a smaller group of listeners systematically differed from the dominant group by rating

positive emotions as less positive and negative emotions as more negative. Though the

listener groups did not differ statistically with respect to age (Hypothesis 5.3) or speaker

sex (Hypothesis 5.6), we did find that the smaller group was more heavily represented

by males than was the dominant group (Hypothesis 5.2). In other words, we identified a

“standard” listener and a “grumpy man” listener.

Just as differences were found between intended and perceived emotions in terms of

acoustic cues, we also found differences between the two listener groups. The “standard”

listener seemed to rely on features characterized by pitch contour to distinguish emotions

along the valency dimension, whereas these cues did not seem to be used by the “grumpy

man” listener (Hypothesis 5.9). Furthermore, the performance of automatic classification

of emotions was more successful when the labels of each group were predicted separately
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than when the labels were derived from all listeners in aggregate (Hypothesis 5.8). In other

words, listener type identification was not only interesting, it was also useful.

On several occasions, we found that emotion dimensions—activation and valency—arose

in our analyses. This was somewhat surprising given that we did not structure or label

typology in this way. Since we were using discrete emotion labels, we could have found

that several emotion label groupings behaved similarity. Instead, we found that activation

and valency clearly played a role in identifying the acoustic profiles of emotions and even

in rater behavior. This finding supports the idea that emotions can be readily and usefully

characterized by such dimensionality, a notion put forth by many scientists. In the next

chapter we explore emotion dimensionality directly.
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Chapter 6

Dimensions of Perceived Emotion

Heretofore we have explored discrete emotion labels, such as angry, happy, sad, etc. How-

ever, it is a long-held contention that discrete emotions labels are colloquial terms used

to describe the affective force of an utterance as it exists in a multidimensional space. In

this chapter, we explore two of the most commonly proposed dimensions: activation and

valency. The activation dimension is used to describe a state of heightened physiological

activity.1 The valency dimension describes an affective continuum ranging from negative to

positive.

The motivating force behind the experiments described in this chapter was to explore

whether the suggested findings from the discrete emotion experiments—the role of activation

and valency—would hold, were we to explicitly model these dimensions. In particular, we

formulated the following hypotheses.

Hypothesis 6.1 (DimAcoustAct) Global acoustic information is indicative of activa-

tion.

Hypothesis 6.2 (DimAcoustVal) Pitch contour information is indicative of valency.

In order to explore these hypotheses, we needed to obtain dimensional ratings for the

utterances in the CU EPSAT corpus. To this end, we designed a computer-based survey

similar to the one administered for eliciting ratings of discrete emotion labels. The design of

1In the context of emotion, the term activation is often synonymous with the term arousal.
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the survey was as follows. All subjects completed the survey on the same computer. After

answering introductory questions about their language background and hearing abilities,

subjects were given written instructions describing the procedure. Subjects were asked to

rate each utterance—played out loud over headphones—on two scales. The first scale was

designed to elicit valency ratings and subjects were asked whether an utterance sounded

“negative,” “neutral,” or “positive.” The second scale was designed to elicit activation

ratings and possible choices included “calm,” “neutral,” or “excited.”

At the onset of the experiment, subjects were presented with three practice stimuli in

fixed order. Then the remaining 44 test stimuli were presented one by one in random order.

For each stimulus trial, two boxes with radio-buttons appeared, as depicted in Figure 6.1.

The sound file for each trial played repeatedly every two seconds until the subject selected

one response for each emotion dimension. Subjects were not allowed to skip any scales or

utterances.

Twenty-one (21) native speakers of Standard American English with no reported hearing

impairment completed the survey: 10 female and 11 male. All raters were found to be

between the ages of 18 and 37 years old: 14 (67%) were between the ages of 18 and 22, 5

(24%) were between 23 and 27 years old, and 1 (5%) was between the ages of 28 and 32.

Figure 6.1: Screen-shot of the perceptual experiment for dimensional emotion.



CHAPTER 6. DIMENSIONS OF PERCEIVED EMOTION 74

This was a far younger demographic than we had for the discrete emotion survey. In fact,

most subjects in this study were Columbia University undergraduates who answered an

advertisement and who were paid ten dollars for their participation. None of the subjects

who participated in this study were the same as those who participated in the discrete

emotion study.

Since the dimensional ratings represented an ordinal scale, we were able to convert the

queried terms into integers. The valency terms were converted in the following manner:

“negative” → 1, “neutral” → 2, “positive” → 3. Activation ratings were converted in a

similar fashion: “calm” → 1, “neutral” → 2, “excited” → 3. Using the majority ordinal

rating for each utterance, we correlated each dimension with the acoustic features we ex-

plored in earlier experiments. The seven significant correlation coefficients (p < 0.05) are

shown in Table 6.1.

The f0-max, f0-range, f0-voiced, f0-slope, and db-mean features did not show sig-

nificant correlation with any dimension. Of the remaining features, only one—f0-min—

significantly correlated with both dimensions, and in the same way. As minimum pitch

increased, so too did the valency and activation ratings. In other words, negative and

calm emotions had low minimum pitch; positive and excited emotions had high minimum

pitch.2 The remaining correlations were quite telling, though, and confirmed our hypothe-

ses. On the one hand, global acoustic measurements—especially those based on intensity—

correlated with activation. On the other hand, features that described the shape of the pitch
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activation 0.52 0.45 -0.34 0.37 0.55

valency 0.34 0.30 -0.35

Table 6.1: Significant correlations (p < 0.05) between dimensional ratings of the CU EPSAT

corpus and feature values.

2This might have been an artifact of the distribution of ratings in our corpus as we had no low activation

positive emotions.
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contour correlated with the valency dimension. An increase in the percentage of rising pitch

in an utterance correlated to an increase in valency (positive emotions showed more rising

pitch). As the overall pitch curve became flatter, though, the valency decreased.

We thought it prudent to also calculate the correlation coefficients between the dimen-

sional and discrete ratings of the two sets of subjects of our perceptual surveys. In previous

chapters we referred to the activation and valency of our discrete emotion sets based en-

tirely on a general understanding of emotion. It is generally believed, for example, that a

sad utterance has low valency and low activation, a happy utterance has high valency and

high activation, and an angry utterance has low valency and high activation. By observing

the correlations between dimensional and discrete labels, we sought to confirm whether this

general understanding of emotion held for the CU EPSAT corpus. Table 6.2 shows such

correlations; all but two of which were found to be significant (p < 0.05). Most of the corre-

lations observed were what we would expect. Discrete emotions that are commonly thought

to convey negative affect were negatively correlated with the valency ratings. This was true

for angry, bored, frustrated, and sad. The one exception was anxious, which was not

found to be significantly correlated with valency ratings, though it is generally thought to

valency activation

frustrated -0.70 0.33

angry -0.54 0.39

anxious -0.23∗ 0.50

sad -0.58 -0.47

bored -0.40 -0.77

encouraging 0.91 0.34

friendly 0.89 0.27∗∗

happy 0.88 0.41

interested 0.76 0.69

confident 0.60 0.34

Table 6.2: Correlation of perceived discrete emotion and perceived dimension ratings.

(∗p = 0.14; ∗∗p = 0.07; all others: p < 0.05)
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be negatively valenced. All remaining emotions, as we expected, were positively correlated

with valency: confident, encouraging, friendly, happy, and interested. Furthermore,

we found that all emotions that positively correlated with activation also positively corre-

lated with valency as well. The emotions that negatively correlated with valency, though,

were divided in relation to activation. The emotions frustrated, angry, and anxious each

showed positive correlation with activation ratings, whereas bored and sad were negatively

correlated with activation.

A graphical view of the correlation distribution is shown in Figure 6.2 on page 77. We

observed that discrete emotion labels were arranged in a circle in the activation/valency

space—as posited theoretically by Cowie (2000) and others—and that those emotions that

were found to be the most similar in our discrete emotion survey based on correlation

({happy, encouraging, friendly} and {frustrated, angry}) were further confirmed

to be so in our dimensional survey. We again note the absence of any of our discrete emotion

labels showing negative correlation with both activation and valency. These findings serve

mainly to corroborate our findings reported earlier for the analysis of discrete emotions but

are further referenced in the next chapter when report our exploration of abstract pitch

contour and emotion.
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Figure 6.2: Plot of the correlation between ratings for discrete emotion labels and emotion

dimensions.
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Chapter 7

Abstract Pitch Contour

Heretofore our research has concerned intonational aspects associated with emotion—both

intended and perceived—of acted speech. The type of information we extracted for this pur-

pose was at a relatively low level and referred broadly to the overall shape of automatically-

derived fundamental frequency measurements. Such information was shown to be quite

useful for emotion profiling and yet such an approach may fail to capture other types of

intonational information that could be of importance for cuing spoken emotions. In this

section we address the relationship between abstract intonational units and emotions.

7.1 Annotation

We annotated all tokens in the CU EPSAT corpus with MAE ToBI labels. ToBI (Tones

and Break Indices) is an annotation system designed to encode the underlying phonolog-

ical representation of a pitch contour as a series of phonemic pitch targets taken from a

limited inventory of accent types. We followed the coding practices of MAE ToBI for the

transcription of Mainstream (Standard) American English (Beckman et al., 2005).

The MAE ToBI tone inventory is limited to two tonic phonemes, specified by height:

high (H) and low (L). Height is not determined by absolute (phonetic) pitch values, but

rather perceptual cues and phonological theory. Pitch accents mark the words that are

considered to be perceptually prominent and can consist of a simple tone or can be a

combination of two simple tones. An asterisk marks the pitch accent tone that aligns with
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the stressed (prominent) syllable within the word bearing it. There are six possible pitch

accent tones allowable in the ToBI framework: H*, L*, L+H*, L*+H, H+L*, and H*+L.

Tones are also associated with intonational phrasing on two levels: intermediate (mod-

erate juncture) and intonational (strong juncture). An intermediate phrase consists of at

least one pitch accent followed by a phrasal tone that extends to the end of the phrase.

Phrase accents are demarcated with a dash following the tone (i.e., L- or H-). An intona-

tional phrase may contain one or more intermediate phrases, the last of which is followed

by a strong perceptual break and demarcated with a percent sign (i.e., L% or H%). Thus,

an intonational phrase boundary is signified by one of the four possible pairings of phrase

accents and boundary tones: L-L%, L-H%, H-L%, H-H%. Taken together, a phrase accents plus

boundary tone describes what is often referred to as phrase-final intonation. L-L% is used to

describe phrase-final falling intonation, a pitch contour that—usually—descends from the

last pitch accent to the end of the phrase, to a point at the bottom of the speaker’s pitch

range. Both L-H% and H-H% are used to describe phrase-final rising intonation, though the

former is often considered a low rise and the latter a high rise. The high phrase accent

of H-H% causes upstep on the following boundary tone, so that the intonation rises to a

very high value in the speaker’s pitch range. Finally, H-L% refers to a phrase-final contour

characterized as a level plateau caused by upstep from the high phrase accent of the final

intermediate phrase on the low boundary tone. The pitch height of H-L% is usually in the

middle of the speaker’s range.

In addition to upstep, ToBI also relies on the notion of downstep. Downstep is the

reduction of the overall pitch range within an intermediate phrase. Downstep is represented

by prefixing a H* pitch accent or H- phrase accent with an exclamation point (e.g., !H* or

!H-). While a downstepped high pitch accent (!H*) has a lower pitch value than does a

preceding non-downstepped high pitch accent, it still has a higher pitch value than does

L*, which is characterized by a pitch excursion towards the bottom of the speaker’s pitch

range.

Though each token in the CU EPSAT corpus comprised only one intonational phrase,

most phrases contained more than one pitch accent. In the analyses we report on in this
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Phrase Accent + Boundary Tone

Pitch Accent H-H% H-L% L-H% L-L% N (%)

!H* 10 (22.7%) 10 (22.7%)

H* 4 (9.1%) 11 (25.0%) 15 (34.1%)

H+!H* 3 (6.8%) 3 (6.8%)

L* 2 (4.5%) 2 (4.5%) 4 (9.1%)

L*+H 1 (2.3%) 1 (2.3%)

L+H* 1 (2.3%) 10 (22.7%) 11 (25.0%)

N (%) 2 (4.5%) 4 (9.1%) 1 (2.3%) 37 (84.1%) 44 (100%)

Table 7.1: Distribution of ToBI tones in the CU EPSAT corpus.

chapter, we address only the final pitch accent in each phrase.1 Table 7.1 lists the distri-

bution of final pitch accents and phrase accents plus boundary tones in the CU EPSAT

corpus. Tone distribution was heavily skewed. The overwhelming majority (84.1%) of con-

tours ended with L-L%. There was more uniform distribution for pitch accents. Roughly

one quarter of all pitch accents were either !H* or L+H*, and H* comprised about one third

of all pitch accents. Most (70.4%) of all pitch contours observed consisted of three types:

/!H* L-L%/ (22.7%), /H* L-L%/ (25.0%), and /L+H* L-L%/ (22.7%).2

7.2 Analysis

We ran one-way analyses of variance (ANOVAs) of ToBI labels using the median ratings

of each cluster of raters, as described in previous sections, for each emotion and emotion

dimension. Due to the low observed frequencies of many tone labels, we ran ANOVAs

only when label sets contained members with four or more observed instances. For pitch

accents, this set included H*, !H*, L*, and L+H*. The pitch contours with enough observed

1The final pitch accent in a phrase is sometimes referred to as the nuclear pitch accent.

2For our purposes, a pitch contour was considered to be the combination of the last pitch accent, phrase

accent, and boundary tone. We enclose pitch contours with slashes for readability.
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instances were /H* H-L%/, /H* L-L%/, /!H* L-L%/, and /L+H* L-L%/. We did not run

an ANOVA for phrase-final intonation because we observed that only H-L% and L-L% had

adequate counts, and an analysis of variance requires there to be at least three labels

for statistical significance testing. However, information concerning phrase-final intonation

could be inferred to some degree from the ANOVA conducted with overall pitch contours.

In all cases, the ANOVA results when using the median ratings of the clustered raters either

did not differ from the results when using all raters or were not significant. Therefore, we

have restricted our discussion to the median ratings provided by all raters only.

The results of the ANOVAs for several emotions indicated a systematic rating difference

given pitch accent type. These emotions were confident (F(2) = 5.33, p = 0.009), happy

(F(2) = 3.73, p = 0.032), interested (F(2) = 11.54, p = 0.000), encouraging (F(2) = 5.39,

p = 0.008), friendly (F(2) = 4.33,p = 0.020), and bored (F(2) = 4.82, p = 0.013). Table 7.2

lists the mean rating for each pitch accent given each of these emotions. Note that we took

the mean of all the ratings assigned to a particular pitch accent and rounded each to the

nearest integer. We then converted this integer back to the original label assigned by each

subject in our perceptual experiments.3 We have presented the results here after merging

high pitch accents and downstepped high pitch accents to a single class (H*). ANOVAs were

conducted under each scenario (merged and non-merged) and the results did not differ, so

we have excluded !H* from Table 7.2 for the sake of simplicity.

Emotion

Accent confident happy interested encouraging friendly bored

L* not at all not at all a little not at all a little a little

H* somewhat a little a little not at all a little a little

L+H* somewhat a little somewhat somewhat somewhat not at all

Table 7.2: Average rating per nuclear pitch accent for emotions with systematic rating

differences.

3The labels and their corresponding ordinal values were: “not at all x” (0), “a little x” (1), “somewhat

x” (2), “quite x” (3), and “extremely x” (4), where x was the emotion queried.



CHAPTER 7. ABSTRACT PITCH CONTOUR 82

The results indicated that the mean emotion ratings were relatively weak and ranged

from “not at all” to “somewhat.”4 Furthermore, L* and H* appeared to be quite similar;

the presence of either in an utterance indicated that encouraging was not at all perceived

and that interested, friendly, and bored were perceived a little. The two pitch accents

differed in their indication of confident and happy utterances, though. The presence of L*

did not convey either whereas an utterance bearing a H* pitch accent was perceived to be

somewhat confident and a little happy. L+H* tended to elicit stronger ratings from sub-

jects. Utterances were perceived to be somewhat confident, interested, encouraging,

or friendly, and a little happy, when L+H* was present. This is contrasted with bored,

which was not at all perceived in the presence of L+H*.

ANOVAs were run for each emotion dimension as well. The perceptual ratings of both

valency (F(2) = 5.39, p = 0.008) and activation (F(2) = 6.11, p = 0.005) were found to

vary systematically in relation to pitch accent. The label associated with the mean ratings

of each pitch accent per dimension are shown in Table 7.3. Both L* and H* were indicative

of neutral valency and mild activation. On the other hand, L+H* was found to be indicative

of an utterance that conveyed positive valency and high activation. This is in line with

the ANOVA results mentioned. All the emotions that were a little or somewhat perceived

in the presence of L+H* were positively valenced and highly activated (e.g., encouraging),

whereas bored—having negative valency and low activation—was not at all conveyed by

L+H*. The suggestion that L+H* is related to emotion in terms of both valency and activation

Dimension

Accent valency activation

L* neutral mild

H* neutral mild

L+H* positive high

Table 7.3: Average rating per nuclear pitch accent for emotion dimensions.

4Recall that “somewhat” was the average degree of emotion perception in our survey.
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would explain why most of the other emotions were not found to be significant. Utterances

that are angry, anxious, or frustrated have negative valency and high activation. We

would not expect the ratings for these to pattern systematically with L+H* because they

are dimensionally ambiguous: their activation suggests that L+H* would be appropriate

but their valency does not. Though, this would not explain why sad was not found to be

significant.

We computed ANOVAs for pitch contours as well. As above, we considered !H* to be

H* for simplicity.5 We observed fewer significant differences than we did when examining

only pitch accent. The emotions whose ratings were found to vary systematically with pitch

contour were interested (F(2) = 11.35, p = 0.000), encouraging (F(2) = 4.65, p = 0.017),

and bored (F(2) = 8.02, p = 0.002); though, both valency (F(2) = 6.78, p = 0.004) and

activation (F(2) = 3.52, p = 0.041) were found to be significant as well. The mean ratings for

these can be found in Table 7.4. /L+H* L-L%/ was characteristic of an intonational phrase

with a rising nuclear pitch accent and a phrase-final fall. This contour was associated with

utterances that were somewhat interested, a little encouraging, and not at all bored. It

was also neutral in terms of valency and received high ratings for activation. /H* L-L%/

was actually quite similar, though mean activation rating was “mild” not “high” and mean

interested rating was “a little” instead of “somewhat.” /H* H-L%/ showed almost the

opposite pattern as the other two contours. Whereas it was indicative of utterances that

were a little or somewhat interested and encouraging, /H* L-L%/was not at all indicative

Emotion or Dimension

Contour interested encouraging bored valency activation

/L+H* L-L%/ somewhat a little not at all neutral high

/H* L-L%/ a little a little not at all neutral mild

/H* H-L%/ not at all not at all a little negative mild

Table 7.4: Average rating per pitch contour.

5In this case, a few slight differences were observed. /H* L-L%/ was perceived as “not at all” encouraging

(instead of “a little”) and had high activation (instead of mild); /!H* L-L%/ remained unchanged.
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of these emotions. Instead it was associated—a little—with bored utterances. In addition,

it was present in utterances with negative valency and mild activation.

These findings appeared to be the effects of phrase-final intonational characteristics. The

contours with similar rating distributions both had low phrase accents and low boundary

tones (L-L%). However, the contour that was found to differ from both of the other contours

in terms of rating distribution could be uniquely identified by H-L%. In general, H-L% seemed

to be associated with negative affect, whereas L-L% was not. It should be noted, however,

that the range of emotions with systematic rating distributions was somewhat restricted

and might more accurately be referred to as moods or attitudes rather than full blown

emotions. We will revisit this topic in the Chapter 9.
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Chapter 8

Non-acted Emotion

Though we have restricted our discussion of emotion to the prosodic cues found in acted

speech, there exists a large body of research devoted to studying the cues of emotion in non-

acted speech as well (e.g., Huber et al., 2000; Ang et al., 2002; Walker et al., 2002; Batliner

et al., 2003; Douglas-Cowie et al., 2003; Devillers & Vidrascu, 2004; Litman & Forbes-

Riley, 2004; Lee & Narayanan, 2005; Liscombe et al., 2005a; Liscombe et al., 2005b, inter

alia). These studies have primarily focused on the speech of human users of Spoken Dialog

Systems (SDSs) and have been been geared towards the development of automatic emotion

recognition for use in such systems. In this chapter, we report on experiments we conducted

to explore the cues of emotions in an SDS domain.

One striking difference between acted and non-acted speech corpora relates to the emo-

tion labels analyzed. In acted corpora, emotions tend to be centered around the canonical

Big Six: happiness, sadness, fear, surprise, anger, and disgust (Ekman, 1999). However,

researchers have found that most of these emotions rarely occur in human-computer inter-

action, with the notable exception of anger. For these reasons, most studies have focused

on the automatic classification of angry or frustrated speech, or simply conflating all neg-

ative emotions into one class. These emotions are then defined in relation to non-angry,

non-frustrated, or non-negative speech. Another difference between acted and non-acted

speech is that the latter exists within the context of a dialog, whereas the former usually

does not. Prosodic correlates of emotion in acted domains have been well researched (see

Chapter 1 and Table 1.1 on page 8) and the results are largely consistent with what one finds
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in the non-acted domain. In this chapter we explore some non-prosodic cues to emotion in

a corpus of human-computer dialogs.

8.1 The HMIHY Corpus

“How May I Help YouSM” (HMIHY), AT&T’s natural language human-computer spoken

dialog system, enables callers to interact verbally with an automated agent. A caller can

ask for an account balance, help with AT&T rates and calling plans, explanation of certain

bill charges, or identification of unrecognized numbers on a bill. The task of the automated

agent is to understand these requests and to either satisfy the request or, if unable to do

so, route callers to the correct department for further trouble-shooting. If the system needs

to confirm or clarify a customer’s response, the dialog manager asks for more information;

if it is still not clear, it routes the caller to a service representative. Speech data from the

deployed “How May I Help YouSM” system has been assembled into a corpus referred to

as HMIHY 0300 (Gorin et al., 1997). Figure 8.1 presents a transcription of an example

dialog from the corpus.

In a study by Shafran et al. (2003), 5,147 caller turns sampled from 1,854 HMIHY 0300

calls were annotated with one of seven emotional states: positive/neutral, somewhat

frustrated, very frustrated, somewhat angry, very angry, somewhat other negative,

very other negative. Cohen’s κ was calculated on a subset of the data consisting of 627

caller turns to measure the label agreement of two independent human labelers. A score

System: How may I help you?

Caller: I need to find out about a number that I don’t recognize.

System: Would you like to look up a number you don’t recognize on your bill?

Caller: Yes I would.

System: Are you calling from your home phone?

Caller: Yes I am.

System: ...

Figure 8.1: Sample dialog from the HMIHY 0300 Corpus.
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of 0.32 was reported using the full emotion label set, whereas a score of 0.42 was observed

when the classes were collapsed to ¬negative versus negative.

We were primarily interested in studying caller behavior over entire calls; thus, we in-

creased the size of the corpus to 5,690 complete dialogs that collectively contained 20,013

caller turns. Each new caller turn turn was labeled with one of the emotion labels men-

tioned above. However, this resulted in a highly non-uniform distribution of the emotion

labels (73.1% were positive/neutral), so we adopted the binary classification scheme instead

(¬negative, negative).

8.2 Extraction of Emotional Cues

Each caller turn was defined by a set of 80 features that were either automatically derived

or annotated by hand. The features were grouped into the following four coherent feature

sets: prosodic features (Pros), lexical features (Lex), dialog acts (DA), and contextual

features (Context).

8.2.1 Prosodic Features

The first set of features—Pros—included 17 features very similar to those described in

the preceding chapters. Due to the relative brevity of speech collected for each caller (an

average HMIHY dialog consisted of 3.5 caller turns), we z-score normalized all prosodic

feature values by gender instead of by speaker.

The following 10 features were automatically extracted over the entire caller turn using

Praat: overall energy minimum, maximum, median, and standard deviation, to approxi-

mate loudness information; overall fundamental frequency (f0) minimum, maximum, me-

dian, standard deviation, and mean absolute slope, to approximate pitch contour; and the

ratio of voiced frames to total frames, to approximate speaking rate.

The remaining seven prosodic features were semi-automatically extracted. Phones and

silence were identified via forced alignment with manual transcriptions of caller turns using

a special application of AT&T WATSON, a real-time speech recognizer (Goffin et al., 2005).

These features included: f0 slope after the final vowel, intended to model turn-final pitch



CHAPTER 8. NON-ACTED EMOTION 88

contour; mean f0 and energy over the longest normalized vowel, to approximate pitch accent

information; syllables per second, mean vowel length, and percent of turn-internal silence,

to approximate speaking rate and hesitation; and local jitter over longest normalized vowel,

as a parameter of voice quality. The normalized length of each vowel was conditioned upon

durational and allophonic context found in the training corpus.

8.2.2 Lexical Features

The Lex feature set contained features based on the manual transcription of caller ut-

terances. The features themselves were word-level unigrams, bigrams, and trigrams and

were encoded in a “bag-of-ngrams” fashion. In addition to lexical items, transcriptions also

contained non-speech human noise, such as laughter and sighs.

In the corpus, we noticed that certain words found in the caller transcriptions correlated

with emotional state. While these correlations were slight (the highest was less than 0.2),

they were very significant (p < 0.001). This would seem to indicate that the words people

say play a part in their emotional state, although they may not be the only indicators, and

there most certainly is not a one-to-one correspondence between a word and the emotional

content of an utterance. Some of the more interesting correlations with negative caller

state were domain-specific words concerning a phone bill (e.g., “dollars,” “cents,” “call”)

and those that indicated that the caller wished to be transferred to a human operator (e.g.,

“person,” “human,” “speak,” “talking,” “machine”). Also, the data showed that filled

pauses (e.g., “oh”) and non-speech human noises (e.g, a sigh) were also correlated with

negative caller state.

8.2.3 Dialog Act Features

The DA feature set included one feature indicating the dialog act of the current caller turn.

Dialog acts are considered to be the function an utterance plays within the context of a

dialog and, as such, may be a cue to emotional content. There are different ways to label

dialog acts and they range from generic to specific. For this study we used the pre-annotated

call-types of the HMIHY 0300 corpus. These were somewhat specific, domain-dependent

dialog act tags. Each caller turn was labeled with one or more call-type from a set of
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65. A few examples of the most frequent call-types in the corpus were: Yes, when the

caller confirmed a system-initiated question; Customer Rep, when the caller requested to

speak with a customer representative; and Account Balance, when the caller requested

information regarding their account balance.1

8.2.4 Contextual Features

The Context feature set was introduced as a way of modeling phenomena at a level that

extended beyond the scope of the present caller turn. Caller turns were situated in a larger

structure—a dialog–and it therefore seemed natural to use past evidence of caller activity

to help inform the emotion classification of the present caller turn. Because the dialogs were

relatively short, we decided to use contextual information that extended to the previous two

caller turns only. This feature set contained 61 features designed to track how the features

described in the aforementioned feature sets compared to those of previous turns and how

their values changed over time.

Thirty four (34) features recorded the first order differentials—or rate of change—of

the Pros feature set. Half of these recorded the rate of change between the current caller

utterance (n) and the previous caller utterance (n−1). The other half recorded the rate

of change between utterances n and n−2. An additional 17 features measured the second

order differentials between each feature in the Pros feature set for the current and previous

two caller turns.

An additional four features recorded the history of lexical information within the dialog.

Two features encoded the (Lex) bag-of-ngrams of the previous two caller turns. Two

additional features calculated the Levenshtein edit distance between the transcriptions of

caller turns n and n−1, as well as n and n−2. Edit distance was used as an automatic way

to represent caller repetition, a common indicator of misunderstanding on the part of the

automated agent and, anecdotally, of negative caller state.

Four features were designed to capture dialog act history based on the DA feature set.

Two features recorded the dialog acts of caller turns n−1 and n−2. Additionally, two

1For the complete set of dialog act labels in the HMIHY 0300 corpus we refer the reader to Gorin et al.

(1997).
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features were introduced to record the dialog acts of the system prompts that elicited caller

turns n and n−1. The HMIHY 0300 system prompts are predetermined by the dialog

manager and comprise the following dialog acts: greeting, closing, acknowledgment,

confirmation, specification, disambiguation, informative, reprompt, apologetic,

help.

The final two features of the Context feature set were the emotional state of the

previous two caller turns. For this experiment, we used hand-labeled emotions rather than

predicting them.

8.3 Automatic Classification

This section describes machine learning experiments designed to evaluate the usefulness

of each feature set in automatically classifying the emotional content conveyed by each

caller turn. We applied the machine learning program BoosTexter, a boosting algorithm

that forms a classification hypothesis by combining the results of several iterations of weak

learner decisions (Schapire & Singer, 2000). For all experiments reported here we ran 2,000

iterations.

The corpus was divided into training and testing sets. The training set contained 15,013

caller turns (75% of the corpus) and the test set was made up of the remaining 5,000 turns.

The corpus was split temporally; the caller turns in the training set occurred at dates prior

to those in the testing set. In addition, no dialogs were split between training and test

sets. The corpus was divided in this way in order to simulate actual system development in

which training data is first collected from the field, a system is then constructed using this

data, and, finally, performance is evaluated on the newly-deployed system. Table 8.1 shows

the classification accuracy when different feature set combinations were used for training

the classification model.

We used as a baseline the performance accuracy with a classification model that al-

ways assigned the majority class label (¬negative). Since 73.1% of all caller turns were

¬negative, this was also our baseline for comparing our other classification models. The

feature set combinations showed that adding more information increased performance ac-
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Feature Sets Used Accuracy Relative Improvement over Baseline

Baseline (majority class) 73.1% 0.0%

Pros 75.2% 2.9%

Lex+Pros 76.1% 4.1%

Lex+Pros+DA 77.0% 5.3%

Lex+Pros+DA+Context 79.0% 8.1%

Table 8.1: Classification accuracy and relative improvement over the baseline of caller

emotional state given different feature sets.

curacy. Using prosodic information alone (Pros) was useful, as indicated by the 2.9%

relative increase in performance accuracy over the baseline. When lexical information was

then added (Lex+Pros), the relative increase in performance accuracy over the base-

line was almost doubled (4.1%). Similar results were observed when dialog acts were

added—relative performance accuracy increased to 5.3% for Lex+Pros+DA—and when

contextual information was added—relative performance accuracy increased to 8.1% for

Lex+Pros+DA+Context.

8.4 Discussion

In this chapter we have shown that automatic emotion classification can be extended to non-

acted domains; in particular, Spoken Dialog Systems. Prosodic information was observed to

be useful for emotion classification, though higher classification accuracy was observed when

non-prosodic information was exploited as well. It has been claimed by some researchers

(Cauldwell, 2000, e.g.,) that information signaling emotion in speech is not static, but rather

is dynamically interpreted by context. We found support for this, as evidenced by the fact

that introducing discoursal information—in the form of dialog acts—improved emotion

recognition. This has been noted by other researchers as well (Ang et al., 2002; Batliner

et al., 2003; Lee & Narayanan, 2005, e.g.,); though, we found that further contextualizing

lexical, pragmatic, and prosodic information—by encoding changes in these features over

time—lead to ever greater classification accuracy of negative caller utterances.
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Chapter 9

Discussion

The first part of the thesis has dealt with paralanguage and the ways in which emotion is

conveyed in speech via suprasegmental cues. In particular, we have explored the acoustic

nonverbal cues of emotion in a corpus of acted speech. As there has been a large body

of research devoted to this topic in the past, we expected certain findings. For example,

we hypothesized that measurements of acoustic features would be useful for discriminating

among emotions along the activation continuum. This we found. However, we wished to

also answer a question that had not been explored as much; namely: are their groups of

people who perceive emotion in systematically different ways from other groups of people?

And, if so, in what way do they differ and would identifying such groups aid in the automatic

classification of discrete emotions using acoustic features?

In the pursuit of these questions, we conducted two perceptual studies to elicit polythetic

ratings for discrete emotions and emotion dimensions. Via automatic clustering techniques

we identified two groups of raters in the discrete emotion survey whose ratings were similar

to other members of their group but different from members of the other group. It has

been suggested by a few past studies that people may differ in how they perceive emotion

given acoustic information, though these studies have usually restricted the exploration

to gender differences (e.g., Fernandez, 2004; Toivanen et al., 2005). Though our observed

rater clusters did differ slightly with respect to the gender of the raters, more important

seemed to be the pattern of perception itself. We identified a dominant group of raters and

a smaller group who rated, systematically, positive emotions as more positive and negative
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emotions as less negative than the dominant group. We feel that these results are suggestive

of the relationship between personality type and emotion perception, a relationship that

has been suggested before (Meyer & Shack, 1989). Though such a relationship was not

directly analyzed, we believe this could be a fruitful avenue of future research.

Furthermore, we found that rater clustering was of use in statistical machine learning

experiments. In fact, average F-measure increased by 60% when we predicted majority

ratings of the two clusters relative to classification of the majority rating using all rates in

aggregate. This finding is particularly relevant for applications with the aim of automati-

cally predicting of user emotion, say for Automatic Spoken Dialog Systems.

Another approach we found to increase automatic classification performance was using

perceptual polythetic emotion labels rather than intended monothetic emotion labels. We

observed that the emotions in the former set were all significantly inter-correlated and that

the polythetic labeling scheme captured this notion of non-exclusivity as indicated again by

a relative increase in of 80% in average F-measure over the performance observed when the

monothetic emotion label set was used. Furthermore, we noted considerable correspondence

mismatch between intended and perceived emotion labels.

As was stated at the outset of this section, we found that global acoustic measures, such

as mean intensity and pitch, tended to discriminate emotions in terms of activation. This is

a finding well supported by past studies. However, our approach of using t-tests to segment

emotions into natural classes allowed us to profile emotions by identifying a minimally

distinctive feature set that, when considered in combination, maximally partitioned the

emotions. In this way, we were able to discover the features with the most impact and also

to quantize their gradient feature values in relation to other emotions.

Though acoustic cues of activation are well understood, the acoustic cues of valency are

less so. We believe that our research has provided some insight into the role that pitch

contour might play in signaling valency. In most of our experiments—though certainly

more true of perceived emotion—we found that acoustic measurements of pitch slope were

useful in differentiating emotions by valency, especially the percentage of rising pitch slope

in an utterance. Negative emotions were found to have less rising slope overall than positive

emotions did. Furthermore, by examining several pitch slope predictors, we were able to
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discover that, in particular, pitch peaks with long leading slopes were correlated with posi-

tive emotions. This finding was confirmed by experiments using abstract tonal morphemes

in that L+H* pitch accent was found to be associated with positive emotions. As far as we

know, this is a novel finding and warrants future investigation, as valency has proved to

be the most difficult aspect of emotion to automatically predict, despite the fact that is it

arguably the most critical.

In a final set of experiments, we showed that emotion recognition could be extended to

non-acted domains by augmenting acoustic information with contextual information found

in real-world domains. In the subsequent parts of this thesis, we report on our exploration

of two other non-acted domains and describe the role of acoustic cues in signaling other

types of cognitive states.
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PRAGMATICS
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The term pragmatics is used to describe the principles of language use whereby speak-

ers utilize language to achieve goals. Such goals may include changing the state of the

physical world (e.g., the closing of a window), or changing beliefs (e.g., convincing another

of an idea). As such, pragmatics necessarily describe how language is used in the interaction

between (at least) two people: a speaker and a listener. One of the fundamental ways that

a speaker attempts to use language to achieve goals is by asking questions of a listener.

In so doing, a speaker performs the act of seeking to elicit an answer or action from the

listener. In this chapter we describe the form and function of student questions in a corpus

of spoken tutorial sessions. We also describe a framework for automatically detecting such

information using machine learning techniques. The motivations behind our research were

two-fold. Not only were we interested adding to the general understanding of the form and

function of questions in spoken Standard American English, but we also wanted to improve

Spoken Dialog Systems—specifically, Intelligent Tutoring Systems—so that they might be

able to more effectively detect and respond to user questions.
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Chapter 10

Previous Research on Questions

Arriving at the definition of a “question” is not a straightforward endeavor. As Geluykens

(1988, p. 468) states, “There is no simple correlation between Interrogative form and Ques-

tion status. Some questions do not have interrogative form (i.e., Queclaratives); conversely,

some interrogatives do not function as questions.” Echoing this sentiment, Graesser & Per-

son (1994, p. 109) maintain that, with respect to questions, “there is not a simple mapping

between the syntactic mood of an utterance and its pragmatic speech act category” and

define a question to be an utterance that functions as either an inquiry or an interrogative

expression. Ginzburg & Sag (2000, p. 107) define a question to be “the semantic object

associated with the attitude of wondering and the speech act of questioning.” Bolinger

(1957, p. 4) noted long ago that “a Q[uestion] is fundamentally an attitude, which might

be called a ‘craving’—it is an utterance that ‘craves’ a verbal or other semiotic (e.g., a nod)

response.” The ambiguities associated with a comprehensive definition of questions arise

from the many different forms and functions that questions can take. In this chapter, we

describe some of these issues in detail.

10.1 The syntax of questions

It is well understood that questions in Standard American English can be identified, in

part, through syntax. The forms most commonly referred to include yes-no questions,
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wh-questions, tag questions, alternative questions, and particle questions.1 The syntax

of English questions often involve inversion of declarative word order with respect to the

subject and auxiliary verb. An auxiliary verb is one that is used together with a main verb

to add additional syntactic or semantic meaning (e.g., “to be,” “to do,” “to have”). A

yes-no question, generally speaking, is formed by such inverted word order, though the

actual implementation of inversion can be quite complex. Yes-no questions often elicit a

restricted range of responses (e.g., “yes,” “no,” “I don’t know”). A wh-question is formed

by substituting a wh-word, or interrogative word, in place of the subject or object and

moving it to the beginning of the sentence. (This phenomenon is sometimes referred to

as wh-fronting.) Common English wh-words include “who,” “what,” “where,” “when,”

“why,” and “how.” Subject/auxiliary inversion may also be present in a wh-question. A tag

question is formed by adding a subordinate interrogative clause to the end of a declarative

statement. The tag portion consists of an auxiliary verb followed by a pronoun (a simplified

version of a yes-no question). An alternative question is a question that presents two or

more possible answers and presupposes that only one is true. A particle question is much

more restricted in terms of lexical and syntactic choice; it consists solely of a grammatical

particle or function word.

It is widely known that questions can take another form as well. Some utterances, even

though they do not differ in syntax from declarative statements, still function as questions

and are clear to most listeners that a response on their part is in order. Such questions

are referred to as declarative questions. Cues other than syntax are necessary for the

identification of such questions and we will discuss previous investigations to such cues in

Section 10.3.

10.2 The intonation of questions

Syntax is not the only sort of information associated with the signaling of questions in

English. Intonation, or pitch contour, has often been cited as playing a role as well. How-

1Though terminology differs with respect to question form, the terminology we have adopted is that

which has been most commonly used in the research literature.
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ever, there is far less of a consensus on the intonational structures associated with different

question forms, though it is generally believed that final rising at the end of an utter-

ance or phrase is in some ways indicative of questions. For example, Pierrehumbert &

Hirschberg (1990, p. 277) state that, “A typical interrogative contour is represented with

L* H-H%.”2 However, not all question forms are considered to exhibit rising intonation;

for example, Pierrehumbert & Hirschberg also state that the canonical intonational form of

wh-questions is that of the phrase-falling intonation typically associated with declaratives

(H* L-L%, p. 284). Bartels (1997) offers an excellent overview of the earlier descriptive

works of Bolinger (1957), Schubiger (1958), and Rando (1980). Bartels contends that dif-

ferent sentence types have corresponding canonical, or prototypical, intonational form. On

page 33 she asserts, “Syntactically declarative sentences uttered as ‘statements,’ or ‘asser-

tions,’ are prototypically associated with a final fall....” This is the same intonation found

on alternative questions (p. 84) and wh-questions (p. 169) as well. Falling intonation (H*

L-L%) is contrasted with either the low rise (L* H-H%) or high rise (H* H-H%) typical of

yes-no questions (p. 123).

Though the cited work has described intonational patterns as “prototypical” or “natu-

ral” or “canonical” for questions that take different forms, no author has claimed that an

intonational contour exists that always maps to a particular question form, nor even that

intonational contours exist that are reserved exclusively for signaling questions in general.

Indeed, as Bartels made explicit, “[T]here is no direct correlation in questions between syn-

tactic subtype and intonation, and further, that in empirical descriptions, there is little use

for the notion of a uniform ‘question intonation’” (p. 8). Such empirical studies include

Fries (1964), who claimed that most yes-no question in a corpus of American English tele-

vision panel games in fact did not have rising intonation and Geluykens (1988) who claimed

a similar finding in a corpus of spoken British English conversations. Nevertheless, such

studies have also found that rising intonation is present on the types of questions we would

expect them to be—including yes-no questions—at a rate above that found on sentence

forms we would not expect them on (e.g., declaratives).

2Most discussion of intonational form in this section uses ToBI notion, described in full in Section 7.1,

even though not all the studies cited here necessarily used such notation when reported originally.
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The consensus is that the pitch contour shape at the end of a phrase is indicative of some

semantic or pragmatic meaning, but that this meaning is not directly tied to the question-

status of an utterance. Rather, phrase-final rising intonation is thought to indicate either

non-commitment (Gunlogson, 2001; Steedman, 2003), non-assertiveness (Bartels, 1997),

relevance testing (Gussenhoven, 1983), uncertainty (Stenström, 1984; Šafářová, 2005), or

forward reference (Pierrehumbert & Hirschberg, 1990) on the part of the speaker. Phrase-

final falling intonation is thought to signal the opposite. Though each of these meanings is

distinct, they are all similar to the extent that one could associate such meaning with the

function of many types of questions and could explain why rising intonation is both often

thought to be indicative of questions and more likely to be found on questions than non-

questions. However, since questions do not always function as one of the aforementioned

meanings, it would also explain why not all questions, in all contexts, exhibit rising intona-

tion. This notion has lead to further investigation of the different types of functions that

questions can serve, which we will address in Section 10.4. First, we would like to discuss

declarative questions, because the issues that pertain to them are intrinsically related to

syntactic and intonational form.

10.3 Declarative questions

Declarative questions are of interest precisely because they are those questions that show

no difference, syntactically, from proper declarative statements. Thus, non-syntactic cues

must be present in order for listeners to determine that they have the pragmatic force of a

question. It has been theorized that the intonation of declarative questions might be of use

and that their intonation is similar in range to what might be expected of yes-no questions

(e.g., Bartels, 1997, p. 227). Though if, as we’ve seen, yes-no questions do not always

exhibit rising intonation, then the question remains: how it is that declarative questions

are conveyed? A few researchers have examined this issue directly and we will discuss their

findings presently.

Geluykens (1987) is possibly the most skeptical of the phrase-final rising intonation of-
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ten attributed to declarative questions in British English.3 In fact, he stated that “[r]ising

intonation is irrelevant for the recognition of a declarative utterance as a queclarative, pro-

vided pragmatic factors contribute to the utterance’s question-status” (p. 492). Motivation

for this claim was based on perceptual experiments in which subjects were asked to judge

whether spoken utterances functioned as questions or not. In particular, he examined the

role that personal pronouns played in signaling whether an utterance was “question-prone”

or “statement-prone.” His claim was that utterances that contain second person pronouns

(e.g., “you”) are question-prone (as in, “you feel ill”) because they address the cognitive

state of the listener, whereas utterances that contain first person pronouns (e.g., “I”) are

statement-prone (as in, “I feel ill”). In other words, when the content of a speaker’s ut-

terance refers to the listener, as indicated by the use of a second person pronoun, then the

meaning is related to the cognitive state of the listener, which is presumably unknown to

the speaker and is therefore likely being queried by the speaker. This is contrasted with

an utterance that contains a first person pronoun because the content refers to the cog-

nitive state of the speaker, which is known to the speaker, and thus not likely to serve

as a question. Geluykens hand-constructed five declarative sentences of the form pro-

noun+verb+phrase, as in, “I/you like the apples a lot.” These sentences were then

recorded by one speaker using phrase-final falling intonation. Analogous sentences with

phrase-final rising intonation were created through resynthesis. Irrespective of intonation,

he found that statements containing “you” were more often perceived as questions than

were statements containing “I,” thus justifying his hypothesis that lexico-pragmatic cues

are more crucial for the identification of declarative questions than is intonation.

Similarly for British English, Stenström (1984) found only 23% of declarative questions

exhibited phrase-final rising intonation in a corpus of transcribed conversations, yet 77%

were found to contain q-markers. Q-markers were defined as lexical phrases indicative of

questioning, including tentative expressions (e.g., “I think”), modal verbs (e.g., “might”),

and particles (e.g., “so”).

Beun (1990) found lexico-pragmatic cues to be important for declarative questions in

Dutch, though he considered his conclusion to be far less severe than Geluyken’s: “[A]t

3Geluykens referred to declarative questions as “queclaratives.”
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least for Dutch spoken utterances, rising intonation is an important cue for questioning and

cannot easily be overrruled by pragmatic cues” (p. 52). Beun examined a corpus of Dutch

telephone dialogs and found 20% of all questions to be declarative in form and that 48%

of all such questions exhibited phrase-final rising intonation. However, he also found that

the presence of phrase-initial particles (e.g., en “and,” dus “so,” and oh “oh”)—which can

be thought of a discourse cues—increased dramatically the likelihood that a sentence of

declarative form functioned as a question.

Another major study concerning cues to declarative questions was conducted by Šafářová

& Swerts (2004) for spoken American English that built on the research of the studies

previously mentioned. They identified 93 declarative questions in a corpus of spontaneously

spoken dialogs and asked human judges to determine whether each utterance served to

elicit a response from the listener, under two conditions: (1) with transcripts and no audio

and (2) with transcription and audio. They coded the lexico-pragmatic cues put forth by

both Geluykens (1987) and Beun (1990) and found that when no audio was present judges

relied most heavily on whether a second person pronoun was present or not. Phrase-initial

particles and first person pronouns were found to be less useful. For the second study, they

transcribed the intonation of the declarative questions and coded them as having question-

intonation as suggested under four paradigms: (1) L* H-H% (Pierrehumbert & Hirschberg,

1990); (2) L* H-H%, L* H-L%, H* H-H%, or H* H-L% (Bartels, 1997); (3) H* H-H%,

L* H-H%, L* H-L%, or L* L-H% (Gunlogson, 2001); (4) H% (Steedman, 2003). They found

that coding question-intonation as suggested by Gunlogson correlated best with a subject’s

ability to classify declarative questions, though they observed significant correlation using

all intonation coding schemes. They also found that the the ability of the subjects to classify

declarative questions did not significantly differ between the two studies, indicating that

access to prosodic information, at least of the utterance itself, is redundant to some extent

with other factors, such as lexico-pragmatic cues.

A comparative analysis of previous studies of declarative questions reveals that contex-

tual information in the form of lexico-pragmatic cues is indeed important. However, most

studies also found that rising intonation is present in such types of questions as well. It is

reasonable to assume that the findings for declarative questions extend to questions that
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take different syntactic forms as well.

10.4 The function of questions

Identifying the pragmatic function of a question is a less straightforward endeavor than

classifying its syntactic form. Often, form and function are conflated. For example yes-no

questions are defined, in part, because they anticipate either “yes” or “no” (or “I don’t

know”) as an answer. This differs from the expected response of wh-questions that seek

information that corresponds to the wh-word in the question. An alternative question, as

we’ve already stated, expects the answer to be a choice among options explicitly specified

in the question.

However, it has long been noted that the anticipated answer to a question is not fully

governed by the syntax of the question. As just one example, Hirschberg (1984) pointed

out that there are other ways to felicitously answer a yes-no question than by responding

with “yes,” “no,” or “I don’t know.” Specifically, yes-no questions can seek to elicit indirect

responses. For example, the expected response to the indirect question “Do you have the

time?” is not “yes” or “no” but rather the time (e.g., “5:30”). In fact, any question can

function as an indirect speech act, and thus one cannot rely on form to signify function.

Of the seminal studies referenced so far addressing question form, most, if not all, have

alluded to some of the functions that questions of a particular form might serve. How-

ever, one of the first comprehensive descriptions of question function and how it relates

to question form was put forth by Stenström (1984). She proposed eight distinct ques-

tion functions: Q:acknowledge, Q:confirm, Q:clarify, Q:repeat, Q:identify, Q:polar,

Q:action, Q:offer, Q:permit, and Q:react. A Q:acknowledge question takes the form

of a tag question (or, possibly, a declarative question) and invites the listener to accept

what has been suggested by the speaker. A Q:confirm question asks for confirmation of

what was proposed in the question and can be realized also as a tag or declarative ques-

tion. A question that invites the listener to clarify something uttered previously in the

discourse is a Q:clarify question and is realized only as a wh-question. A Q:repeat ques-

tion is similar but more restricted, in that it functions as a request for the listener to repeat
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part or all of the previous utterance. Q:repeat questions are realized as particle questions

(e.g., “Pardon?”). Both Q:identify and Q:polar seek information. Q:polar questions

seek information in the form of a yes-no answer and are thus realized as yes-no questions

or alternative questions. Q:identify questions are realized as wh-questions or alternative

questions and seek information in the form of an adequate substitute for the wh-word or

alternative choices put forth by the question. Q:action, Q:offer, and Q:permit are indi-

rect versions of Q:identify, Q:polar, and Q:confirm, respectively, and therefore expect

the same forms that their direct counterparts have. The final question function, Q:react,

is realized only as a tag question and is used to show the speaker’s surprise in relation to

the listener’s actions.

Tsui (1992) agreed with many of the functional categories put forth by Stenström but

divorced form from function entirely, claiming that a particular function could, in fact, be

realized with any question form. Tsui proposed six question functions: Elicit:inform,

Elicit:confirm, Elicit:agree, Elicit:commit, Elicit:repeat, and Elicit:clarify.

Elicit:inform invites the addressee to supply a piece of information (e.g., “What time

will you be finished?”). Elicit:confirm invites the addressee to confirm the speaker’s

assumption (e.g., “Is that you Henry?”). Elicit:agree invites the addressee to agree with

the speaker’s assumption that the expressed proposition is self-evidently true (e.g., “Lovely

day isn’t it?” (when it is sunny out)). Elicit:commit elicits more that just a verbal

response from the addressee, it also elicits commitment of some kind (e.g., “Can I talk to

you?”). Elicit:repeat asks the addressee to repeat what was just said in the discourse

(e.g., “What did you say?” or “Pardon?”). Finally, Elicit:clarify seeks clarification

of a topic referred to earlier in the discourse (e.g., “Did you say you wanted to go to the

movies?”).

There is clear overlap between the function categories put forth by both Stenström

and Tsui, though some differences as well. For our own research, described in subsequent

chapters, we chose to adopt a subset of question function labels that could be mapped

to both taxonomies. We chose to treat question function as orthogonal to question form,

as proposed by Tsui, while allowing for the possibility that certain question forms and

functions might be more highly correlated than others.
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10.5 Student questions in the tutoring domain

A learning environment in which a tutor and a student work one-on-one has been shown

to engender more student learning than does classroom instruction alone. Graesser et al.

(2001) reviewed several tutoring studies and reported that the learning gain of students who

utilized tutoring and classroom instruction was between 0.4 and 2.3 standard deviations

above the learning gain of students who participated in only classroom instruction.4 There

is no lack of competing theories to explain why this is the case. For example, Merrill et al.

(1992) suggested that human tutors are effective because they use the technique of “guided

learning by doing” that allows students to explore on their own, but prevents them from

going down the wrong path. Others have suggested that social interaction may play a role

in that students may be too embarrassed in a social setting of their classmates to express

their misunderstandings, whereas this is not the case in tutoring interactions. One of the

most intriguing reasons was offered in an earlier study by Graesser and has generally been

accepted by the educational community. Graesser & Person (1994) provided a review of

research studies, including a few conducted by the main authors, that examined student

question frequency in different educational settings. They found that a typical student in a

classroom environment asks about 0.1 questions per hour, whereas in a one-on-one tutoring

session that same student will ask an average of 26.5 questions per hour. In other words,

student questions in tutoring are more than 200 times more frequent than in classroom

instruction. Furthermore, Graesser & Person, in their own studies, found a significant

positive correlation between examination scores and the rate of deep-reasoning student

questions and a negative correlation between total questions asked and examination scores.5

Taken together, these findings suggest that the rate and function of student questions may

in some way be related to the increased learning gain observed with one-on-one tutoring.

An Intelligent Tutoring System (ITS) is an educational software program designed to

4Learning gain is calculated as the difference between scores on a test taken before instruction (pre-

test) and one taken after instruction (post-test). One standard deviation represents approximately one letter

grade.

5It should be noted that examination score cannot be considered the same as learning gain because it

does not take into account the learning attributed to being tutored, only overall student proficiency.
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tutor students using Artificial Intelligence. Such systems generally serve as domain experts

and guide students through problem-solving questions by offering step-by-step feedback on

solution accuracy and context-specific advice. The pedagogical approach of ITSs is usually

that of the Socratic method: system-initiated questions help guide the student to solving a

larger problem. Though early ITSs employed no Natural Language Processing capabilities,

many today do so in a text-only format. Far fewer utilize spoken discourse as the means

of interaction, but they are becoming more common and will be addressed shortly. The

potential advantages of ITSs include increasing access to tutoring among students who

otherwise would not be able to receive it, either due to lack of available tutors or to the

prohibitive cost of human tutors.

State-of-the-art ITSs have been shown to be effective at fostering student learning.

Graesser et al. (2001) noted that the best ones increase student learning gain by 0.3 to

1.0 standard deviations over classroom instruction alone. Note that while promising, such

learning gains are still well below those observed when tutoring is conducted with human

(rather than automated) tutors. Most solutions offered as ways to close this gap are those

that involve improving the Natural Language capabilities of ITSs. Aist et al. (2002) showed,

through Wizard-of-Oz experiments, that enabling an ITS to provide feedback as a human

tutor does increase student persistence and willingness to continue.6 The authors noted

that this type of student behavior improves the likelihood that learning gain would increase

as well. Pon-Barry et al. (2006) examined the role that hedges, response latency, and filled

pauses played in signaling a student’s “feeling-of-knowing” (Fox, 1993) in the SCoT ITS.

They found that long student response latency correlated with a lower feeling-of-knowing on

the part of the student and suggested that human tutors use such information in formulating

their next move.

Both of the aforementioned studies highlight some of the advantages of developing ITSs

that behave more like human tutors. A notable exception to this view was put forth by

Anderson et al. (1995) who claimed, after working on cognitive tutors for ten years, that the

6A Wizard-of-Oz experiment is one in which the automated agent is actually controlled by a human

operator, a fact unknown to the user. Such experiments are usually used as control experiments or gold

standards so that performance of true automated system use can be compared with optimal system use.
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goal should not be to emulate human tutors, but rather to develop tutoring tools. We believe

that there is room for such tools in the education software domain, but that Intelligent

Tutoring Systems with Natural Language capabilities are also essential. In the following

chapters we describe work we conducted on the analysis of student question behavior in a

corpus of human-human tutoring dialogs. Our ultimate goal was to improve the question

handling capabilities of ITSs such that they respond appropriately to both the function and

form of student questions, as a human tutor would.

10.6 Automatic question identification

There have been innumerable theoretical studies on question behavior in the past. There

have also been quite a few corpus-based approaches, several of them mentioned above.

However, there have been relatively few studies that have conducted machine learning ex-

periments designed to automatically detect and classify spoken questions. Most machine

learning experiments that have examined questions have done so in a larger framework of

general dialog act prediction. Since such tag sets tend to be relatively large, the performance

of question-related tags in isolation is rarely discussed in such studies.7 Furthermore, most

dialog act prediction studies conducted to-date have looked only at information available

from text (e.g., words, syntax, dialog act history) and not speech (e.g., prosody and voice

quality). Therefore, we choose to focus our discussion of previous work on findings of the

few studies that have examined the automatic classification of questions in spoken English.8

Shriberg et al. (1998) conducted machine learning experiments to automatically clas-

sify utterances as either questions or statements in over one thousand spoken conversations

in the SWITCHBOARD corpus of telephone conversations.9 From each utterance they ex-

tracted lexical information (language models of true transcriptions and ASR output) as well

7For example, Surendran & Levow (2006) used 13 MapTask tags, Reithinger & Klesen (1997) used 18

VERBMOBIL tags, and Stolcke et al. (2000) report findings on the full SWBD-DAMSL set (42 tags).

8There have been similar studies in other languages as well; for example, Liu et al. (2006) conducted

machine learning experiments for spoken questions in Mandarin.

9This was actually a subtask; the full experiment examined the classification of seven dialog acts: state-

ment, question, backchannel, incomplete, agreement, appreciation, other.
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as automatic prosodic information (duration, pausing, fundamental frequency (f0), energy,

and speaking rate measures). These cues were then used as features for machine learning ex-

periments using binary decision trees. The data was down-sampled such that questions and

statements were equally likely (50% baseline performance accuracy). Performance accuracy

using prosodic features alone was observed to be 76.0%. Pitch information was found to be

informative (consistent with previous theoretical discussion), but so were pausological and

durational features. Accuracy using only language models trained on hand-transcriptions

yielded a significantly higher performance accuracy of 85.9%. However, when both lexical

and prosodic information were combined, a slightly higher overall performance accuracy of

87.6% was observed. The authors contrasted these results with the accuracy when predicted

lexical information (ASR transcriptions) was used and found lower prediction rates: 75.4%

when predicted words were used in isolation (about the same as using automatic prosodic

information) and 79.8% when used in conjunction with prosodic information. The conclu-

sion reached was that prosodic and lexical information were often redundant with respect

to the binary classification of questions vs. statements but that together they were both

considered useful for the automatic classification of spoken questions.

As a second experiment, Shriberg et al. (1998) ran a four-way classification task ex-

ploring question form: statement, y/n-question, wh-question, declarative question.

Performance accuracy using only prosodic information was 47%.10 Here, pitch information

was found to be the most important of the prosodic features, by a substantial margin. The

authors note that the learned decision tree confirmed long-held beliefs that declarative and

yes-no questions have phrase-final rising intonation whereas statements and wh-questions

have phrase-final falling intonation. Furthermore, the authors contend that conflating dis-

parate question forms into one category obscures some of the intonational cues of some

forms of questions.

Surendran & Levow (2006) report results of machine learning experiments for questions

as well.11 They used the HCRC MapTask corpus, comprising 64 dialogs and 14,810 utter-

10Baseline performance, due to down-sampling, was 25%. No performance accuracy was reported using

lexical information.

11Again, this was in the context of a larger 13-way dialog act classification task.
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ances. They, too, extracted both lexical information (in the form of unigrams, bigrams,

and trigrams) and prosodic information (similar to Shriberg et al.) from each utterance.

For each dialog act they reported F-measures for prosodic, lexical, and combined feature

information. There were four question types, a mixture of form and function. Agreement-

checking questions (align) showed an F-measure of 0.22 using acoustic features, 0.43 using

lexical features, and 0.60 using the combined feature set. Information-checking questions

(check) had an F-measure of 0.40 using acoustic features, 0.45 using lexical features, and

0.57 using the combined feature set. The performance of the classification of yes-no ques-

tions resulted in F-measures of 0.16 (acoustic), 0.64 (lexical), and 0.63 (combined). The

final question category was a catch-all for all other questions (query-w). F-measures for

this type were 0.05 (acoustic), 0.63 (lexical), and 0.68 (combined). In summary, their

findings suggested that acoustic-prosodic features helped most for information-seeking and

agreement-checking questions; less so for all other questions. For all question types, lex-

ical information alone was more predictive than acoustic information alone, though the

combination of the features resulted in further improvement.

Though the two aforementioned studies provide useful information about the type of

performance and the most useful features one might expect to see in the automatic de-

tection of questions in spoken English, the tags themselves don’t discriminate between the

form and function of questions—something we were very interested in. In the (reduced)

SWBD-DAMSL set used by Shriberg et al. (1998) only the form of questions were tagged.

Alternatively, while Surendran & Levow (2006) tagged some questions in the the HCRC

MapTask corpus by form (e.g., query-yn), others were tagged according to function (e.g.,

align and check). In Chapter 16 we report results on the automatic classification of both

form and function, independently. We felt that such an approach was necessary because

both types of information may help guide an automated tutor to the correct response. Ques-

tion form often dictates the form that the appropriate response should take and, similarly,

the function of the question guides the content of expected answer. In other words, our

goal was to detect student questions in such a way that automated tutor answers may be

supplied that are felicitous both in how and what is said.
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Chapter 11

The HH-ITSPOKE Corpus

Our corpus was a set of tutoring dialogs obtained from the University of Pittsburgh’s

Learning Research & Development Center. This corpus was collected for the development

of ITSPOKE, an Intelligent Tutoring Spoken Dialog System designed to teach principles

of qualitative physics (Litman & Silliman, 2004). ITSPOKE is a speech-enabled version of

Why2-Atlas, a text-based tutoring system (VanLehn et al., 2002). Several corpora have been

collected related to ITSPOKE development, including dialogs between human students and

an automated agent. The corpus we analyzed, though, contained dialogs between human

students and a human tutor and we refer to it as HH-ITSPOKE.

The HH-ITSPOKE corpus comprises tutorial sessions between 17 undergraduate stu-

dents (7 female, 10 male; all native American English speakers) and a (male) professional

tutor. An excerpt of a dialog from the corpus is shown in Figure 11.1 on page 112; disflu-

encies have been eliminated and punctuation added for readability.

The recording procedure for each session proceeded as follows. One student and the

tutor were seated in the same room but were separated by a partition such that they could

not see each other. They interacted via microphones and a graphical user interface (GUI), as

shown in Figure 11.2 on page 112. Each student was first asked to type an essay in response

to one of five qualitative physics questions, shown in the box in the upper right hand of the

GUI (e.g., “Suppose a man is in a free-falling elevator and is holding his keys motionless in

front of his face ....”). Each student then typed his or her response into the text box at the

bottom right of the GUI (e.g., “The keys will hit the floor of the elevator because of the
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force of gravity.”) after which point the tutor evaluated the student essay and proceeded to

tutor the student verbally until he determined that the student had successfully mastered

the material. It was an iterative process whereby the student was asked to retype their

essay until the tutor was satisfied that it successfully answered the question. A transcript

of the conversation appeared in a text box at the bottom left of the GUI.

The tutor and each student were recorded using separate microphones and each channel

was manually transcribed and segmented into turns. Each dialog contained, on average, 53

student turns. Each student turn averaged 2.5 seconds and 5 words in length. The total

number of student turns in the corpus was 7,460.
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... 17.4 minutes into dialog 71-61-1 ...

TUTOR: What does the acceleration mean?

STUDENT: That the object is moving through space?

TUTOR: No. Acceleration means that object’s velocity is changing

STUDENT: What?

TUTOR: Object’s velocity is changing.

STUDENT: Uh-huh, and then once you release it the velocity remains constant.

Figure 11.1: A transcribed excerpt from the HH-ITSPOKE corpus.

Figure 11.2: Screenshot of the ITSPOKE GUI during a tutoring session.
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Chapter 12

Question Annotation

Student questions were identified in the HH-ITSPOKE corpus by one annotator using the

construct of Bolinger (1957): student questions were considered utterances judged as seek-

ing a substantive verbal response from the tutor. One thousand and thirty (1,030) questions

were identified, and the beginning and end of each question were recorded. The rate of stu-

dent questions per hour, averaged across all students, was calculated to be 25.2 (SD = 13.0)

and student questions were found to comprise 13.3% of total student speaking time. Such

a high rate of time spent asking questions is consistent with other findings in one-on-one

human tutoring (e.g., Graesser & Person, 1994). In additional to identifying student ques-

tions, we labeled the form and function of each question independently. The labels are

discussed below and were first introduced in Liscombe et al. (2006).

12.1 Question type

Each question in the HH-ITSPOKE corpus was coded according to its syntactic form

with one of the labels described in Table 12.1 on page 115. We chose the most commonly

accepted question forms: yes-no questions (ynQ), wh-questions (whQ), yes-no tag questions

(tagQ), alternative questions (altQ), particle questions (partQ), and declarative questions

(dQ). All questions forms have already been described in full in the literature review, though

a few clarifications with respect to coding are in order. Questions in the partQ class were

those that consisted solely of a grammatical particle or function word, though we found
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such questions to be restricted to “pardon,” “huh,” and “hm.” Though altQs are generally

defined as questions that present two or more possible presupposed answers, we coded such

questions using the rather broad heuristic of any question that contained the word “or.”

Finally, in our coding scheme, a non-clausal fragment was considered dQ—as was a wh-

question with no wh-fronting, since the surface word order resembled a declarative (e.g., “A

what?”).1

The coding of question function was done following the proposed label sets of both

Stenström (1984) and Tsui (1992). Due to sparsity in our data, we conflated their larger

sets to a smaller set containing four function categories (mapping is shown in Table 12.2

on page 115), with special care taken to maintain distinctions of importance for ITSs. Ta-

ble 12.3 on page 115 presents examples of each of the function labels that were used to code

all the questions in our data. A clarification-seeking question (clarQ) was identified as a

question asked by the student that sought clarification of something the tutor said, some-

thing about the essay, or something about the computer interface. These were questions

that could naturally be followed by, “is that what you just said/intended/meant?.” They

were not considered to be questions concerning the student’s own conceptual understanding;

such a question was coded as a confirmation-seeking/check question (chkQ) because it was

one in which the student sought to check or confirm his or her present understanding with

that of the tutor’s. A question in which the student was asking for new, previously undis-

cussed information from the tutor was labeled as an information-seeking question (infoQ).

Any question that did not adhere to one of the aforementioned functions was labeled as

other (othQ). Such questions included rhetorical and self-addressing questions, as shown as

an example in Table 12.3.

1Wh-questions with no wh-fronting are often referred to as “in-situ questions.”
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Label Form Example

ynQ yes-no question “Is it a vector?”

whQ wh-question “What is a vector?”

tagQ tag question “It’s a vector, isn’t it?”

altQ alternative question “Is it a vector or a scalar?”

partQ particle question “Huh?”

dQ declarative question “It’s a vector?” or “A vector?”

Table 12.1: Question form labels with examples.

Stenström’s labels Tsui’s label(s) Our Label

{acknowledge, confirm} {confirm} → confirmation-seeking/check

{clarify, repeat} {clarify, repeat} → clarification-seeking

{identify, polar} {inform} → information-seeking

{action, offer, permit, react} {agree, commit} → other

Table 12.2: Stenström’s and Tsui’s question function labels mapped to ours.

Label Function Example

chkQ confirmation-seeking/check question “Is that right?”

clarQ clarification-seeking question “What do you mean?”

infoQ information-seeking question “Is the initial velocity the same?”

othQ other “Why did I do that?”

Table 12.3: Question function labels with examples.
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12.2 Question-bearing turns

Each of the turns containing a question was coded as a question-bearing turn (QBT).

Though most QBTs (89%) bore only one question, 10% were observed to contain two

questions, and the remaining 1% bore three questions. Thus, there were fewer QBTs (918)

than there were questions (1030) in the HH-ITSPOKE corpus. Furthermore, we note that

70% of QBTs consisted entirely of the question itself. Of the remaining QBTs—those that

contained speech other than a question—63% bore questions that ended the turn. In other

words, most (89%) of all QBTs were observed to bear questions that occurred at the end

the turn.
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Chapter 13

Question Form and Function

Distribution

We turn now to the distribution of the question form and function labels. Table 13.1 lists

the counts of all form and function labels as well as their intersection. Each cell contains the

raw count of the form and function label pairs along with their overall percentage over all

1,030 questions. For example, the first cell states that 416 questions were labeled as both dQ

and chkQ and that this label pair comprised 40.4% of all label pairs. The last column and

last row (with the header “N”) in the table list the overall frequency of the form and function

labels, respectively. For example, 577 out of the 1,030 questions (56.0%) were labeled as

chkQ. We will first discuss these terminal cells and then turn to the intersection of the two

label sets (the internal cells). The column with the header “?” represents questions whose

function could not be determined.

With respect to the syntactic form of student questions, almost half (54.0%) were found

to be declarative (dQ). This figure is much higher than has been reported for other corpora.

For example, Beun (1990) found 20% of all questions in a Dutch corpus of travel-planning di-

alogs to be of declarative form and Jurasfky et al. (1997) found 12% in the SWITCHBOARD

telephone dialog corpus. The second most frequent question form was ynQ at 23.9%, while

yes-no questions in tag form (tagQ) made up another 7.4% of all questions. Wh-questions

(whQ) constituted 10.1% of all questions, alternative questions (altQ) comprised 3.0%, and
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Function

Form chkQ clarQ infoQ othQ ? N

dQ 416 (40.4%) 126 (12.3%) 2 ( 0.2%) 7 ( 0.7%) 6 ( 0.6%) 557 (54.0%)

ynQ 81 ( 7.9%) 99 ( 9.6%) 33 ( 3.2%) 10 ( 1.0%) 23 ( 2.2%) 246 (23.9%)

whQ 68 ( 6.6%) 28 ( 2.7%) 2 ( 0.2%) 6 ( 0.6%) 104 (10.1%)

tagQ 67 ( 6.5%) 7 ( 0.7%) 2 ( 0.2%) 76 ( 7.4%)

altQ 13 ( 1.3%) 12 ( 1.2%) 2 ( 0.2%) 4 ( 0.4%) 31 ( 3.0%)

partQ 16 ( 1.6%) 16 ( 1.6%)

N 577 (56.0%) 328 (31.9%) 65 ( 6.3%) 19 ( 1.8%) 41 ( 4.0%) 1030 (100%)

Table 13.1: Syntactic form and discourse function of all questions.

particle questions (partQ)—such as “Huh?”—were the least frequent question form at 1.6%.

Concerning the pragmatic function of student questions, most (56.0%) sought a tutor

response that validated the students’ understanding (chkQ). The second most frequent ques-

tion function (31.9%) was that which sought clarification of something the tutor had said

(clarQ). Far fewer student questions (6.3%) sought new information (infoQ), and other

types of questions (othQ) made up only 1.8% of all student questions. There were 41

questions (4.0%) whose function could not be determined by the annotator.

Turning now to <form, function> label pairs, we observed that most (40.4%) student

questions were declarative in form and confirmation-seeking/check in function: <dQ, chkQ>.

The second most frequent pairing, at 12.3%, were questions that were declarative in form

and clarification-seeking in function: <dQ, clarQ>. The remaining pairs made up relatively

small fractions. We ran a χ2 test of independence between the two label sets, excluding

the column of unknown question function, and found a systematic relationship between

question form and function (χ2 = 370.95, df = 15, p < 0.001). The correlation strength of

the two sets was found to be 0.37, as calculated using Cramer’s phi (φc).
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Function

Form chkQ clarQ infoQ othQ ? N

dQ 75 23 0 1 1 557

ynQ 33 40 13 4 9 246

whQ 0 65 27 2 6 104

tagQ 88 9 0 0 3 76

altQ 42 39 7 0 13 31

partQ 0 100 0 0 0 16

Table 13.2: Question <form, function> counts normalized by total form count.

To more fully understand the nature of the relationship between question form and

function, we observed the frequency of each question label normalized by type. Table 13.2

shows the relative counts of the label pairs when normalized by question form. We see

that dQs were more than three times as likely to be chkQs than they were to be clarQs (75

compared with 23). The function of other dQs were marginal. Yes-no questions (ynQs) had

a more uniform distribution with respect to question function, though most were found to

function as either clarQ (40) or chkQ (33) and these functions were more than two and a

half times as likely as any other function. Wh-questions were primarily clarQ (65) and were

half as often infoQ (27). The function of tagQ was overwhelmingly chkQ (88); it was almost

ten times more likely any other function. It is interesting that tag and yes-no questions,

though most similar in form, did not seem to serve the same functions. Rather, the function

of altQs was most similar to the function of ynQs in that their functions were primarily chkQ

or clarQ, at a rate very similar to ynQs. A particle question (partQ) functioned exclusively

as a clarification-seeking question (clarQ).

Table 13.3 lists the relative frequency of question function with respect to form, when

normalized by the overall function label counts (the row totals). We observed that chkQs

took the form of dQs more than 5 to 1 over the next most frequent form, ynQ (72:14).

There were three primary function of clarQs: dQ (38), ynQ (30), and whQ (21). Questions

that functioned as information-seeking (infoQ) were overwhelmingly either of the form ynQ

(51) or whQ (43). Half (53) of all other types of discernible question functions (othQ) were
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Function

Form chkQ clarQ infoQ othQ ?

dQ 72 38 3 37 15

ynQ 14 30 51 53 56

whQ 0 21 43 11 15

tagQ 12 2 0 0 5

altQ 2 4 3 0 10

partQ 0 5 0 0 0

N 577 328 65 19 41

Table 13.3: Question <form, function> counts normalized by total function count.

produced in the form of a yes-no question (ynQ) and outnumbered the next most frequent

question form—dQ—by nearly one and a half times (53/37). A question whose function

could not be determined was primarily ynQ.

In examining the relationship between the form and function of student questions in the

HH-ITSPOKE corpus, we observed a systematic relationship between the two types of infor-

mation. Through analysis, we found the most significant coupling to exist between questions

of declarative form and confirmation-seeking/check function: <dQ, chkQ>. Other observa-

tions indicated that most wh-questions were clarification-seeking, most yes-no tag questions

were confirmation-seeking/check, and all particle questions were clarification-seeking. Not

included in the statistical analysis, but observed from normalized frequency counts, we

also observed that most questions of ambiguous function took the form of a yes-no ques-

tion. Clearly, question form and function—at least insofar as could be concluded by our

data—were not truly orthogonal. However, it would be unwise, we think, to exclude the

independent label sets because though a relationship was found, the strength was relatively

low (0.34)—or at least was not overwhelming—indicating that there was still some amount

of independence between the form and function of questions. Furthermore, we felt that it

was important for an Intelligent Tutoring System to be able to distinguish between the two

because identifying a question by it’s form does not always indicate the expected type of

response. For example, yes-no and alternative questions were found to be equally indicative
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of questions that either sought confirmation or clarification from the tutor. These entail

different response strategies on the part of the tutor to ensure felicitous dialog flow and,

presumably, facilitation of student learning.
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Chapter 14

Extraction of Question Cues

Motivated by previous research on dialog act classification, and by the theoretical claims

put forth in relation to questions cues, we extracted several features from each student turn

in the HH-ITSPOKE corpus. Descriptions of these features follow.

The vast majority of the features we examined as potential indicators of questions were

automatically-extracted acoustic-prosodic features, including features associated with pitch,

loudness, and rhythm.1 Each prosodic feature was z-score normalized by the speaker’s mean

and standard deviation for all feature values. All acoustic-prosodic features are listed in

Table 14.1 on page 123.

We used fundamental frequency (f0) measurements to approximate overall pitch behav-

ior. Features encapsulating pitch statistics—minimum (f0-min), maximum (f0-max), mean

(f0-mean), and standard deviation (f0-stdv)—were calculated on all f0 information, ex-

cluding the top and bottom 2%, to eliminate outliers. Global pitch shape was approximated

by calculating the slope of the all-points regression line over the entire turn (f0-rslope).

In addition, we isolated turn-final intonation shape by smoothing and interpolating the f0

using built-in Praat algorithms and then isolating the last 200 milliseconds of the student

turn, over which we calculated the following f0 features: minimum (f0-end-min), max-

imum (f0-end-max), mean (f0-end-mean), standard deviation (f0-end-stdv), difference

between the first and last f0 points (f0-end-range), slope of all-points regression line

1Acoustic processing was done in Praat, a program for speech analysis and synthesis (Boersma, 2001).
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Feature Description

P
it

ch

f0-min minimum f0

f0-max maximum f0

f0-mean mean f0

f0-stdv standard deviation of f0

f0-rslope slope of regression line through all f0 points

f0-end-min minimum f0 in last 200 ms

f0-end-max maximum f0 in last 200 ms

f0-end-mean mean f0 in last 200 ms

f0-end-stdv standard deviation of f0 in last 200 ms

f0-end-range difference of first and last f0 points of last 200 ms

f0-end-rslope slope of regression line through all f0 points in last 200 ms

f0-end-rising percent rising f0

L
o
u
d
n
e
ss

db-min minimum intensity

db-max maximum intensity

db-mean mean intensity

db-stdv standard deviation of intensity

db-end-mean mean intensity of last 200 ms

db-end-diff difference of mean intensity of of last 200 ms and entire turn

R
h
y
th

m

pause-count number of pauses

pause-dur-mean mean length of all pauses

pause-dur-cum cumulative pause duration

phn-rate phonation rate (speech duration - pause duration)/total time)

spk-rate speaking rate of non-pause regions (voiced frames/all frames)

Table 14.1: Acoustic-prosodic features extracted from each turn in the HH-ITSPOKE cor-

pus.
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(f0-end-rslope), and the percent of rising slope between all consecutive time-point pairs

(f0-end-rising).

To examine the role of loudness we extracted the minimum (db-min), maximum

(db-max), mean (db-mean), and standard deviation (db-stdv) of signal intensity, measured

in decibels, over the entire student turn. In addition, we calculated the mean intensity over

the last 200 milliseconds of each student turn (db-end-mean), as well as the difference be-

tween the mean in the final region and the mean over the entire student turn (db-end-diff).

Rhythmic features were designed to capture pausing and speaking rate behavior.2 We

adapted a procedure to automatically identify pauses in student turns.3 The procedure

isolated spans of silence 200 milliseconds or longer in length by using background noise

estimation for each dialog, defined as the 75th quantile of intensity measurements over all

non-student turns in that dialog. In an earlier study we showed that this semi-automatic

process reliably identified inter-turn pauses in the HH-ITSPOKE corpus (Liscombe et al.,

2005a). We found there to be 1.62 pauses per student turn and the mean length of pauses

to be 1.59 seconds. Pausing behavior in each student turn was represented as the number

of pauses (pause-count), the mean length of all pauses (pause-dur-mean), the cumulative

pause duration (pause-dur-cum), and the percentage of time that pausing occupies relative

to the entire student turn (phn-rate), often referred to as phonation rate. Speaking rate

(spk-rate) was calculated by counting the number of voiced frames in the turn, normalized

by the total number of frames in non-pause regions of the turn.

We also encoded both syntactic and lexical information as features, which are listed in

Table 14.2 on page 126. Our representation of lexical information consisted of manually-

transcribed word unigrams (lex-uni) and bigrams (lex-bi) uttered in each student turn.

In addition to words with semantic content, we also included filled pauses, such as “um”

and “uh.” To capture syntactic information we applied a part-of-speech (POS) tagger

(Ratnaparkhi, 1996) trained on the SWITCHBOARD corpus to the lexical transcriptions

of student turns. Syntactic features consisted of automatically predicted POS unigrams

2Note that the term rhythm here is defined differently than it is in Part IV, following the conventions

of each discipline.

3The original pause detection program can be found at http://www.helsinki.fi/˜lennes/praat-scripts
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(pos-uni) and bigrams (pos-bi).

The remaining features were designed to capture knowledge about the student not

present in either the aural or linguistic channels and are referred to as the student and

task dependent feature set, also summarized in Table 14.2. Included in this feature set

were: the score the student received on a physics test taken before the tutoring session

(pre-test), the gender of the student, the hand-labeled correctness of the student turn

(correct), and the tutor dialog act (ptda) immediately preceding the student turn (also

hand-labeled). Tutor dialog acts were labeled according to pragmatic function by Forbes-

Riley et al. (2005) and could be a tutor turn that sought to elicit a certain type of student an-

swer (short-answer-question, long-answer-question, deep-answer-question), pro-

vided feedback to the student (positive-feedback, negative-feedback), reformulated

a previously-introduced idea (recap, restatement, expansion), or gave the student a

hint. The remaining tutor dialog acts included when the tutor gave the student the answer

(bottom-out) or a directive.
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Feature Description

L
e
x
is lex-uni lexical unigrams

lex-bi lexical bigrams

S
y
n
ta

x

pos-uni part-of-speech unigrams

pos-bi part-of-speech bigrams

S
tu

d
e
n
t

a
n
d

T
a
sk

pre-test student pre-test score

gender student gender

correct turn correctness label:

{ fully partially none not-applicable }

ptda previous tutor dialog act:

{ short-answer-question long-answer-question

deep-answer-question positive-feedback

negative-feedback restatement

recap request

bottom-out hint

expansion directive }

Table 14.2: Non-acoustic-prosodic features assigned to each student turn in the HH-

ITSPOKE corpus
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Chapter 15

Learning Gain

We mentioned previously that research has indicated that students learn more when tutored

one-on-one than they do through classroom instruction, and that one of the differences

between the two environments is that students ask questions at a dramatically higher rate

in the former environment than in the latter. It has been suggested that certain types

of questions might correlate with student learning (e.g., Graesser & Person, 1994). To

examine this suggestion further, we correlated student learning gain with several of features

mentioned in the previous section. Before and after each tutoring session, the 14 students

in the HH-ITSPOKE corpus were tested on their knowledge of physics. Learning gain was

measured, simply, as the difference between the two 100-point test scores. Learning gain in

our corpus ranged from 15.0% to 47.5%, with a mean of 31.0% and a standard deviation of

8.0%.

We calculated the Pearson Product Moment correlation coefficient (r) between stu-

dent learning gain and several features calculated over all question-bearing turns, including

counts of overall questions asked, each question form and function, and each previous tu-

tor dialog act. We did the same for the z-score normalized continuous acoustic features of

QBTs as well (those listed in Table 14.1 on page 123). In total, 46 independent correlations

were calculated. The overwhelming majority proved non-significant (p > 0.10), though five

were found to be somewhat significant (p ≤ 0.07) and relatively strong (average absolute

correlation strength was 0.51). Table 15.1 lists the most significant correlations found.

The fewer yes-no tag questions (tagQ) a student asked (e.g., “um the plane right”),
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Label or Feature r p

tagQ -0.52 0.06

directive -0.50 0.07

db-end-mean 0.53 0.05

f0-mean 0.50 0.07

f0-min 0.51 0.06

Table 15.1: Labels and QBT features correlated with student learning gain.

the more they seemed to learn. Since we found that most (88.2%) tag questions were

confirmation-seeking in function (see page 119), perhaps this might explain the observed

correlation; as learning increases then, possibly, the need to confirm answers decreases.

Those students who were less likely to respond with a QBT following explicit directives

from the tutor (e.g., “use newton’s second law of motion”) also tended to learn more. Again,

questions following such directives may be indicative of confusion or non-understanding,

even when key concepts are made explicit by the tutor. Presumably, the those students

with such fundamental non-understanding would show lower learning gains.

The few acoustic measures observed to be the most significantly correlated with stu-

dent learning gains were the loudness of the last 200 milliseconds of the student turn

(db-end-mean), mean pitch (f0-mean), and minimum pitch (f0-min). Students who learned

most were those that exhibited higher values for each of these features, normalized by stu-

dent. It remains unclear why students who were louder at the end of QBTs and exhibited

higher pitch values over the entirety of QBTs should learn more, but it is intriguing nonethe-

less and warrants future investigation.
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Chapter 16

Automatic Classification of QBTs

Understanding the nature of spoken questions is of both theoretic and practical importance.

By identifying the form and function that student questions can take in the HH-ITSPOKE

corpus, for example, we might be able to then use that knowledge to improve the ITSPOKE

system by enabling it to behave more as a human tutor does. In our view, this is essential for

increasing the benefits offered by Intelligent Tutoring Systems and for closing the learning

gap between human tutoring and automated tutoring. In this section we describe machine

learning experiments we conducted and report on both the observed prediction performance

as well as the most salient features.

We conducted three sets of classification experiments: (1) question-bearing turns (QBTs)

vs. non-question-bearing turns (¬QBTs), (2) QBT form, and (3) QBT function. For each

of the three tasks, we conducted a set of nine classification experiments to evaluate the

usefulness of each feature set (as described in Chapter 14), as well as to examine the predic-

tive power of all feature sets combined. An additional experiment was conducted using all

prosodic features calculated over only the last 200 milliseconds of each student turn. Each

classification experiment used the Weka machine learning environment (Witten et al.,

1999). While we experimented with several machine learning algorithms, including deci-

sion trees, rule induction, and support vector machines, we present results here using the

decision tree learner C4.5 boosted with the meta-learning algorithm AdaBoost (Freund
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& Schapire, 1999), which provided the best results.1 Performance for each experiment was

averaged after running 5-fold cross-validation.

We present results in two formats. For comparing the performance of feature sets

we report performance as overall classification accuracy of the labels.2 There are well-

known arguments against using accuracy as a performance metric. One of the drawbacks

is that it does not generally describe the classification performance of each individual label.

Secondly, it’s usefulness depends greatly on the distribution of the data. If the data is highly

biased towards one label, then high prediction accuracy can be obtained simply by always

choosing the most frequent label as the prediction, without using learning of any kind. As

an example, the most frequent question form in our corpus was dQ and it represented 54%

of all labels. Without learning any rules and by classifying all QBTs as dQ we would observe

a classification accuracy of 54%, though this would actually indicate the uselessness of our

machine learning approach.

To combat the drawbacks of accuracy, F-measure is often considered to be a more

useful performance metric because it reports performance as a balance between precision

and recall.3 However, F-measure must be reported for each label and calculated against all

other labels. Thus, it can be quite difficult to paint an overall picture of performance when

several experiments are compared. Acknowledging the advantage and drawbacks of each

approach, we decided to use both metrics, but for different purposes. When comparing

the performance of different feature sets on the same task we list classification accuracy

so that we might easily compare the overall performance of each set by examining the

accuracy of each set. However, we report the performance of the best-performing feature

set combination in terms of F-measure so that we provide a realistic expectation of the

performance for each class label if our models were to be used to predict unseen data.

Another technique we employed was a method described by Hall (1998) in which an

optimal feature subset is selected by finding the minimal feature set that predicts the labels

1The procedure is implemented as the J4.8 function in the Weka machine learning software package.

2Accuracy is defined as the count of correctly predicted tokens divided by the count of all tokens.

3We used the standard method of F-measure calculation: (2 · precision · recall)/(precision + recall).
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most accurately while also reducing the redundancy among features.4 In other words, the

features in the derived optimal subset for a given task are the features that correlate most

strongly with the labels and most weakly among each other. This technique was employed

to derive the most useful features for classification.

16.1 QBT vs. ¬QBT

In our corpus of tutorial dialogs most student turns did not contain questions. Exclud-

ing student turns that functioned only to maintain discourse flow, such as back-channels

(e.g., “uh huh”), non-question-bearing turns (¬QBTs) outnumbered question-bearing-turns

(QBTs) nearly 2.5 to 1. In order to learn meaningful cues to question-bearing turns and to

avoid a machine learning solution that favored ¬QBTs a priori, we randomly down-sampled

¬QBTs from each student to match the number of QBTs for that student. Thus, we ex-

plored how well our features could automatically discriminate between 918 QBTs and 918

¬QBTs; a majority class baseline of 50%.

Table 16.1 reports the performance accuracy of each feature set in isolation. Here we

observed that the least predictive feature sets were rhythmic (52.6%), and student and task

dependent (56.1%). The most predictive feature set comprised all prosodic information

(74.5%), though it appeared that the most significant contributor to this set was pitch

information (72.6%). The performance accuracies of the remaining feature sets, including

the lexical and syntactic ones, fell somewhere in between. QBT precision, recall, and F-

measure using the feature set with highest accuracy (all features) were all 0.80, indicating

that our ability to discriminate between turns containing student questions and those that

did not was robust.

Using the feature subset evaluation metric mentioned above, 15 features were con-

sidered to be the most informative and least redundant. In decreasing order of impor-

tance these were: f0-end-rslope, f0-end-range, f0-end-rising, f0-rslope, f0-max,

db-end-mean, pos-bi (prp+vb), ptda, lex-uni (yes), db-max, lex-bi (“# I”), pos-bi

4The procedure is implemented as the CfsSubsetEval function in the Weka machine learning software

package.



CHAPTER 16. AUTOMATIC CLASSIFICATION OF QBTS 132

Feature Set Accuracy

none (majority class baseline) 50.0%

prosody: rhythmic 52.6%

student and task dependent 56.1%

prosody: loudness 61.8%

syntax 65.3%

lexis 67.2%

prosody: last 200 ms 70.3%

prosody: pitch 72.6%

prosody: all 74.5%

all feature sets combined 79.7%

Table 16.1: Performance accuracy of each feature set in classifying QBTs vs. ¬QBTs.

(uh+prp), db-end-diff, lex-uni (“acceleration”), and pos-bi (in+inns). Quite dra-

matically, the features encoding phrase-final pitch shape were the most important. Other

important features were those that encoded pitch information of the entire turn as well the

loudness of the end of the turn. Table 16.2 on page 134 lists the acoustic-prosodic features

in this subset and reports the mean value of each calculated separately over all QBTs and

¬QBTs. The values listed are for descriptive purposes and so are shown in raw, rather than

z-score normalized, format. Though it is well known that different speakers have different

pitch ranges and that pitch information should therefore be speaker-normalized in order to

compare across speakers, we computed mean feature values aggregated across all speakers,

for whom we had an equal number of QBTs and ¬QBTs. Thus, in terms of describing

average behavior, using raw values in this context is appropriate and more illuminating

than using normalized values. We observed unequivocally that QBTs, on average, exhib-

ited phrase-final rising intonation, whereas ¬QBTs exhibited phrase-final falling intonation.

For example, f0-end-rising indicated that 70% of all consecutive time points in the last

200 milliseconds of QBTs were rising, whereas less than half were rising in ¬QBTs. Both

f0-end-rslope and f0-end-range showed this as well, as the average slope was positive

in QBTs and negative in ¬QBTs. This finding can be generalized to the pitch slope over
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the entire turn (f0-rslope) as well. Furthermore, the average maximum pitch (f0-max)

of QBTs was over 100 Hz higher than for ¬QBTs. The remaining three features measured

loudness and, though less dramatic in their differences, suggested that QBTs tended to be

louder than ¬QBTs.

Let us now turn to the most informative lexical and syntactic features. Table 16.3 on

page 134 lists the number of ngram instances observed in question-bearing and non-question

bearing turns. The raw counts have been normalized by their row totals (N) in order to

generalize the distribution trends. We noticed immediately that some of the suggested

lexico-pragmatic cues to questions were supported by our findings. In particular, the word

“yes” was highly biased towards ¬QBTs, as was use of the 1st person pronoun at the start

of an utterance.5 The remaining word—“acceleration”—is clearly domain-dependent and

is something that most likely would not be indicative of questions in general, though we

found it, somewhat inexplicably, to be so in the HH-ITSPOKE corpus.

The most informative syntactic ngrams were also somewhat unexpected. These included

a personal pronoun followed by a verb (prp+vb), an interjection followed by a personal

pronoun (uh+prp), and a preposition or coordinating conjunction followed by a noun

phrase (in+nns). The fact that the first two bigrams encoded information about personal

pronouns was not wholly unexpected considering previous research suggesting that “I” is

associated with statements and “you” with questions. However, these features actually

did not make such discriminations between pronouns, and yet they were still considered

to be highly informative. Perhaps the syntactic contextualization of the other parts of

speech in the bigrams played a role here. It is not immediately obvious why a preposition

followed by a noun phrase would be more indicative of a question-bearing turn, either. It

should be noted that the features that were included in the most informative subset were

done so in combination with the other features in the subset, so we cannot arrive at a

truly exhaustive description of the phenomenon by examining the features in isolation.6

However, it does seem clear that information encoding both syntax and lexis was useful

5The token “#” was used to designate a turn boundary.

6Examination of the induced decision trees could help, but in all cases ours were far too complex to

extrapolate generalizations from.
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Feature QBT ¬QBT

f0-end-rslope 1.22 -0.19

f0-end-range 20.36 -3.49

f0-end-rising 0.70 0.43

f0-rslope 0.26 -0.27

f0-max 213.53 193.47

db-end-mean 51.59 48.16

db-max 64.24 63.22

db-end-diff 7.01 5.94

Table 16.2: Mean non-normalized acoustic-prosodic feature values for QBTs and ¬QBTs.

Ngram QBT ¬QBT N

“yes” 6 94 71

“# I” 17 83 77

“acceleration” 69 31 149

prp+vb 94 6 107

uh+prp 30 70 185

in+nns 81 19 26

Table 16.3: Normalized lexical and syntactic ngram counts for QBTs and ¬QBTs.
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for the automatic classification of QBTs and that the findings were largely consistent with

previous research. As a final note, it was surprising that wh-pronouns were not among the

most useful syntactic ngram features; neither were modal verbs nor hedges, which are often

cited as being indicative of questions. Their absence suggests that the importance placed

on these types of information with respect to identifying questions may be overestimated,

at least in our domain.

Before we turn to the form and function classification experiments, the role of the previ-

ous tutor dialog should be addressed since it was also found to be one of the best indicators

of whether a student turn contained a question or not. Table 16.4 shows the normalized

tutor dialog act label counts per student turn type. Students responded with a QBT two-

thirds more often when the previous tutor turn functioned as a long-answer-question

and two-thirds less often after positive-feedback or a restatement. Students responded

with a QBT only a quarter of the time when the tutor gave them the solution to the answer

Tutor dialog act QBT ¬QBT N

bottom-out 25 75 56

deep-answer-question 56 44 313

expansion 46 54 128

hint 46 54 157

long-answer-question 67 33 82

negative-feedback 46 54 24

positive-feedback 36 64 77

recap 13 87 31

directive 58 42 57

restatement 34 66 107

social-coordination 47 53 163

short-answer-question 55 45 619

Table 16.4: Normalized counts of previous tutor dialog act (ptda) for QBTs and ¬QBTs.
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(bottom-out) and only 15% of the time when the tutor provided a recap of previously

discussed concepts. The rest of tutor dialog acts elicited student QBTs and ¬QBTs equally

as often. These findings are relatively intuitive and support the role of discourse contextu-

alization to aid in dialog act classification, including turns that function as questions.

16.2 QBT form

A 6-way classification design was established to automatically classify the form of questions

present in QBTs. In other words, the task was to predict question form given that we knew

the student turn contained a question. The best performance accuracy was observed when

all features were used together. Precision, recall, and F-measures for each form label are

shown in Table 16.5. All but alternative questions (altQ) exhibited quite high F-measures;

classification of partQ was the most robust (F = 0.93). Average F-measure was 0.71.

Table 16.6 displays the performance accuracy for the nine feature sets described in

Chapter 14. We found that only lexical and syntactic features were useful in predicting

QBT form. Furthermore, syntactic information did not improve prediction accuracy when

used alongside lexical unigrams and bigrams.

The best feature subset was found to include 22 features and, apart from the previous

tutor dialog act, all were either lexical or syntactic ngrams. Table 16.7 on page 138 lists

the most informative ngrams in order of decreasing informativeness along with normalized

counts per question form.7 Though a bit convoluted, it nevertheless manages to show

general tendencies that speak to what we already know about question form. For example,

student turns that ended in “right” indicated that 90% of the time the question was in tag

form (e.g., “um the plane right”). Several other bigrams jump out as well. For example,

wh-pronouns, such as “what,” and wh-adverbs, such as “why,” at the beginning of a turn

(#+wp and #+wrb, respectively) were found to be most often present in wh-questions.

Student turns starting with the word “huh” co-occurred with particle questions in all cases.

We also observed a few biases that support the findings of previous studies. For example,

7Normalized ngram counts with more than 50% co-occurrence with a question form have been highlighted

in Table 16.7 for clarity.
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Form Precision Recall F-measure

altQ 0.29 0.18 0.22

dQ 0.84 0.92 0.88

part 1.00 0.88 0.93

whQ 0.83 0.75 0.79

ynQ 0.73 0.65 0.69

tagQ 0.78 0.66 0.72

Table 16.5: Classification precision, recall, and F-measures of QBT form.

Feature Set Accuracy

prosody: last 200 ms 44.3%

prosody: rhythmic 46.7%

prosody: loudness 46.9%

prosody: all 51.4%

prosody: pitch 51.5%

student and task 53.7%

none (majority class baseline: dQ) 54.9%

syntax 71.0%

lexis 79.8%

all feature sets combined 79.8%

Table 16.6: Performance accuracy of each feature set in predicting QBT form.
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Ngram altQ dQ partQ whQ ynQ tagQ N

“right #” 0 2 0 0 7 91 44

prp+vb 5 3 1 25 64 2 99

prp 4 38 0 10 38 10 442

uh+# 1 30 20 1 7 41 74

wp 2 20 1 50 23 5 106

md+prp 10 0 2 8 79 2 52

“or” 38 28 0 8 23 4 53

#+wp 3 3 0 87 7 0 30

uh 2 50 4 6 22 15 375

vb 4 37 0 11 36 11 313

“# huh” 0 0 100 0 0 0 9

wp+vbd 5 5 0 90 0 0 20

“you” 3 28 0 15 48 6 142

#+md 6 3 0 3 88 0 32

cc 12 52 0 5 21 10 167

nn+uh 0 33 0 8 5 54 39

#+wrb 0 20 0 75 5 0 20

“# the” 1 90 0 3 6 0 68

“# is” 0 10 0 0 90 0 20

“how’s” 3 26 0 44 26 0 34

“isn’t” 0 10 0 5 62 24 21

Table 16.7: Normalized lexical and syntactic ngram counts for QBT form.
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modal verbs and personal pronouns were considered to be important. In fact, a QBT

containing a modal verb followed by a personal pronoun (md+prp) was found to be a yes-no

question 79% of the time, (e.g., “would/md it/prp keep going”). A second person pronoun

anywhere in the utterance was also considered to be informative, but not overwhelmingly so

on its own. Almost half time the question was considered to be ynQ (e.g., “did you receive

it”) and a quarter of the time it occurred in dQ form (e.g., “you have greater constant

acceleration”). A few other lexico-syntactic words were included in the most informative

feature set as well, including “or,” “how’s” and “is/isn’t.”

There were a few rather unsuspected findings concerning the syntactic ngrams associ-

ated with different question forms. In particular, interjections (uh) arose quite often in

association with both dQs and tagQs. When associated with the latter they appeared in the

tag fragment in the form of “really” and “huh.” With respect to dQs, though, they were

quite frequently interjections in the form of filled pauses (e.g, “uh/uh vertical zero” and

“oh/uh the magnitude and direction”). It was also surprising to find that conjunctions

(cc) and the base form of verbs (vb) should be useful, since one would assume those to be

common to all types of utterances equally. Instead, we found that both were much more

frequent in dQs and ynQs than they were in any other question form. Their presence might

indicate that these two question forms are less likely to be fragments (and more likely to

be complex sentences) than are the other forms of questions.

The previous tutor dialog act, though one of the most informative features in combina-

tion with the others we have looked at so far, did not seem to be particularly discriminating

on its own (see Table 16.8). In fact, given most tutor dialog acts, students tended to respond

overwhelmingly with questions in declarative form or—to a much lesser degree—in yes-no

question form. There were a few notable exceptions, though. When the tutor provided

the solution to the student (bottom-out) and the student then responded with a question,

this question was equally likely to be ynQ or dQ. The same can be said for question forms

following a tutor directive. When the tutor recapped an earlier conversation (recap), if

the student replied with a question then it was most likely to be a wh-question. Further-

more, yes-no questions were the most likely question form after tutor social-coordination

turns.
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Tutor dialog act altQ dQ partQ whQ ynQ tagQ N

bottom-out 7 43 0 7 43 0 14

deep-answer-question 3 68 1 8 16 4 176

expansion 0 53 0 15 27 5 59

hint 3 48 1 13 21 14 71

long-answer-question 5 65 4 5 15 5 55

negative-feedback 0 55 0 18 27 0 11

positive-feedback 4 64 0 7 25 0 28

recap 0 25 0 50 25 0 4

directive 0 36 6 18 36 3 33

restatement 3 50 3 6 25 14 36

social-coordination 4 25 6 14 44 6 77

short-answer-question 2 59 1 9 18 10 343

Table 16.8: Normalized counts of previous tutor dialog act (ptda) for QBT form labels.

16.3 QBT function

A 4-way classification task was designed to predict question function independent of question

form. Similar to the aforementioned experiments for question form, we considered only those

student turns we knew to contain questions. We excluded all QBTs that contained questions

whose functions were ambiguous or indeterminate. This left us with data comprising 885

tokens with the following distribution: 521 chkQ (58.9%), 289 clarQ (32.7%), 56 infoQ

(6.3%), and 19 othQ (2.1%).

As in all previous experiments, the best prediction accuracy was obtained when consid-

ering all features in combination. Precision, recall, and F-measures for each QBT function

label are shown in Table 16.9 on page 142. As we can see, performance for chkQs was

quite robust (F = 0.83), though it was less so for the other labels. The label with the

lowest F-measure was othQ (F = 0.15). Mean F-measure was 0.51, 39% below the average
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F-measure we observed for question form. Together, these results indicated that given our

features, classifying question function was more difficult than classifying question form.

Listed in Table 16.10 are the performance accuracies of the different features sets. The

most striking similarity here with respect to the results of QBT form classification was that

lexical items were the most important predictor in both experiments. In fact, even though

prosodic, syntactic, and student and task dependent features showed improvement over

the baseline performance, they did not increase performance when combined with lexical

features.

The number of features in the most informative feature subset was substantially larger

than the number for question form classification, another indication of the increased diffi-

culty in finding reliable cues to question function. In total, 39 features were found to be the

most informative and least redundant. Not only was the subset large, but it was also diverse.

Features from each feature set were represented: 19 lexical ngrams, 8 syntactic ngrams, 10

acoustic features, and 1 task dependent feature. In fact, the four most informative fea-

tures were all from different features sets: previous tutor dialog act (ptda), wh-pronoun

(wp), “what,” and cumulative pause duration (pause-dur-cum). The important syntactic

features recorded whether a wh-pronoun occurred at the beginning or end of a turn (pre-

sumably as an indication of wh-fronting), whether the turn contained a interjection, and

more general syntactic categories such as nouns and adjectives. The most useful lexical

features encoded both lexico-syntactic information (e.g., “# what,” “what #,” “do,” “be,”

“how’s that,” “did”) and lexico-pragmatic information (e.g., “you,” “I,” “repeat,” “right

#”), consistent with previous findings. A few domain-specific words arose as well, including

“force” and “acceleration.” Finally, all types of prosodic information were among the most

informative acoustic-prosodic features; pausing, loudness, pitch range, and pitch slope were

all included.

Given that classification of question form was more robust than question function, we

decided to run an additional machine learning experiment to predict question function as-

suming we knew the question form. Surprisingly, F-measures did not increase substantially

compared with those reported above when form was not considered as a feature. F-measures

for chkQ, clarQ, and othQ increased by 2 percentage points to 0.85, 0.69, and 0.17, respec-
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Function Precision Recall F-measure

chkQ 0.79 0.87 0.83

clarQ 0.68 0.66 0.67

infoQ 0.70 0.25 0.37

othQ 0.29 0.11 0.15

Table 16.9: Classification precision, recall, and F-measures of QBT function.

Feature Set Accuracy

prosody: last 200 ms 54.6%

prosody: loudness 54.9%

prosody: rhythmic 57.0%

prosody: pitch 58.1%

none (majority class baseline: chkQ) 58.9%

prosody: all 60.3%

student and task 61.7%

syntax 70.1%

lexis 75.5%

all feature sets combined 75.5%

Table 16.10: Classification accuracy of each feature set in predicting QBT function.
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tively. Only the classification of infoQ was notable: an increase in F-measure of 22%, from

0.37 to 0.45.

Though we did not observe a dramatic improvement in question function classification

by including question form as a feature, the size of the most informative feature subset

was dramatically reduced. Fourteen (14) features, including question form, were among

the most informative and least redundant. In order of decreasing importance, these were:

question form, previous tutor dialog act (ptda), WP, pause-dur-cum, “how,” “be,” “mass,”

db-end-mean, “did you,” “no #,” “on,” “what’s the,” nn+nn, and “should I.”

The mean feature values per question function for the two acoustic features are shown

in Table 16.11. It was very interesting to find that QBTs containing pauses greater than a

second in length were indicative of chkQ and infoQ functions, whereas a total pause time of

less than a second was associated with clarQ and othQ functions. Furthermore, the total

time spent pausing in chkQs was almost double what it was in infoQs. It was not entirely

clear why this would be, but it should be noted that this feature was not normalized for

turn length so we cannot be sure whether there was something specifically salient about

pauses or whether the real indicator was, in fact, turn length. Regardless, either would be

an interesting cue to question function warranting further exploration. Also of potential

future interest is why it appears that questions seeking confirmation (chkQ) were less loud

near the end of a turn than were questions of other functionality.

Ngram chkQ clarQ infoQ othQ

pause-dur-cum (s) 2.58 0.66 1.35 0.71

db-end-mean (db) 50.08 53.61 53.13 53.95

Table 16.11: Mean non-normalized acoustic-prosodic feature values for QBT function.
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The usefulness of most of the informative ngrams with respect to question function,

listed in Table 16.12, have already been addressed, though they have not be attributed to

specific question functions. QBTs containing clarification-seeking questions (clarQ) were

those that most often contained wh-pronouns (e.g., “I’m sorry what/wp did you say”)

and the bigram “should I” (e.g., “should I answer this”). The bigram “what’s the” most

often occurred with information-seeking questions (e.g., “what’s the definition of displace-

ment”). Confirmation-seeking/check questions (chkQ) were associated with several lexical

ngrams, some domain-dependent (e.g., “mass”), some lexico-syntactic (e.g., “be,” “how”),

and some a bit more interesting. For example, ending a turn with the word “no” can be

considered a way for a student to explicitly ask the tutor to confirm his or her current un-

derstanding (e.g., “um I guess I am right or no”). Another interesting cue to chkQs was the

presence of compound noun phrases (nn+nn), which might be an indication that students

tended to need verification of their understanding of complex ideas.

Ngram chkQ clarQ infoQ othQ N

wp 8 75 16 1 99

“how” 36 18 45 0 33

“be” 89 8 3 0 76

“mass” 92 7 2 0 61

“did you” 7 47 47 0 15

“no #” 71 0 0 29 14

“on” 86 12 2 0 66

“what’s the” 0 20 80 0 5

nn+nn 78 13 7 3 76

“should I” 0 83 0 17 6

Table 16.12: Normalized lexical and syntactic ngram counts per QBT function.
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As was the case in all of our other classification experiments, the previous tutor dialog

act was considered to be a useful feature for classification of question function. Table 16.13

lists the normalized dialog act counts per function label. We can see that a student QBT

immediately preceded by any type of tutor question was most likely to be confirmation-

seeking (which is also what we found for declarative questions). The same can also be said

following tutor restatements and positive-feedback. The remaining tutor dialog act

counts were either spread evenly among the function labels or were too rare to generalize

from.

Tutor dialog act chkQ clarQ infoQ othQ N

bottom-out 38 46 8 8 13

deep-answer-question 73 26 1 1 168

expansion 48 30 16 6 50

hint 44 42 13 2 62

long-answer-question 83 17 0 0 53

negative-feedback 22 22 0 56 9

positive-feedback 79 17 4 0 24

recap 25 50 25 0 4

directive 44 44 11 0 27

restatement 62 24 9 6 34

social-coordination 14 47 33 6 70

short-answer-question 70 28 2 0 333

Table 16.13: Normalized counts of previous tutor dialog act (ptda) for QBT function labels.
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Chapter 17

Discussion

The original motivation for examining student questions in the HH-ITSPOKE corpus was

rather narrow. We wanted to automatically predict student questions, identifying both

their form and function, so that we might use such predictions to improve the naturalness

and relevance of automated tutor discourse in the ITSPOKE Intelligent Tutoring System.

Along the way, we made several interesting discoveries that transgressed simple reporting of

automatic classification performance. We found that these findings could be extrapolated

to the structure of Spoken American English much more generally.

In relation to the types of questions found in naturally occurring speech, we found that

their form and function were not one and the same, though they were not wholly unre-

lated either. It is true that all question forms were observed to serve (virtually) every

function, though it is also true that some syntactic forms significantly favored some prag-

matic functions. Clarification-seeking questions were found to be predominately declarative

in form, though not infrequently were also manifested as yes-no and tag questions. Wh-,

alternate, and particle questions very rarely served that function. These form/function cor-

respondences were different from what we found for those questions that sought clarification

from the tutor. They were approximately equally as likely to be declarative, yes-no, or wh-

questions, but were seldom tag, alternative, or particle questions. Questions of information-

seeking function displayed yet another pattern. Such questions were predominately yes-no

and wh-questions and rarely took any other form. The fact that no consistent grouping of

question forms held for multiple functions is a testament to the relative independence of the
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two dimensions. However, knowledge about the most frequent associations between form

and function, possibly dependent somewhat on the discoursal domain, likely informs felici-

tous discourse among participants and such knowledge can be of potential use to designers

of ITSs.

Another indication of the influence of domain on question type distribution was the

inordinately high frequency of a few question types in our corpus. Over half of all stu-

dent questions were found to be declarative in form and over half were also found to be

clarification-seeking in function. The intersection between the two accounted for 40% of

all students questions. These are rates much higher than have been observed elsewhere

and suggest that there is something about tutorial discourse that encourages this behavior.

Again, knowledge of this phenomenon can help construct better ITSs.

Beun (2000) offers some insight into why declarative form might be used for interrogative

purposes (p. 10):

The use of a declarative form as a syntactic device for questioning is positively

correlated with the certainty of the speaker’s belief about the truth value of the

propositional content of the question.... Hence, speakers often use a declarative

for questioning if they have a weak belief about the content..... [Declarative

questions] are often used when the information is literally provided in the dia-

logue.... So, if speakers do not express this evidence, they give the impression

that relevant parts of the discourse were not well understood.... Note that also in

normal circumstances it is considered inattentive to repeat the same question in

an interrogative form if the question was already answered.... In this respect, the

declarative question seems to fulfill the control function of a acknowledgment.

Many of these points speak directly to the role of the student in tutorial domain. In most

cases the propositional content has been made explicit by the formal statement of a problem

which is to be solved. Furthermore, hints and feedback are offered along the way by the

tutor, such that the student can rarely claim that the necessary knowledge for solving the

problem has not been mentioned in, or is inferable from, the previous discourse. The main

task then becomes to apply a previously mentioned principle to the current problem. It

would impress upon the tutor that the student had not been attentive were he or she to use
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an interrogative form in relation to a previously discussed concept. In other words, both

face-saving and politeness protocol might explain the high frequency of declarative questions

in our corpus. Furthermore, if declarative questions seek an acknowledgment of a weakly

held idea, as put forth by Beun, then this would also support the high rate of confirmation-

seeking/check questions, which can be considered to function as acknowledgment-seeking.

A final note concerning declarative questions relates to phrase-final rising intonation.

Beun has claimed that as certainty increases, so too does the use of declarative questions.

However, this would seem at odds with the commonly held notion that phrase-final rising

intonation is associated with uncertainty (e.g., Stenström, 1984; Šafářová, 2005), since most

questions in our corpus—including those in declarative form—were found to have phrase-

final rising intonation. As it so happens, we labeled the student turns in our corpus for

perceived uncertainty for another study (Liscombe et al., 2005a) and were able to address

this issue without having to conjecture. We found that declarative questions were twice

as likely to convey certainty as would be expected given the distribution.1 The only other

question types perceived to convey certainty at rates higher than expected were tag questions

and clarification-seeking/check questions, both of which have been shown to co-occur at high

rates with declarative questions. We can say with a relatively high degree of confidence

that rising intonation is not indicative of uncertainty, at least for our corpus, though it is

very likely indicative of some other cognitive state or discoursal function (cf. Gunlogson,

2001; Steedman, 2003; Bartels, 1997; Gussenhoven, 1983; Pierrehumbert & Hirschberg,

1990).

Phrase-final rising intonation was found to be highly indicative of whether a question-

bearing turn contained a question or not, much more so than either lexical, syntactic,

or even pragmatic information. This finding seems also to be at odds with some of the

previous research mentioned at the outset of this chapter and suggests that such studies

have tended to dismiss the role of intonation as an indicator of question-status too readily.

Though we found intonation to be critical for identifying the presence of a question, it was

considered virtually useless at discriminating among the different forms and functions that

questions can take. Not because phrase-final rising intonation was not present, but precisely

1Expected frequencies were computed using the χ2 statistic: χ2 = 102.7, df = 10, p ≤ 0.001.
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because it was present on virtually all questions. In such cases, lexical cues, especially words

that encoded syntactic and pragmatic meaning, were the most critical for both tasks. These

findings are not strictly at odds with previous studies, but show how analyzing several facets

of observed question behavior in a corpus of spontaneously occurring speech can offer insight

into the roles of different channels of communication. We should also reiterate that the tutor

dialog act immediately preceding a student question was found to be highly informative in

all tasks, thus underscoring the importance of discourse context, often discussed as a critical

component of question identification.

A final note is order with respect to the comparisons that can be made between the find-

ings of our study and those of previous empirical studies. Several of the studies cited have

not been conducted on Standard American English (e.g., Geluykens, 1987; Beun, 1990) so

findings that differ are not necessarily contradictory; they might simply be language specific.

Also, few studies have conducted classification experiments that separated question form

and function, so comparisons with them are similarly limited. The only direct comparison

we can make is with the experiment conducted by Shriberg et al. (1998) on the automatic

classification of questions vs. statements. Whereas they found that lexical information was

more important than prosodic information in this task, we found the opposite to be true. It

is not entirely clear why this would be, but it is most likely attributable to different discour-

sal domains, which would further highlight the importance of understanding the expected

behavior of participants in different domains.

We were also able to compare our findings with other studies of student questions in the

tutoring domain. The high rate of student questions per hour that we observed is consistent

with previous reported measures. Our findings with respect to learning gain offer more than

confirmation of previous studies. Whereas Graesser & Person (1994) showed that question

type significantly correlated with examination score, the findings are weakened by the fact

that no pre-test was administered, so high examination scores cannot be assured to correlate

with the tutoring process. Nevertheless, our findings supported theirs, in part, in that

one question form—yes-no tag—negatively correlated with learning gain. Furthermore, we

observed that tutor directives followed by a student question-bearing turn also negatively

correlated with learning gain. This finding is provocative in that it suggests that the
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structure of tutoring discourse may play a part in learning and that an ITS might benefit

from continuously updating anticipated learning gain given the current state of the dialog,

and dynamically adapting in ways that might increase learning gain. It was also found,

somewhat surprisingly, that several acoustic-prosodic features positively correlated with

student learning gain. Such information could be monitored as well and used to guide the

discourse of ITSs in similar ways.

For practical reasons, we chose to classify units of speech at the level of student turns

instead of isolating student questions from such turns. We might have expected, therefore,

that our classification performance would suffer because not all content in a question-bearing

turn can be relied on to be part of a question. In such cases we extracted extraneous—

and possibly contradictory—information from the utterance. Even so, there is a significant

advantage to using turn units over question units. It is a difficult task in and of itself to

automatically detect question regions, and errors in so doing could cause question classi-

fication accuracy to suffer. Based on our statistical and manual analyses of the questions

by students, it is safe to say that when questions were asked in our corpus, they were the

primary function of student turns. Most question-bearing turns contained only one ques-

tion and most consisted entirely of the question itself. Furthermore, due to the nature

of questions—that they seek a response—most questions occurred at the end of question-

bearing turns, presumably because students were waiting for a response from the tutor.

From this evidence, we conclude that when questions were asked, they operated as the

primary function of a student turn, so there was actually little conflicting information in

the turn. The relatively high performance accuracy we observed in our classification exper-

iments further supported this conclusion, and gives us confidence that implementation of

automatic detection of question form and function is an achievable goal in the ITS frame-

work.
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Part IV

PROFICIENCY
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Chapter 18

Non-native Speaking Proficiency

There are thousands of human languages spoken in the world today, an indication that the

world in which we live is still a multilingual one. A person’s native language is learned

very early on in life and is used to communicate with others in his or her speech community.

However, one is capable, through practice, to learn other languages later in life. Such a

language is usually referred to as a second language. In the study of language acquisition,

a person’s native language is referred to as L1 and a second language is referred to as L2.

It is an interesting and well-established fact that an L2 speaker is rarely perceived to have

native-like proficiency by L1 speakers of that language. Indeed, the later in life that one

begins to learn a new language, the harder it becomes to sound like a native speaker of that

language. It is an equally intriguing fact that people are inherently capable of instantly

assessing the proficiency of a speaker of their own L1.

Though people of different L1 speech communities have always been in contact with one

another, modern technology has enabled virtually every member of a speech community to

easily be in contact with a member of a different speech community. It should come as no

surprise then, that research using modern technology includes studies that aim to assess

and teach L2 proficiency automatically using computer-based methods.

Many of today’s academic and business institutions require English as the primary means

of communication. These same institutions often judge the proficiency of applicants by re-

quiring standardized testing designed to assess command of the English language. Though

traditionally devised to measure listening, reading, and writing skills, many language pro-
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ficiency exams now offer speaking portions as well. Computer-based automated scoring of

speech has several potential advantages. It promises to reduce the cost of language assess-

ment, has the potential to yield more consistent assessment scoring, and could also be used

as an essential component of computer-assisted English language-learning software, thus

providing more people with access to quality instruction.
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Chapter 19

Communicative Competence

Being a proficient speaker of a language demands more than proper grammar, vocabulary,

and pronunciation. Though these are the three aspects of language proficiency that are

usually taught in language courses, it is not uncommon for a person who has mastered

these skills to nevertheless be perceived as a non-native speaker. This is because language

use comprises more that syntactic and segmental properties. Discoursal, pragmatic, and

sociolinguistic behavior are all critical components as well. In other words, how a language

is used to accomplish different types of goals is an essential part of proficient language use.

A global view of language proficiency that includes all aspects of language use is referred

to as communicative competence and was first put forth by Hymes (1971) and was later

refined by Canale & Swain (1980) and Bachman (1990). This is the paradigm under which

we are operating when we refer to spoken language proficiency in this chapter. The three

dimensions of communicative competence are enumerated in Table 19.1. The first dimen-

sion, language use, includes aspects of language proficiency that have traditionally been

emphasized when teaching an L2 and it includes grammar and vocabulary proficiency. The

second dimension, topic development, can be thought of as the way in which a language

structures discourse. The third dimension, delivery, includes segmental (pronunciation)

as well as suprasegmental or prosodic behavior (intonation, rhythm, and fluency). We

will be focusing on the delivery dimension of communicative competence in this chapter.

Pronunciation assessment concerns proficiency at the level of the phoneme. The goal

of pronunciation assessment is to evaluate the spectral qualities of intended phonemes in



CHAPTER 19. COMMUNICATIVE COMPETENCE 155

I. Language Use

A. Vocabulary B. Grammar

Diversity Range

Sophistication Complexity

Precision

II. Topic Development III. Delivery

Coherence Pronunciation

Idea progression Fluency

Content relevance Rhythm

Intonation

Table 19.1: Dimensions of communicative competence for speaking proficiency.

order to determine how similar these qualities are to what a native speaker would pro-

duce. Most studies on automatic delivery assessment have focused on this sub-dimension

of communicative competence, as we will show in the next section.

The term fluency can be defined in (at least) two ways. In its colloquial usage, it refers

to global oral proficiency in all areas of speech production. As a technical term, however, it

is often used by the L2 language assessment community to refer to temporal qualities and

smoothness of flow in speech production—including phenomena such as speaking rate, seg-

ment duration, and pausological behavior. Filled pauses and hesitations are often included

in this sub-dimension as well. Automatic assessment of the fluency proficiency of L2 learners

has been studied to some degree in recent years and in this chapter we describe experiments

we conducted in this area so that we might compare our findings with those studies. The re-

maining two sub-dimensions of delivery proficiency—rhythm and intonation—have been

less studied with respect to automatic scoring techniques. These two sub-dimensions are

the focus of the experiments presented in this chapter.

Rhythm—more specifically, rhythmic stress—describes the relative emphasis given to

syllables in an utterance. English is known to be a rhythmically stress-timed language;
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that is, stressed syllables appear at a roughly constant rate. Syllable stress is conveyed in

English through a variety of means: pitch, loudness, duration, and spectral information.

Rhythmic stress is not equivalent to lexical stress. In English, lexical stress refers to the

fact that each word has underlying stress on at least one syllable in a word. Where the

stress lies is unpredictable and must be learned. Clearly, lexical stress is an important part

of communicative competence but is more appropriately grouped with pronunciation. This

is not to say that there is no relation between lexical and rhythmic stress. In spontaneous

speech, many syllables that bear underlying stress become destressed; however, the converse

is not generally true: underlying unstressed syllables rarely become stressed.

Intonation describes how pitch varies in speech. Intonational languages, such as English,

use pitch variation to signal several types of meaning change. In such languages, intonation

can be used syntactically; for example, to distinguish questions, which may exhibit phrase-

final rising intonation, from statements, which tend to have phrase-final falling intonation.

It can also be used to structure discourse flow by signaling to the listener when to expect a

change in topic or turn-taking. Intonation can even be used to distinguish between paralin-

guistic meaning such as emotion (a topic addressed in depth in Part I). Clearly, intonation

is an important aspect of communicative competence and yet it is rarely explicitly taught to

language learners and is, in fact, one of the last skills L2 speakers acquire. This should not

indicate that it is not important for an L2 language learner to neglect this area of language

proficiency, though. As Gass & Selinker (1994, p. 184) state, “Miscommunication resulting

from native speaker perceptions of relatively proficient non-native speakers as opposed to

learners with low level comprehension and productive skills is more often the more serious in

terms of interpersonal relations because the source of the difficulty is attributed to a defect

in a person (or a culture).” In other words, though the literal content of the message may

be correctly communicated, low proficiency in suprasegmental delivery may yield negative

perceptions of the speaker.
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Chapter 20

Previous Research

Most studies on automatic delivery assessment have focused on pronunciation, with much

success (Bernstein et al., 1990; Neumeyer et al., 1996; Franco et al., 1997; Cucchiarini et al.,

1997, inter alia). In fact, there are even a few automatic proficiency assessment products

on the market today, including EduSpeak (Franco et al., 2000) and PhonePass (Bernstein

et al., 1990). With respect to the other sub-dimensions of delivery proficiency, however, not

nearly as much work has been done. Table 20.1 presents a comparison of notable recent

studies on the automatic assessment of L2 fluency, rhythm, and intonation.

All studies but one (Toivanen, 2003) have investigated frequency assessment, and most

studies have looked at the delivery of spoken English (notable exceptions are Neumeyer

et al., 1996; Cucchiarini et al., 2002; Morgan et al., 2004). Additionally, most studies have

used data from one L1 language community, though these communities have ranged from

study to study and have included Japanese, Finnish, Hungarian, and Swedish. Another

important variable to consider is the type of speech data used for analysis. Overwhelmingly,

researchers have chosen to use read speech for the reason that it is highly constrained

and can be automatically segmented into words easily. Two studies (Kormos & Dénes,

2004; Xi et al., 2006) examined only spontaneous speech while two others (Bernstein et al.,

2000; Cucchiarini et al., 2002) have looked at both read and spontaneous speech. Hincks

(2005) used data from oral presentations wherein the speakers knew ahead of time what

they planned to say, though they did not read from scripts.

There is a consensus among the studies that have explored fluency. It has been found
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Study
Delivery

L1 L2 Speech
flu rhy int

Neumeyer et al. (1996)
√

English French read

Franco et al. (2000)
√

Japanese English read

Bernstein et al. (2000)
√

various English read/spontaneous

Teixeira et al. (2001)
√ √ √

Japanese English read

Cucchiarini et al. (2002)
√

various Dutch read/spontaneous

Herry & Hirst (2002)
√ √

French English read

Toivanen (2003)
√

Finnish English read

Kormos & Dénes (2004)
√ √

Hungarian English spontaneous

Morgan et al. (2004)
√

unreported Mandarin read

Hincks (2005)
√

Swedish English planned

Xi et al. (2006)
√

various English spontaneous

Present study
√ √ √

various English spontaneous

Table 20.1: Previous research on the automatic assessment of three sub-dimensions of the

delivery proficiency of L2 speech: fluency (flu), rhythm (rhy), and intonation (int).

that proficient speakers have a faster speaking rate, longer stretches of speech between

pauses (run length), and shorter pause lengths than do non-proficient speakers, regardless of

L1 and L2. The reason proposed for these findings is usually described in terms of cognitive

load. Non-proficient speakers have a higher cognitive load when accessing vocabulary and

grammar rules than do proficient speakers and this increase in load is manifested as speech

that is slower and that has longer and more pauses.

Most studies that have examined the automatic assessment of delivery proficiency have

first extracted features from the speech signal and then have correlated these values with

human assessment scores. Cucchiarini et al. (2002) found significant correlations between

human raters and speaking rate (r = 0.6), run length (r = 0.5), pause length (r = -0.5),

and pause rate (r = -0.3). Neumeyer et al. (1996) reported a correlation coefficient of 0.4
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for speaking rate; Teixeira et al. (2001) observed a correlation coefficient of 0.4 for speaking

rate and 0.5 for pause length; and Hincks (2005) reported a correlation coefficient of 0.4

for speaking rate and 0.5 for run length. Kormos & Dénes (2004) observed the highest

correlation of fluency features and human assessment scores: 0.8 for speaking rate, -0.6 for

pause length, and 0.9 for run length. It is difficult to compare absolute correlation values

across studies because the factors between one study and the next can vary greatly by

sample size, feature extraction method, L1 and L2, and the nature of human assessment

scores. Nevertheless, it is clear that relatively simple fluency measurements can be extracted

from the speech of non-native speakers that significantly correlate with human assessment

scores.

The number of studies exploring reliable rhythm and intonation features that correlate

well with human assessment scores have been few, and no consensus with respect to these

sub-dimensions has yet emerged. Of the two, rhythm has been shown to be the most

important. Kormos & Dénes (2004) found a correlation coefficient of 0.9 between the number

of stressed words per minute and human assessment scores for Hungarian L1 speakers of

English L2. Teixeira et al. (2001) approximated syllable stress by identifying the vowel of

longest duration, the vowel with underlying lexical stress, and the vowel with the highest

pitch. Using these stressed vowels as reference points, the author computed rhythm features

by recording the stressed vowel length, the time between a stressed vowel and the previous

and following intra-word vowels, and the time between the consecutive stressed vowels. No

results were reported for the rhythm features alone, but they were shown not to increase

correlation when combined with fluency features.

Teixeira et al. (2001) also examined intonation proficiency by extracting fundamental

frequency (f0) measurements from their speech data as an approximation of global pitch

behavior. Several measurements were calculated, including maximum f0, f0 slope, and

f0 variation. The pitch feature set was found to have the weakest correlation with human

raters but was found, when combined with the fluency features, to increase correlation by

7.7% over using fluency features alone.1

1Correlation using pitch features was 0.23, when using fluency features was 0.32, and when using both in

combination was 0.34.
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Herry & Hirst (2002) also approximated intonation by using a direct pitch modeling

approach, but instead of using absolute values they compared f0 statistics of non-native

speakers with productions of two native English speakers. The features included f0 range,

f0 standard deviation, and f0 slope variation. They found that the intonation features

were not as critical, as were the fluency features on all assessment tests except one that

measured the “repetition quality” of read speech, in which case they found f0 range to be

most useful.2

Toivanen (2003) took a different approach to the analysis of intonation proficiency of

non-native speakers by adopting the “British school” of abstract intonation analysis. Tonic

syllables were identified by their pitch and loudness peaks and then labeled as one of the

following perceptual tones: fall, rise-fall, rise, fall-rise, fall-plus-rise, or level. The distri-

bution of these tones were compared between two corpora of read British English: one

produced by L1 speakers of British English and the other by L1 speakers of Finnish. The

author found that the Finnish speakers produced far fewer rising tones, and far more falling

and level tones than did the British speakers. It was also found that Finnish speakers pro-

duced rising intonation with yes/no sentence types and falling intonation with declarative

sentence types far more often than did British speakers, indicating the importance of into-

nation in the pragmatic nature of communicative competence. Toivanen (2005) described

work on further annotation of the data in terms of word-level stress, voice quality, and ToBI

intonation labels, though no results have been reported on this to-date.

The approach we have taken to the automatic assessment of fluency, rhythm, and into-

nation proficiency builds on the fluency work of Xi et al. (2006) and is most similar to the

rhythm approach of Kormos & Dénes (2004) and the intonation analysis of Toivanen (2003).

Our work benefits from the fact that our corpus of non-native speech was unconstrained and

spontaneously generated and that the speakers came from different speech communities. In

this way our findings aimed to generalize across language backgrounds and to emphasize the

communicative competence of non-native speakers in real-life speaking scenarios. The fol-

lowing sections detail our corpus, annotation scheme, human rater correlation, and prosodic

event detection techniques.

2The authors reported no correlation tests for these results.
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Chapter 21

The DTAST Corpus

The Test of English as a Foreign LanguageTM Internet-based Test (TOEFL iBT), developed

and administered by the Educational Testing Service (ETS), measures the ability of non-

native speakers of English to use and understand English as it is spoken, written, and heard

in college and university settings. Today, there are more than 6,000 institutions in 110

countries that use TOEFL scores. The assessment test is designed for non-native English

speakers at the 11th-grade level or above and is most frequently used to assess English

proficiency before beginning academic work at an institution of higher education.

The TOEFL Academic Speaking Test (TAST) evaluates English speaking proficiency at

intermediate to advanced proficiency levels. TAST presents integrated speaking tasks that

simulate academic settings, just like the speaking portion of TOEFL iBT. TAST consists

of six tasks. The first two tasks are independent tasks that require test-takers to talk about

familiar topics. The other four tasks are integrated tasks that ask test-takers to listen to a

short talk or to read a passage, and to then respond verbally to questions regarding these

talks or passages. In total, the test takes about 20 minutes to complete and the data is

recorded over the telephone. The audio data is recorded digitally at an 8 kHz sampling rate

with 8 bit resolution. TAST is not an official test but a subset of the TOEFL iBT’s speaking

portion, which is used to evaluate test-takers’ ability to communicate orally in English and

prepare them for the TOEFL iBT and, more generally, for course work conducted in English.

Xi et al. (2006) described the TAST 2003/180 corpus, a set of responses from 180 test-

takers of TAST collected in 2003. Each response was scored holistically by two trained
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human raters on a scale from 1 (poor proficiency) to 4 (excellent proficiency). Additionally,

responses from a subset of the subjects (80) were rated separately for delivery and language

use proficiency. The scoring of different dimensions of communicative competence was

undertaken to separate different aspects of proficiency. For example, a test-taker might

have great delivery skills but poor language use skills, resulting in a mediocre holistic score

but assessment ratings that differ on these two dimensions.

The corpus we used for the analyses reported in subsequent chapters was a further

subset of the 80 test-takers of TAST 2003/180 corpus that were rated separately on delivery

and language use dimensions. We refer to this corpus as DTAST because we were most

interested in assessing the spoken delivery proficiency of the test-takers. DTAST comprised

87 responses distributed among 61 test-takers. We used only one task response from the

majority of the speakers in our corpus (67.2%), though for some speakers we used two

(9.8%) or three (23.0%) task responses. The self-reported native language (L1) of the test-

takers varied considerably. The native languages of the test-takers were distributed among

12 distinct language families, though the most frequent L1s by far were Chinese dialects,

which constituted 36% of all L1 speakers in DTAST.

Each task response in the corpus was rated by a trained human judge using the rubrics

discussed above. For this analyses, we used only the delivery scores because doing so allowed

us to study fluency, intonation, and rhythm proficiency while normalizing for language use

and topic development dimensions of communicative competence. A subset of the responses

(55) were rated by two raters. On this subset, we measured the rate of inter-rater agreement

over chance using the quadratically-weighted Kappa statistic (κqw, defined in Section 5.5).

Inter-rater κqw was found to be 0.72 and the correlation between human ratings was also

0.72. The mean ratings of both raters were 2.29 and 2.92; the standard deviations of both

rater were 0.96 and 0.90. In all experiments we conducted that relied on human raters, we

used only the ratings from the person who scored all of the DTAST corpus.

Each response in DTAST was hand-segmented into words and syllables. In total, there

were found to be 9,013 words and 14,560 syllables. The shortest response was 19.5 seconds

and the longest was 60 seconds—the maximum time allowed for an answer in TAST. Average

response length was 48.0 seconds with a standard deviation of 10.7 seconds.
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Chapter 22

Annotation

Intonation and rhythm were hand-labeled as sequences of abstract prosodic events aligned

to syllables under the Tones and Break Indices (ToBI) framework (Beckman et al., 2005).

ToBI is a system for transcribing intonation patterns and other aspects of the prosody

of English utterances, though it has been adapted for other languages as well. Refer to

Chapter 7 for a more thorough description of ToBI phrase accents and boundary tones.

22.1 Intonation

Since intonation is phonological in nature it is by definition a language-specific phenomenon.

In other words, there are well-governed rules for the distribution of prosodic events that

native speakers adhere to. Knowledge of these rules are utilized by the human labelers

under the ToBI framework. In this sense, it is particularly difficult to label non-native

speech with an abstract labeling system designed for native productions.

However, it has been shown that inter-labeler agreement is high for intonational phrase

boundary tones and we hoped it would be the same when labeling non-native data.1 Full

intonation phrase boundaries were marked when strong perceptual prosodic juncture was

detected.2 The syllable immediately preceding each prosodic juncture was assigned one of

1Yoon et al. (2004) found inter-rater κ of phrase accent + boundary tones to range from 0.7 to 0.8.

2A “strong perceptual prosodic juncture” corresponds to a break index of value 4 in the ToBI framework.
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the following phrase accent + boundary tone labels: L-L%, L-H%, H-L%, H-H%.3

Labeling of boundary tones was accomplished through quasi-consensus labeling by two

labelers. One labeler annotated each of the files in the corpus. A second, more experienced

annotator then checked each annotation and indicated where there was disagreement. The

two labelers then conferred and reached a mutually agreed-upon label. We observed a κ

value of 0.77 between the annotations before consensus, indicating that disagreements were

acceptably rare. It should be noted that a much stricter test would be to measure κ between

annotations that were truly independently labeled.

22.2 Rhythm

Syllable stress is not incorporated into the standard set of labels under the ToBI framework.

This is due largely to the fact that it can be predicted in English based on the underlying

lexical stress of each word and whether it bears a nuclear pitch accent or not (which is

labeled in the ToBI framework). However this assumes, again, that speakers adhere to the

rhythmic stress rules of English. With non-native speakers we could not assume this, so

explicit labeling of syllable prominence was necessary.

Two levels of syllable prominence were labeled independently of phrase accents and

boundary tones. Primary stress was marked with a 1 and secondary stress (less prominent

than primary stress) was marked with a 2. Unstressed syllables were left unmarked. In ad-

dition to listening to the speech, labelers also had access to visualization of the fundamental

frequency, intensity, and waveform of the speech, as they did when labeling phrase accents

and boundary tones.

One annotator labeled all of the stressed syllables in the corpus. A second annotated

a subset of these (5 test-taker responses totaling 590 syllables). We found κ on the subset

of the data labeled by two annotators to be 0.53 for full rhythmic stress and 0.71 when

primary and secondary stress were conflated to a single category stressed. It has been

noted that labeling of secondary (and tertiary) stress in spontaneous speech can be quite

difficult and unreliable. Some linguists claim it may not even exist in spoken English (e.g.,

3Refer to Section 7.1 for a description of the ToBI annotation scheme.
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Label Distribution

st
re

ss ¬stress 11099 (76.2%)

stress 3451 (23.8%)

to
n
e

¬tone 12976 (89.1%)

L-L% 878 ( 6.0%)

L-H% 377 ( 2.6%)

H-L% 243 ( 1.7%)

H-H% 86 ( 0.6%)

Table 22.1: Distribution of stress (top) and phrase accents + boundary tones (bottom) in

the DTAST corpus.

Ladefoged, 1993). For these reasons, we decided to adopt a binary annotation scheme for

stress; a syllable was considered to be be either stressed (stress) or unstressed (¬stress).

Table 22.1 shows the label distribution in our corpus for stress and tone at the syllable-

level. Most (76.2%) syllables bore no stress and most (89.1%) did not end at a phrase

boundary. The most common phrase accent and boundary tone combination was L-L%

(6.0%) and L-H% was observed nearly half as often (2.6%) as this tone. The remaining

intonation labels—H-L% and H-H%—were observed less often (1.7% and 0.6%, respectively).



CHAPTER 23. 166

Chapter 23

Automatic Scoring Metrics

In this chapter we describe the features that were extracted based on the intonation and

rhythm annotation. In order to determine whether these features were useful for scoring

the English delivery skills of non-native speakers of DTAST, we used the Pearson product-

moment correlation coefficient (r) to measure the linear relationship between the features

and the delivery scores provided by the human raters.

23.1 Fluency

The fluency metrics calculated for the TAST 2003/180 corpus (Xi et al., 2006) were recal-

culated for the DTAST corpus and are described in Table 23.1 on page 167. A silence

was defined to be any non-speech segment greater than 150 milliseconds, a long pause

was identified as a silence greater than 500 milliseconds, and a chunk was any segment of

speech without internal long pauses. Significant correlations between fluency measurements

and human ratings are shown in Table 23.2 on page 167. All features except longpstddv,

silpsec, and dpsec were found to significantly correlate with human ratings. These find-

ings were consistent with other studies of the fluency of non-native speech: proficiency

ratings increase as speaking rate (wpsec, wdpchk, secpchk) increases and both the rate and

duration of silences and long pauses (silpwd, silmean, longmn) decrease. We also found

that proficient speakers tended to be more consistent in their length of silences (silstddv)

than less proficient speakers (though this was not found to hold for long pauses).
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Variable Description

silmean Mean silence duration.

silstddv Standard deviation of silence duration.

silpsec Silences per second.

longpmn Mean long pause duration.

longpstddv Standard deviation of long pause duration.

silpwd Number of silences per word.

wpsec Words per second.

wdpchk Words per chunk.

secpchk Seconds per chunk.

dpsec Disfluencies per second.

Table 23.1: Descriptions of the fluency features computed for DTAST, as proposed in

Xi et al. (2006).

Variable r p

silpwd -0.54 0.000

wpsec 0.51 0.000

wdpchk 0.48 0.000

silmean -0.40 0.008

secpchk 0.33 0.000

longpmn -0.25 0.008

silstddv -0.25 0.009

Table 23.2: Significant correlations between delivery scores and fluency measurements.
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23.2 Intonation

Intonation features were extracted in a way that quantized the distribution of prosodic

boundary tones observed in the DTAST corpus. Table 23.3 on page 169 describes the into-

nation features under consideration. Recording the present or absence of phrase accent +

boundary tone labels (tonedist) was the same as recording the distribution of intonational

phrases, which we hypothesized to be an important delivery skill; however, this metric may

be somewhat redundant with the fluency metrics that take note of pausing information,

considering that most intonational phrase boundaries occur before a pause. However, we

also hypothesized that metrics that accounted for the distributional properties of specific

tones would also be a significant indicator of delivery proficiency.

Table 23.4 on page 169 shows significant correlations (p < 0.05) between human delivery

scores and intonation features. We observed that the strength of the correlations were on

par with the correlations observed for the fluency features; the average absolute correlation

strength with human scores using the fluency features was 0.39, while it was 0.35 when using

the intonation features. We also note that the features that described phrase-final rising

intonation—L-H% and H-H%—made up most (62.5%) of the significant correlations. The

message here appears to be that judicious use of rising intonation correlated with higher

human proficiency scores. More specifically, the greater the distance between L-H% and H-H%

tones (LHdist and HHdist, respectively) the higher the delivery score. Conversely, the lower

the rate of L-H% and H-H% tones per syllable (LHrate and HHrate, respectively) the higher

the score. It was also found that if there were too many H-H% tones relative to other tones

(HH2tone) then this indicated a low delivery proficiency score. One possible explanation

for the observation that frequent phrase-final rising intonation correlated with low delivery

proficiency could be pragmatic in nature. Given that student answers to TAST questions

should be affirmative and assertive, and that phrase-final rising intonation is thought to

convey non-commitment and/or non-assertiveness in English (cf. Chapter 10), using rising

intonation too often in this context might convey poor proficiency. These findings motivate

future exploration of features that measure the relationship of phrase accent and boundary

tone to syntactic or pragmatic sentence type, as has also been suggested by Toivanen (2003).

Another pattern emerged from the observed significant correlations as well: the seg-
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Variable Description

LLdist Average number of syllables between successive L-L% tones.

LHdist Average number of syllables between successive L-H% tones.

HLdist Average number of syllables between successive H-L% tones.

HHdist Average number of syllables between successive H-H% tones.

tonedist Average number of syllables between any successive tones.

LLrate Number of L-L% tones per syllable.

LHrate Number of L-H% tones per syllable.

HLrate Number of H-L% tones per syllable.

HHrate Number of H-H% tones per syllable.

tonerate Number of any and all tones per syllable.

LL2tone Number of L-L% tones / number of all tones.

LH2tone Number of L-H% tones / number of all tones.

HL2tone Number of H-L% tones / number of all tones.

HH2tone Number of H-H% tones / number of all tones.

Table 23.3: Descriptions of the intonation features computed for DTAST.

Variable r p

HHdist 0.53 0.025

LHdist 0.47 0.000

tonerate -0.46 0.000

tonedist 0.38 0.000

HHrate -0.29 0.002

HH2tone -0.24 0.012

LHrate -0.22 0.024

LLrate -0.22 0.024

Table 23.4: Significant correlations between delivery scores and intonation features.
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mentation of a stream of speech into too many intonational phrases (tonerate) that were

too close together (tonedist) indicated lower proficiency scores. Due to the predominance

of L-L% tones to other tone types in the corpus, we can say that the LLrate feature was

indicative of this pattern as well, rather than of something inherent to the L-L% tone type in

particular. In other words, the frequent display of strong prosodic juncture was indicative

of low proficiency in spoken Standard Academic English.

23.3 Rhythm

Rhythm features, described in Table 23.5, were extracted in a way very similar to the

intonation features. The two rhythm features recorded the distance between successive

stressed syllables (stressdist) and the rate of stressed syllables (stressrate) in each task

response. Table 23.6 shows significant correlations between human delivery scores and the

rhythm features. The observed strength of the correlations here was much lower than that

observed for the fluency and intonation features, though we can remark on a pattern similar

to one already discussed. To some extent, proficient speakers were distinguished from non-

proficient speakers by the fact that the former stressed syllables less frequently than the

latter did. This pattern is analogous to the pattern found for phrase accent + boundary

tone distribution, as discussed in Section 23.2.

Variable Description

stressdist Average number of syllables between successive stressed syllables.

stressrate Number of stressed syllables / number of syllables.

Table 23.5: Descriptions of the rhythm features computed for DTAST.

Variable r p

stressrate -0.26 0.007

stressdist 0.23 0.017

Table 23.6: Significant correlations between delivery scores and rhythm features.
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23.4 Redundancy

Above, we established that there were distribution fluency, intonation, and rhythm metrics

that significantly correlated with human-assigned delivery proficiency scores of the spoken

answers of test-takers in the DTAST corpus. In this section we describe the redundancy of

each feature set, as indicated by the significant pairwise inter-correlation of all features, in

order to identify the strongest and least redundant features. We hypothesized that many

features would encode redundant information.

Table 23.7 shows all significant inter-correlations (p < 0.001) within the fluency feature

set. Of the 45 possible pairwise tests, 15 (33.3%) were found to significantly correlate. In

other words, the features in the fluency feature set were redundant to some extent and,

in fact, the average absolute correlation strength was found to be quite high (M = 0.74,

SD = 0.18). Among the strongest correlations were those that measured information about

silences and long pauses (e.g., the correlation coefficient for silstddv and longpstddv was

0.97). This implied here that it was not necessary for fluency assessment to distinguish

between silences of different lengths. Another redundancy seemed to exist between mea-
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longpmn 0.81 0.96

longpstddv 0.71 0.97 0.95

silpwd 0.33 0.70

wpsec -0.54 -0.47

wdpchk -0.80 0.66

secpchk -0.73 -0.78 0.89

dpsec

Table 23.7: Significant (p < 0.001) correlations of fluency features.
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surements based on seconds and those based on linguistic units, such as words (e.g., the

correlation coefficient for seconds per chunk (secpchk) and words per chunk (wdpchk) was

0.89). Interestingly, the rate of disfluencies (dpsec) was not found to correlate with any

of the other fluency features, indicating that it modeled fluency information that was truly

independent of the other fluency features.

It was not surprising that many of the fluency features were found to be somewhat

redundant, and it is not presented here as a way to be controversial. If the cost of calculating

the features is minimal, which is true for the fluency features, then there is no harm in having

redundant features. The analysis is presented as a way to compare subsequent examination

of the redundancy of the intonation and rhythm feature sets, which have been far less

studied.

We calculated correlations for all pairs of intonation features and noticed first and

foremost that there was near perfect correlation between the features that measured spe-

cific phrase accent + boundary tone labels per syllable and the features that measured

the ratio of specific phrase accent + boundary tone combination to all boundary tones:

(LLrate, LL2tone) = 0.83, (LHrate, LH2tone) = 0.89, (HLrate, HL2tone) = 0.94, (HHrate,

HH2tone) = 0.95. This can be explained by the distribution of the phrase accents and

boundary tones observed in DTAST. Since the overwhelming majority of phrase accent +

boundary tone labels were L-L%, both sets of features effectively measured the frequencies

of phrase accent + boundary tone labels in a response. Thus, we have excluded LL2tone,

LH2tone, HL2tone, HH2tone from subsequent discussion.

Of the remaining intonation feature pairs, shown in Table 23.8, we note that there

were the same number of significant correlations as there were with the fluency features

(15/45 = 33.3%), though the mean correlation (M = 0.55, SD = 0.18) was quite a bit lower

than they were for the fluency features (M = 0.74, SD = 0.18). Taken together, we can

state that the intonation feature set had at least some internal degree of redundancy as

did the commonly used fluency feature set, though it was possibly more diverse in terms of

representing the intonation sub-dimension.
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LHdist
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HHdist -0.97

tonedist 0.52 0.43

LLrate -0.72 -0.67

LHrate -0.57 -0.44

HLrate -0.44 -0.33

HHrate 0.33

tonerate -0.46 -0.44 -0.95 0.63 0.51

Table 23.8: Significant (p < 0.001) correlations of intonation features.

In Table 23.8 we also note two very strong correlations: (HHdist, HLdist) = -0.97 and

(tonerate, tonedist) = -0.95. The latter makes sense if we consider both the observed

boundary tone rate and average distance between tones to be relatively stable. The former

correlation is more perplexing, though. It is not entirely clear why the distance between H-H%

and H-L% labels would correlate so strongly, though it was likely due to the sparsity of the

tones in the corpus. We required there to be at least two of the same tone type in a response

in order to calculate these measures and in all likelihood this happened rather infrequently

for these tones, so this potentially skewed our calculations of these measures. This reasoning

is further supported by the fact that we did not see similarly strong correlations for L-L%

or L-H%, of which we had more instances.

The remaining correlations tended to mirror the correlation we saw between tonerate

and tonedist to a much lesser degree, but for the same reason. For example, the corre-

lation between LLrate and LLdist (-0.72) indicated that L-L% labels were distributed at

regular intervals in the data. However, the fact that the correlation strength was weaker

than the correlation strength between tonerate and tonedist implies that recording the



CHAPTER 23. AUTOMATIC SCORING METRICS 174

distributional properties of individual boundary tones was justified because their behavior

was less predictable and, hopefully, more indicative of speaker proficiency.

The rhythm features (stressrate and stressdist) were highly correlated with one

another (r = -0.97) indicating that they were redundant. However, when examining the

extent to which each feature set was redundant with one another, we found that no rhythm

feature significantly correlated with any other feature in the fluency or intonation feature

sets. In other words, the rhythm features can be considered to have modeled delivery

information independently of both fluency and intonation.

There were 140 correlations we might have observed between the fluency measurements

and the intonation measurements (10 fluency features · 14 intonation features). We observed

only 16 significant correlations, though, which are shown in Table 23.9. The fact that the

overwhelming majority of correlations were not significant suggested that there was some

general degree of independence between the fluency measurements and those we developed

to measure intonation. This notwithstanding, speaking rate—as defined as the number of

words per second (wpsec)—correlated with five of the intonation features. Furthermore,

information about general boundary tone distribution (tonedist and tonerate) correlated
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tonedist 0.39 -0.45 0.40

tonerate -0.38 0.37 0.52 0.36 -0.40

Table 23.9: Significant correlations (p < 0.001) between intonation and fluency measure-

ments.
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with five fluency measurements as well.1 Taken together, and noting that speaking rate is

known to be one of the best correlates of fluency, this would seem to imply, as we hypothe-

sized, that some intonation information need not be separately modeled from fluency when

correlating with human raters. A closer look at the correlations of specific phrase accent +

boundary tone labels seems to indicate otherwise, though. We note that wpsec negatively

correlated with tonerate and LHrate, but positively correlated with HLrate. Forgoing

intonation measurements might run the risk of discarding important distributional aspects

of boundary tones. Also, most correlations, though significant, were relatively weak (from

0.3 to 0.4) considering that here we were using correlation to determine whether feature

sets were redundant or not. Clearly, intonation and fluency features are redundant to some

extent, but not so dramatically that we can say that they model the same information.

The strongest correlations, by far, concerned the average number of syllables between

successive high rising boundary tones (HHdist). It is very intriguing to note that the

distance between H-H% boundary tones positively correlated with the rate of filled pauses

(dpsec) and negatively correlated with the rate of silences (silpwd). However, upon closer

examination, we discovered that there were only 12 task responses that had more than

one H-H% label in the DTAST corpus; in other words, in most of our data HHdist was

actually undefined. With such a small sample it would be unwise to conjecture about the

relationships concerning H-H% except to keep it in mind as a future avenue of exploration.

To summarize, many of the metrics we used to evaluate speaking proficiency encoded

redundant information. Foremost among such redundancy was discrimination between the

mean distance between phrase accent + boundary tone labels and the rate of these labels.

Also redundant was recording the relationship between different phrase accent + boundary

tone labels to one another. However, there were few significant correlations found between

the fluency, intonation, and rhythm features sets, strengthening our belief that each feature

set was representative of complementary aspects of delivery proficiency.

1Since tonerate and tonedist were highly inter-correlated (r = -0.95) the number of correlations here

is less dramatic than would appear.
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Chapter 24

Automatic Estimation of Human

Scores

As has been shown by other studies for fluency, we demonstrated in preceding chapters that

measurements of intonation and rhythm correlated with human ratings of the delivery of

non-native spoken English. Furthermore, analysis indicated that the feature sets postulated

as reflecting the intonation and rhythm sub-dimensions of delivery proficiency were inde-

pendent from one another as well as from the commonly-proposed fluency metrics. Though

these findings may shed light onto the sometimes intangible human rating process, the larger

goal of our research was to estimate with high accuracy and reliability the human rating

scores themselves so that the assessment of the communicative competence of non-native

English speakers can be done automatically. This section describes experiments conducted

to assess the degree to which human rating scores could be automatically assigned.

We chose to use the support vector regression method (Smola & Schoelkopf, 1998) as

implemented in the Weka software package because we wanted to classify human ratings

as a continuous variable ranging from 1 to 4. We used a quadratic kernel and ran 5-fold

cross validation. We report average performance on the five sets of held-out data in terms

of both correlation coefficient (r) and quadratically-weighted Kappa (κqw) after rounding

the predictions. Table 24.1 lists the performance of support vector regression using all

combinations of feature sets. Our gold standard was the agreement of human raters

(r = 0.72, κqw = 0.72).
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Task r κqw

human agreement 0.72 0.72

fluency+intonation+rhythm 0.69 0.74

fluency+intonation 0.69 0.67

fluency+rhythm 0.70 0.67

intonation+rhythm 0.65 0.64

fluency 0.60 0.51

intonation 0.50 0.52

rhythm 0.26 0.20

Table 24.1: Performance measured as correlation and κqw of estimated and human delivery

ratings.

We noticed somewhat different performance depending on whether correlation or κqw

was used as the measurement of agreement between the automatically estimated ratings and

those assigned by the human rater, though a global trend did emerge. When each feature

set was considered in isolation, rhythm performed much worse (r = 0.26, κqw = 0.20) that

both fluency and intonation. When considering κqw, fluency and intonation feature sets

were comparable to one another (κqw = 0.51 and κqw = 0.52, respectively). However, when

considering correlation, performance of the fluency feature set was substantially better than

than performance of the intonation feature set (r = 0.60 and r = 0.50, respectively).

Both performance measures showed an increase in human rating estimation as fea-

ture sets were combined, though the exact nature of these improvements differed slightly.

For all pair-wise feature set combinations, the sets containing the fluency features per-

formed the best, and equally as well for both correlation (fluency+intonation = 0.69, flu-

ency+rhythm = 0.70) and κqw (fluency+intonation = 0.67, fluency+rhythm = 0.67). The

performances of the paired fluency+intonation and fluency+rhythm feature sets were sub-

stantially higher than intonation+rhythm (r = 0.65, κqw = 0.64) which, in turn, was higher

than when using each feature set in isolation. Finally, The combination of all feature sets

(fluency+intonation+rhythm) was shown to perform the best when measured by κqw (0.74),



CHAPTER 24. AUTOMATIC ESTIMATION OF HUMAN SCORES 178

though was not shown to be better than other feature sets when measured by correlation.

Despite the observed differences between correlation and κqw performance, the findings

supported the following general assessment. We observed estimation of human delivery

ratings at or above what we had observed for human agreement on the task. The fact that

this was corroborated by two performance measures was reassuring because it signified that

reaching human performance levels on the assessment of the delivery dimension of spoken

English is indeed obtainable. Furthermore, we observed that the addition of either intona-

tion or rhythm features increased performance over the use of fluency features alone. This

supported our earlier hypothesis that using intonation and rhythm metrics is an important

(in fact, essential) part of spoken language assessment. It remains to be seen how critical

the rhythm features are. On their own, they were quite poor predictors of human ratings,

though in combination with the other features they were considered useful. These findings

warrant further investigation into the role of rhythm in spoken language proficiency.

A final caveat is in order. Unlike classification tasks in some other domains, when

machine learning is used in the context of language assessment, care must be taken to ensure

that the automatically-learned models reflect a pedagogical rubric, in this case the construct

of communicative competence shown in Table 19.1. For example, before our models could

be used to assess the delivery proficiency of non-native English speakers using TAST or

TOEFL-iBT, we would need to verify that no single feature dominated the prediction

algorithm, and that features were not used to drive scores in a direction opposite of what

we would expect. Despite this cautionary message, we are optimistic that intonational and

rhythmic assessment are critical for this task, and we feel that our experimental results

have supported this claim. Future research would be to validate the models given these

considerations.
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Chapter 25

Automatic Detection of Prosodic

Events

As the motivating force behind our research was to automate proficiency scoring of non-

native English speakers, we must ultimately automate every part of the process. In the

previous chapter we demonstrated how human ratings might be estimated using a ma-

chine learning approach utilizing fluency, intonation, and rhythm features. However, these

features themselves must be automatically derived from the speech stream. Work on auto-

matically calculating fluency features is quite robust. Most of the information necessary for

these features can be obtained from state-of-the-art continuous speech recognizers (Franco

et al., 2000; Cucchiarini et al., 2002; Xi et al., 2006; Zechner & Bejar, 2006, inter alia).

For the automatic detection of prosodic boundary tones and stressed syllables we can also

utilize speech recognition technology to segment and transcribe the data. However, one

must go beyond the capabilities of this technology to fully model prosodic events.

The general framework we chose to use for automatic detection of prosodic events was

the binary decision tree, a type of machine classifier especially good at predicting categorical

data, such as boundary tones and stress.1 Decision trees allow for non-linear learning and

the ability to easily understand the types of decisions made in the learning process. For

the experiments we describe here, some of our features relied on hand-labeled information;

1We used the Weka J4.8 implementation of C4.5 decision tress.
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specifically, orthographic transcription and, as well as word and syllable alignments. Thus,

our prosodic prediction results should be taken as upper bounds as a fully implemented

automatic proficiency scorer must use predictions for this information as well.

25.1 Feature extraction

From each DTAST response, features were extracted based on several known cues to

prosodic events. These features included acoustic, segmental, lexical, and syntactic in-

formation and are shown in Table 25.1 on page 181. The basic unit of analysis was the

syllable, but many features comprised information about the word containing the sylla-

ble in question. For most features, information from surrounding syllables was taken into

account as well, extending up to five syllables in the future and the past.

The largest group of features encapsulated acoustic information automatically extracted

from the speech signal. As a known correlate of pitch, fundamental frequency (f0) was

extracted using the speech analysis software Praat (Boersma, 2001) and the minimum

(f0-min-σ), mean (f0-mean-σ), maximum (f0-max-σ), standard deviation (f0-stdv-σ),

and range (f0-range-σ) were calculated for each syllable. Additionally, two approximations

of pitch contour shape were calculated using linear regression of the pitch values against

time. The first calculated a straight line through the data and the feature value recorded

was the slope of this line (f0-rslope-σ). The second calculated a second-degree polynomial

through the data and the feature value recorded was the coefficient of the quadratic term

(f0-curve-σ). Finally, the ratio of voiced frames to unvoiced frames was calculated as an

approximation of speaking rate (f0-voiced-σ).2

A second set of acoustic features were computed based on the intensity (measured in

decibels) of the sound waveform; again, as estimated by Praat. This is known to be a

correlate of perceptual loudness of speech. The statistics recorded for intensity were the

mean (db-mean-σ), minimum (db-min-σ), and maximum (db-max-σ) over each syllable.

Segmental information of each syllable and word containing that syllable was also

recorded. For syllables, this was the the phonemic transcription of the vocalic nucleus,

2Whether a frame was voiced or not was determined by the pitch detection algorithm in Praat.
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Feature Description

A
c
o
u
st

ic

f0-min-σ minimum f0 of syllable

f0-max-σ maximum f0 of syllable

f0-mean-σ mean f0 of syllable

f0-stdv-σ standard deviation of f0 of syllable

f0-range-σ range of f0 of syllable

f0-rslope-σ slope of regression line through all f0 points

f0-curve-σ coefficient of quadratic regression curve of f0 against time

f0-voiced-σ percent of voiced frames in syllable

db-min-σ minimum intensity of syllable

db-max-σ maximum intensity of syllable

db-mean-σ mean intensity of syllable

S
e
g
m

e
n
ta

l

trans-σ transcription of syllable nucleus

ms-σ duration of syllable

ms-w duration of word bearing syllable

ms-σ2w ratio of syllable duration to word duration

count-σ2w number of syllables in word

loc-σ2w location of syllable in word:

{initial, medial, final, entire}

pos-w part of speech of word bearing syllable

P
ro

so
d
ic

pstress stress label of previous syllables

ptone phrase accent + boundary tone of previous syllables

span-stress number of syllables between current σ and last with stress

span-tone number of syllables between current σ and last with tone

Table 25.1: Features extracted from each syllable in the DTAST corpus.
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including lexical stress, as obtained from the CMU Pronouncing Dictionary based on the

hand-labeled word transcriptions of each task response (trans-σ).3 Note that orthographic

transcriptions included demarcation of silences and filled pauses. Both the syllable and word

durations, in milliseconds, were noted as well (ms-σ and ms-w, respectively). Other features

in this set recorded the relationship between the syllable and word that bore the syllable:

the number of syllables in the word (count-σ2w), the ratio of the duration of the syllable to

the duration of the word (ms-σ2w), and the position of the syllable in the word (loc-σ2w).

The part of speech of each word, as automatically determined by a part of speech

tagger (Ratnaparkhi, 1996) trained on Switchboard transcripts, was recorded to encapsulate

syntactic information. Assigned to each syllable was the predicted part of speech for the

word containing that syllable (pos-w).

Included as additional features were the corresponding values of all aforementioned

features for of each of the five preceding and following syllables. For example, db-mean-σ1

recorded the intensity of the syllable following the syllable under consideration. In this way,

we hoped to contextualize information of the current syllable by those surrounding it.

A final set of features recorded information about stress and tone labels occurring previ-

ous to the syllable in question. In particular, these features measured the number of syllables

and words since the observations of the last stress and tone boundaries (span-stress and

span-tone). Also, the stress and phrase accent + boundary tone labels (as well as sim-

ply the presence or absence of each) were recorded for each of the previous five syllables

(pstress and ptone). For example, pstress−1 recorded whether the previous syllable bore

stress or not.

Given the features enumerated in Table 25.1 and the features derived from exploiting a

5-syllable contextual window, there were 200 features associated with each syllable. Real-

valued features were further contextualized by z-score normalizing per task response.

3The CMU Pronuncing Dictionary can be accessed here: http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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25.2 Performance

We trained separate classifiers for stress and tone detection. Performance of each classifier

is reported as the average of 5-fold cross-validation and is shown in Table 25.2. Expectedly,

classification of the absence of stress (¬stress) and/or tone (¬tone) was quite reliable,

in part because of the high frequency of these labels. Though not as good, the detection

of stressed syllables (stress) was quite robust (F = .72). Tone detection did not perform

as well. L-L% was the only boundary tone that was predicted reasonably well (F = 0.51).

L-H% prediction had an F-measure of only 0.21 and both H-L% and H-H% were essentially

not modeled with any degree of accuracy.

An examination of the induced decision trees provided some insight into the usefulness

of our features. For stress detection, all features types were represented but varied with

respect to which of the surrounding syllables were most useful. Intensity features of the

current and surrounding syllables were heavily used, as was information about past stress

and tone labels. Somewhat surprisingly, pitch information of surrounding syllables was

never used. The duration of current and surrounding syllables was deemed important, as

were the transcriptions of the current (but not surrounding) words and syllables. Finally,

the part of speech of the current and following words were used often, as were the number

of syllables in the current and five preceding words.

Label Precision Recall F-measure

¬stress 0.91 0.92 0.91

stress 0.73 0.71 0.72

¬tone 0.95 0.99 0.97

L-L% 0.54 0.49 0.51

L-H% 0.33 0.16 0.21

H-L% 0.08 0.01 0.02

H-H% 0.06 0.01 0.02

Table 25.2: Precision, recall, and F-measure for each prosodic label in the corpus.
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The features used for boundary tone detection were much more restricted. Little con-

textual information was used beyond the tone and stress labels of preceding syllables. In a

more limited capacity, other useful features were the intensity and pitch measurements of

the syllable.

Despite the fact that we did not achieve perfect performance when automatically de-

tecting prosodic events, we still considered it important to observe whether the automatic

intonation and rhythm scoring metrics of Chapter 23, based on the prosodic event predic-

tions that were made, correlated with human delivery scores. Table 25.3 lists the significant

correlations of predicted rhythm and intonation features with human delivery ratings. Also

shown (reprinted from Tables 23.4 and 23.6 from Chapter 23) are significant correlations

using hand-labeled intonation and rhythm and intonation features, for comparison.

It is somewhat surprising to have found that the strength of the observed correlations did

Predicted Hand-labeled

Feature r p r p

In
to

n
a
ti

o
n

tonedist 0.34 0.000 0.38 0.000

tonerate -0.31 0.001 -0.46 0.000

HH2tone -0.29 0.002 -0.24 0.012

HHrate -0.29 0.002 -0.29 0.002

LLrate -0.20 0.034 -0.22 0.024

LL2tone 0.27 0.005 — —

LLdist 0.23 0.016 — —

HHdist — — 0.53 0.025

LHdist — — 0.47 0.000

LHrate — — -0.22 0.024

S
tr

e
ss stressrate -0.19 0.050 -0.26 0.007

stressdist 0.20 0.038 0.23 0.017

Table 25.3: Comparison of delivery correlations between predicted and hand-labeled into-

nation/rhythm correlations.



CHAPTER 25. AUTOMATIC DETECTION OF PROSODIC EVENTS 185

not differ as much as might be expected given the imperfect prediction of prosodic events.

The mean absolute correlation strength using predicted prosody was 0.26 (SD = 0.05)

and was 0.33 (SD = 0.11) when considering hand-label prosody. Though, as the standard

deviations indicate, the correlations for predicted prosody were all relatively the same,

whereas when using the hand-labeled prosody, there was more variation. In other words, it

seems that we lost some of the stronger correlations when predicting prosodic events. We

will examine the possible impact of this shortly.

Though there was less variation with respect to the correlations based on predicted

prosodic events, the relative correlation strength was nevertheless maintained. The tonedist

and tonerate features correlated most strongly with the human ratings; stressdist and

stressdist showed the weakest correlations. It should also be noted that the significance

factor (p) for the correlations using predicted prosody were slightly higher, on average,

than they were for the correlations using hand-labeled prosody. This indicates that the

correlations themselves were slightly less significant.

In the hand-labeled scenario, correlations involving boundary tones other than L-L%

were found to correlate with human ratings, whereas this was largely not the case with the

prediction scenario. In fact, HHrate and HH2tone, based on predicted prosody, were the

only metrics that referred to specific tone labels and that were found to have a significant

correlation coefficient. Additionally, L-L% boundary tones were represented more often in

the prediction scenario than they were in the hand-labeled scenario. These two findings

were most likely due to the fact that boundary tones other than L-L% were not reliably

predicted in the prosodic event classification task. This was probably the most egregious

shortcoming of our prosodic event detection, considering our earlier suggestion that non-

L-L% boundary tones might be an essential aspect of proficiency assessment of non-native

English speakers.

In keeping with our previous experiments using hand-labeled prosodic events, we con-

ducted machine learning experiments to automatically predict human delivery ratings given

predicted prosodic events. We ran 5-fold cross-validation using support vector regression for

all combinations of feature sets. The results of these experiments can be seen in Table 25.4.

Also shown are the results of the same experiments using delivery features derived from
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Predicted Hand-labeled

Task r κqw r κqw

human agreement 0.72 0.72 0.72 0.72

fluency+intonation+rhythm 0.69 0.74 0.66 0.66

intonation+rhythm 0.65 0.64 0.48 0.46

fluency 0.60 0.51 0.60 0.51

intonation 0.50 0.52 0.28 0.30

rhythm 0.26 0.20 0.09 0.09

Table 25.4: Performance of predicted and human delivery ratings using predicted and hand-

labeled prosody labels.

hand-labeled prosody, for comparison (reprinted from Table 24.1). Fluency feature values

were the same across scenarios because we used hand-labeled word segmentation for all

experiments.

Human score estimation using intonation and rhythm features (in isolation) in the pre-

dicted scenario suffered greatly compared with the same features in the hand-labeled sce-

nario. Score estimation, as measured by κqw between estimated and actual human ratings,

dropped from 0.20 to 0.09 when using the rhythm features and from 0.52 to 0.30 when

using intonation features. Combining the two feature sets (intonation+fluency) increased

κqw to 0.46, but this was still well below the 0.64 value we saw when using hand-labeled

prosodic events. Reassuringly, we note that score estimation when using all features com-

bined (fluency+intonation+rhythm) was better than when using only the fluency features.

In other words, though predicting prosodic events degraded our ability to predict human

delivery ratings, intonation and rhythm features still contributed to the improvement of hu-

man score estimation to a level almost comparable to the agreement we observed between

the two human raters on the task.
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Chapter 26

Discussion

Intonation, rhythm, fluency, and pronunciation are believed to be independent factors in the

delivery dimension as set forth by the construct of communicative competence. While there

has been substantial empirical research concerning fluency and pronunciation of non-native

English speakers within the assessment community, little research has been conducted with

respect to intonation and rhythm. Our work has provided valuable insight into these dimen-

sions by validating their usefulness and independence in the automatic scoring of delivery

proficiency. In the DTAST corpus, we showed that these phenomena, for the most part,

modeled distinct information from that encoded by well-known fluency correlates, and yet

correlated equally strongly with human scores. Furthermore, though fluency measurements

were somewhat better at automatically estimating human scores, using a combination of all

delivery features together approached the agreement of human raters on the task. What re-

mains, and is planned for future work, is to validate that automatically-learned assessment

models use features in a way consistent with the human scoring rubric.

It was also shown that prediction of prosodic events in non-native speech can be achieved

to some extent using some automatically derived information, such as pitch and energy.

Furthermore, it was reassuring to observe that significant correlations of delivery features

derived from these predicted prosodic events still significantly correlated with human ratings

in a similar (albeit weaker) manner. However, low prediction accuracy of some prosodic

events, especially boundary tones, indicated that there is still more work to be done in this

area. A decreased ability to predict human rating scores also supported this position. One



CHAPTER 26. DISCUSSION 188

solution may be to model boundary tones independently or use graphical models that find

the best sequence of tones given acoustic and segmental information. Also, with respect to

segmentation, our feature set relied heavily on hand-labeled segmentation and transcription.

It remains future work to evaluate our method using speech recognition technology that

automatically predicts this information.

We should strive in particular to predict phrase-final rising intonation more accurately,

as it appeared that distributional features quantifying these tones dominated the correla-

tions with human raters. We conjecture that these correlations are due to the inadvertent

signaling of non-commitment or non-assertiveness by test-takers through the use of rising

intonation at inappropriate times. One of our future goals is to encode such information into

the delivery features by recording the rate of tones given pragmatic and syntactic sentence

types. We also believe that a similar technique might yield more informative rhythmic

features as well by recording the rate of different parts of speech that are stressed (e.g.,

function words should not generally be stressed).

There are two distinctly different directions one could take with this research, each

motivated by a different goal. The first direction would be to continue the line of research

we have set forth in this paper. Though our focus was rating the communicative competence

of non-native speakers of English, we were also very interested in modeling behavior that

could be used for diagnostic purposes in language-learning software. The delivery features

we have described here could be of use to a foreign language learner by informing them

of general tendencies that lead to low proficiency perception. For example, students could

be informed that they are pausing too often or stressing too many words. However, our

approach of modeling prosodic events actually allows us to be even more specific by, ideally,

pinpointing areas of poor proficiency. For example, a student might be told that the use of a

particular boundary tone on a specific utterance is not what a proficient speaker might do.

Of course, before reaching this point one would need to ensure reliable prediction accuracy

of prosodic events, and this remains a major challenge.

The second direction would forgo diagnosis and strive only to increase scoring accuracy.

There may be a more direct way of measuring intonation and rhythm that does not rely

on segmentation or transcription of any kind, thus decreasing potential sources of noise.
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Instead of modeling discrete prosodic events, one might directly model the intensity and

fundamental frequency of speech in a fashion similar to acoustic modeling for pronunciation

evaluation. Though the output of such models might be more predictive of human ratings,

they would most likely be of little use to the language-learner.
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Part V

CONCLUSION
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In this thesis we explored the role of prosody in conveying three different yet related

types of speaker state: emotion, question-status, and non-native language proficiency. We

addressed the automatic classification of each type of speaker state using statistical machine

learning approaches, as our ultimate goal was to enable artificially intelligent applications

to monitor user state and respond appropriately. The most applicable application for the

work we have conducted are those related directly to the aforementioned topics; namely,

Spoken Dialog Systems, Intelligent Tutoring Systems, and Computer Assisted Language

Learning. However, in light of the fact that humans react to computers socially (Reeves &

Nass, 1998), virtually any application might benefit from knowing more about the mental

state of its user.

In the first part of this thesis, we explored affective speaker state by characterizing

the prosodic cues present in emotional speech. Discrete emotions were found to be most

successfully characterized when they were defined using a perceptual, polythetic labeling

typology. As per past studies, global acoustic characteristics were found to be characteristic

of the activation level of emotion. Intonational features describing pitch contour shape

were found to further discriminate emotion by differentiating positive negative emotions. A

procedure was described for clustering groups of listeners according to perceptual emotion

ratings that fostered further understanding of the relationship between prosodic cues and

emotion perception. In particular, it was found that some raters systematically judged

positive emotions to be more positive and negative emotions to be more negative than

did other raters. Furthermore, automatic prediction of the ratings of each rater cluster

performed better than when the raters were not clustered.

The role of prosody in signaling the form and function of questions was explored in

the second part of the thesis. Student questions in a corpus of one-on-one tutorial dialogs

were found to be signaled primarily by phrase-final rising intonation. Moreover, over half

of all student questions were found to be syntactically identical to declarative statements.

It could therefore be inferred that intonation was of use for differentiating the pragmatic

force of sentence type. Lexico-pragmatic and lexico-syntactic features were found to be of

particular importance for further differentiating the form and function of student questions.

In the final part of the thesis we explored the role of prosody in communicating the spo-
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ken language proficiency of non-native English speakers. Intonational features, including

syllable prominence, pitch accent, and boundary tones were found to correlate with human

assessment scores to the same degree that more traditional fluency metrics have been shown

to do. Additionally, it was found that these different aspects of speaking proficiency oper-

ated relatively independent of one another and that the combination of all three correlated

best with human proficiency scores.

The common thread tying these explorations together has been the assumption that

prosody is informative in signaling temporary internal (metacognitive) states of speakers.

We have addressed three such states and have shown that automatic identification is possible

using shared techniques. It is our belief that by modeling internal speaker state, human-

computer interaction can be improved. Furthermore, we believe that this is a promising

future direction of Spoken Dialog Systems. It is our hope that one day we arrive at a unified

model of the acoustic-prosodic cues to a generalized metacognitive state, and that we can

design automated agents that respond appropriately.
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Part VI

APPENDICES
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Appendix A

CU EPSAT Corpus

The CU EPSAT corpus is a subset of 44 utterances selected from the EPSAT corpus (Liber-

man et al., 2002). The neutral utterances plus the three tokens selected as the control for

the web surveys were the following:

new label old label actor I.D. start ms transcript

neutral neutral MM 774.20 two thousand three

neutral neutral GG 238.99 two thousand nine

neutral neutral CC 42.26 two thousand one

neutral neutral CL 69.39 two thousand ten

control boredom MF 2994.15 five hundred one

control elation JG 1336.72 three thousand ten

control hot anger MK 1113.17 fifteen hundred
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The positve emotion utterances were:

new label old label actor I.D. start ms transcript

confident pride MM 3010.07 ten thousand ten

confident pride GG 2130.85 five thousand one

confident pride CC 2586.16 two hundred eight

confident pride CL 1524.62 nine thousand four

encouraging elation MM 2212.71 eight hundred ten

encouraging elation GG 1529.11 march seventeenth

encouraging happy CC 1943.35 september first

encouraging happy CL 910.42 eight hundred three

friendly happy MM 2353.51 three hundred nine

friendly happy GG 1672.49 four hundred nine

friendly happy CC 1940.11 may twentieth

friendly happy CL 899.59 march thirtieth

happy elation MM 2227.76 nineteen hundred

happy happy GG 1691.56 six thousand five

happy happy CC 1995.58 six thousand five

happy happy CL 915.05 five thousand eight

interested interest MM 2468.49 four thousand six

interested interest GG 1775.43 june thirtieth

interested interest CC 2126.93 one thousand ten

interested interest CL 1020.42 one hundred four
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The negative emotion utterances were:

new label old label actor I.D. start ms transcript

angry hot anger MM 1505.31 november third

angry hot anger GG 973.14 ten thousand nine

angry cold anger CC 1442.35 three thousand four

angry hot anger CL 424.91 september fourth

anxious anxiety MM 3273.15 may twenty third

anxious anxiety GG 805.95 august sixteenth

anxious anxiety CC 961.15 six thousand twelve

anxious anxiety CL 339.40 five thousand three

bored boredom MM 2614.58 april fifteenth

bored boredom GG 1890.46 april fifteenth

bored boredom CC 2295.60 two hundred one

bored boredom CL 1085.60 august thirteenth

frustrated contempt MM 3167.00 six hundred three

frustrated contempt GG 2235.51 may eleventh

frustrated contempt CC 2769.96 october third

frustrated cold anger CL 524.77 nine hundred nine

sad sadness MM 2093.41 six thousand ten

sad sadness GG 1421.40 six thousand ten

sad sadness CC 1710.61 five hundred five

sad sadness CL 729.86 eight thousand four
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Appendix B

Mean Feature Values Per Emotion

This appendix lists the quantized z-scored feature values given several labeling schemes. The

first labeling scheme is the orthogonal intended emotion labels of the full EPSAT corpus.

The remaining three use the perceived emotion labels of the CU EPSAT corpus: the first

uses the majority label given all the raters and the second two use the majority label given

the raters in one of two clusters.
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anxiety -0.69 -0.43 0.14 -0.64 0.02 -0.43 -0.23 -0.28 0.09 0.18 0.21 -0.23

boredom -0.42 0.03 0.51 -0.72 -0.21 -0.83 -0.68 0.40 0.03 0.14 0.12 -0.08

cold-anger 0.16 -0.23 -0.22 0.30 -0.27 -0.20 -0.31 -0.13 -0.11 -0.11 0.12 -0.31

contempt -0.29 -0.39 -0.07 -0.17 -0.25 -0.54 -0.48 -0.37 -0.08 0.23 0.00 -0.13

despair -0.12 0.09 0.29 -0.31 0.15 -0.02 -0.06 -0.21 0.13 0.21 -0.07 -0.03

disgust 0.39 0.34 0.10 0.23 -0.04 -0.30 -0.34 0.05 0.08 -0.06 -0.15 -0.18

elation 0.73 0.62 -0.44 0.81 0.27 1.30 1.11 0.15 -0.14 -0.28 -0.02 0.60

happy -0.09 -0.34 -0.53 0.35 -0.08 0.36 0.37 0.15 -0.19 -0.32 -0.16 0.26

hot-anger 0.81 -0.08 -1.32 1.69 0.40 1.36 1.02 0.01 0.07 -0.36 -0.37 -0.02

interest -0.17 0.08 0.30 -0.35 -0.01 -0.10 -0.18 0.45 0.07 0.10 0.23 -0.02

neutral -0.27 0.30 0.64 -0.72 -0.11 -0.79 -0.60 -0.63 0.07 0.11 -0.05 0.45

panic 0.80 0.41 -0.19 0.78 0.29 1.46 1.66 -0.17 -0.34 -0.52 -0.57 0.19

pride -0.05 -0.19 -0.05 -0.04 -0.11 -0.31 -0.27 0.09 -0.01 0.17 0.03 0.04

sadness -0.54 -0.14 0.31 -0.63 0.16 -0.38 -0.45 0.07 0.31 0.31 0.29 -0.06

shame -0.12 0.17 0.65 -0.60 -0.17 -0.62 -0.56 0.12 0.05 0.14 0.28 -0.27
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The following plots show where each emotion lies in z-score space given its mean feature

value. Natural classes of emotions are identified by grouping statistically different emotions

based on the results of t-test at a significance of p < 0.01.
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B.5 CU EPSAT perceived: Plots

The following plots show where the mean values per emotion per cluster lie in z-score space.

The first column uses all raters while the second two columns use only the perceived labels

from the raters in cluster 1 and cluster 2, respectively.
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All Cluser 1 Cluster 2
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All Cluser 1 Cluster 2
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