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ABSTRACT

Robust Statistical Techniques
for the Categorization of Images

Using Associated Text

Carl Sable

The field of text categorization, which aids applications such as browsing,

filtering, and search, has experienced a revival due to the vast amounts of unlabeled

data available on line and as part of digital collections. Almost all of the literature

in the field, however, deals with the categorization of text-only documents. Many

of the same techniques can be applied to text associated with multimedia docu-

ments to label the multimedia component. My dissertation provides an in-depth

exploration of the automatic categorization of images using associated text. This

research takes advantage of a corpus I have created containing news documents

with embedded captioned images and multiple sets of categories. It turns out that

the text and categories associated with images tend to have different properties

than those associated with full-length text documents such as e-mails, articles, and

web pages. Also, images provide us with an additional type of information; namely,

low-level image features. For these reasons, I have achieved success in several ar-

eas of research that have previously been problematic, such as combining systems

and using NLP techniques to improve performance. Some benefits of this work

are demonstrated as part of Columbia’s Newsblaster system, which finds, clusters,

categorizes, and summarizes news on the web. Newsblaster has already captured



the attention of the public and press; articles about Newsblaster have appeared in

sources including The New York Times, USA Today, and Slashdot, and a recent

analysis indicates that Newsblaster receives tens of thousands of hits every day.

The research discussed in this dissertation fits into two general paradigms.

One paradigm involves research in machine learning techniques. Within this frame-

work, I have developed two text categorization systems that use novel approaches.

One of these systems applies a statistical technique known as density estimation to

the output generated by another system. Density estimation provides probabilistic

confidence measures for predictions and often improves accuracy. The other system,

BINS, uses a binning technique to empirically estimate term weights for groups of

words that share statistical features in common (instead of estimating term weights

for individual words). This enables the system to compute accurate term weights

for words with scarce evidence. Other work that fits into this paradigm involves the

combination of a set of rules, each of which is very accurate but rarely applicable,

with systems to which we can fall back when the rules do not apply.

The second paradigm of research, less common in the literature, involves

novel representation of documents. Almost all modern text categorization systems

use bag of words approaches, meaning that documents are represented by vectors

of weighted words. Neither syntax nor semantics are considered, and no other

information is used. For specific categories applying to images, however, I have

found that substantial improvement can be obtained using more advanced NLP

techniques. I confirm this hypothesis by presenting evidence from experiments

with human subjects who have viewed image captions under varying conditions.

I then describe an NLP based system that significantly outperforms all standard

systems that have been tested for a specific task. Additional work that fits into

this paradigm includes the use of low-level image features (e.g. color), alone or in

combination with text, to categorize images.
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Chapter 1

Introduction

1.1 Background

Text categorization, defined formally in Section 2.1, roughly refers to the automatic

labeling of documents, based on natural language text contained in or associated

with each document, into one or more pre-defined categories. Examples of text

categorization tasks include the labeling of news articles into topical sections such

as Politics, Sports, and Entertainment ; the labeling of e-mail as spam or not spam;

and the labeling of images based on captions as Indoor or Outdoor. Many additional

pragmatic examples are discussed in Section 2.2. In recent years, due to the ex-

plosion of available, unlabeled information (e.g. on the Web or in digital libraries),

there has been renewed interest in this area of research. Many advanced techniques

have been developed (e.g. Support Vector Machines, Maximum Entropy) that seem

to outperform older standards (e.g. Rocchio/TF*IDF, K-Nearest Neighbor, Naive

Bayes), at least when applied to common text categorization collections. Still, there

is no clear winner for all tasks, and research in the area is growing.

Almost all published research on text categorization deals with labeling tex-

tual documents, and in fact many authors (incorrectly, I would say) define text
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categorization as exclusively dealing with this task. However, I have pointed out

in my research that the same techniques can be applied to non-textual documents,

e.g. multimedia documents with associated text. In other words, using the text

associated with a multimedia document, such as the caption of an image or perhaps

closed-captions of a video segment, text categorization techniques can be applied to

the text to automatically label the multimedia component. My research has thus

concentrated on the automatic categorization of images based on associated text

using (primarily) text categorization techniques. This task is important for many

of the same reasons that it is important to categorize text-only documents. The in-

creasing availability of free-floating images on the Web, the creation of large corpora

of images, and the commonality of personal collections of digital photographs (some

of which have annotations) all lead to the necessity of better ways to automatically

label images to aid tasks such as browsing, filtering, and searching.

At times, standard text categorization techniques, without modification, ap-

ply well to the text associated with images, and part of this thesis describes two

systems I have implemented, relying on approaches that are novel but still fall into

the standard framework that is dominant in the field. However, the properties of

the text associated with images, as well as the properties of the categories that are

likely to be associated with images, are often quite different than those associated

with full-length text documents such as articles, e-mails, or web pages. In addi-

tion, dealing with images gives access to a type of information that has not been

available for text categorization research in the past; namely, the low-level image

features of the image itself. In this dissertation, I show that these differences have

opened the door for success in areas of research that have previously had mixed

results, at best. More specifically, this thesis describes the positive results that I

have achieved by combining systems and using deeper natural language processing

(NLP) techniques to improve text categorization performance for certain tasks.
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1.2 A Peek Ahead

Most of the experiments discussed in this thesis use a corpus that I created con-

sisting of news documents with embedded captioned images; the creation of this

corpus is discussed in detail in Section 3.1. Figure 1.1 shows a sample image from

the corpus with its caption. Captions typically consist of two or three sentences,

such that the first sentence describes the image and the rest gives background infor-

mation about the related story. The entire document that the sample image comes

from, including the associated article, is shown in Appendix A. This particular im-

age is a member of three data sets. (A fourth data set associated with the corpus

does not apply to this particular image.) One data set that applies to this image

refers to the Indoor or Outdoor setting of the image, and this example is clearly an

Outdoor image. Another data set that applies to the full document associated with

this image refers to the type of event depicted; in this case, we are dealing with a

Disaster. The third data set that applies to this image involves images embedded

in Disaster documents and refers to the focus of the image; the category for this

particular image is Workers Responding.

Just about all standard text categorization systems use a bag of words ap-

proach to represent documents. I explain this in great detail in Section 2.4, but

basically this means that documents are represented as weighted vectors of the

words appearing in the documents. Weights are generally computed by combining

statistical features in some manner. Such systems do not rely on syntax or seman-

tics when making decisions, nor do they use any additional information associated

with a document.

For the task involving the Indoor versus Outdoor categorization of an image,

and for the task involving the prediction of the type of event discussed in a news

document, these approaches tend to work well. This is not all that surprising; if

you look at the words in the caption of the sample image, you can see that several
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APIAU, BRAZIL, 24-MAR-1998: Cordoba, Argentina, firefighters wait
for a helicopter to drop water on a forest fire March 24 near Apiau,
120kms (74 miles) south of Boa Vista, capital of Roraima state. Some
120 Argentine firefighters and four helicopters are helping Brazilian
counterparts battle the fires which began at the start of March and have
been fed by the worst drought since 1926, which has been attributed to
the El Nino weather phenomena. [Photo by Marie Hippenmeyer, AFP]

Figure 1.1: This is a sample image with its caption from the corpus used for most
of the experiments discussed in this thesis.



5

are indicative of the correct categories. (When predicting the Indoor or Outdoor

category of an image, it turns out that the first sentences of the caption is generally

the most useful; when predicting the type of event of a news document, it turns

out the full article is usually the most important.) The best systems, including two

that I have designed and implemented myself, achieve an accuracy of over 85% for

the Indoor versus Outdoor task and as high as 90% for the task involving types of

events. Further improvement can still be achieved for the Indoor versus Outdoor

task by taking additional information into account; namely, low-level image features

such as color, something that is typically not available for text categorization tasks.

The task involving the prediction of the focus of images contained in Disaster

documents defies standard text categorization systems. The same is true for a

similar task involving the focus of images contained in documents about Politics.

It turns out that, for these tasks, most of the words associated with the majority

of images are not important, and some can even be misleading. The focus of an

image, and the primary action taking place, are often indicated specifically by the

main subject and the main verb of the first sentence of the image’s caption. To

make optimal use of this fact, I have implemented a system that relies on linguistic

processing and a measure of word-to-word similarity. This system outperforms all

standard systems tested for the task involving the Disaster image data set by a

considerable margin, and it performs reasonably well for the Politics image data

set. Further improvement can be obtained by combining very accurate rules, each

of which only applies to a small number of cases, with the NLP based system or

with standard systems.

Towards the end of the thesis, I discuss my work on Columbia University’s

Newsblaster system. This system does not involve the text categorization corpus

I have created. Rather, it involves news documents (including embedded images)

that are discovered and downloaded every day from many on-line news sources
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such as CNN, Reuters, and Fox News. Newsblaster is a system that showcases

not only my own work, but also the work of many other members of Columbia’s

NLP research group. The system automatically collects, clusters, categorizes, and

summarizes news from the web, and it provides a user-friendly interface to browse

the results. Newsblaster utilizes my own research in two ways; news stories are

automatically categorized into sections similar to those in newspapers and other

news websites, and images are categorized with labels that help to provide users

efficient browsing. Newsblaster has already caught the attention of the press and

public. Articles about Newsblaster have already appeared in sources including The

New York Times, USA Today, and Slashdot, and a recent analysis indicates that

Newsblaster receives tens of thousands of hits a day.

1.3 Two Paradigms of Research

Most text categorization research fits into at least one of two paradigms. The

first paradigm, which accounts for a vast majority of the recent text categorization

literature, is research in machine learning, a concept that is explained in detail

in Section 2.5. Such research generally deals with the exploration of new machine

learning techniques and methodologies that seem to outperform existing techniques,

at least for specific tasks or domains of interest. Some of the research I discuss in

this thesis falls into this paradigm. For example, I have created two novel systems

relying on techniques that, to the best of my knowledge, have not previously been

applied to text categorization. One system uses a statistical technique known as

density estimation to refine the output of standard systems and to provide prob-

abilistic confidence measures for predictions. The other system uses an approach

known as binning to empirically estimate term weights for groups of words that

share features in common, thus avoiding inaccurate term weights for individual

words with scarce evidence. Other research I discuss in this thesis that fits into the
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first paradigm involves the combination of a set of automatically discovered rules,

each of which is very accurate but rarely applicable, with other systems to improve

performance.

The second paradigm of research deals with representation; in other words,

the exploration of which features of a document are important. This type of research

has been far less common in the recent text categorization literature. (Exceptions

are discussed in Section 2.4.3.) Almost all text categorization systems today use a

bag of word representation for documents, and although there are several choices

to be made even within this way of thinking, the exploration of representation

rarely deviates substantially from the norm. However, the focus of my research on

the categorization of images leads to important differences from the categorization

of lengthy text documents such as articles, e-mails, or web pages. I show in this

thesis that the properties of the text and categories that are often associated with

images sometimes necessitate the need for the consideration of syntactic features;

furthermore, the availability of low-level image features can, at times, provide ad-

ditional clues for an image’s category. My work considering the use of deeper NLP

techniques to improve categorization, as well as my work considering the use of

low-level image features, falls into the paradigm of using novel representation for

documents.

Machine learning approaches to categorization are general. They may not

achieve the best possible performance on any given task, but they can usually be

applied to many similar tasks. Once a machine learning system has been developed,

it can be applied to new tasks by simply giving it training data (i.e. examples of

what it is supposed to learn). Research dealing with novel representation is often

more specific. For example, in Section 2.4.3, I discuss research involving the use of

link structure to improve retrieval from the World Wide Web, and clearly this only

applies to web pages. My own work involving a combination of text and low-level
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image features obviously applies only to images. Although such research may not

be as general as other machine learning research, it is often very interesting and

sometimes leads to considerable performance gains over standard approaches.

1.4 Contributions

This thesis includes contributions that fall into both research paradigms discussed

in Section 1.3, and also contributions that are more general (e.g. plugging my

research into Columbia’s Newsblaster system). Several of the contributions deal

with the use of robust statistical techniques to categorize images. A few concern

the exploration of hybrids that combine different approaches or integrate different

types of information (e.g. NLP and traditional IR; high-precision, low-recall rules

and other systems; text and image features). The major contributions of my thesis

are as follows:

• The exploration of the use of text to categorize images. In order to have

the means of conducting such research, I have created a multimedia corpus

consisting of news documents with embedded captioned images and multiple

data sets representing various levels of abstraction.1

• The introduction of two novel machine learning approaches towards text cat-

egorization involving the use of density estimation and bins. Density estima-

tion provides a way of estimating a probabilistic confidence measure for each

of a system’s predictions, and it often also improves accuracy. The use of

bins provides a mechanism for empirically estimating accurate term weights

for words with scarce evidence, and for determining which statistical features

1This corpus, described in detail in Section 3.1, is ready to be made publicly available for future
researchers. Once this happens, I will post instructions describing how to obtain the corpus at
http://www.cs.columbia.edu/˜sable/research/corpus.html.
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of a word are important.2

• The integration of NLP techniques and traditional IR techniques for catego-

rization. I show that for certain categories referring to the focus of an image,

deeper linguistic processing is necessary for optimal performance.

• The use of high-precision, low-recall rules to improve the results of other sys-

tems. I demonstrate how to improve accuracy for tough text categorization

tasks by combining rules, each of which is rarely applicable but very accurate

when it applies, with systems to which we can fall back when the rules do not

apply.

• Combining text and image features for the categorization of images. Using

low-level image features is necessary when no text is available, and when

both are available a combination of the two can perform better than either

individually.

• The categorization of news and an image browsing interface for Newsblaster.

I discuss my personal contributions to this popular system that automatically

extracts, clusters, categorizes, and summarizes news and related images from

the web. Newsblaster receives tens of thousands of hits every day and has

been discussed in sources including The New York Times, USA Today, and

Slashdot.

The first bullet is the core of this thesis, and the other contributions all

relate to this in some way. The new approaches can be applied to text associated

with images directly, and for certain data sets they achieve excellent results without

the use of more unusual techniques. The third through fifth bullets represent lines

2The BINS system, described in detail in Chapter 5, is ready to be made publicly available
for research purposes. Once this happens, I will post instructions describing how to obtain the
system at http://www.cs.columbia.edu/˜sable/bins.html.
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of research that researchers have been experimenting with for decades with results

that have been mixed, at best; however, both the categories and the text associated

with images differ substantially from those used for text categorization of full-length

textual documents, and for these reasons I have found that the integration and

combination of various approaches can be helpful. The final bullet represents work

that demonstrates the pragmatic benefits of this thesis in a way that has already

grabbed the attention of the public and press.

1.5 Overview of Dissertation

Chapter 2 provides a survey of text categorization techniques and related informa-

tion necessary to understand and appreciate the rest of this dissertation. Included in

this chapter are detailed discussions of bag of words representations for documents,

general machine learning concepts, common approaches towards text categoriza-

tion, common evaluation metrics, etc. I also argue in this chapter that the reason

that there are so many text categorization techniques with no clear winner for all

text categorization tasks is analogous to the “No Free Lunch” theorems.

The next few chapters represent novel work that still fits into the general

framework that is common in the text categorization literature; in other words,

these chapters deal with the application of existing techniques to new domains and

also with the creation of new machine learning techniques. Chapter 3 represents

the core of this dissertation; here, I discuss the categorization of images based on

associated text. I also describe, in this chapter, the creation of a corpus consisting

of news documents with embedded images and captions, for which I have defined

several sets of applicable categories and collected manual labels. Chapters 4 and 5

present my own contributions to the general text categorization literature; here, I

discuss the use of density estimation and bins to improve standard text categoriza-

tion techniques. Density estimation provides a way of estimating a probabilistic
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confidence measure for each of a system’s predictions, and it often also improves

accuracy. The use of bins provides a mechanism for empirically estimating accurate

term weights for words with scarce evidence, and for determining which statisti-

cal features of a word are important. For some image categorization tasks, these

systems work very well without modification.

The next few chapters deal with research that is more unusual in the text

categorization literature. These chapters concern issues of representation of docu-

ments and combinations of systems or approaches; these are lines of research that

generally have not proven helpful for text categorization in the past, but have been

useful for the categorization of images. More specifically, Chapter 6 discusses the

use of deeper linguistic processing and a novel measure of word-to-word similarity to

improve performance for a specific text categorization task. Chapter 7 involves the

combination of very accurate rules that do not apply very often with other systems

to improve performance for difficult tasks. Chapter 8 involves image categorization

using low-level image features, either by themselves or in combination with text.

Chapter 9 discusses my work on Newsblaster, a system that showcases NLP

research including text categorization of both images and articles. Newsblaster,

which has already captured the attention of the public and the press, is a publicly

accessible web-based system that automatically extracts, clusters, categorizes, and

summarizes news and related images from the web. Updated daily, this system

demonstrates some of the the pragmatic benefits of my research by providing users

a useful and interesting way to access current news. Finally, Chapter 10 summarizes

the main contributions of this dissertation and discusses potential future work.
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Chapter 2

Text Categorization Survey

This chapter presents a survey of text categorization, including descriptions of

techniques, evaluation measures, common corpora, etc. This chapter can serve as a

standalone tutorial for anyone interested in learning about this area of research. A

basic understanding of this field is necessary to place the research discussed in the

rest of the thesis in its appropriate context. At the end of the chapter (Section 2.9),

I discuss some of the ways that properties of documents and categories involved

with text categorization tasks can vary; I then argue that it is for a reason analogous

to the “No Free Lunch” theorems that there is no clear winner out of all the existing

techniques for text categorization tasks. For readers of this thesis who are already

familiar with the field of text categorization and are more interested in my own

personal contributions, this chapter may be skipped. I refer to appropriate sections

of this chapter throughout the rest of the thesis, so readers who encounter unfamiliar

material can look back and review specific sections of the chapter when necessary.

Many of the descriptions in this chapter and throughout the rest of the thesis

involve mathematical equations or descriptions. To avoid confusion, I have tried

to be consistent with my notation for various concepts that occur frequently. The

notation that I use for some of these common concepts is summarized in Table 2.1.
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Expression Meaning
D A set of documents
d A single document (typically d ∈ D)
C A set of categories
c A single category (typically c ∈ C)
T A set of terms (which may or may not be words)
t A single term (typically t ∈ T )
W A set of words
w A single word (typically w ∈ W )
N The number of documents in a set (typically N = |D|)

DF (w)
Document frequency of w
(the number of documents in which w occurs at least once)

TF (w)
Term frequency of w in a set of documents
(the number of occurrences of w in a set of documents)

TF (w, d)
Term frequency of w in a single document d
(the number of occurrences of w in d)

IDF (w)
Inverse document frequency of w, a measure of rarity
(IDF (w) = − log2[DF (w)/N ] = log2[N/DF (w)])

λ A weight
I An indicator function (0 or 1 depending on some condition)

Table 2.1: The reader can refer back to this table that lists the mathematical
notation commonly used throughout the thesis.

Of course, from time to time there are various other concepts that come up for which

I introduce new variables, and I describe these whenever this happens. Common

algebraic variables such as i, k, n, and x are used to represent different values in

different places, so the meanings of these change throughout the thesis.

2.1 Definition of Text Categorization

As described at the start of Chapter 1, text categorization refers to the automatic

labeling of documents, based on natural language text contained in or associated

with each document, into one or more pre-defined categories. Some text categoriza-
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tion tasks assume the categories are independent, in which case each document can

be assigned to no categories, one category, or multiple categories. In such cases,

the categories are said to be binary categories, and a separate YES/NO decision is

required for each category/document pair. More formally, let D be the set of all

documents and C be the set of all binary categories; a text categorization system

then has to assign a Boolean value to each (d, c) pair, where d ∈ D and c ∈ C.

Other text categorization tasks assume that the categories are mutually exclusive

and exhaustive, in which case each document is assigned to exactly one category.

Then the inclusion of a document in one category excludes the inclusion of the doc-

ument in all other categories. In this case, the classifier must map each document

d ∈ D to the category c ∈ C that is the best fit.

It should be noted that certain tasks can be viewed as fitting into either

of the two paradigms described in the previous paragraph. Text categorization

tasks with exactly two mutually exclusive categories can be viewed as a binary

categorization task involving either one of the categories, such that any document

that doesn’t belong to this category is automatically placed in the other category.

For example, later in this thesis, I discuss the categorization of images as either

Indoor or Outdoor ; I could, instead, view the decision being made as a binary

decision as to whether or not the image is Indoor. In this particular case, however,

Indoor and Outdoor have equally relevant semantic meaning, and viewing them

as two mutually exclusive categories as opposed to one binary category is - at

least in my mind - more intuitive. On the other hand, if the task is to categorize

websites as pornography or not pornography, the not pornography category is vague,

consisting of all other types of websites, and it seems more natural to view this as

a binary decision as to whether or not the website is pornographic. Then there are

cases that fall somewhere in between; for example, categorizing movie reviews as

positive or negative can easily be thought of fitting into either paradigm. In any
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case, either type of text categorization system (i.e. those designed to work with

mutually exclusive categories or those designed to work with binary categories) can

be applied to these tasks.

Another special case of text categorization tasks occurs when mutually ex-

clusive categories form a hierarchy, also known as a taxonomy.1 One commonly

known taxonomy is the Yahoo directory of web pages set up for easy browsing.2

Some systems take such hierarchical structures into account by using a ladder ap-

proach. Instead of considering the bottom nodes of the hierarchical tree directly, a

decision is first made at the top node of the tree as to which of its immediate chil-

dren is appropriate, then at the second level, etc., until a terminal node is reached.

The idea behind this is that each decision being made is simpler than an immedi-

ate decision involving all possible categories, especially when the taxonomy is large.

Some researchers have found noteworthy improvement using this approach (Koller

and Sahami, 1997; Chakrabarti et al., 1998; Ruiz and Srinivasan, 1999; Dumais

and Chen, 2000; Weigend, Wiener, and Pedersen, 1999). Other research involving

text categorization with hierarchical categories includes that of (McCallum et al.,

1998) in which the accuracy for small categories with sparse evidence is improved

using a smoothing technique that considers these categories’ parents. The corpus I

have personally created, described in Section 3.1, contains hierarchical categories,

and although I have not exploited the hierarchical nature of the categories myself, I

hope that the corpus becomes a popular resource for text categorization researchers,

and this is clearly an issue that merits further exploration.

This thesis and the survey of the field presented in this chapter concentrate

on tasks involving mutually exclusive categories and techniques that do not consider

hierarchical structures. At times, I discuss binary categorization tasks and related

1Technically, a hierarchy could be any directed, acyclic graph, but it is common to only consider
trees (Chakrabarti et al., 1998).

2see http://www.yahoo.com.
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issues, but my focus is on tasks involving mutually exclusive categories, which I

feel are underrepresented in the text categorization literature. The major reason

for this underrepresentation is probably that the Reuters corpus, the most common

publicly available text categorization corpus (described in Section 2.8) consists of

binary categories. I have found in my own research, however, that many (perhaps

the majority) of text categorization tasks that arrive naturally involve mutually

exclusive categories. See, for example, the list of potential applications for text

categorization provided in Section 2.2, and you will note that many of them fit

this paradigm. For a survey of text categorization that focuses on binary text

categorization tasks, I recommend a recent work by Sebastiani (Sebastiani, 2002).

2.2 Applications of Text Categorization

There are a wide variety of useful applications for text categorization. Work dating

back to the early 60’s uses text categorization techniques for the purpose of author-

ship attribution; for example, Mosteller and Wallace (1963; 1964) have addressed

a long standing dispute as to which of two authors, Alexander Hamilton or James

Madison, was responsible for a part of a collection of anonymously published arti-

cles jointly known as The Federalist papers. Some of the more current applications

of text categorization include: the classification of e-mail as spam or not spam for

filtering purposes (Sahami et al., 1998; Drucker, Wu, and Vapnik, 1999); the classi-

fication of news articles into topical sections (e.g. Politics, Sports, Entertainment,

etc.) for browsing (Li and Jain, 1998; Sable and Church, 2001; McKeown et al.,

2002); classification of websites as pornography or not pornography for filtering pur-

poses (Lewis and Schutze, 2002); hierarchical classification of websites into a large

variety of topics for browsing (McCallum et al., 1998; Chakrabarti et al., 1998;

Dumais and Chen, 2000); extraction of certain types of metadata from text docu-

ments or websites to improve search capabilities (Chakrabarti, Domb, and Indyk,
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1998); the classification of reviews (e.g. reviews of movies or travel destinations) as

positive or negative to summarize statistics (Pang, Lee, and Vaithyanathan, 2002;

Turney, 2002)3; the automatic grading of essays, with the categories being the

possible grades, to minimize human workload (Larkey, 1998); etc.

Many other common classification tasks could potentially be viewed as text

categorization tasks. For example, word sense disambiguation refers to the auto-

matic classification of words in a document with their correct, current sense. This

can be viewed as a text categorization task where the categories would be the pos-

sible senses, which would be different for each possible word, and the text used for

the categorization would be the word’s context (i.e. the text surrounding the word)

(Gale, Church, and Yarowsky, 1993). Information retrieval (van Rijsbergen, 1979)

refers to the automatic discovery of documents in a corpus that match a user’s

query. This can be thought of as a text categorization task where the categories

are relevant and not relevant (but the meanings of these categories would change

with each new query). Topic detection and tracking (TDT) (Wayne, 2000) refers

to the detection of new stories that are similar to a set of example stories. This

can be viewed as a text categorization task where the categories are similar and

not similar (in this case, the meanings of these categories change for each set of

stories). This thesis concentrates on tasks like those in the previous paragraph, for

which there is a single set of categories that apply to all instances, but many of the

same techniques can be used to the tasks mentioned in this paragraph as well.

2.3 Other Tasks Related to Text Categorization

The Natural Language Processing (NLP) literature is filled with terms that are

similar to, or related to, text categorization. Unfortunately, there is not complete

3If this were accurate enough it could save many human hours for the people who work for
sites such as http://www.rottentomatoes.com, one of my personal favorites on the web.
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uniformity among authors, and some terms are used in different ways depending on

the source. In this section, I discuss some of these terms. These are the ones that

I consider to be the most important, and I am defining them in what I consider to

be the most common, useful, and/or intuitive manner. This discussion is meant to

avoid confusion when these terms show up in the rest of this thesis or elsewhere.

At the end of the section, I discuss the ambiguity of some of the terms.

Clustering (Rasmussen, 1992) refers to the automatic grouping of text doc-

uments such that all documents within a single group are similar to each other as

determined by some statistical measure. For example, I show in Chapter 9 that

the Newsblaster system developed at Columbia University uses clustering to create

groups of news articles such that each group consists of articles describing the same

event. Unlike text categorization, when dealing with clustering there are no cate-

gories defined in advance. There is no pre-defined concept that any given cluster

represents; each cluster simply consists of documents that are similar to each other.

Information retrieval (IR) (van Rijsbergen, 1979) refers to the automatic

discovery of documents in a corpus that match a user’s query. While this can

be considered a special instance of text categorization in which the categories are

relevant and not relevant, the actual meanings of these categories change for every

query. One very common use of information retrieval is searching the World Wide

Web with a search engine such as Google.4 Some of the same techniques that are

useful for text categorization are also useful for information retrieval, but there are

important distinctions, due to the existence of user queries, that lead to divergence

between the two fields.

Topic detection and tracking (TDT) (Wayne, 2000) deals with finding a set

of stories related to a set of example stories. For example, users may be interested

in reading news articles concerning specific events. This can be viewed as a special

4available at http://www.google.com.
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instance of text categorization in which the categories are similar and not similar,

but the meanings of these categories change for every user. Typically, user profiles

are set up containing examples of documents that users would want (or perhaps

not want) to see. These user files may be learned based on users’ actions, or they

might be based on relevance judgments of documents by users. In practice, the

techniques used to perform topic tracking are more likely to come from the field of

information retrieval than from the field of text categorization.

Text filtering (Schapire, Singer, and Singhal, 1998), sometimes called in-

formation filtering (Belkin and Croft, 1992), refers to the streaming of incoming

information such that a user is only presented with new documents that he or she

would likely want to see. Examples include filtering e-mail to remove spam or

pornography. Text filtering is a specific case of binary text categorization in which

the categories are relevant versus not relevant (or interesting versus not interesting,

or useful versus not useful). Unlike information retrieval and topic tracking, the

meanings of these categories do not change based on queries or user profiles, and

so text filtering, the way I am defining it here, is clearly a subset of binary text

categorization. There are, however, certain distinguishing characteristics of this

task. For example, since text filtering usually deals with documents that arrive

over time (e.g. e-mails), certain methods that require the entire test corpus to be

available at one time do not apply.

Text classification is commonly used as a more general term that can refer to

any of the topics previously described in this section. However, it should be noted

again that there is not consistency among authors. In some works, for example,

authors use the term text classification in a more restrictive sense, referring to the

topic that I call text categorization. In the other direction, I have seen several cases

of text categorization used in the more general sense (as I use text classification),

and I have also seen it used to refer to a combination of the two areas that I refer
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to as text categorization and clustering but not information retrieval. In other

cases, I have seen information retrieval used in the general sense, and I even catch

myself using it in the general sense when I refer to the existing information retrieval

literature; however, due to the word “retrieval”, I think it is best used to refer to

query/retrieval applications, as it is often used in the literature. I have also seen

text filtering used in a more general sense to include the topic that I call topic

tracking. In any case, it is probably not so important to remember all of the tasks

to which, at times, each term applies; it is usually clear enough from context, so

as long as the reader realizes that there is not complete uniformity among authors,

that should be enough to avoid confusion.

2.4 Representing Documents Using Bag of Words

Approaches

Text categorization refers to the automatic labeling of documents based on text. In

order to label documents, systems must first be given access to each document, and

the document must be represented by the system in some way. Almost all modern

text categorization systems represent documents using what is known as bag of

words approaches. This means that each document is represented as a vector of

weighted words, although exactly what constitutes a word can vary to some degree

as is discussed later in this section. Weights are generally computed by combining

statistical features of words in some manner, as is also discussed in this section.

Let d be a document that needs representation, and T be the set of terms

used by the representation. If a bag of words approach is being used, each term

is a single word, and T is the set of all possible words. Let λt be the weight of a

single term t ∈ T . Then d can be represented as d = [λt1 , λt2 , ..., λt|T |
]. Bag of words

approaches do not rely on syntax or semantics; in other words, the ordering of terms
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in a document does not matter, and the relationship between any two distinct terms

is not considered. Although there are many possible weighting schemes, some of

which are discussed in Section 2.4.2, one thing that most have in common is that

words that do not appear in a document are assigned a weight of zero. This turns

out to be helpful, since most documents likely do not contain most of the possible

words, and it is then only necessary to keep track of weights for words that do occur

in each document.

2.4.1 Words as Terms

By far, the majority of text categorization systems that I am aware of use sin-

gle words as terms when representing documents. It is generally accepted in the

information retrieval and text categorization literature that more complex repre-

sentations do not lead to improved performance and are often less efficient (Salton

and Buckley, 1988; Lewis, 1992; Sebastiani, 2002). It might seem that using phrases

such as bigrams (instances of two consecutive words) or trigrams (instances of three

consecutive words) instead of, or in addition to, single words might be useful, since

some context would be accounted for; however, for most bigrams and trigrams,

there is scarce evidence, since the number of existing instances of bigrams and tri-

grams in a corpus is miniscule compared to the possible number of bigrams and

trigrams in a language (the square and cube of the number of words in the language,

respectively).

Although the approaches I am discussing use single words as terms, there are

still several decisions to be made as to what exactly constitutes a word, and how to

distinguish words automatically. Most systems do not have a complete dictionary

of allowable words, and so they must use general rules to distinguish words from

non-words. One possible simple rule (actually used by my BINS system described

in Chapter 5) is to consider a word to be any sequence of alphabetic characters,
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with any other character considered a word separator. This has an unusual effect

when apostrophes are used in an actual word (e.g. “it’s” is considered to be two

words, “it” and “s”), but I have found the the effects of such cases are minimal, and

performance is not improved by more complex methods. (For example, an earlier

version of my BINS system, and also my density estimation system described in

Chapter 4, use Church’s statistical part-of-speech tagger, POS (Church, 1988), to

determine word boundaries. When I updated BINS to the simple rule, performance

did not degrade.)

Even after the general rule for determining word boundaries is decided, there

are still many options that systems have in determining which, if any, transforma-

tions must apply to each word. For example, case sensitivity determines whether

or not two words that differ only in terms of capitalization should be treated as

equal. In other words, if two words are the same except that one has one or more

letters capitalized whereas the other has the same letters in lower case, should they

be considered two instances of the same word or two separate words? At times,

capitalization can mean the difference between a common word or a proper noun,

but at other times, it can be the result of placement at the beginning of a sentence.

Another issue is stemming, a simple rule-based technique that converts dif-

ferent forms of a word to the same root token, or stem. For example, different

tenses of a verb such as “help”, “helps”, “helped”, or “helping” are all converted

to the same stem “help”, whereas different forms of a noun such as “house” or

“houses” are all converted to the same stem “hous”. However, common stemming

algorithms (e.g. Porter stemming (Porter, 1980)) do not handle irregular verbs

or unusual nouns correctly. At times, different forms of the same root fail to be

converted to the same token (e.g. “child” stays as “child” and “children” stays as

“children”), while, at times, forms of different words do get converted to the same

token (e.g. “tire” and “tired” both get converted to “tire”). More accurate than
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stemming is to use a lexical database such as WordNet (Fellbaum, 1998) to convert

every word to its morphological base-word. However, this is also much more time

consuming than stemming, and it is still not guaranteed to improve performance,

as for certain text categorization tasks, the specific tense or form of a verb or noun

may give a clue as to the appropriate category (for example, see (Riloff, 1995), in

which distinctions between singular and plural nouns or passive versus active tenses

for verbs made a significant difference for her categorization task).

Another issue is whether to use all words for text categorization or to filter

some out. Many (I believe most) current systems use a stop-word list, a hard

coded list of common words such as articles and prepositions that are ignored when

they occur. Although these words would be given very low weights by machine

learning methods (some are described later in this chapter), there tend to be many

of them in a document, and so the noise introduced by these words can add up

and make results less accurate. Another possibility is to automatically determine

which words to filter out based on weights; for example, the next subsection of this

chapter describes the inverse document frequency (IDF) weighting scheme, and this

can be used to exclude all words with IDF values under some specific constant (this

is explored in (Sable and Hatzivassiloglou, 2000) and also Appendix G). However,

one must be careful when deciding whether or not to filter out such words, as they

can be helpful for certain text categorization tasks. An excellent example is the

breakthrough work of Mosteller and Wallace, the first application mentioned in

Section 2.2, in which the authors determine that filler words such as “an”, “of”,

and “upon” are very important for an authorship attribution task, whereas more

meaningful content words are not. Another example is the work of Riloff (1995),

in which the author has found that small words can combine with more important

words to form “relevancy signatures” that are very indicative of categories.

Even when two instances of two words are spelled the same way with the
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same case sensitivity, they may not really represent the same word with the same

meaning. For example, “can” is sometimes a noun (as in “I ate a can of beans.”)

and sometimes a modal verb (as in “You can do it!”); “wind” is sometimes a noun

(as in “There’s a strong wind out today.”) and sometimes a verb (as in “I need

to wind my watch.”). Such pairs of distinct words that are spelled the same are

known as homographs, and ideally, a system should probably distinguish one sense

from another, although few text categorization systems even try. One way that

systems could differentiate homographs of each other when the two words represent

different parts is to use a part-of-speech tagger (such as POS, mentioned earlier in

this section); the part-of-speech tag assigned to each word by the tagger can be

included as part of the token (this is explored in (Sable and Hatzivassiloglou, 2000)

and also Appendix G).

In my own experience, I have found that most of these issues involving what

constitutes an individual word are not particularly important for text categoriza-

tion; i.e. performance is not significantly affected regardless of the decisions made.

An exception is this last issue (distinguishing homographs using part-of-speech tags)

which seems to be somewhat helpful, although this requires a tagger and more time

to process texts. Some of these features are examined in more detail in Appendix G,

in which cross validation experiments (to be explained in Section 2.5) are used to

determine the optimal values of features for a system I have developed. Although

most choices involving the precise method to distinguish words seem to matter to

only a small agree, other features explored in that appendix (e.g. what text span

to consider in a document) prove to be quite important.

2.4.2 Common Weighting Schemes for Words

Once all of the decisions discussed in the previous subsection have been decided, a

system can process a text document and determine which words are present. At
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that point, there are many possible weighting schemes that can be used to set up

the vector representing the document. The simplest possible measure is a binary

value for each word; 1 if it is present and 0 otherwise. In this case, the bag of words

approach is also known as a set of words approach.

More typically, systems use more complex weights. One approach that is

still somewhat simple is to weight each word in a document with the word’s term

frequency (TF) (Salton and Buckley, 1988; Salton, 1989), which is the number of

times that the word appears in the document. All other things being equal, it is

expected that words that appear more often in a document are more important as

to the overall meaning of the document. Consider, for example, a document that

mentions Afghanistan once, compared to a document of equal length that mentions

Afghanistan ten times; you would probably expect the second document to have

more of a focus on that topic.

Of course, words such as “the” will likely appear many times in a document

without being considered important for most text categorization tasks. Usually, a

system combines term frequency with some other measure to take this into account.

The most common measure that is often combined with term frequency is inverse

document frequency (IDF) (Salton and Buckley, 1988; Salton, 1989), which can be

thought of as a measure of a word’s rarity in a corpus (or a language, but this needs

to be estimated based on a corpus). It is believed that words that are rare tend to

be more specific, and may therefore contribute more to content. Let DF (w) be a

word’s document frequency (DF), which is the number documents out of a set of N

total documents that contain one or more instances of the word. Then the IDF of

the word can be computed as follows:

IDF (w) = − log2

DF (w)

N
= log2

N

DF (w)
(2.1)

Therefore, very common words that appear in almost all documents have an IDF

close to zero, whereas rare words have larger IDFs, with a maximum possible value
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of log2 N for a word that only occurs in one document. (Words that are never seen

in the N documents have an undefined IDF and, thus, are generally ignored; this

makes sense if the N documents are those of the training set, since there is then

no evidence indicating one category versus another for these words.) The specific

logarithmic base being used is actually not important so long as it is consistent.

The most common method of combining a word’s term frequency with its

inverse document frequency is to simply multiply the two weights together:

TF ∗ IDF (w) = TF (w, d) × IDF (w) (2.2)

This TF*IDF representation effectively combines a word’s importance to a doc-

ument with its specificity over a corpus. At times, you might see more complex

combinations of the same measures or similar measures, but ever since the very

influential work of Salton and Buckley in the late 80’s (Salton and Buckley, 1988;

Salton, 1989), TF*IDF has dominated weighting schemes in the text categorization

and information retrieval literature.

Typically, TF*IDF weights for words are computed based on the same data

used to train a system (the concept of training is discussed in the next section). An

alternative is to compute the values based on some other, larger corpus. On the

one hand, there would be more data, since vast amounts of unlabeled data is easily

obtainable, but on the other hand, the data would likely not be as representative

of future documents. There is quality versus quantity issue at play. I discuss this

in more detail in Appendix K. In summary, the results are inconclusive; using

IDF weights from a larger, outside corpus sometimes improves performance and

sometimes degrades performance. The appendix explains why I have chosen to use

the training set by default for my BINS system (described in Chapter 5).

Many systems normalize the final vectors used to represent documents. Nor-

malization prevents larger documents from being considered more similar to cate-

gories or other documents simply because term frequencies tend to be higher when
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documents are longer. For certain approaches that also use vector representations

to represent centroids of categories (e.g. the Rocchio approach discussed in Sec-

tion 2.6.1.1), it is more important to normalize the category vectors.

2.4.3 Exceptions to Bag of Words Approaches

One noteworthy exception to bag of words approaches is work involving latent

semantic indexing (1990), in which documents are represented as combinations

of abstract “concepts” determined by mathematical analysis using singular value

decomposition (SVD). This technique helps avoid the problems of synonymy and

polysemy by providing a mathematical way of determining the “similarity” between

concepts. Another exception is the string kernel method proposed in (Lodhi et al.,

2002), in which the terms are all subsequences of k characters that appear in a

document (the authors consider multiple possible values of k). You will encounter

another exception in this thesis in Chapter 6 (or in (Sable, McKeown, and Church,

2002)), which describes an NLP based system that uses shallow parsing to extract

only the main subject and verb from the first sentences of image captions, and

represents documents using only these two words. For certain, specific tasks, addi-

tional features of documents are sometimes taken into account along with words;

for example, for the automatic grading of essays, systems may consider the length

of a document or the average sentence length (Larkey, 1998).

Then there are methods that start with bag of words approaches but af-

terwards also consider additional information. In (Kleinberg, 1999), the author

describes how to utilize link structure to find pages on the Web that are relevant

to a query. The author defines the notion of “authorities” (respected sites, likely to

have many other sites point to them) and “hubs” (pages that link to many authori-

ties), and describes how to use these concepts to supplement traditional techniques

utilizing text and bag of words approaches. A similar idea is discussed in (Brin and
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Page, 1998), and the algorithm described here is used by the enormously popular

and successful Google search engine. Also applying to web pages, the work dis-

cussed in (Chakrabarti, Domb, and Indyk, 1998) takes hyperlinks into account for

a text categorization task.

For the categorization of images, systems may rely on a combination of bag

of words approaches applied to image captions with approaches that rely on low-

level image features. This is discussed in Chapter 8 of this thesis (and in (Paek

et al., 1999)). In Section 8.4, I mention several research endeavors involving the

categorization or retrieval of images based only on image features; this, of course,

does not fall into the domain of text categorization at all, although sometimes

similar machine learning techniques are used (machine learning is explained in

Section 2.5, and some common methods are explained in Section 2.6).

The exceptions to bag of words approaches discussed in this subsection often

apply to specific tasks (e.g. the automatic grading of essays) or specific types of

documents (e.g. web pages or images). Although these research endeavors involv-

ing novel representation of documents are not always as general as other machine

learning research, they are often very interesting, and they can lead to significant

improvement over standard approaches. Still, the vast majority of the text catego-

rization literature focuses on bag of words approaches, and the rest of this chapter,

which is a general survey of the field, is thus limited to these; later in the thesis,

research involving novel representation is discussed again.

2.5 Training, Testing, and Machine Learning

Almost all modern text categorization systems use machine learning techniques

(Mitchell, 1997) to “learn” how to predict categories for documents.5 In other

5One exception is an Expert System, which is basically a set of hard coded rules designed by
an “expert” to determine a document’s category. A major disadvantage of this approach is that
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words, training data must be provided to the system before it can be applied to

unlabeled documents. For text categorization tasks, this data comes in the form

of manually labeled documents. For binary categorization tasks, this requires that

there are positive and negative examples of each category, so that the system can

determine one from the other. For tasks involving mutually exclusive categories,

as focused on in this chapter and thesis, this requires that there are examples each

category. How many examples are necessary for reasonable performance depends

on the specific task and the method being used. For a given task, it is quite possible

that the method that performs the best with a small amount of training data may

not be the method that performs the best with a large amount of training data.

The advantage of a machine learning approach to automatic text categoriza-

tion is that it is general. Once an implementation of any such method exists, all

that is needed to move to a new set of categories is training examples. In fact,

creating a corpus of such training examples is often the most time-consuming part

of moving to a new set of categories. There are certain text categorization tasks

for which the labels are obvious from the start - for example, determining what

news group an article comes from - in which case this phase can be skipped; but for

most text categorization tasks, automatic creation of a training set does not work

well. See, for example, Appendix P, in which I discuss an attempt by researchers

at Columbia to automatically create a training set for our Newsblaster system, de-

scribed in Chapter 9, in order to avoid the need of manually labeling documents.

I show in that appendix that this attempt did not succeeded, and that eventually

it became necessary to hand label documents for training purposes. In this case, it

turns out that the quality of the training data is more important than the quantity

of the training data.

it is completely domain dependent, and new rules have to be generated for every set of categories,
often involving separate experts. In addition, expert systems do not always perform as well as
machine learning approaches, since the best rules for categories are not always intuitive.
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A few issues that must be decided when collecting labels for documents are:

• How many documents should be used for training?

• How should labels for the documents be collected?

• How many volunteers should label each document?

• What level of agreement should be required in order to use a document?

Of course, as the amount of desired training data increases, and as the number of

labels required for each document increases, the more person hours are necessary to

actually do the labeling. In Chapter 3, I cover the decisions I made concerning these

issues as part of a discussion of the creation of a corpus consisting of over 2,000

documents and four sets of categories. I have set up a user-friendly web interface

that allows volunteers to suggest categories for documents. I have personally labeled

all of the documents in every set of categories, and many volunteers have also labeled

documents such that each document has received a label for each set of categories

by one volunteer. If there was agreement between me and the volunteer for a

particular set of categories, I would include the document in the final data set for

that set of categories.

Once labeled data has been collected, it is often the case that systems using

various approaches need to be evaluated. Sometimes, this is for research purposes,

so that multiple approaches can be compared to each other. At other times, for

pragmatic benefits, it is often desirable to determine which is the best of available

systems to use for a specific task, and also to have an idea of expected future

performance. The labeled corpus must therefore be divided into at least two sets,

one consisting of data used to train the system (this portion of data is known as the

training set), and another consisting of data used to test the system (this portion

of data is known as the test set).6

6Why there is not consistency in this naming convention - i.e. why the sets of data are not
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One common technique for dividing a corpus intro a training set and a test

set is to decide how large one of the two sets needs to be and then randomly se-

lecting this number of documents for this set, placing the remaining documents in

the other set. This is a common approach, and one that I often take in my own

work (e.g. see the descriptions of data sets I have defined for my own corpus as

described in Section 3.1). However, there are certain cases for which this is not

desirable. For example, in the news domain, the focus of news tends to change

with time. If a corpus of labeled documents includes articles from a particular time

frame, dividing this corpus randomly into training data and test data would likely

include some articles concerning a particular story in the training set and other

articles concerning the same story in the test set; for this reason, the test docu-

ments would probably be closer in content to the training documents than future

documents will be. Thus, if one wants to obtain accurate performance estimates

for future news documents, it is perhaps better to test using material that is from

a different time frame than the training material. This is the approach I take in

Appendix P, which discusses my evaluation of the performance of categorization

for the Newsblaster system (described in Chapter 9); the data used for testing is

one day of actual Newsblaster articles that is from a later time period than any of

the training material.

Often, each system that is being evaluated has one or more optional pa-

rameters for which settings need to be chosen. This generally involves tuning the

parameters by performing initial experiments that test out multiple (perhaps all)

possible combinations of settings. Based on these initial experiments, a single set

of settings is chosen for the system. Here I discuss two common methodologies for

choosing appropriate settings for parameters.

One common methodology for choosing settings of parameters involves di-

known as a training set and a testing set, or a train set and a test set - is something for which I
have never heard an explanation.
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viding the labeled data into three sets instead of two; in addition to a training set

and a test set, there is also a tuning set (also known as a validation set or a hold-out

set) (Kohavi, 1995; Lam, Ruiz, and Srinivasan, 1999; Sebastiani, 2002). For each

possible setting (or combination of settings), the system is trained on the training

set and tested on the tuning set. Based on the results of these experiments, settings

are chosen for all parameters (often the single combination of settings that leads

to the best performance for the tuning set is used). Next, the system is retrained

using both the training set and tuning set, and then the system is tested on the

test set to get an estimation of its future performance. (The results for the tuning

set itself is not a fair estimate, since this is the exact data for which the system

has been optimized.) When using this methodology, it is important that all three

subsets of the labeled data are distinct and non-overlapping; otherwise, there would

be times when the system is being tested on data that is also used for training, and

this would give the system an unfair advantage and make the results inaccurate.

If the work is being done for pragmatic benefit as opposed to research (i.e. there

will actually be future documents to which the final system is applied), then after

the final evaluation based on the test set, the system can be retrained using the

entire labeled corpus, including the test set, since it is generally best to use as much

training data as possible.

Another common methodology for choosing settings of parameters involves

the use of k-fold cross validation (Mitchell, 1997); to implement this strategy, the

training set needs to be divided into k non-overlapping subsets, or folds, usually

of approximately equal size. For each possible combination of parameters, the

system is repeatedly trained on k−1 subsets of the training data and tested on the

remaining subset of the training data; this is repeated k times, with each of the k

subsets used for testing once. For each combination of parameters, the results of

the k cross validation experiments are averaged (perhaps using a weighted average



33

if the subsets are not of equal size). These results are used to choose a single

combination of settings (often the one that leads to the best average performance).

Then the system can be retrained with the chosen settings using the entire training

set, and then tested on the test set to obtain an estimation of future accuracy. It

is, of course, important that the test set does not overlap with the training set for

the same reason mentioned in the discussion of the other methodology for choosing

parameters (involving the use of a tuning set). Also, as was the case with that

methodology, after the test set is used to estimate future performance, the system

can be retrained using the entire labeled corpus.

When performing cross validation experiments, the minimum possible value

of k is 2 and the maximum possible value of k is equal to the number of documents

in the training set. When k is exactly equal to the number of documents in the

training set, every round of training uses all but one of the documents, and the final

document is used for testing; this is also known as leave-one-out cross validation.

Larger values of k mean more experiments and therefore more time, but it is unclear

if increasing k leads to an expected increase in accuracy of future performance. See

(Kohavi, 1995) for a study of the effects of varying k for several tasks. (This

work also compares cross validation to the tuning set methodology, which they call

the holdout method, and also to a method known as the bootstrap (Efron and

Tibshirani, 1993), which I do not discuss in this chapter.)

In my own work, I have preferred the cross validation methodology to the

tuning set methodology, although I have never actually compared the two. In

Appendix G, I describe my use of cross validation to select settings for several

optional parameters of a system I have developed. I have used three-fold cross

validation, choosing the low value of three for k mainly because I was, at the time,

dealing with many possible combinations of parameter settings and there was an

efficiency concern.
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After settings for all optional parameters of a system are determined, either

using cross validation experiments or experiments with a tuning set, the system

is trained, and then it is ready to be applied to future documents. Most text

categorization approaches, including all of those described in Section 2.6, can be

applied to new documents one at a time. This may be required of certain systems

dealing with new documents that arrive one at a time and must immediately be

categorized. An obvious example of this type of task would be the classification of

e-mail as spam versus not spam. However, there are certain methods (or particular

variations of methods) that require access to the entire test set at one time (or at

least a large number of test instances at one time). For example, the Pcut method

for allowing the Rocchio approach to be used with binary categories (both Pcut

and Rocchio are described in Section 2.6.1.1) needs to measure similarity between

all test documents and all categories before predictions can be made.

2.6 Machine Learning Approaches for Text Cat-

egorization

Over the years, many machine learning approaches have been developed for auto-

matic text categorization. This section describes some of the more common meth-

ods. The three approaches described in Section 2.6.1 (Rocchio/TF*IDF, K-Nearest

Neighbor, and Naive Bayes) involve basic techniques that have been around for a

relatively long while and are often used as baselines against which newer techniques

are compared. These approaches are described to the point that a programmer

should be able to implement them after reading the section. The three approaches

described in Section 2.6.2 (Probabilistic Indexing, Maximum Entropy, and Sup-

port Vector Machines) involve more recent and mathematically complex techniques.

Most of the text categorization literature points to these as being “better” than the
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basic approaches, although I have found that with some modification, approaches

stemming from the basic ones are very competitive. For example, the system I

describe in Chapter 4 and in (Sable, McKeown, and Hatzivassiloglou, 2002) uses

density estimation to improve the results of a Rocchio/TF*IDF approach, and the

system I describe in Chapter 5 (an earlier version is described in (Sable and Church,

2001)) uses bins to smooth a Naive Bayes approach; for the data sets of the corpus

I have created (described in Section 3.1), these systems are very competitive with

all of the alternative I have tested.

2.6.1 A Few Basic Approaches

The three approaches described in this section are based upon three simple ideas.

The Rocchio/TF*IDF approach uses a bag of words representation (as described

in Section 2.4) involving TF*IDF word weights (as described in Section 2.4.2) not

only for documents, but also for categories. Given a document that needs a pre-

diction, it is compared to all categories, and assigned to the category that is the

most “similar”, based on a simple metric such as the cosine measure or dot prod-

uct. The K-Nearest Neighbor approach compares each new document to labeled

documents in the training set. The k training documents that are the most simi-

lar are observed, and the majority category based on a weighted average of these

documents is assigned to the new document. Naive Bayes does not use weights for

words as described in Section 2.4.2; instead, category-specific weights are empir-

ically estimated for all words based on the training set. The training documents

are used to estimate the probability of seeing each possible word in each possible

category. Given a new document, these probabilities are combined to estimate the

probability that such a document would occur in each possible category, and the

category with the highest probability is assigned to the document. (These short

descriptions assume mutually exclusive categories; in the subsections ahead, I also
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include brief discussions of how the techniques can be modified to deal with binary

categories.)

2.6.1.1 Rocchio/TF*IDF

The Rocchio/TF*IDF approach stems from Rocchio’s method of relevance feedback

(Rocchio, 1971), a technique used to improve information retrieval performance

(a task defined in Section 2.3). This technique allows a user to rate documents

initially retrieved for some given query as useful or not useful, and based on these

evaluations, a second pass is implemented. The approach has since been generalized

to apply to text categorization tasks with multiple categories. For example, see

(Sable and Hatzivassiloglou, 1999) and (Sable and Hatzivassiloglou, 2000) which

describe an augmented, Rocchio/TF*IDF system that I and a fellow researcher

have developed and applied to the categorization of images.

As discussed in Section 2.4, most text categorization systems represent doc-

uments using a bag of words approach in which each document is represented

as a vector of weighted words. Then any document d can be represented as

d = [λt1 , λt2 , ..., λt|T |
], where λt is the weight of a single term t from the set of

all terms T . Bag of words representations use single words as terms, although

exactly what constitutes a word can vary as described in Section 2.4.1. The most

common weighting scheme for words is to multiply each word’s term frequency (TF)

by its inverse document frequency (IDF) as explained in Section 2.4.2. The Roc-

chio/TF*IDF approach towards text categorization represents not only documents,

but also categories with such vectors. The vector representation for a category is a

combination (generally the sum) of the vectors representing the training documents

that are assigned to the category; often these category vectors are normalized. Each

such vector can be thought of as a centroid of the category.

Once vectors are set up for all documents and categories, a new document
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can be compared to all possible categories and assigned to the category yielding

the highest similarity. More formally, let d be a new document and C be the set

of all possible categories (represented with vectors as previously described). Then

the category predicted for d is simply:

argmax
c∈C

[cosine(d, c)] (2.3)

Alternatively, the dot product can be used to compare d with each possible c instead

of the cosine measure. Applying the cosine metric to two vectors is equivalent to

applying the dot product and then dividing by the product of the lengths of the

two vectors. In other words:

cosine(d, c) =
d · c

|d||c|
(2.4)

The length of the document vector d does not affect results, since for each doc-

ument, we are choosing the category with the highest similarity, and the length

of d is constant. Using the cosine metric instead of the dot product is therefore

equivalent to normalizing the category vectors, so as not to give too much weight

to larger categories (i.e. categories with more training examples). If the category

vectors have already been normalized, the two metrics give equivalent results. (See

Appendix G for a discussion of the effects of normalization and several other op-

tional components on the performance of a Rocchio/TF*IDF system applied to

multiple sets of categories.)

Things are a little more complicated when dealing with binary categories,

since a document may be assigned to no categories or multiple categories. In this

case, there are several standard methods of converting similarity scores to YES/NO

decisions for every possible document/category pair. One, known as Scut (Yang,

1999), involves determining the optimal threshold for each category based on train-

ing data. Another method, known as Pcut (Yang, 1999), involves measuring the

percentage of training documents that fall into each category in the training set
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and assuming a similar percentage falls into the category in the test set. Therefore,

for each category, we assign the category to the x test documents with the highest

similarity, where x is chosen based on the training set. One drawback of Pcut is

that it can not be applied to text categorization tasks involving new documents

that arrive one at a time if each must be immediately labeled independently of

others. For both Scut and Pcut, normalization of document vectors (as opposed to

category vectors) becomes an issue. A third method is to create, for each category, a

separate category consisting of all documents not in the actual category. To obtain

a YES/NO decision for the actual category, we compare the similarity score of a

test document and the actual category to the similarity score of the test document

and the created category, thus converting our multi-label, binary categorization

task to a set of categorization tasks each with two mutually exclusive categories.

All of these methods have drawbacks, and it seems to me that Rocchio/TF*IDF

generally does not perform as well for binary text categorization tasks as it does

for tasks involving mutually exclusive categories. See, for example, (Yang, 1999),

in which Rocchio/TF*IDF underperforms most other methods tested for a binary

categorization task involving the commonly used Reuters corpus (described in Sec-

tion 2.8). In Chapter 4, on the other hand, I show that my own Rocchio/TF*IDF

system performs quite well for the data sets in my own corpus, involving mutu-

ally exclusive categories, especially when aided by the density estimation technique

described in that chapter.

2.6.1.2 K-Nearest Neighbor

The K-Nearest Neighbor (kNN) approach towards text categorization is an example

of an instance-based learning method (also known as an example-based method, a

memory-based method, and even a lazy learning method) (Mitchell, 1997; Sebas-

tiani, 2002). The training for such methods basically just consists of recording
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which training examples fall in each possible category. (Of course, reading in the

training documents also requires a system to convert them to the appropriate bag of

words representation, assuming the system does not require this representation as

input in the first place.) When future documents arrive (or a test set is evaluated),

the new documents are compared to those in the training set.

In order to predict the category of a document, a system must first deter-

mine which training instances are the “closest” to this document. The closeness of

one document to another is typically determined by Euclidean distance. In other

words, if d1 and d2 are two documents such that d1 = [λt(1,1)
, λt(1,2)

, ..., λt(1,|T |)
] and

d2 = [λt(2,1)
, λt(2,2)

, ..., λt(2,|T |)
] (see Section 2.4), and D(d1,d2) represents the distance

between d1 and d2, then we have:

D(d1 ,d2) =

√

√

√

√

|T |
∑

i=1

[λt(1,i)
− λt(2,i)

]2 (2.5)

Once distances are computed between the new document and all training doc-

uments, the k closest documents (and thus the k documents with the smallest

distances according to the above formula) are retrieved.7 The specific value of k

that a system uses can be set arbitrarily, but it is generally better to determine an

appropriate value of k based on cross validation experiments or experiments with

a tuning set (see Section 2.5).

Once the k closest training documents are retrieved, they are used to predict

the category for the new document. The simplest way to do this is to assign the new

document to the category that is the most common among the k retrieved training

documents. (If the task involves binary categories, an alternative is to assign the

new document to any category that is assigned to at least half of the k documents,

or separate cutoffs can be determined for every category based on cross validation

7An alternative method of finding the closest training documents is to use the cosine metric
or dot product to measure the similarity between the new document and all training documents,
in which case the k documents with the highest similarities are retrieved.



40

experiments or experiments with a tuning set.) More common than taking this very

simple approach is to weight each of the k training examples inversely proportional

to its distance from the new document.8

For a given document d, the kNN approach is using the k retrieved neighbors

from the training set to calculate a score for every possible category c; this score is

equal to the proportion of the neighbors that are assigned the label c. As mentioned

in the last paragraph, in calculating this proportion, it is common to weight the

neighbors inversely proportional to their distance from d. A separate score can be

computed for each category based on the (weighted) percentage of close training

documents that have been assigned to the category, and this score can be viewed

as an estimate of the probability that the document belongs to the category. More

formally, let di be the ith training document out of the k training documents selected

as described above, and let I(di,c) be 1 if di belongs to category c and 0 otherwise.

Given a document d, the score that is calculated for some specific category c is

thus:

S(d,c) =

∑k
i=1 I(di,c)

1
D(d,di)

+ε
∑k

i=1
1

D(d,di)
+ε

(2.6)

Note that the numerator and denominator in the above formula are the same ex-

cept for the I(di,c) term, so that documents that belong to category c contribute

to both the numerator and denominator, and documents that do not belong to

category c contribute only to the denominator. The epsilon in the formula is just

an arbitrary, very small constant to avoid infinities in the case that there is some

training document with a representation that exactly matches that of d (in which

case the distance is 0).

The document d can then be assigned to the category with the maximum

8If training documents have been selected based on their similarities to the new document as
opposed to their distances from the new document, then each of the k training documents should
instead be weighted directly proportional to its similarity to the new document.
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score, that is:

argmax
c∈C

[S(d,c)] (2.7)

If we are dealing with binary categories, the document can instead be assigned

to all categories with a score greater than or equal to 0.5, or separate cutoffs can

be determined for each category using cross validation experiments or experiments

with a tuning set. (The reason 0.5 is a natural cutoff is because the score S(d,c)

can be thought of as an estimated probability that d belongs to category c.) When

dealing with mutually exclusive categories, the scores, or probability estimates,

always add up to exactly 1; since all documents must be assigned to exactly one

category, it should be assigned to the category with the highest score, even if no

score is above 0.5. When dealing with binary categories, each individual category is

assigned a probability ranging from 0 to 1, but there is no further restriction on the

sum of these probabilities, since the categories are independent, and a document

may belong to more than one category or none at all.

In some recent and well-cited studies by Yang (Yang, 1999; Yang and Liu,

1999), kNN has performed very well on text categorization tasks involving the

often used Reuters data set (to be described in Section 2.8). However, I have found

in my own work that kNN usually underperforms other methods, even the other

basic ones. The specific properties of the data and the categories involved with

text categorization tasks vary highly, and this determines which methods perform

the best. (See Section 2.9 for a detailed discussion concerning the ways that such

properties can vary and my own insights into how this might affect various systems.)

2.6.1.3 Naive Bayes

The Naive Bayes approach towards text categorization (Lewis, 1998) is a proba-

bilistic approach that attempts to estimate the probability of each possible category

given a document. More formally, let d be a new document and C be the set of
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all possible categories. Then, for all c ∈ C, a Naive Bayes system calculates an

estimate of P (c|d) and choose the category for which this estimate is the largest.

An application of Bayes’ theorem tells us that:

P (c|d) =
P (c)

P (d)
× P (d|c) (2.8)

The denominator in the right side of this equation is the same for all categories

and can therefore be dropped if the sole goal is to obtain a correct classification.

If probability estimates are actually desired for each category, the final probability

estimates obtained without using this term can easily be normalized, since the

probabilities for all possible categories must add up to one, assuming that we are

dealing with mutually exclusive categories. After dropping the P (d) term from the

above equation, a Naive Bayes system assigns a document d to:

argmax
c∈C

[P (c) × P (d|c)] (2.9)

The term P (c) represents the a-priori probabilities of category c, and this is often

estimated as the percentage of the training set that belongs to the category. If, for

some reason, it is suspected that the training set is not representative in this man-

ner, it may be better to assign equal initial likelihoods to each category (in which

case this term may be dropped from the equation all together without affecting

results).

In order to estimate P (d|c), a Naive Bayes classifier makes an independence

assumption, which views every coordinate in the bag of words representation of d as

an independent random variable. In other words, it is assumed that the likelihoods

of various possible weights for any given word in d is not affected by the weights

of other words. Expressed in yet another way, the assumption claims that the

occurrence of one word in a text does not affect the chances of seeing any other

word. Of course, in reality, this assumption is constantly violated. Seeing one

word in a text makes it more likely that certain related words will appear, and
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it may be less likely that other specific words will appear. It is for this reason

that the word “naive” is part of description of such a classifier. Although this

assumption surely throws off the estimated probabilities (this is discussed further

later in the section), the prediction of the system will still be correct as long as

the correct category obtains a higher estimate than all other categories. Using the

notation from Section 2.4, let T be the set of all possible terms (words) and λt be

the weight of a single term t ∈ T . Then any document d can be represented as

d = [λt1 , λt2 , ..., λt|T |
]. Given the independence assumption just discussed, we can

say that:

P (d|c) =
∏

t∈T

P (λt|c) (2.10)

Here, P (λt|c) represents the probability that term t has weight λt in a document

of category c.

Naive Bayes systems do not use a TF*IDF weighting system to represent a

document, but instead words are commonly weighted with binary values (1 if a word

is present and 0 otherwise). This variation of Naive Bayes is known as the binary

independence model (Sebastiani, 2002), and it is heavily promoted in (Robertson

and Jones, 1976) in which the authors use this model for relevance feedback (a term

also mentioned at the start of Section 2.6.1.1) in an information retrieval context.

For the most part, weights of 0 are not very informative; in other words, the absence

of a word in a document is not generally indicative of any particular category.

Weights of zero are therefore often ignored by Naive Bayes systems, meaning that

only words that actually appear in a document are considered. Letting W be the

set of all distinct words in a given document d, a Naive Bayes then assigns the

document to:

argmax
c∈C

[P (c) ×
∏

w∈W

P (w|c)] (2.11)

Here, P (w|c) represents that probability that the word w occurs at least once

in a document of category c; this can be easily estimated based on the training
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data as the percentage of those training document belonging to category c that

contain at least one instance of the word w. (Some Naive Bayes implementations

rely on a more complex estimates of P (w|c); e.g. see (Joachims, 1997) which

describes a Naive Bayes implementation that uses the Laplace estimator, which has

the advantage that it never estimates probabilities to be zero.) For computational

reasons, it is often more efficient to work with log likelihoods (i.e. add logs of

probabilities) than it is to multiply probabilities directly. Since the log of a product

is equal to the sum of the log of its parts, it is therefore equivalent for a Naive Bayes

system to assign the document to:

argmax
c∈C

[log2 P (c) +
∑

w∈W

log2 P (w|c)] (2.12)

To obtain the actual probability estimate for the category, if it is desired, the system

can raise the logarithmic base being used (shown here as 2) to the power of the

final sum for the category.

Many Naive Bayes implementations loop through all instances of all words

in the documents as opposed to only considering distinct words, since the repetition

of a word does tend to indicate importance (see (Joachims, 1997), once again, as

an example). Equivalently, some Naive Bayes implementations only loop through

distinct words but raise the probability of seeing each word in a category to a power

equal to the term frequency of the word in the current document (e.g. see (Mc-

Callum and Nigam, 1998)). These implementations are therefore actually making

a larger assumption than the independence assumption discussed above; this as-

sumption is that the observation of a word in a document not only has no effect on

the chances of seeing other words, but also that it has no affect the chance of seeing

the same word with repeat occurrences. This has clearly been shown to be false

for content words by Church (2000), in which the author shows that for content

words, once a word appears in a document, the chance of the word occurring again

is generally closer to 1/2 than p, where p is the a-priori probability of seeing the
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word occur in a document (generally much smaller than 1/2 for content words).

Another method that a Naive Bayes system can use to weight repeated words

higher without making this stronger assumption is to consider the term frequency

of words, and to estimate probabilities, based on the training set, of seeing each

possible word with various occurrence counts in each possible category. In other

words, for a given word w and category c, the training documents belonging to c

are used to estimate probabilities of seeing w one time, two times, three times, etc.

There can be some maximum cutoff above which counts are not distinguished; for

example, the system may estimate a single probability of seeing w four or more times

in a document of category c. An example of a system using this approach is BINS,

my own bin-based system discussed in Chapter 5 (an older version is discussed in

(Sable and Church, 2001)), which can be thought of as a generalized version of

a Naive Bayes system. (BINS estimates probabilities for groups of related words

instead of individual words in order to smooth estimates that may be inaccurate

for words with scarce evidence.)

While Naive Bayes often produces good categorization results, the proba-

bility estimates themselves are usually not accurate. In my own research, I have

noticed that Naive Bayes techniques usually suggest an estimated probability of

over 99%, and often over 99.9%, for the favored category, while the estimated prob-

abilities for all other categories are therefore very close to zero (since my work has

typically involved mutually exclusive categories). In order for these probabilities to

be accurate, over 99% of the predicted categories would have to be correct, but for

the tasks I have been dealing with, accuracy rates of around 80% for Naive Bayes

systems are more common. These inaccurate probability estimates are likely due to

the falsehood of the independence assumptions that have been made; Naive Bayes

systems are inherently multiplying together probabilities (or adding log likelihoods)

that are not truly independent, and therefore exaggerating their magnitudes. In
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(Bennett, 2000), evidence is presented indicating that Naive Bayes systems typi-

cally produce probabilities close to 0 or 1 for text categorization tasks involving

binary categories, and the author begins to discuss methods that could be used

to recalibrate the probabilities. In a later paper (Bennett, 2002), he introduces

methods of fitting asymmetric Gaussian and Laplace distributions to the output of

a Naive Bayes classifier in order to improve the probability estimates. My method

of using density estimation (explained in Chapter 4) could also potentially be used

for this purpose.

Naive Bayes is a very popular method in the text categorization and infor-

mation retrieval literature. In recent, extensive studies by Yang (Yang, 1999; Yang

and Liu, 1999), a Naive Bayes system has not performed as well as some others

tested for text categorization tasks involving the often used Reuters data set (to be

described in Section 2.8). However, I have found that Naive Bayes performs well

for data sets in a corpus I have created (described in Section 3.1), and in Chapter 5,

I show that my BINS system, which can be thought of as a generalized version of

a Naive Bayes system, outperforms all other systems tested for two of these data

sets. Section 2.9 discusses some reasons why certain approaches may perform very

well for some text categorization tasks and not for others.

2.6.2 A Few Advanced Approaches

Each of the approaches discussed in the previous subsection is based on a simple

principle. The Rocchio/TF*IDF approach compares a new document to each pos-

sible category and chooses the category with the most similar centroid. The kNN

approach compares a new document to all training documents and chooses the cat-

egory that is assigned to the most similar training documents. The Naive Bayes

approach estimates probabilities of words occurring in categories, and given a new

document, it chooses the category that is most probable to contain the words in
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the document. Each of these approaches is intuitive and popular in the text cat-

egorization and information retrieval literature. While they are considered basic,

and are often just used as baselines against which advanced methods are compared,

there are, at least, certain tasks for which they perform very competitively.

The approaches discussed in this subsection are more complex. In the liter-

ature, authors who describe them tend to consider them better. Papers describing

them usually show improvement using these techniques in comparison to the basic

ones. To some extent, this may be a little misleading. There are very few pub-

lic text categorization corpora (discussed in Section 2.8), with the Reuters corpus

(also discussed in Section 2.8) dominating the literature. I have found in my own

research that no system does the best on all text categorization tasks, and almost

all well-known approaches, including the basic ones discussed in Section 2.6.1, per-

form quite well for at least some tasks (I try to explain some of the likely reasons

why this occurs in Section 2.9). In addition, to effectively compare systems, it

is very important to use the same evaluation metrics (discussed in Section 2.7).

Since different evaluation metrics may favor different systems, it is important that

researchers choose the metrics in advance, as opposed to choosing a metric that fa-

vors the approach they are hoping does well after obtaining their results. Finally, it

should be noted that while published papers in the field seem to show that advanced

methods outperform the basic ones, I feel that there is something unrepresentative

here. Researchers who find that the advanced methods they are exploring do not

outperform basic ones are certainly less likely to have their findings published, since

this is not considered interesting.

That being said, it is important to understand advanced techniques, as they

comprise a major part of the text categorization literature, and, at the very least,

there is no reason to doubt that they tend to do at least as well as the basic

approaches on average. I have chosen three advanced approaches to describe in
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this section, partly because of their abundance in the text categorization literature,

and partly because they are approaches used by systems that comprise the publicly

available Rainbow package (described in Section 2.8), which I use throughout this

thesis to compare against my own systems. These approaches are Probabilistic

Indexing, Maximum Entropy, and Support Vector Machines. I do not describe

these approaches to the same level of detail as the basic approaches described in

Section 2.6.1; that would be beyond the scope of this chapter. Instead, I explain

the main ideas in order to give a basic understanding of these algorithms.

2.6.2.1 Probabilistic Indexing

The Probabilistic Indexing approach towards text categorization stems from Fuhr’s

Probabilistic Indexing paradigm (Fuhr, 1988), which Fuhr originally intended for

relevance feedback in an information retrieval context. Joachims (1997) generalizes

the technique for text categorization (he assumes categories are mutually exclusive,

as I do throughout most of this chapter), and he calls his classifier PrTFIDF (be-

cause he considers it to be a probabilistic version of a Rocchio/TF*IDF classifier).

Like Naive Bayes, Probabilistic Indexing is a probabilistic approach (not surpris-

ingly given the name) that attempts to estimate the probability of each possible

category given a document. The description of this approach will likely seem much

more similar to Naive Bayes than to the Rocchio/TF*IDF approach described in

Section 2.6.1.1; however, Joachims (1997) shows that Probabilistic Indexing and

Rocchio/TF*IDF are actually similar in that the two techniques yield identical

categorization results under certain conditions. (These conditions involve assump-

tions that don’t exactly hold in practice, and for the experiments discussed in that

paper, a Probabilistic Indexing implementation outperforms a Rocchio/TF*IDF

implementation and performs about the same as a Naive Bayes implementation.)

The Probabilistic Indexing paradigm distinguishes between a document, d,
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and its representation. Let d be a document that needs to be categorized, and Θ be

a function that maps a document to its representation. Then, for all c ∈ C (where

C is the set of possible categories), a Probabilistic Indexing system calculates an

estimate of P (c|d, Θ) and choose the category for which this estimate is the largest.

The tricky step comes with the choice of Θ, which is not a deterministic

function. Every document is represented by a single word that is chosen randomly

from the bag of words representation of the document. In other words, letting W

be the set of all words in a document d (that is, all instances of all words, not just

distinct words), Θ randomly maps d to a single word chosen from W . So we can

now rewrite the probability we are trying to maximize as:

P (c|d, Θ) =
∑

w∈W

[P (c|w) × P (w|d, Θ)] (2.13)

We can rewrite P (c|w) with an application of Bayes’ theorem:

P (c|w) =
P (c) × P (w|c)

P (w)
=

P (c) × P (w|c)
∑

c′∈C [P (w|c′) × P (c′)]
(2.14)

We are now at a stage that everything can be nicely estimated based on

the training data. P (w|d, Θ) is simply TF (w, d) / |W | (where TF (w, d) is the

term frequency of w in document d as described in Section 2.4.2, and |W | is the

number of words in the document). P (c) for any category c can be estimated as

the percentage of training documents that belong to the category. Finally, P (w|c)

for any category c can be estimated by dividing the number of times w occurs in

training documents belonging to the category (i.e. the sum of the word’s term

frequencies over all documents in the training set belonging to the category) by the

total number of occurrences of all words in the same training documents (i.e. the

sum of all words’ term frequencies over all documents in the training set belonging to

the category). These estimates allow the system to compute a probability estimate

for each possible category, and the category with the highest probability is selected.
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Probabilistic Indexing systems are less common in the text categorization lit-

erature than the other two advanced approaches I discuss in this section. However,

of the six systems that comprise the publicly available Rainbow package (described

in Section 2.8), I think that the Probabilistic Indexing system has most consistently

yielded impressive results. In fact, for three of the four data sets that are part of

the corpus I have created (described in Section 3.1), the Probabilistic Indexing sys-

tem performs the best of these six systems. The Probabilistic Indexing system also

performs favorably against my own systems; it outperforms my density estimation

system described in Chapter 4 for all four data sets (although my density estimation

system provides more useful probability estimates), and it outperforms my BINS

system described in Chapter 5 for two of the four data sets (my BINS system with

the appropriate settings outperforms all others tested for the other two data sets).

2.6.2.2 Maximum Entropy

Maximum Entropy is a technique that has proven quite successful for a variety of

NLP applications (Ratnaparkhi, 1998; Berger, Pietra, and Pietra, 1996), and it

has also been applied to text categorization tasks (Nigam, Lafferty, and McCal-

lum, 1999). Like Naive Bayes and Probabilistic Indexing, Maximum Entropy is a

probabilistic approach, and in the domain of text categorization, probabilities are

estimated for each possible category that might apply to a given document. The

general principle behind Maximum Entropy approaches is to assume nothing, and

to consider all possibilities equally likely unless there is evidence otherwise. In other

words, the goal is to maximize entropy, which can be thought of as a measure of

uncertainty, subject to constraints derived from empirical evidence. A Maximum

Entropy system starts off assuming that all possible outputs are equally likely, and

then it repeatedly updates all probabilities as new evidence is observed, adhering

to certain constraints representing characteristics of the training data. When ap-
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plied to text categorization tasks, the possible outputs are the categories, and the

constraints are generally in the form of expected word counts for documents of each

possible category.

Let’s say we are dealing with a text categorization task that I discuss later in

this thesis, that of categorizing news documents into the categories Struggle, Poli-

tics, Disaster, Crime, or Other (defined to be mutually exclusive). Since there are

five categories, a Maximum Entropy system assumes that each has a probability of

one fifth. In other words, P (Struggle) = P (Politics) = P (Disaster) = P (Crime) =

P (Other) = 0.20.

Now let’s say we know one thing about a document d1, that it contains

the word “earthquake”. Furthermore, we have one constraint based on the training

data expressing that there is an 80% chance that a document with the word “earth-

quake” in it belongs to the Disaster category. Knowing nothing else, the way to

maximize entropy is to assign P (Disaster) = 0.80 and P (Struggle) = P (Politics) =

P (Crime) = P (Other) = 0.05. Let’s also say for some other document, d2, we

know only that it contains the word “president”, and we also have a constraint

expressing that there is a 70% chance that a document with the word “president”

belongs to either the Struggle category or the Politics category. Knowing noth-

ing more and avoiding all assumptions, the way to maximize entropy is to assign

P (Struggle) = P (Politics) = 0.35 and P (Disaster) = P (Crime) = P (Other) = 0.10.

These cases are both intuitive, and the probability assignments are obvious. How-

ever, let us say that for some other document, d3, we are aware of two facts - that it

contains the word “earthquake” and that it contains the word “president”. What

do we do? This time, the answer is not obvious.

Maximum Entropy provides a way of combining constraints that overlap.

First, a way of expressing features of documents is needed. Following the notation

in (Nigam, Lafferty, and McCallum, 1999), the features they use to apply Maximum



52

Entropy to a text categorization task are:

fw,c′(d, c) =







0 if c 6= c′

TF (w,d)
|W |

otherwise
(2.15)

In this equation, (d, c) represents a document/category pair while (w, c′) represents

a word/category pair. TF (w, d) is the term frequency of the word w in document

d, |W | is the set of all words in d (that is, all instances of all words, not just distinct

words), and |W | is the number of words in d. So, in expressing the features for

some given document, words that are not in the document do not add weight to

any category (since TF (w, d) will be zero), while words that are in the document

add weight to the category to which the document belongs.

In order to estimate the probability of a category given a document, the

features of the document are combined according to the following equation:

P (c|d) =
1

Z(d)
exp(

∑

i

λifi(d, c)) (2.16)

Here Z(d) is simply a normalizing factor that ensures the probabilities for the

various possible categories sum to 1:

Z(d) =
∑

c

exp(
∑

i

λifi(d, c)) (2.17)

When applied to a text categorization task using the features defined earlier, the

variable i is actually looping through all of the word/category pairs, since each

word/category pair represents a distinct feature of a document. Only words that

exist in a document need to be considered, because the value of features corre-

sponding to words that do not exist in the document are zero, and they do not

contribute to the sum used in the exponent. This leaves λi, which needs to be es-

timated for each possible feature based on the training data. These estimates take

into consideration that expected values for features in a model distribution should

match what has been observed in training data.
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The trick, then, is to estimate all values of λi, adhering to the constraints

(the counts seen in the training data), in such a way as to maximize the entropy of

the system. The algorithm that Maximum Entropy systems use to do this is called

improved iterative scaling (IIS). I am not going to give a formal description of this

procedure. Instead, I try to provide a very basic understanding of the principles

involved. For a formal description of improved iterative scaling and how it is used

to estimate the parameters for a Maximum Entropy system, I suggest reading

(Berger, Pietra, and Pietra, 1996) or (Ratnaparkhi, 1997), or for a description that

specifically addresses the use of improved iterative scaling and Maximum Entropy

for a text categorization task, I suggest (Nigam, Lafferty, and McCallum, 1999).

Improved iterative scaling starts with any initial distribution for parameters

(e.g. every λi can be assigned to 0). It then initiates a hill-climbing approach that

predicts categories for the training documents and, based on the results (some of

which are correct and some of which are not correct), finds an incrementally more

likely set of parameters. It has been shown that the space through which improved

iterative scaling is searching (each point in this space represents a possible set of

values for the parameters) contains no local maxima; thus, every iteration moves the

parameters closer to the global maximum entropy solution. Typically, Maximum

Entropy systems iterate until the values seem to converge, or they iterate some

fixed number of times.

In (Nigam, Lafferty, and McCallum, 1999), the Maximum Entropy system

they test beats a Naive Bayes system for two out of three text categorization tasks.

In my own research, I have seen that the Maximum Entropy system I have tested

(that which is part of the Rainbow package discussed in Section 2.8) generally falls

somewhere in the middle of the pack of tested systems. Still, Maximum Entropy

has had a lot of success in several other areas of NLP, and it is certainly a technique

that is worth considering.
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2.6.2.3 Support Vector Machines

The Support Vector Machine (SVM) approach towards text categorization is based

on the principle of Structural Risk Minimization (Vapnik, 1995). To fully explain

the details of SVMs is far beyond the scope of this chapter. For a complete and

formal description of SVMs, I would recommend the book by Cristianini and Shawe-

Taylor (2000) or the tutorial by Burges (1998). Here, I provide an overview of the

main ideas that should result in an intuitive understanding of how SVMs work.

SVMs have been successful in many areas of machine learning, with applications

including handwritten digit recognition, speaker identification, face detection in

images, and bioinformatics (the two recommended sources contain references to

papers discussing the use of SVMs for all of these purposes). Of course, the reason

I am including a discussion of SVMs in this chapter is that they have also been

successfully applied in the field of text categorization (Joachims, 1998; Elworthy,

1998; Drucker, Wu, and Vapnik, 1999; Yang and Liu, 1999; Dumais and Chen,

2000).

SVMs require that documents be represented as vectors. In the case of text

categorization, bag of words approaches as described in Section 2.4 are typically

used for the representation, so each dimension of the vector represents a single word

and the value of that dimension represents the weight of the word. The description

of SVMs in this section, however, is more general, and it is better to think of

each document as being represented by any vector of real values. Unlike the other

approaches I have discussed, SVMs are, in principle, really geared towards binary

categorization tasks, so at first, I assume that this is what we are dealing with;

later I discuss the possibility of using SVMs when dealing with mutually exclusive

categories. Let’s say each document vector consists of n dimensions. Then, in its

simplest form, an SVM system tries to find an n − 1 dimensional hyperplane that

separates the training documents that belong to the category being considered from
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those that do not. If such a hyperplane exists, the training documents are said to

be linearly separable. When a new document is encountered (also represented in

vector notation), the system checks on which side of the hyperplane the document

falls, and uses this to predict whether or not the document belongs to the category.

Usually, if there are any such hyperplanes that separate the positive examples from

the negative examples, then there are infinitely many, and the SVM system chooses

the one that maximizes that margin, which represents the shortest distance between

the hyperplane and any training example.

Figure 2.1: The bold line represents the separating hyperplane with the maximum
margin.

Figure 2.1 depicts a simple case in which each document is represented by

a vector of two real values. It is easy to think of this in geometric terms, with

each document being represented by a point in a two-dimensional Euclidean plane.

If the document belongs to some particular binary category (there is no need to

actually specify the category for this discussion), it is represented by an ‘X’, and

if not, it is represented by an ‘O’. The two dashed lines and the solid line in the

middle are all separating hyperplanes, and any other parallel line in between the

dashed lines would also be a separating hyperplane. But the solid line maximizes
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the margin. Moving or rotating that line at all would lessen the distance between

the line and at least one of the training vectors that fall on the dotted lines.

The vectors that fall on the dotted lines (and therefore are a distance of

exactly one margin from the optimal separating hyperplane) are called support

vectors; in a sense, they are the only training documents that matter. Removing

one of these documents might (but would not necessarily) change the solution.

Removing any other document would not change the solution. Notice, then, that

many training documents do not affect the system at all. If this seems unintuitive,

think of the documents representing the support vectors as the most difficult to

predict, since they are the closest to the borderline. The trained system has learned

a hyperplane that is close to these difficult to predict documents; the documents

that are much further away are obvious.

Of course, in actual practice, it is often the case that there are no separating

hyperplanes at all. Sometimes, this is just because of a few training vectors that

make such a solution impossible. In other words, there may still be a hyperplane

that separates most of the positive examples from most of the negative examples.

Such a hyperplane, used in the same manner as a separating hyperplane, would

still likely be an accurate predictor for future documents. SVM implementations

can take this into account, often finding an optimal hyperplane that is not actually

a separating hyperplane.

Figure 2.2: In this case, a separating hyperplane would have to be a single point,
but no single point does a good job separating positive examples from negative
examples.

Sometimes, though, even this is not good enough, and there are cases in

which no hyperplane in the original feature space does a good job distinguishing
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positive examples from negative examples. Figure 2.2 graphically depicts an even

simpler case than the last example, in which each document is represented by a

vector of only one real value. (That is, this case is simpler in terms of geometry,

but it does not have as simple a solution, as we shall see.) Each document is

represented by a point on a number line. Again, any document that belongs to the

category being considered is represented by an ‘X’ and any document that does not

belong to the category is represented by an ‘O’. Here, though, a difficulty arises.

A separating hyperplane would be a single point separating the positive examples

from the negative examples. But in this case, points with an even value tend to

belong to the category being considered, and points with an odd value tend not to

belong to the same category. No separating hyperplane does a good job separating

the positive examples from the negative examples.

In cases such as this, SVM systems map the vector representations of the

documents to a different feature space, usually one of higher dimension. The hope

is that in this destination feature space, the positive and negative examples of

the category are linearly separable (or, at least, closer to it). Then, an optimal

hyperplane can be found in this new feature space. When a new document is

encountered, the vector representation of the document is also mapped to the new

feature space; then the system observes on which side of the optimal hyperplane in

this new space the mapped vector falls, and makes a prediction about the category

being considered accordingly.

Looking back at Figure 2.2, let’s say we have a function that maps each

vector from the one-dimensional feature space to a two-dimensional feature space

such that the x-coordinate in the new feature space has the same value as the

single coordinate in the original feature space and the y-coordinate in the new

feature space is +1 or -1 depending on whether the single coordinate in the original

feature space is even or odd. Figure 2.3 graphically depicts the same document
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Figure 2.3: After mapping the vectors from the previous figure to a new feature
space, the positive examples are linearly separable from the negative examples.

vectors depicted in Figure 2.2 after they are mapped to this new feature space.

Now, the vectors are linearly separable, and it is easy to find the optimal solution.

It turns out that SVMs do not actually have to map vectors to the new feature

space. Instead, they use kernel functions. A kernel function takes two vectors in

the input space and computes the dot product that would be obtained if these

two vectors were first mapped to some other space. This is important for SVMs

because the dot product is actually used to determine on which side of the optimal

hyperplane a vector falls. By bypassing the need to actually map vectors to the

new feature space, kernel functions allow SVMs to be computationally plausible. In

fact, the choice of form for the kernel function that an SVM system uses is crucial to

its performance, since this really determines the feature space to which document

vectors are mapped, and only if the vectors are nearly linearly separable in this

feature space is the system able to find a hyperplane that is useful for predicting

whether or not future documents belong to the category being considered.

The discussion of SVMs so far has described how systems using this approach

can handle a binary categorization task in which a separate YES/NO decision is

made for every category. There are several ways in which the approach can be

used, instead, for mutually exclusive categories. One approach is to compare every
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category with every other category, and to use these comparisons to order the

likelihood of categories. (Remember that any binary categorization system can

also be used when there are exactly two mutually exclusive categories, as described

in Section 2.1). Another method is to use the distance between a document and

the optimal hyperplane (determined using the kernel function) as a measure of the

confidence that the document is, or is not, in each category. The document can

then be assigned to the category with the highest confidence (or, if there is no

category in which it is placed according to binary decisions, the category with the

least confidence in the negative direction).

SVMs have many theoretical properties that researchers admire. A discus-

sion of these properties is beyond the scope of this chapter, but they are discussed

in (Cristianini and Shawe-Taylor, 2000) and (Burges, 1998), the two texts I recom-

mended at the beginning of this subsection. Very briefly, there is a specific bound

on the expected error rate that an SVM based system will achieve, given that it

is using a kernel function that maps vectors to a space in which they are nearly

linearly separable. In practice, various forms of kernels have tended to work well for

specific tasks. See (Joachims, 1998) for a further discussion of why it is expected

that SVMs will work well for text categorization.

In the text categorization literature, SVMs have been very successful for most

of the tasks to which they have been applied. At the beginning of this subsection, I

cite several sources that discuss the use of SVMs for text categorization tasks, and

all have found that the approach has performed well. See, in particular, the work by

Yang and Liu (1999), in which the system SVMlight (discussed in Section 2.8) beats

all other systems tested for a formal comparison of systems based on experiments

involving the Reuters data set (also discussed in Section 2.8). In my own work,

however, I have not seen SVMs perform as well for my own text categorization tasks.

Section 2.9 discusses many of the reasons that systems may perform very well for
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some text categorization tasks and not others. For now, I will just say that I suspect

that SVMs tend to do better for binary categorization tasks, since that is what

they are really intended for in principle, and my work has involved tasks involving

mutually exclusive categories. Although I have discussed methods allowing SVMs to

be used for mutually exclusive categories a few paragraphs back, I believe that they

have drawbacks. It is also possible that the specific implementation of SVMs I have

used - that which is provided as part of the Rainbow package described in Section 2.8

- is not as good as some other implementations. However, for one of my data sets

from the corpus I have created (described in Section 3.1), I have also been able to

test SVMlight , which is the exact implementation that is shown to be so successful

by Yang and Liu (1999). This is intrinsically a binary categorization system, but

it can be used for one of my data sets involving exactly two mutually exclusive

categories. (This task involves the categorization of images as either Indoor or

Outdoor ; the discussion in Section 2.1 explains how a binary system can be used.)

SVMlight performs significantly better than Rainbow’s SVM implementation for

this data set, but still not as well as Rainbow’s Probabilistic Indexing system (this

approach is discussed in Section 2.6.2.1) or as well as two of my own systems

described in Chapters 4 and 5.

2.6.3 Some Other Approaches

There are many approaches that have been applied to text categorization, only some

of which have been discussed in this chapter. I have chosen these techniques because

they are among the more common approaches applied by researchers, and because

they are the approaches used by the systems that comprise the publicly available

Rainbow package (described in Section 2.8). Here, I provide a very brief description

of some of the other commonly used approaches. Systems using decision list and

decision tree approaches towards text categorization come up with a chain or tree
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of rules that, when followed, lead to a specific category (Cohen, 1995a; Quinlan,

1986; Quinlan, 1993). A Neural Network approach towards text categorization

(Schutze, Hull, and Pederson, 1995) involves a network of units with inputs and

outputs. The inputs to the first layer represent weights of terms, and the outputs

of the final layer represent scores for categories. In between, edges have weights

that propagate forward as nodes are activated. The learning phase consists of a

technique such as backpropagation in which weights of edges are learned based on

training examples. The Linear Least-Squares Fit (LLSF) technique is an example

of a regression method that computes a |C| by |T | matrix (where C is the set of

possible categories and T is the set of possible terms); this matrix is learned based on

the training set, and by multiplying the matrix with the vector representation of a

document, the system obtains a score for every possible category (Yang and Chute,

1994). The boosting approach towards text categorization (Schapire, Singer, and

Singhal, 1998; Schapire and Singer, 2000) involves combining many weak hypotheses,

each of which is a simple, moderately accurate hypothesis, sequentially in such a

manner as to hopefully improve the accuracy of categorization at each step. Linear

text classifiers produce category scores by taking the dot product (or cosine) of

a document with vectors associated with each category. The Rocchio/TF*IDF

approach discussed in Section 2.6.1.1 is the simplest and most common technique

of learning such a classifier, but more complex approaches, such as the Widrow-Hoff

and Exponentiated Gradient algorithms, are discussed in (Lewis et al., 1996).

2.7 Evaluation Metrics for Text Categorization

In order to compare various text categorization systems to each other, or to predict

a single system’s future performance for a given task, some method of evaluating

each system’s performance for the task must be employed. For a fair comparison,

each system should be applied to the same data set, and the same metric should be
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used to evaluate each system. If researchers want to compare their results against

previously published results, they must therefore make sure they apply their system

to the same exact data set used for the published work, and then use the same metric

used in published papers. An alternative way that researchers can compare their

own system against a system discussed in the literature, if that system is obtainable,

is for the researchers to run their own system and the competing system on their

own data. To be fair, in this case, the evaluation metric that is used to compare

systems should be chosen ahead of time, as it is possible that one metric may favor

one system while some other metric favors another. Some of the issues involved

with evaluating and comparing text categorization systems are discussed in (Lewis,

1995).

The simplest of the commonly used metrics to evaluate systems is probably

overall accuracy, i.e. the percentage of a system’s predictions that are correct. For

tasks involving mutually exclusive categories in which there is not a single category

that dominates, this is often a very good measure of performance, and it is one

that I often use throughout this thesis. Since every document must be assigned to

exactly one category, a system makes only one prediction per document. If there

are n documents in a test set and k are assigned to the correct category by a system,

the accuracy of the system is k/n. (Often this fraction is multiplied by 100 and

expressed as a percentage.) Another equivalent performance metric is overall error,

which is simply one minus overall accuracy; this represents that percentage of a

system’s predictions that are wrong.

Overall accuracy and overall error count every decision as entirely correct or

entirely incorrect. In general, this seems fair, and is accepted by most researchers.

In Section 8 of (Sable and Hatzivassiloglou, 2000), a co-author and I toy with an

alternative metric that allows predictions to be weighted as partially right or wrong,

depending on confidence. For example, a high-confidence, correct prediction is re-
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warded more than a low-confidence, correct prediction; a high-confidence, incorrect

prediction is likewise penalized more than a low-confidence, incorrect prediction.

However, this type of evaluation is quite rare, and I do not discuss it further in this

chapter or this thesis.

Overall accuracy is not an appropriate evaluation metric for binary catego-

rization tasks, especially when most documents belong to very few of many possible

categories. As described in Section 2.1, binary categorization tasks require a sepa-

rate YES/NO decision for every document/category pair, and a system that decides

NO for every decision can have a very high overall accuracy, but clearly such a sys-

tem is trivial and not useful. The same problem can occur when dealing with

mutually exclusive tasks if one category clearly dominates the others in abundance;

a system that assigns every document to this largest category may achieve a high

overall accuracy.

Partly to deal with this problem, alternative measures have been developed

that are indicative of a system’s performance for individual categories. The two

most common measures are precision and recall. Precision represents the percent-

age of documents assigned by the system to a category that actually belong to that

category. Recall represents the percentage of documents actually belonging to a

category that are assigned to that category by the system. A third measure that

sometimes appears in the text categorization literature is fallout, which represents

the percentage of documents not belonging to a category that are mistakenly as-

signed by the system to the category. This is considered an alternative to precision;

it seems to be less common and, in my opinion, it is less intuitive, so I do not discuss

it further in this chapter.

More formally, let Table 2.2 be the contingency table for some single category

of interest based on the results of a system that has been applied to a data set.

TP represents the number of true positives, which is the number of documents that
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Actual YES Actual NO
System YES TP FP
System NO FN TN

Table 2.2: This is a generic contingency table for a single category.

are assigned by the system to the category and actually belong to the category.

FP represents the number of false positives, which is the number of documents

that are assigned to the category but do not actually belong to the category. (For

the case of a false positive, if we are dealing with binary categories, this does not

imply anything about the other categories; if we are dealing with mutually exclusive

categories, this implies that the documents belong to one of the other categories.)

FN represents the number of false negatives, which is the number of documents that

are not assigned to the category but should have been assigned to the category (i.e.

they actually belong to the category). Finally, TN represents the number of true

negatives, which is the number of documents that are correctly not assigned to the

category (i.e. they do not belong to the category). (For the case of a true negative,

if we are dealing with mutually exclusive categories, it does not matter if these

documents are assigned to the correct category; for example, if Table 2.2 represents

the contingency table for some category c1, and a given document is assigned by

the system to some other category c2 when it really belongs to a third category c3,

this incorrect prediction still increases the count of TN for the contingency table

of c1.)

Based on this contingency table for a single category, the precision and recall

of the system for the category are:

P =
TP

TP + FP
, R =

TP

TP + FN
(2.18)

In other words, the precision is the number of documents correctly assigned to the

category divided by the total number of documents assigned to the category, while
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recall is the number of documents correctly assigned to the category divided by the

number of documents belonging to the category. (If the formula for either precision

or recall results in a denominator of zero, the corresponding measure is considered

undefined.) A perfect system would achieve a precision and recall of 1 (or 100%).

In actuality, no text categorization system is perfect. Some documents that

do not belong in a category are sometimes assigned to the category, and some doc-

uments that do belong in the category are not assigned to the category. Typically,

a system can be tweaked to improve one measure for a category at the expense of

the other. If parameters are adjusted so that more documents are assigned to a

particular category, the recall for that category likely improves but the precision

likely gets worse. On the other hand, if parameters are adjusted so that less doc-

uments are assigned to the category, the recall likely goes down but the precision

likely improves. At times, one of these two measures may be more important than

the other. For example, in an application that filters out spam from incoming e-

mail, the precision for the category spam is probably more important than recall,

because allowing a piece of spam to fall through is probably not as bad as filtering

out an important message.

To compare systems to each other, it is nice to have a single metric repre-

senting performance. If both precision and recall are being used, for example, it

is difficult to compare two systems to each other if one has better precision but

the other has better recall. Several techniques therefore exist that combine preci-

sion and recall into a single measurement. A good analysis of these techniques is

provided in (Yang, 1999), and I summarize them here.

One such technique is to use the eleven-point average precision. This takes

advantage of the fact that parameters can generally be tweaked to increase either

precision or recall at the expense of the other. The idea here is to tweak the values

repeatedly in order to achieve recall values of 0.0, 0.1, 0.2, ..., 0.9, and 1.0. At
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each of these recall levels, precision is measured, and the 11 obtained precisions are

averaged together into a single measurement.

Another technique is to use the breakeven point (BEP), which is the value

at which precision and recall are equal to each other. Like the eleven-point average

precision, obtaining this value entails tweaking parameters of a system. If it is

impossible to achieve values of precision and recall that are exactly equal, then the

average of the nearest precision and recall can serve as an interpolated BEP.

A third technique to combine precision and recall with a single metric is the

F measure (van Rijsbergen, 1979). Formally:

Fβ =
(β2 + 1) × P × R

β2 × P + R
(2.19)

Here, β determines how to weight precision versus recall. If beta = 0, then Fβ = P ,

and as β → ∞, Fβ → R. As mentioned a few paragraphs back, for certain tasks,

one of either precision or recall may be considered more important than the other,

and in these cases, the Fβ metric certainly offers an important advantage. Typically,

though, precision and recall are weighted equally, in which case we are dealing with

the F1 measure, a special case of the Fβ measure defined as follows:

F1 =
2 × P × R

P + R
(2.20)

The F1 measure is always closer to the lower of precision and recall, and therefore

requires a good score for both of these metrics in order to indicate good performance

for a category.

As pointed out in (Yang, 1999), the BEP for a system applied to a task is

always less than or equal to the optimal F1. This is because the BEP is really

an instance of the F1, at that point where precision and recall are equal. This is

because, at that point, we have:

F1 =
2 × P × R

P + R
=

2 × P × P

P + P
=

2 × P 2

2 × P
= P = R = BEP (2.21)
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So we know that the F1 measure is equal to the BEP if the settings of parameters

are just right, and it may, in fact, be higher (or lower) at other settings. In any

case, this is an example of why it is not fair to compare systems using similar but

different metrics, even if they are applied to exactly the same task.

In my own work, I have relied mainly on the F1 to measure performance for

individual categories. There are many advantages of this metric. The most impor-

tant advantage is that it does not require a system to be tweaked over and over

again to obtain various precision/recall results for each category. This does not

really make sense, especially when dealing with mutually exclusive categories. An

actual system will, in practice, only be applied once to a data set. The F1 can be

used to measure performance for all categories based on this single run. Through-

out this thesis, I typically provide F1 measures for all categories, as well as overall

accuracy measures of systems. Since I typically deal with mutually exclusive cate-

gories in which no single category dominates, overall accuracy is the measurement

I rely on the most to compare systems.

As I have explained earlier in this section, when dealing with binary text

categorization tasks in which most documents do not belong to most categories,

overall accuracy is not a reliable measure of performance for a system. This is the

case, for example, when dealing with the Reuters data set, described in Section 2.8.

Precision and recall are still applicable, and can be combined with a single metric

such as the F1 measure for each individual category. However, it is still convenient

to have a single measure of performance based on the entire data set (and all

categories) in order to compare systems. For this reason, it is common to average

precision, recall, and especially F1 measures over all categories. This can either be

done treating all documents as equal (micro-averaging) or treating all categories

as equal (macro-averaging). Micro-averaging creates a single, global contingency

table in which the value of each cell is the sum of the values of the corresponding
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cells from the per-category contingency tables; the micro-averaged metrics are then

computed based on this global contingency table. Macro-averaging computes the

metrics for each individual category first and then averages these scores together

to compute the macro-averaged metrics. In the text categorization literature, the

micro-averaged F1 seems to be more commonly used than the macro-averaged F1

to compare systems (Yang and Liu, 1999). In this thesis, when I deal with binary

categories (e.g. at the end of Chapter 4 when I test my density estimation system

on the Reuters data set described in Section 2.8), I report both of these measures.

2.8 Common Corpora and Publicly Available Sys-

tems

As has been mentioned in the last section, there are two ways that a researcher

can compare his system to others. One is to test the system on the exact same

data set as that of other researchers who have already published results. To aid

this purpose, there are a few publicly available text categorization corpora that

are commonly used for published papers. The other method is for the researchers

to test their own system and the competing systems on their own data sets. This

is only possible if the competing systems are made available; luckily, a few such

publicly available text categorization systems exist.

The most commonly used text categorization corpus is the Reuters corpus

(Lewis, 1997), which has already been mentioned several times throughout this

chapter. The current version of this collection is Reuters-21578, and this is currently

available on the web at http://www.daviddlewis.com/resources/testcollections/

reuters21578 or http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html.

The first of these two sites is maintained by the David Lewis, the creator of the

corpus, and from here there is also a link to a site at which a newer, supposedly
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better version of the corpus will soon be made available. The Reuters-21578 col-

lection comes with several splits that determine exactly what portions of the data

should be used with training and testing. Both of the collection sites contain a link

to a README file (Lewis, 1997) that describes the corpus and the various possible

splits.

The split that I have used for my own work is referred to as the ModApte

split of the Reuters-21578 corpus. This split includes 9,603 training documents,

3,299 test documents, and 135 categories. The categories are described as being

“economic subject categories” (Lewis, 1997) such as coconut, gold, inventories, and

money-supply. These are binary categories, so it is possible for a document to

be assigned to no categories, one category, or multiple categories. Two of the

many published papers comparing the performance of multiple systems on this data

set are (Yang, 1999) and (Yang and Liu, 1999). I consider both of these papers

impressive for their clear descriptions of procedure, their exploration of systems

using many different approaches, and their evaluation using several metrics.

To be able to directly compare the results of my systems tested on this

data set with the published results of Yang and Liu (1999), I have applied the

same pre-processing to the corpus, as have some other researchers (e.g. (Joachims,

1998)). This consists of first eliminating all categories that do not contain at least

one training document and one test document and then disregarding all unlabeled

documents. This process leaves 7,770 training documents, 3,019 test documents,

and 90 categories. Most of the remaining documents documents (9,160 of the

10,789, or 84.9%) are assigned to exactly one category, and the rest are assigned to

more (since the pre-processing disregarded documents without any categories). The

largest number of categories assigned to any single document is 15, and the average

number of categories assigned to a document is 1.24. The category distribution

is quite skewed. The most common category has 3,964 instances (2,877 training
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instances and 1,087 test instances), while, on average, each category has only 148

instances. Some categories have just one training instance and one test instance.

Another publicly available corpus sometimes used for text categorization re-

search is the OHSUMED test collection (Hersh et al., 1994), which is actually

a subset of the MEDLINE database. This collection is available via ftp from

ftp://medir.ohsu.edu/pub/ohsumed, along with a corresponding README file.

The documents are abstracts with titles from medical journals, and the categories

are MeSH (Medical Subject Heading) indexing terms. As is Reuters, OHSUMED is

a binary text categorization corpus. Research applying text categorization systems

to this corpus includes (Lewis et al., 1996), (Yang, 1997), and (Joachims, 1998).

A third corpus that has commonly been used to test text categorization

systems is the TREC-AP test collection. In this collection, the documents (of

which there are hundreds of thousands) are AP headlines and the categories are

relevant topics such as federal budget and Nielsons ratings. As are Reuters and

OHSUMED, the AP test collection is a binary text categorization corpus. Much

of the text categorization research using this data set (Cohen, 1995b; Lewis et al.,

1996; Schapire and Singer, 2000) uses ten categories originally defined by Lewis

and Gale (1994).

A fourth commonly used corpus for text categorization research is the 20

Newsgroups collection collected by Lang (1995). This data set is available on

the web at http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

news20.html or http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.

The documents are messages that have been posted to 20 Usenet newsgroups (1,000

from each), and the categories are the newsgroups themselves. Although many

text categorization researchers have treated these categories as mutually exclusive

(Joachims, 1997; McCallum and Nigam, 1998; Nigam, Lafferty, and McCallum,

1999; Nigam et al., 2000), Schapire and Singer (2000) point out that some articles
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are posted to multiple newsgroups, and they argue that this should be treated as

a binary text categorization corpus.

A fifth commonly used text categorization corpus is the WebKB dataset

(Craven et al., 1998). This data set is available on the web at http://www-

2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data. The data set consists of

over 8000 web pages; about half were taken from the computer science departments

of four universities, and the rest were taken from miscellaneous departments of other

universities. The categories are student, faculty, staff, department, course, project,

and other, and they are mutually exclusive. Research applying text categorization

to this corpus includes (McCallum and Nigam, 1998), (Blum and Mitchell, 1998),

(Nigam, Lafferty, and McCallum, 1999), and (Nigam et al., 2000).

The corpora mentioned so far in this Section allows researchers to compare

their systems to others with published results. Researchers must make certain to

use the same data set with the same breakdown of training and test documents,

and the same evaluation metrics must be used. The other way that researchers can

compare competing systems to their own is to run the competing systems on their

own data. This is only possible if the competing systems are obtainable. Luckily,

there are a few publicly available text categorization packages that give access to

systems relying on a variety of approaches.

One publicly available text categorization package is the Rainbow package

(McCallum, 1996), available on the web at http://www-2.cs.cmu.edu/˜mccallum/

bow/rainbow. This package is based on the Bow library (McCallum, 1996), avail-

able on the web at http://www-2.cs.cmu.edu/˜mccallum/bow, which also includes

front-ends for clustering and information retrieval. The Rainbow package is com-

prised of several text categorization systems relying on a variety of approaches.

These approaches are Rocchio/TF*IDF, K-Nearest Neighbor, Naive Bayes, Prob-

abilistic Indexing, and Support Vector Machines; in other words, all of the ap-
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proaches explained in Sections 2.6.1 and 2.6.2. The systems that comprise the

Rainbow package assume that categories are mutually exclusive, and therefore they

have been appropriate for my own research which has concentrated on tasks involv-

ing such categories. Throughout this thesis, I compare performance of my own

systems to performance of the systems that comprise the Rainbow package.

Another publicly available categorization system is SVMlight . This system

is available on the web at http://svmlight.joachims.org. Strictly speaking, this is

not just a text categorization system; rather, it is a categorization system that can

accept, as input, feature vectors representing documents such that each feature has

a real value. SVMlight can thus be used for text categorization by defining the fea-

tures for documents to be the set of possible words (or terms, or stemmed words,

etc.). SVMlight has been extremely successful, as discussed in the text categoriza-

tion literature, particularly for the Reuters data set (e.g. see (Yang and Liu, 1999),

in which SVMlight outperforms all competing systems). SVMlight assumes binary

categories, and so it is not appropriate for most of the tasks I have focused on in

my own research. (There are ways to convert binary decisions into decisions for

mutually exclusive categories, but I believe they have drawbacks, and I have not

applied them using this system.) I have tested SVMlight on a task involving the

categorization of images as Indoor or Outdoor. As explained in Section 2.1, sys-

tems intended for binary text categorization tasks can be applied to tasks involving

exactly two mutually exclusive categories. For this task, SVMlight outperforms

the implementation of SVMs included with the Rainbow package (discussed in the

previous paragraph), but it does not do as well as some other systems, including my

own density estimation system discussed in Chapter 4 or my BINS system discussed

in Chapter 5.

As explained earlier in the section, public corpora and systems allow re-

searchers to compare their techniques against others. The contributions of my own
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work include the creation of a new text categorization corpus and a new text cat-

egorization system. The corpus is described in detail in Section 3.1. It is unique

among publicly available text categorization corpora in that it includes images

with labels and associated text. It also includes four separate sets of categories,

two of which are hierarchical. Instructions for obtaining this corpus will soon be

posted at http://www.cs.columbia.edu/˜sable/research/corpus.html. The system

is BINS, described in detail in Chapter 5. The approach this system uses is a

generalization of Naive Bayes (explained in Section 2.6.1.3) in which term weights

are estimated for groups of words that share statistical features in common; this

can be thought of as a smoothing technique that avoids inaccurate term weights

for individual words with scarce evidence. The system is user friendly with well-

documented code and an interface similar to that of the Rainbow package discussed

earlier in this section. Instructions for obtaining this system will soon be posted at

http://www.cs.columbia.edu/˜sable/bins.html.

2.9 Various Properties of Data and Categories

This chapter has discussed many approaches for text categorization. Some, such

as those discussed in Section 2.6.1 (Rocchio/TF*IDF, K-Nearest Neighbor, and

Naive Bayes), are based on simple, intuitive principles, while others, such as those

discussed in Section 2.6.2 (Probabilistic Indexing, Maximum Entropy and Support

Vector Machines), are more advanced. These approaches have all commonly been

applied to text categorization tasks in the literature without a clear winner. Most

of the literature seems to suggest that the advanced approaches are better than the

basic ones; however, this has been based on experiments with a limited number of

corpora - primarily those discussed in Section 2.8, with the Reuters corpus easily

being the most commonly used corpus - and, in my own research experience, I

have not seen this to be the case. With some improvements, I show in this thesis
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that modifications of the basic techniques are quite competitive. For example,

the addition of density estimation to a Rocchio/TF*IDF approach (discussed in

Chapter 4) or the smoothing of a Naive Bayes approach using bins (discussed in

Chapter 5) lead to systems that meet, and sometimes beat, the performance of all

other systems tested for tasks involving data sets of a corpus that I have created

(discussed in Section 3.1). In this Section, I argue why I believe that there is no

clear winner in the field of text categorization. The gist of the argument is that the

properties of the categories and the data used for text categorization tasks are highly

variable, and which approaches are likely to do well for a given text categorization

task depends on these properties. I make an analogy to the “No Free Lunch”

theorems (Wolpert and Macready, 1995; Wolpert and Macready, 1997), and argue

that no method should be expected to perform the best for all cases.

The properties of categories involved with text categorization tasks can vary

highly. Categories can be mutually exclusive or independent; categories can be

general or specific; categories can be nominal or action oriented; there might be

many categories or there might be few, and categories may have approximately

equal representation or the distribution might be very skewed. These properties

of categories can all potentially affect the likelihood that one type of system (i.e.

a system that uses a particular approach) outperforms another. The next few

paragraphs expand what I mean by each of these properties and how this might

affect some of the approaches that have been discussed in this chapter.

As first discussed in Section 2.1, categories are sometimes mutually exclusive

and exhaustive, in which case inclusion of a document in one category excludes the

inclusion of the document in all other categories; in other cases, categories are

binary, in which case the relationship between categories is arbitrary, and most

systems then treat the categories as independent. Some approaches are really set

up, in principle, for one of these two cases, and can only be applied to the other
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case after certain hacks are applied. For example, the Rocchio/TF*IDF approach

computes a similarity between a document and every possible category. If the

categories are mutually exclusive, a system using such an approach can assign

the document to the category with the highest similarity score. However, if the

categories are binary, some additional step is needed to convert the similarity scores

to YES/NO decisions for every category. A few of the possible methods of doing

this are described at the end of Section 2.6.1.1. All are a bit ad-hoc, and this might

explain why Rocchio/TF*IDF seems to underperform other approaches in much of

the text categorization literature (e.g. see the comparison of many approaches by

Yang (1999)), which generally focuses on binary text categorization tasks. In my

own work, however, which focuses on mutually exclusive categories, I have seen that

Rocchio/TF*IDF often performs well, especially when aided by density estimation

as explained in Chapter 4. On the other hand, consider an SVM approach towards

text categorization, which computes a hyperplane for every category. For binary

categorization, a document can be placed in or excluded from a category depending

on which side of the hyperplane the document falls. However, if the categories

are mutually exclusive, some additional step is necessary in order to determine to

which single category a document should be assigned. A couple of methods of doing

this are mentioned in Section 2.6.2.3, but again, they are somewhat ad-hoc. For

example, one approach that is used is to consider the distance of the document

from a hyperplane as a measure of confidence for the corresponding category, but

there is no real reason to believe that different categories should share the same

scale. This might explain why SVMs seem to perform so well in the literature (e.g.

see (Yang and Liu, 1999)), but they do not perform extraordinarily well for many

of the tasks I consider in my own research.

Text categorization has many purposes, some of which are mentioned in

Section 2.2. Some of the potential applications deal with categories that are quite
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general; for example, the categorization of e-mail as spam versus not spam. The

category not spam is especially vague, representing any type of e-mail that the

user would not want filtered, and while spam might seem specific at first, most

people who commonly use e-mail probably realize that this comes in many forms.

Other uses of text categorization deal with categories that are more specific. In my

own research, I deal mainly with categories of my own creation that apply to news

documents and their embedded images (the corpus I have created is discussed in

Section 3.1); this type of categorization can aid browsing and search capabilities,

as is shown in Chapter 9 which discusses Columbia University’s Newsblaster sys-

tem. The sets of categories that apply to my corpus range from the general (Indoor

versus Outdoor, applying to images) to the specific (Workers Responding, Affected

People, Wreckage, or Other, applying only to images embedded in news documents

about disasters). The multiple sets of categories that apply to my corpus also repre-

sent different levels of abstraction; one is topical and deals with content (Struggle,

Politics, Disaster, Crime, or Other, applying to full news documents), while an-

other deals with the general setting of an image (Indoor versus Outdoor). Some

text categorization corpora contain categories that are even more specific than any

of the ones mentioned so far; for example, the commonly used Reuters data set

discussed in Section 2.8 contains categories such as potato and income.

Although it might seem like there is no obvious reason that the distinctions

mentioned in the previous paragraph should affect which systems perform well,

there are reasons that this is likely the case. For one, the specificity versus generality

of the categories affects the data. In other words, if categories are very specific -

e.g. potato, which is literally a Reuters category applying only to economic articles

about potatoes - the documents within a category will likely have very similar

text, and this helps certain approaches more than others. On the other hand, if

the categories are vague and abstract, such as the Indoor and Outdoor categories,
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documents within a category will have a much greater variance. Later in the section,

I discuss why this issue involving training data influences various approaches to

different extents. Another reason that the specificity or generality of categories

can affect different systems is that it might affect what types of words tend to be

important. I am thinking here of the authorship attribution task considered by

Mosteller and Wallace (1963; 1964). Here, the categories are the possible authors,

and these are clearly general in the sense that any author may choose to write about

any topic; it turns out that for such categories, content words are not important

at all, whereas filler words such as “an”, “of”, and “upon” are quite indicative. A

Rocchio/TF*IDF approach has no chance with these categories, since these words

are automatically given very low weight. Other approaches discussed in this chapter

also have no chance if such words are filtered out, but variations of approaches such

as Naive Bayes that do not filter out words and consider counts as well as presence

may do well (this is basically the approach used by Mosteller and Wallace).

Some categories are nominal, and what I mean by this is that the mere

mention of a single object or concept in a document might by enough to determine

a category. For example, one set of categories defined for my own corpus (described

in Section 3.1) deals with types of events discussed in news documents, and the

word “earthquake” is a great indicator that the document belongs in the Disaster

category. However, other categories involve determining the focus or emphasis of

a document. For example, another set of categories that applies to the images

embedded in the Disaster documents deals with the focus of the images and the

actions taking place. A word such as “victim” in a caption is a good indicator of the

Affected People category if it is the main subject of the caption, but if the “victim”

is being helped by a “rescuer”, and “rescuer” is the main subject, the image is

likely more appropriate for the Workers Responding category. This is made more

clear in Chapter 6, in which I argue that all bag of words approaches are likely to
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have trouble with tasks such as this (i.e. those relying on focus, perspective and

point-of-view). However, I describe another system in that chapter, one that relies

on deeper linguistic processing, that performs better for this specific task.

Finally, it is plausible that certain approaches may fair relatively better

when dealing with just a few categories while others may fair relatively better

when dealing with many categories. If the categories are binary, in which case

most systems consider them to be independent, this probably doesn’t make any

difference, but if the categories are mutually exclusive, it might. It is quite possible

that some approaches may fair relatively better if categories are approximately

equally distributed, while others may fair relatively better when the distribution

is more skewed; and one might expect that a skewed distribution is more likely

when there are many categories. For example, if there are many categories with a

skewed distribution, a kNN system may favor large categories and penalize small

categories to an unfair degree. It is more likely that the majority of neighbors

of a new document belong to the larger category just because there are more of

these documents in the training set. While it is good to favor larger categories to

some degree, the kNN system may give them an unfair advantage. A Naive Bayes

system, on the other hand, may not give larger categories enough of an advantage.

Although the skew affects the estimated a-priori probabilities of categories, it is

rare that this makes any difference for a prediction because the final probabilities

of a Naive Bayes system are usually exaggerated (as explained in Section 2.6.1.3).

In addition to variations in properties of categories, there are several prop-

erties of data that vary from one categorization task to another. The training set

can be large or small (i.e. there may be many training documents or there may

be few); the individual training documents might be short or they might be long;

documents within a category may tend to be very similar to each other, or there

may be lots of variety within each category; the labels of the training documents



79

might be highly accurate or there might be a significant degree of error. These

properties of data can all potentially affect the likelihood that one type of system

(i.e. a system that uses a particular approach) outperforms another. The next few

paragraphs expand what I mean by each of these properties and how this might

affect some of the approaches that have been discussed in this chapter. Some of

these properties may be influenced by the specific task being considered (i.e. the set

of categories may indirectly affect some of these properties), while others depend

only on the training data obtained.

All other things being equal, it is expected that all machine learning systems

will perform better with more training data than with less. In other words, as more

and more accurate and representative training examples are added to a training

set, the performance of any system is likely to improve (perhaps with diminishing

returns as some optimal performance is approached). However, some systems are

affected more than others by the need for lots of training data. If curves representing

performance versus training set size are plotted, they will not have the same slopes

at various points for various systems using distinct approaches. It is therefore

possible that the system that performs the best when there is little training data

may not be the system that performs the best when there is lots of training data.

Although I can not claim to have a clear intuition as to which systems are more

affected by training set size than others, I have certainly noticed evidence in my

own research experience that this is the case. For example, I show in Section 4.3.3,

that when applied to the categorization of binary Reuters categories, a system

using density estimation outperforms a system using a standard Rocchio/TF*IDF

approach for large categories, but the opposite is true for small categories.

Depending on the task being considered, documents used for text catego-

rization tasks can vary highly in length. News articles may tend to contain more

text than e-mails or web pages, and image captions have a lot less text than any
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of those. The formality of the text also depends on the type of documents being

considered. For example, e-mails tend to be more casual than news articles, and

this might mean that they vary more. Once again, it is not clear how these issues

affect various systems, but it probably does not affect all approaches the same way.

Image captions probably do not contain important terms more than once, whereas

news articles may contain important terms many times. We have already seen that

different approaches handle term frequencies differently; for example, many Naive

Bayes implementation only use binary weights for terms, therefore not taking this

into account at all, whereas a Rocchio/TF*IDF approach uses statistical weights

that do take term frequencies into account. It is also possible that approaches

that use deeper NLP processing (such as that described in Chapter 6) may have a

better chance when documents are small; it is easier to parse a single sentence, for

example, than an entire article, and when there is little text, it might also be more

important to determine additional information such as the main subject or action

taking place.

One issue involving data that is influenced by the categories being considered

is whether or not the documents within a category tend to all be similar to each

other, or whether there is a lot of variety within a category. For example, within

the Reuters category potato (applying only to economic articles about potatoes), it

is likely that all the documents are very similar to each other, because the category

is extremely specific. In a category such as Politics, this is less the case, although

there are certain terms and concepts that might be included in most documents.

A category such as Outdoor likely consists of a huge variety of documents that do

not share much in common at all. This property clearly affects certain approaches

more than others. For example, a Rocchio/TF*IDF approach is really computing

a centroid for every category, and comparing new test documents to all of the

centroids. Centroids are not very reliable for categories with a lot of variety. A
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kNN approach, on the other hand, is not affected by this, as long as there are

some very similar training documents with the same category as the new document

being considered (i.e. the existence of other, non-similar training documents with

the same category does not hurt). And for a Naive Bayes approach, it is not really

important that any training documents are very similar to the new document being

considered, as long as the individual words in the new document are more likely

in the correct category. This certainly does not mean that Naive Bayes is always

better; there may be tasks for which any individual word might be found in any

category, but looking at a document as a whole is more indicative. In any case,

this is an issue that affects different approaches to different extents.

Finally, depending on how training data is obtained, some training sets may

be more accurate than others. If labels are taken from many experts, and only

training documents for which there is agreement are used, it should be expected

that the labels are more accurate than if, for example, only one non-expert is used.

Labels may be even less accurate for a training set that has been created in some

automatic fashion without human intervention. All other things being equal, all

systems are expected to perform better if the training data is more accurate, but the

level to which different approaches are affected by inaccuracies in the training set

is not necessarily the same for all cases. For example, in Appendix P, I compare

the use of an automatically generated training set for Newsblaster (described in

Chapter 9) to one using manually labeled documents. Although the automatically

generated training set is larger, it is also less accurate, and all tested systems

perform better with the manually created training set. Still, the degree to which

each system is affected varies highly. The system least affected performs only 3.1%

worse when the automatic training set is used, while the system most affected

performs over 40% worse.

We have thus seen that there are many properties associated with text cat-
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egorization tasks that can vary. We have also seen that many approaches to text

categorization exist, and I have already expressed that there is no clear winner

in the field. I believe that these two facts are related. The text categorization

literature seems to support the idea that recent, advanced approaches should be

expected to win out over basic approaches. In my own experience, however, I have

not seen this to be the case. Most published papers on text categorization base

results on just a few public corpora, and a very large proportion of these use the

Reuters corpus. This corpus consists of many specific, binary categories.

I believe that the reason that there is no clear winner for all text categoriza-

tion tasks is related to the so-called “No Free Lunch” (NFL) theorems (Wolpert

and Macready, 1995; Wolpert and Macready, 1997). These theorems state that any

two algorithms used to search the same space perform the same over all possible

cost functions. In other words, for every case where one such algorithm performs

better than a second, there is some other case where the second algorithm performs

better than the first. There has been work that shows that NFL also applies to

tasks such as cross validation (Zhu and Rohwer, 1996). This does not mean that

methodologies such as cross validation are not useful. What it does mean is that

such methodologies are making assumptions about the expected data, and they will

only perform well if the assumptions are true. The NFL theorems, as stated, do

not directly apply to text categorization. Still, I believe that the general result still

holds; that is, the approach that works the best for a specific task is the one that

best fits the data, and certain properties of the data are often indirectly determined

by the specific categories.

Of course, it would be wonderful if one could determine which approaches

are likely to work well for tasks with specific properties without having to test all

possible approaches. This is beyond the scope of this chapter and thesis; in fact,

I believe it is a very difficult task that would necessarily involve a lot of experi-
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mentation with many systems and many corpora containing data and categories

that exhibit various properties. This could be worthy of an entire thesis in and of

itself. For now, it is necessary to perform cross validation experiments or experi-

ments with a tuning set (as explained in Section 2.5) in order to determine which

approaches perform well for the task at hand.

2.10 Concluding Discussion of Text Categoriza-

tion

In this chapter, I have introduced the reader to the field of text categorization.

I have formally defined the task and listed some of the potential applications. I

have described the essence of the bag of words approach used by almost all modern

systems to represent documents. I have explained that machine learning approaches

learn a classifier from a training set, often tuning parameters with a technique such

as cross validation. I have described many of the common approaches used for text

categorization, including a few basic approaches and a few that are more advanced,

and I have explained some of the metrics used to evaluate them. Finally, I have

discussed many of the properties of categories and data that vary highly from one

task to another, and I have provided some insight into how these properties may

determine which system performs the best for a given task.

There is so much future work to be done in the field of text categorization.

Although there have been some large studies comparing approaches (e.g. (Yang,

1999) and (Yang and Liu, 1999)), such studies have generally relied on one or a few

publicly available corpora. A more general study is needed that compares different

systems for many possible tasks. It would be nice if one could come up with some

sort of rules to determine which approaches would likely work the best for which

types of text categorization tasks. For now, it is probably best to rely on cross
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validation or a similar technique to determine which approach is the best for a

given task.

As discussed in Section 1.3, text categorization research generally fits into

one of two paradigms - the exploration of techniques or the exploration of represen-

tation. Most of the recent literature fits into the first of these two paradigms; that

is, researchers have been attempting to create better machine learning techniques.

Some of my own research fits into this paradigm as well. I describe in Chapters 4

and 5, for example, two new machine learning approaches that I have developed.

However, it is not clear that there isn’t more room for improvement in the second

paradigm, especially when looking at tasks that are slightly out of the ordinary.

In my own research, I have dealt mainly with images. I show in Chapter 3

(and throughout this thesis) that the categories and the text associated with images

differ substantially from those associated with lengthier text-only documents such

as articles or e-mails. As explained in Section 2.9, these differing properties may

mean that the approaches which generally perform the best for more standard text

categorization tasks may not perform the best for those that I am commonly deal-

ing with. In addition, images allow for a representation that text-only documents

do not - namely, a representation involving low-level image features. For all of these

reasons, much of my own research falls into the second of the two paradigms dis-

cussed previously; that is, exploration of representation. In Chapter 6, for example,

I discuss the creation of a system that does not rely on a bag of words representa-

tion, but instead uses deeper NLP techniques to determine the main subject and

verb of an image caption; this system beats all competing systems tested for a spe-

cific task. In Chapter 8, I discuss the use of low-level image features, in addition

to text, to categorize images.
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Chapter 3

Categorizing Images Using Text

I have shown in Chapter 2 that many text categorization methodologies exist, and

that virtually all of the popular methods today rely on machine learning approaches

and bag of words representations for documents. In this chapter, I begin to discuss

the use of such techniques to categorize images and the documents that contain

them. For some sets of categories, the pre-existing approaches work fine, but for

other sets of categories, this is not the case. As described in Section 1.3, the al-

gorithms used to automatically label documents are important, but sometimes so

is the representation of the documents themselves. When dealing with images, we

have access to a type of information that has not been available for text catego-

rization problems in the past; namely, image features. In addition, the properties

of the text associated with images, and the properties of the categories likely to

be associated with images, can differ substantially from those associated with full-

length text documents such as articles, e-mails, or web pages. For example, if the

text is an image caption, we are dealing with much less data per document, and

categories are more likely to place on emphasis on the focus of the text. For these

reasons, representation becomes more important when dealing with images. Later

in the thesis I show that novel approaches relying on non-standard representations,
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involving image features or linguistic analysis, have led to substantial improvements

for the categorization of images.

In this chapter, I discuss the creation of a text categorization corpus con-

sisting of multimedia news documents with captioned images and corresponding

articles. Multiple sets of categories representing various levels of abstraction are

described. I show that for some sets of categories, existing text categorization sys-

tems achieve excellent results simply by using the associated text to categorize the

images or entire documents. I show in Chapter 8 that, even in these cases, im-

provement can sometimes be gained by also considering image features. For other

sets of categories, existing systems do not perform well. In Chapter 6, I provide

an explanation for why this occurs and show that NLP techniques are necessary to

achieve optimal results.

3.1 The Creation of a Text and Image Corpus

In order to explore the use of text categorization to automatically label images, I

have created a corpus containing a substantial number of images with associated

categories. To the best of my knowledge, there does not exist any other publicly

available text categorization corpus containing images other than the one I have

created. To create such a corpus, I have collected appropriate data, carefully defined

relevant and interesting categories, and collected manual labels for the documents. I

have decided to work in the news domain, with documents consisting of articles with

embedded captioned images. These were readily available at the time when I was

creating the corpus, I have a personal interest in the news domain, and the potential

benefits of being able to classify such documents becomes clear in Chapter 9, which

discusses Newsblaster, a system that showcases the work of Columbia University’s

NLP group and has already become quite popular on the web (a recent analysis

indicates that Newsblaster receives tens of thousands of hits every day).
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As described in Section 2.1, categories used for text categorization tasks are

generally either binary (in which case a separate YES/NO decision is required for

each category) or mutually exclusive (in which case each document belongs to ex-

actly one category). I have chosen to define sets of mutually exclusive categories.

I believe this type of categorization has been under-represented in the text cate-

gorization literature, largely because the most popular public text categorization

corpus (Reuters) uses binary categories. In addition, I believe that mutually exclu-

sive categories tend to be more appropriate when dealing with the news domain.

Articles in newspapers or the on-line equivalent tend to be placed in a single sec-

tion representing a general area of news. Also, I envision an eventual hierarchy of

categories which would have the form of a tree like structure where each image or

other document falls into exactly one of the nodes.

3.1.1 The Raw Data

The raw data used for the corpus consists of tens of thousands of news postings from

a variety of Usenet newsgroups. The dates of the postings range from November

1995 through January 1999. All postings contain a text article and some contain

one or two images with associated captions. For the final corpus I have created from

this data, I consider a document to be an image along with its corresponding caption

and article. There are 2,312 such documents in total. There are some instances of

two separate images sharing the same article (in which case the article exists twice

in my final corpus), or a single image appearing with two separate articles (in which

case the image exists twice in the final corpus), but both of these cases are rare.

Most of the image captions are two or three sentences long. Typically, the first

sentence describes the image and the rest gives background information about the

related story. Articles are generally several paragraphs long, with lengths typical

of stories in ordinary newspapers.
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I have written a script that parses the raw data and extracts, from each doc-

ument, an image/caption/article triple; I assign the same identification number to

each item in a triple. I also store articles that do not have associated images. These

articles are assigned separate identification numbers; they can be used for certain

work with unlabeled data (e.g. the work discussed in Appendix N), or for certain

other purposes such as calculating IDF values. I also store image/caption pairs

that do not have associated articles, again using separate identification numbers,

although such cases are rare.

3.1.2 The Categories

I have defined multiple sets of categories for the images and documents in my

corpus. These sets of categories represent different levels of abstraction, and each

set of categories leads to its own data set for experimentation. For each data set,

I have chosen categories such that each category represents a significant portion

of the data without having any single category dominate. Categories from pre-

existing text categorization corpora (e.g. the economic subject categories used for

the Reuters corpus described in Section 2.8) are simply not appropriate. Based on

my own inspection of the documents, I have created categories that apply to the

news images in my corpus and the documents that contain them. I have attempted

to choose categories that are intuitively understandable and interesting in such a

way that users might want to narrow searches or browsings to a specific category.

Further reasons and motivations for choosing these categories are discussed in later

sections when I describe the categories in more detail; here I only briefly introduce

the categories.

One set of categories applies only to images, and the categories are Indoor

and Outdoor. The next data set involves broader, high-level topical categories that

apply to entire documents (i.e. an image along with its associated caption and
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article), and the categories are Struggle, Politics, Disaster, Crime, and Other. In

the remainder of this proposal, I refer to these categories as the Events categories.

Another set of categories only applies to images that are part of the Disaster doc-

uments, and the categories are Workers Responding, Affected People, Wreckage,

and Other. The final set of categories only applies to images that are part of the

Politics documents, and the categories are Meeting, Announcement, Politician Pho-

tographed, Civilians, Military, and Other. All of these sets of categories are defined

in such a way that the categories within a set are mutually exclusive. As already

discussed at the start of Section 3.1, I believe that mutually exclusive categories

have been under-represented in the text categorization literature, and they tend to

be more appropriate when dealing with the news domain.1

3.1.2.1 The Manual Categorization Interface

Once a text categorization system is implemented, creating data sets can be the

most time-consuming task involved with text categorization research. First, cat-

egories must be carefully defined in as unambiguous a manner as possible. Next,

documents must be manually labeled with these categories for training and testing.

I have created a user-friendly web interface that allows volunteers to man-

ually label images or entire documents by choosing one label from a set of labels.

The interface can easily be updated with new documents or category labels as they

are obtained or defined. Volunteers are shown one image and caption (and arti-

cle, if appropriate) at a time, and they are asked to choose the category that best

applies. For each set of categories that I have defined, multiple volunteers have

categorized images or documents such that every image or document has been cat-

egorized by one volunteer. In addition, I have personally categorized every image

1I have also defined an additional set of categories, discussed in Appendix F, that applies only
to images and deals with the number of people in each image. This set of categories exists mostly
for the researchers at Columbia using image features, and it is rarely used in my own work.
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or document. Only if there is agreement between me and the volunteer does the

image or document get included in the final data set.2 For each set of categories,

the volunteers are given category definitions and detailed guidelines for choosing

a category, although they are also allowed to rely on their intuition. (One of the

things I am trying to measure is the level of human agreement.) Appendix B shows

a snapshot of the manual categorization tool being used to label a document into

one of the Disaster image categories (described in Section 3.1.2.4).

3.1.2.2 The Indoor versus Outdoor Data Set

This is the first set of categories that I have explored in detail. There are several

reasons for choosing it beyond the general reasons discussed at the start of Sec-

tion 3.1.2. For one, it is something that can be predicted well both from text and

from images features. There is actually a history of image processing research deal-

ing specifically with Indoor versus Outdoor distinction; researchers in the Electrical

Engineering department at Columbia have used the same categories for their image

categorization (Paek et al., 1999), and this set of categories has also been used by

Szummer and Picard (1998) at MIT for their image analysis. This has lead to the

research discussed in Chapter 8, which compares using text against using image

features for this task and also examines a combination of the two. Another motiva-

tion for examining this set of categories is that there is evidence that humans who

cluster images into a hierarchy often use this as a first level of distinction (Vailaya

et al., 1999b; Vailaya et al., 1999a). Finally, in my own examination of images, I

2At a recent NLP conference, one attendee expressed a criticism of this decision. By only
including cases for which there is agreement, I am likely excluding the hardest documents from
my data sets. The reason for doing this is that it makes evaluation simpler, since there is a clear
right or wrong answer for every prediction. However, there are ways to get around this while still
including examples for which volunteers disagree. For example, accuracy rates can be computed
separately based on all volunteers and then averaged together; in this case, the best possible
accuracy is something under 100%. I still have the labels assigned to images and documents by
all volunteers, and I plan to release these with my corpus, so potentially this can still be attempted
as future work, either by me or by someone else.
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have noticed that the Indoor versus Outdoor distinction often represents more than

just that. For example, in the terrorism domain (in which several researchers from

Columbia’s NLP research group have worked), Outdoor images tend to be at the

scene, whereas Indoor images tend to be meetings or press conferences.

For the Indoor versus Outdoor data set, a total of three volunteers have

labeled 1,675 images, and I have labeled the same 1,675 images. Five choices exist

for each image: Indoor, Likely Indoor, Ambiguous, Likely Outdoor, and Outdoor.

The instructions that have been provided for these categories are presented in Ap-

pendix C.1 and can also be found at http://www.cs.columbia.edu/˜sable/research/

readme.html. 1,339 (79.9%) of the 1,675 images have been given a definite decision

in the same direction by both me and the volunteer, and these 1,339 images com-

prise the primary data set used for the experiments with the Indoor and Outdoor

categories discussed in this thesis. 401 (29.9%) of these images are classified as

Indoor and 938 (70.1%) are classified as Outdoor. A more detailed analysis of the

labels selected by volunteers and by me, along with some of the reasons that these

categories can be more difficult for humans to choose than one might expect, is

provided in Appendix D.

Most of the experiments with the Indoor and Outdoor categories use the

data set consisting of the 1,339 images that have been given a definite agreement

by both me and a volunteer. All experiments with this data set use the same

breakdown for training and testing. 894 (approximately two thirds) of these 1,339

images have been randomly selected for training, and the remaining 445 images

are used for testing. The training set contains 273 (30.5%) Indoor images and 621

(69.5%) Outdoor images, while the test set contains 128 (28.8%) Indoor images and

317 (71.2%) Outdoor images. Therefore, a baseline classifier that labels every image

as Outdoor achieves an overall accuracy of 71.2% (although the F1 measure of such

a classifier would be 0 for the Indoor category). For this data set, we also measured
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human performance when volunteers are shown only the caption of each image and

asked to predict the correct category. Humans correctly predict the category for

87.5% of the 1,339 images in the data set, and 87.6% of the 445 images in the test

set. We consider this a reasonable upper bound for how well a text categorization

system might be expected to perform.

3.1.2.3 The Events Data Set

When I defined the Events data set, the goal was to create categories for news

documents with certain properties. First, I wanted the categories to be useful in

and of themselves. In other words, I wanted categories that are understandable and

intuitive such that it is likely that a user might want to narrow searches or browsings

to a specific category. Second, I wanted to define categories that would give us an

idea of what types of images to expect in the document. For example, in the next

subsection I explain that most images that are part of Disaster documents tend to

be images of wreckage, victims, rescue workers, etc. Finally, I wanted categories

such that each is represented by a reasonable portion of the data, without any one

category being too large so as to make it trivially easy to achieve high accuracy.

It turns out that the four major categories I have defined (not including the Other

category) account for close to 95% of the documents.

For the data set involving the Events categories, 28 volunteers have la-

beled 1,750 documents, and I have labeled the same 1,750 documents. This time,

evaluators have been asked to categorize entire documents, each consisting of an

image, caption, and article. The choices are the categories themselves: Strug-

gle, Politics, Disaster, Crime, and Other. The instructions that have been pro-

vided for these categories are presented in Appendix C.2 and can also be found at

http://www.cs.columbia.edu/˜sable/research/instr.html. A total of 1,328 (75.9%)

of the 1,750 documents have been assigned identical labels by both me and the
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volunteer, and these 1,328 documents comprise the data set used for the Events

categories. 417 (31.4%) of these documents are classified as Struggle, 387 (29.1%)

are classified as Politics, 296 (22.3%) are classified as Disaster, 150 (11.3%) are

classified as Crime, and 78 (5.9%) are classified as Other. See Appendix E for a de-

tailed analysis of labels and human agreement for this category set; briefly, humans

show the highest level of agreement by far for the Disaster category, which is also

the category for which that all systems perform the best, and humans show the

lowest level of agreement, by far, for the Other category, which is also the category

for which all systems perform the worst.

For the experiments with the Events data set, 885 (approximately two thirds)

of the 1,328 documents have been randomly selected for training, and the remaining

443 documents are used for testing. The largest category in the training set is

Struggle, which accounts for 282 (31.9%) of the training documents and 135 (30.5%)

of the test documents. Incidentally, the largest category in the test set is Politics,

which accounts for 243 (27.5%) of the training documents and 144 (32.5%) of the

test documents. A baseline classifier that predicts the largest category every time

(based on analysis of the training set) would choose Struggle, and therefore achieve

only a 30.5% overall accuracy.

3.1.2.4 The Disaster Image Data Set

The original reason for defining this set of categories is that I wanted to explore

hierarchical categories, since this might have intrinsically led to some novel methods

(since there would be the option of categorizing one level at a time instead of

directly into nodes). When choosing for which of the Events categories to define

subcategories, I eventually selected the Disaster category, approximately defined to

cover natural disasters and accidents, because existing systems (including my own)

achieve almost perfect accuracy (in terms of both precision and recall) for this
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category (results are given later in this chapter for publicly available systems and

in future chapters for my own systems). I have also considered the same properties

as when defining the Events categories; i.e. I wanted understandable and intuitive

categories that are reasonably represented by the data and that could be used

pragmatically to limit searches or browsings. In Chapter 6, I discuss why this data

set turns out to be harder than those previously described. Briefly, these categories

relate to the focus of an image, requiring that the foreground be distinguished

from the background. The mere mention of a concept in a caption (or the mere

presence of an object in an image) is not always enough to indicate a category. This

creates trouble for any bag of words approach. In Chapter 6, I show that for these

reasons, more advanced NLP techniques are therefore necessary to achieve optimal

performance.

For the data set involving only the Disaster images, a total of four volun-

teers have labeled the 296 images contained in the documents labeled as Disas-

ter (see above description of the Events categories), and I have labeled the same

296 images. The choices given are the categories themselves: Workers Respond-

ing, Affected People, Wreckage, and Other. The instructions that have been pro-

vided for these categories are provided in Appendix C.3 and can also be found

at http://www.cs.columbia.edu/˜sable/research/instructions.html. 248 (83.8%) of

the 296 images have been assigned identical labels by both me and the volunteer,

and these 248 documents comprise the data set used for these categories. 98 (39.5%)

are classified as Workers Responding, 72 (29.0%) are classified as Affected People,

55 (22.2%) are classified as Wreckage, and 23 (9.3%) are classified as Other. 124

(half) of the 248 images have been randomly selected for training, and the remain-

ing 124 images are used for testing. A baseline classifier that chooses the largest

category every time would achieve a 39.5% overall accuracy (exactly half of the

Workers Responding images wound up in the test set).
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3.1.2.5 The Politics Image Data Set

This data set was defined with the experiments discussed in Chapter 6 in mind.

After discovering that NLP techniques are necessary to achieve reasonable perfor-

mance for the categorization of Disaster images, I decided to create subcategories

for one of the other Events categories, and wound up choosing Politics because it

is easier to identify appropriate categories for these images than for those embed-

ded in Struggle or Crime documents. As with the Disaster Image Data Set, this

data set turns out to be hard for systems using standard approaches. The main

experiments with these categories are discussed in Section 6.6.

For the data set involving only the Politics images, a total of eight volunteers

have labeled the 387 images contained in the documents labeled as Politics (see

above description of the Events categories), and I have labeled the same 387 images.

The choices given are the categories themselves: Meeting, Announcement, Politician

Photographed, Civilians, Military, and Other. The instructions that have been

provided for these categories are provided in Appendix C.4 and can also be found

at http://www.cs.columbia.edu/˜sable/research/pol images.html. 299 (77.3%) of

the 387 images have been assigned identical labels by both me and the volunteer,

and these 299 documents comprise the final data set. 86 (28.8%) are classified

as Meeting, 64 (21.4%) are classified as Announcement, 88 (29.4%) are classified

as Politician Photographed, 40 (13.4%) are classified as Civilians, 14 (4.7%) are

classified as Military, and only 7 (2.3%) are classified as Other. 149 (approximately

half) of the 299 images have been randomly selected for training, and the remaining

150 images are used for testing. The largest category in the test set is Politician

Photographed, which accounts for 30.7% of the test documents. The largest category

in the training set, however, is Meeting, which only accounts for 27.3% of the test

documents, and this would be the performance of a baseline classifier that chooses

the largest category every time based on analysis of the training data.
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3.1.3 Sample Images

Figure 3.1 and Figure 3.2 show sample images and captions from my corpus. Most

captions include a first sentence that describes the associated image and one or two

additional sentences that provide background information about the related story.

All header information, including locations and dates, is automatically stripped be-

fore my experiments. A full sample document, including an article and a captioned

image, is shown in Appendix A. Articles generally consist of many paragraphs and

are typical in length to what you would expect in a standard newspaper. Based

on evidence from the experiments discussed in Appendix G, only first sentences of

captions are used for the Indoor versus Outdoor experiments, and also for experi-

ments involving the Disaster image data set and the Politics image data set, but

entire articles are used for experiments involving the Events data set.

3.1.4 How to Obtain the Corpus

The corpus just described is now ready to be made public. Once this happens, I

will post instructions at http://www.cs.columbia.edu/˜sable/research/corpus.html.

I believe that this corpus may serve as an important resource for future researchers.

To the best of my knowledge, it will be the only public text categorization corpus

containing images, and as I will demonstrate throughout the rest of this thesis, this

has led to some very interesting results.

3.2 Results and Evaluation of Pre-existing Sys-

tems

The publicly available Rainbow package (McCallum, 1996), described in Section 2.8,

actually consists of several text categorization systems relying on a variety of ap-
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PONTA DELGADA, PORTUGAL, 1-NOV-1997: Rescue workers re-
move the body of a man from mud, October 31, following a landslide in
Ribeira Quente, Azores. Ten people died and dozens are still missing
inside their destroyed houses after a mass of rocks fell on a group of
homes. The disaster may have been caused by heavy rain which has
battered the Azores. [Photo by AFP]

Figure 3.1: The categories associated with this image and its document are Outdoor,
Disaster, and Workers Responding.
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TIRANA, ALBANIA, 29-JUN-97: Albanian President Sali Berisha
casts his vote at a central Tirana polling station on, June 29. Alba-
nia holds its general elections three months after the collapsed pyramid
investment schemes drove the country into armed turmoil. [Photo by
Petr Josek, Reuters]

Figure 3.2: The categories associated with this image and its document are Indoor,
Politics, and Politician Photographed.
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proaches. The approaches used by the Rainbow systems are Rocchio/TF*IDF,

K-Nearest Neighbor, Naive Bayes, Probabilistic Indexing, Maximum Entropy, and

Support Vector Machines; these approaches have all been explained in Sections

2.6.1 and 2.6.2. All of the Rainbow systems are implemented in such away that

they assume mutually exclusive categories; they are, therefore, appropriate for the

data sets I have created.

In this section, I describe the performance of the Rainbow systems for the

data sets that comprise my corpus, and in later chapters, I compare these results

to the results of systems I have created. It should be noted that I have used the

Rainbow systems with their default settings. Although the Rainbow systems are

being trained using the training sets of my own data sets, there are certain global

parameters that have been decided without taking into account this specific corpus

(e.g. tokenization rules, referring to exactly what constitutes a word, which can

vary as discussed in Section 2.4.1, or for SVMs, the kernel function, as described

in Section 2.6.2.3). Since I have developed my own systems with my own corpus

in mind, it is possible that the Rainbow systems are at some sort of disadvantage,

and this should be kept in mind when evaluating my own systems.

3.2.1 Results for the Indoor versus Outdoor Data Set

Table 3.1 shows the results of the Rainbow systems when tested on the Indoor

versus Outdoor data set. For this data set, only first sentences of captions are

used, as explained in Section 3.1.3. The first column, representing overall accuracy,

is the most important. The next two columns show the F1 results (as defined

in Section 2.7) for each category. As can be seen, all systems achieve reasonably

respectable performance, although the K-Nearest Neighbor system is well behind

the others. The best system is the Probabilistic Indexing system, followed by the

Naive Bayes system. According to a one-sided χ2 test, the performance of each
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System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
Rainbow systems

Naive Bayes 85.4 73.5 89.9
Rocchio/TF*IDF 84.5 73.2 89.1
K-Nearest Neighbor 77.8 65.3 83.6
Probabilistic Indexing 86.3 78.1 90.0
Support Vector Machines 82.0 66.9 87.7
Maximum Entropy 84.5 70.9 89.4

Table 3.1: Rainbow systems perform well for the Indoor versus Outdoor data set.

system except the bottom two (SVMs and kNN) falls within the 95% confidence

interval of the performance of the best system (Probabilistic Indexing).3 In this

case, the systems relying on newer, more advanced techniques (SVMs and Maximum

Entropy) do not perform quite as well as the top two systems. Remember that a

baseline system that chooses the larger category every time would achieve a 71.2%

overall accuracy, while the upper bound set by humans who have predicted each

image’s category based only on its caption is 87.6% (as discussed in Section 3.1.2.2).

That does leave some room for improvement, even for the best system, and this is

explored in detail in Chapter 8.

3.2.2 Results for the Events Data Set

Table 3.2 shows the results of the Rainbow systems when tested on our Events data

set. For this data set, full articles are used, as explained in Section 3.1.3. As is

the case for the Indoor versus Outdoor data set, all systems achieve respectable

performance, although the K-Nearest Neighbor system is once again well behind

the rest. This time, the two best systems are the two most advanced (SVMs

and Maximum Entropy). The Naive Bayes system comes in a respectable third

3To perform significance tests for this thesis, I have used the prop.test function in S-PLUS.
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System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %

Rainbow systems

Naive Bayes 87.6 86.2 86.3 96.7 89.1 61.5
Rocchio/TF*IDF 87.4 81.1 85.3 97.7 88.4 68.3
K-Nearest Neighbor 81.9 80.0 79.7 95.6 75.6 63.2
Probabilistic Indexing 86.5 83.6 84.8 97.2 89.4 65.0
Support Vector Machines 88.7 88.1 89.2 96.2 87.0 57.9
Maximum Entropy 88.3 88.1 87.9 95.7 87.9 55.6

Table 3.2: Rainbow systems perform well for the Events data set.

place, once again appearing near the top. According to a one-sided χ2 test, the

performance of each system except the bottom one (kNN) falls within the 95%

confidence interval of the performance of the best system (SVMs). All systems

perform way above the baseline of 30.5%. Note further that all systems do at least

somewhat well for all categories, with all systems doing the best for the Disaster

category and the worst for the Other category, while the order of performance for

the other three categories varies from system to system. In Appendix E, I show that

humans, interestingly enough, have the highest rate of agreement, by far, for the

Disaster category and the lowest rate of agreement, by far, for the Other category,

whereas the rates of agreement for the other three categories are very similar to

each other.

3.2.3 Results for the Disaster Image Data Set

Table 3.3 shows the results of the Rainbow systems when tested on the Disaster

image data set. For this data set, only first sentences of captions are used, since

they describe the image, and the words in other sentences are almost certainly

not important (see Chapter 6 for a detailed support of this argument for these

categories). This time, all of the systems perform poorly, although still above
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System
Workers Affected

Overall Responding People Wreckage Other
Accuracy % F1 % F1 % F1 % F1 %

Rainbow systems

Naive Bayes 55.6 66.7 54.3 45.9 16.7
Rocchio/TF*IDF 54.0 66.0 50.0 50.0 22.2
K-Nearest Neighbor 54.0 63.2 55.6 43.1 0.0
Probabilistic Indexing 59.7 68.1 55.2 61.3 28.6
Support Vector Machines 54.8 64.6 51.4 50.0 33.3
Maximum Entropy 58.1 69.2 64.8 43.3 0.0

Table 3.3: Rainbow systems perform poorly for the Disaster image data set.

the baseline of 39.5%, with performance ranging from 54.0% (Rocchio/TF*IDF

and kNN) to 59.7% (Probabilistic Indexing). According to a one-sided χ2 test,

the performance of every system falls within the 95% confidence interval of the

performance of the best system (Probabilistic Indexing). All systems do the best

(although still not great) for the Workers Responding category, and the worst for

the Other category (two systems actually have a 0 F1 measure for this category).

Here we see the first example of a set of categories that seems to defy standard

approaches to text categorization. The reasons are not obvious; I show in Chapter 6

that humans who view only the first sentences of captions are able to predict the

correct category over 90% of the time. I also show in that chapter, however, that

most of the words are not useful, and that syntax - which is ignored by all standard

systems - plays a key role.

3.2.4 Results for the Politics Image Data Set

Table 3.4 shows the results of the Rainbow systems when tested on our Politics

image data set. As with the Disaster image data set, only first sentences of cap-

tions are used, for similar reasons. Once again, all of the systems perform poorly,

although this time there is more of a range. At the bottom is the K-Nearest Neigh-
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System
Politician

Overall Meeting Announcement Photographed Civilians Military Other
Accuracy % F1 % F1 % F1 % F1 % F1 % F1 %

Rainbow systems
Naive Bayes 53.3 64.9 49.2 51.2 41.4 0.0 0.0
Rocchio/TF*IDF 54.7 71.9 52.6 53.0 36.4 20.0 22.2
K-Nearest Neighbor 36.0 50.0 25.0 17.2 20.0 0.0 0.0
Probabilistic Indexing 64.0 77.6 73.0 58.7 44.4 30.8 15.4
Support Vector Machines 56.7 72.0 52.2 55.6 40.0 0.0 0.0
Maximum Entropy 53.3 59.8 47.9 58.1 48.3 0.0 0.0

Table 3.4: Rainbow systems perform poorly for the Politics image data set.

bor system, with a mere 36.0% overall accuracy, not far above the baseline of 27.3%.

At the top is the Probabilistic Indexing system, which achieves an overall accuracy

of 64.0%, bordering on respectable. According to a one-sided χ2 test, the perfor-

mance of the Probabilistic Indexing system is significantly better than that of the

other Rainbow systems (the largest p-value is 4.3%). Excluding the best and worst

system, however, you can see that the remaining systems all show very similar per-

formance for this data set. All systems do the best for the Meeting category (three

systems achieve an F1 measure above 70% for this category, which is somewhat

respectable), while two categories present major difficulties, those being Military

and, once again, the elusive Other. This set of categories is discussed further in

Section 6.6.

3.3 Research Related to the Categorization of

Images Using Text

There is very little in the pre-existing literature that directly and explicitly discusses

the categorization of images using text. Two exceptions are (Smith and Chang,

1996a) and (Smith and Chang, 1997). These articles are mainly about automatic

search for images and video using both text and image features. In addition, there is

a section on the automatic classification of images into a taxonomy using keywords

extracted from URLs, hyperlinks, and “alt” tags. These extracted keywords are
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compared to entries in a semi-automatically created dictionary that maps terms to

categories.

Other researchers attempt to categorize images into certain sets of categories

based solely on image features. Szummer and Picard (1998) attempt to categorize

images as Indoor or Outdoor using low-level features such as color histograms. The

research discussed in (Paek et al., 1999) concerns a colleague’s efforts involving the

use of similar low-level image features for the same task, my own work using text

for this task, and also an attempt to integrate the two two approaches together.

I focus more on the Indoor versus Outdoor categorization task in Chapter 8, in

which I discuss some of my more current research comparing the use of text against

the use of image features, and also examine a combination of both, for this task.

The work discussed in (Vailaya et al., 1999b) and (Vailaya et al., 1999a)

involves the use of similar low-level image features to divide Outdoor vacation

images into City images and Landscape images, and they further consider dividing

the Landscape images into the categories Sunset, Forest, or Mountain. At all levels

(Indoor versus Outdoor, City versus Landscape, and Sunset versus Forest versus

Mountain), the authors recognize the existence of an Other category, which also

occurs throughout this thesis (although I do not consider the same sets of categories

as they do). In their work, all sets of categories are motivated by experiments with

human subjects who evaluated 171 vacation images and were asked to group the

images into meaningful categories.

Many systems have been developed for image retrieval based on image fea-

tures. Just a few of these that I have come across in my research include QBIC

(Niblack et al., 1993), Photobook (Pentland, Picard, and Sclaroff, 1994), Foureyes

(Picard and Minka, 1995), VisualSeek (Smith and Chang, 1996c), WebSEEk (Smith

and Chang, 1997), and MARS (Hehrotra et al., 1997). Of these, only WebSEEk

also uses text. Benitez and Chang (2002b; 2002a) discuss the use of both text and
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low-level image features to cluster images. The potential for using these clusters to

aid in categorization is discussed but not implemented.

Several researchers have used text from image captions to aid in image re-

trieval (Smeaton and Quigley, 1996; Rowe and Guglielmo, 1996; Elworthy, 2000).

In all of these works, some NLP techniques are used to compare a user’s query

to captions from an image database. Srihari (1995) has developed a system called

Piction, which matches names in image captions to faces in the image, also for the

purpose of retrieval. The work discussed in (Duygulu et al., 2002) involves the

use of the expectation maximization (EM) algorithm and a process analogous to

learning a lexicon from aligned bilingual text in order to automatically annotate

regions of images with provided keywords.

3.4 Concluding Discussion of Categorizing Im-

ages Using Text

I have shown in this chapter that pre-existing text categorization systems can be

applied to text associated with images to categorize the images. In order to demon-

strate this ability, I have created a new corpus consisting of news documents with

embedded captioned images. I have carefully defined multiple sets of categories

representing various levels of abstraction, and I have collected manual labels from

volunteers (as well as myself) using a user-friendly, web-based interface that I have

implemented. This corpus, to the best of my knowledge, is the only public text

categorization corpus containing images.

I have tested six systems, using a variety of common text categorization

methodologies, that comprise the publicly available Rainbow package. In terms of

comparing the various systems to each other, no definite conclusions can be made,

although some systems clearly do better than others. The Probabilistic Indexing
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has the best performance for three of the four data sets (the exception being the

Events data set, for which it has the second worst performance). The K-Nearest

Neighbor system has the worst (or tied for the worst) performance for every data

set. However, we should be not too hasty to dismiss this approach; in detailed

studies by Yang (1999) or Yang and Liu (1999), a kNN system performs near the

top of a pack of many competing systems for Reuters data sets. In the study by

Yang and Liu, a Support Vector Machine system performs best. In my experiments,

the SVM system included with Rainbow does reasonably well, exhibiting the best

performance for the Events data set, but placing in the middle of the pack for the

rest. It’s worst performance is for the Indoor versus Outdoor data set. Although I

have not previously shown the results in this chapter, I have also tested SVMlight ,

the same SVM system used by Yang and Liu in their experiments, for the Indoor

versus Outdoor data set. The overall accuracy is 85.6%, which is significantly better

than Rainbow’s SVM system, but still not as good as Rainbow’s Probabilistic

Indexing system or some others of my own creation that are described in later

chapters. The Rainbow system using the advanced Maximum Entropy methodology

also has reasonable performance, coming in second for two sets categories and

somewhere in the middle for the rest. Even the Rocchio/TF*IDF system, though,

does reasonably well, showing up in the middle of the pack for these data sets.

Recently, most works comparing methods, such as the one just cited by Yang,

place this method near the bottom, and it is mostly used as a baseline these days. I

show, however, in Chapter 4, that the application of a statistical technique known

as density estimation to the results of my own Rocchio/TF*IDF system makes it

very competitive. Finally, the system using a Naive Bayes methodology, which is

also often used as a baseline, performs reasonably well, falling in the middle of

the pack for every data set. In Chapter 5, I show that a generalization of Naive

Bayes relying on the concept of binning as a smoothing technique is extremely
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competitive, beating all other systems that I have tested for my first two data sets

(Indoor versus Outdoor and Events).

For some sets of categories, such as Indoor versus Outdoor or the Events

categories, the existing, standard systems perform well without modification. In

Chapter 8, I discuss attempts to improve performance even more for the Indoor

versus Outdoor data set by relying on a combination of text and image features.

(Image features are obviously not typically available for most text categorization

tasks discussed in the literature, and even for my other data sets, the state-of-

the-art is not good enough to perform well for these categories.) The other sets

of categories I have defined, those that apply to the Disaster images and Politics

images, defy standard text categorization systems. This is discussed in great detail

in Chapter 6, where I explain why these categories are hard, and what can be done

about it. Briefly, though, the characteristics of the text and categories involved are

quite different than those involved with most text categorization tasks. In this case,

syntax becomes very important, and standard text categorization techniques ignore

that. So, while I have shown in this chapter that text categorization techniques

are useful for labeling images, for certain tasks involving specific sets of categories,

more work is necessary to achieve optimal performance.
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Chapter 4

Density Estimation

As is evident from Chapter 2, there are a myriad of methods used for text cate-

gorization, and although some researchers may claim differently, there is no clear

“winner” in all cases. When I first started my text categorization research, I was

not content to simply use existing methodologies, but was searching for ways to

improve them. The first thing I tried was using cross validation experiments to

test various features in order to discover which tend to be important, at least for a

particular task. This work, discussed in Appendix G, eventually led to the research

discussed in this chapter, which involves the use of a statistical technique known

as density estimation (Silverman, 1986). Density estimation is used in conjunction

with other systems that rely on existing methodologies to produce better results.

In this chapter, I present my research on the use of density estimation to po-

tentially improve the results of certain text categorization methods. The methods

that are eligible are those that label documents by computing a similarity mea-

sure (or other score, such as a probability estimate) for every document/category

pair. These methods include Rocchio/TF*IDF, Naive Bayes, K-Nearest Neighbor,

certain implementations of Support Vector Machines, and many other commonly

used techniques. Density estimation converts vectors of such similarity measures to
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probabilities of category membership. These probabilities provide confidence mea-

sures of systems’ predictions, and I show, through experiments, that the technique

also often improves the accuracy of a system.

The system to which I have applied density estimation is that described

in (Sable and Hatzivassiloglou, 2000) and (Sable and Hatzivassiloglou, 1999). This

system, which I have developed, applies a Rocchio-based method involving TF*IDF

text similarity measures as described Section 2.6.1.1 in conjunction with novel fea-

tures, such as consideration of part-of-speech and different spans of text. An in-

depth discussion of these novel features can be found in Appendix G. Standard

Rocchio/TF*IDF computes a similarity measure for every document/category pair

and makes its decisions based on these measures (e.g. by choosing the category

with the highest score). As discussed in Section 2.6.1.1, the Rocchio approach

is often used as a baseline for text categorization (Joachims, 1997; Lewis et al.,

1996; Schapire and Singer, 2000; Yang, 1999), although in recent years, advanced

methods such as Support Vector Machines (SVMs) (Joachims, 1998) have achieved

significantly better results.

This chapter explains how density estimation can be applied to the results

of systems such as the one I have implemented to convert numerical similarity

scores for categories to probabilities of membership in each category by estimating

the proportion of documents with similar scores in the training set that fall into

the category. A Rocchio-based system is an ideal type of system to which density

estimation can be applied because it computes similarity scores for categories that

do not already have any intrinsic meaning. I show that density estimation, in

addition to providing confidence measures for predictions, improves the accuracy

of my system in the majority of cases, boosting results to surpass those of several

advanced methods. Density estimation is a technique that can be applied to the

results of any system that computes, for every test document, a score for every
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category.

4.1 Description of Density Estimation

Density estimation is a statistical technique for estimating a probability density1

for the distribution assumed to generate a set of empirically obtained data points.

My approach to using density estimation for the purposes of text categorization

can be applied in conjunction with any text categorization system that expresses

a similarity score between each document and category. It works regardless of the

number of categories, and it works with either mutually exclusive categories or with

independent, binary categories.

Assume we are dealing with a set of N categories (c1, c2, ..., cN). Let us also

assume that we have a text categorization system using a method that can assign

to any given document d a similarity score to category ci, namely S(d,ci). This can

be done for every category, and so we can obtain for each document a vector of

similarity scores, one for each category. The vector for some given document d can

be represented as Vd = [S(d,c1), S(d,c2), ..., S(d,cN )].

Rocchio/TF*IDF systems create just such a set of similarity scores for every

document. These scores only have meaning in comparison with each other, and

so this constitutes an ideal type of system to which density estimation can be

applied. Systems that use methods such as Naive Bayes or K-Nearest Neighbor

generally compute probabilities of category membership for each category. These

probabilities can be used in place of similarity scores in the vector above, and density

estimation can be used to re-scale the probabilities. SVMs, in their basic form,

make binary (YES/NO) decisions for individual categories by deciding whether

a transformation of a representation of a document falls on a particular side of a

hyperplane in a mapped vector space. When used for mutually exclusive categories,

1Or a probability mass function, if the distribution is assumed to be discrete.
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the distances from the hyperplanes are sometimes used to determine positive or

negative (depending on the side of the hyperplane) scores for categories, and these

scores could be used for the vectors to which density estimation could apply. Density

estimation potentially can be applied to most commonly used techniques for text

categorization; exceptions include decision tree approaches and expert systems that

follow a specific chain of rules that ends in a prediction of a specific category without

generating scores for each category.

When dealing with mutually exclusive categories, a standard text categoriza-

tion system, after generating a vector of category similarity scores for a document,

would assign the document to the category with the highest score. While this

seems intuitive, it is not always the best solution, because the similarity measures

do not always have an intrinsic meaning, and the scale is not always the same for

every category. When dealing with binary categories, there are several standard

methods of converting similarity scores to YES/NO decisions for every possible

document/category pair. One, known as Scut (Yang, 1999), involves determining

the optimal threshold for each category based on training data. (Optimality can be

determined, for example, by maximizing F1 measures, as described in Section 2.7).

Another method, known as Pcut (Yang, 1999), involves measuring the percentage

of training documents that falls into each category in the training set and assuming

that a similar percentage falls into the category in the test set. Therefore, for each

category, we assign the category to the x test documents with the highest simi-

larity, where x is chosen based on the training set. A third method is to create,

for each category, a separate category consisting of all documents not in the actual

category. To obtain a YES/NO decision for the actual category, we compare the

similarity score of a test document and the actual category to the similarity score

of the test document and the created category, thus converting our multi-label,

binary categorization task to a set of categorization tasks each with two mutually
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exclusive categories.

The use of density estimation replaces those methods described in the previ-

ous paragraph. First, the system is used not only to obtain similarity score vectors

for each test document, but also for each training document. (Of course, the vec-

tors for the training documents only need to be calculated once ahead of time.) So,

a vector of category similarity scores, as described above, is computed for every

training document as well as every test document. Let d1 and d2 be two documents

in the corpus, and S(d,c) be the similarity score assigned to a document d for a

category c. We can then measure the Euclidean distance between the similarity

score vectors for d1 and d2 as follows:

D(d1,d2) =

√

√

√

√

N
∑

i=1

[S(d1,ci) − S(d2,ci)]
2 (4.1)

To use density estimation to label a test document d, distances are computed be-

tween the document’s similarity score vector and those of every training document.

The k training documents with the closest similarity score vectors to that of d,

and thus the smallest distances according to the above formula, are selected. In

other words, we are choosing training documents whose similarity score vectors

fall within an N-dimensional hypersphere centered at the point specified by the

similarity score vector for d. The labels of these document are used to determine

the predicted label of the test document as described below. My implementation

of density estimation selects the same number of training documents for each test

document (as opposed to examining a hypersphere of fixed radius) due to the po-

tential variability in sparseness of data for different values of similarity scores. The

parameter k (the number of training documents used) can be chosen arbitrarily, or

it can be determined based on cross validation experiments within the training set.

Once training documents with similarity score vectors close to that of d have

been identified, density estimation provides a probability estimate of membership
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in each category c, estimated as the proportion of those neighbors from the training

set that are assigned the label c. In calculating this proportion, individual training

documents are weighted inversely proportional to the distance of their similarity

score vectors from the center of the hypersphere (corresponding to the similarity

score vector of the test document d). A separate decision can be made for each

category based on the (weighted) percentage of close training documents that have

been assigned to the category, and probability estimates for all possible categories

can be assigned to the test document. More formally, let di be the ith training

document out of the k training documents selected as described above, and let

I(di,c) be 1 if di belongs to category c and 0 otherwise. The estimated probability

that the current document d belongs to some specific category c is:

P (c|d) =

∑k
i=1 I(di,c)

1
D(d,di)

+ε
∑k

i=1
1

D(d,di)
+ε

(4.2)

Note that the numerator and denominator in the above formula are the same ex-

cept for the I(di,c) term, so that documents that belong to category c contribute

to both the numerator and denominator, and documents that do not belong to

category c contribute only to the denominator. The epsilon in the formula is just

an arbitrary, very small constant to avoid infinities in the case that there is some

training document with a similarity score vector that exactly matches that of d.

Density estimation as just described can be applied with any number of

categories and it can be used as described regardless of whether we are dealing

with mutually exclusive categories or binary categories. If we are dealing with

mutually exclusive categories, every selected training document has exactly one

label, and the probabilities assigned to categories for a given test document add up

to exactly 1. If we are dealing with binary categorization, each individual category

is assigned a probability ranging from 0 to 1, but there is no further restriction on

the sum of these probabilities (since the categories are independent, and a document
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may belong to more than one category or none at all). When dealing with binary

categorization, density estimation is applied to the raw similarity scores between

a test document and categories; this method replaces the use of Scut, Pcut, or

conversion to a set of mutually exclusive categorization tasks described earlier in

the section.

You might have noticed a strong resemblance between K-Nearest Neighbor

approaches, as described in Section 2.6.1.2, and density estimation. In each case,

we are choosing certain training examples and using their categories to predict the

category or categories of a test document. The important distinction is that density

estimation is not comparing the actual test document to any training documents.

It is only comparing the category similarity score vector of the test document to

category similarity score vectors of training documents. It is very possible that a

document that might not share any words or terms in common with a test document

may have a very similar (maybe even an identical) category similarity score vector.

The purpose of density estimation is not to find training documents that are similar

to the test document, but rather to interpret the category similarity scores of the

test document which can be the result of some entirely different system. For each

experiment discussed in this chapter, I do compare the results of my system using

density estimation to those of one or more kNN systems.

4.2 Experiments with Density Estimation

I have evaluated the benefits of density estimation through experimentation on

three data sets taken from two corpora. The first data set is the Indoor versus

Outdoor data set which I describe in Section 3.1.2.2. The second data set is the

Events data set which I describe in Section 3.1.2.3. The third data set is the

ModApte split of the Reuters-21578 (Lewis, 1997) corpus, which has already been

described in Section 2.8. Whereas the first two data sets come from the corpus that
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I have created, and I have defined the categories involved to be mutually exclusive,

the third task data set involves binary categories (i.e. each document can have any

number of labels up to the number of categories).

For each of the data sets just mentioned, I first apply my Rocchio/TF*IDF

system and then I apply density estimation to the results of the system to measure

its effect on performance. My system allows many parameters that are not typical

of other Rocchio-based systems (e.g. the restriction to words of specific grammati-

cal categories as determined by a statistical part-of-speech tagger (Church, 1988));

these parameters are discussed in detail in Appendix G. My system automati-

cally performs cross validation experiments within the training set to choose the

settings for the optional parameters that are likely to maximize performance. For

the experiments discussed in this chapter, I have performed these cross validation

experiments with and without density estimation, as it is possible that the use of

density estimation may change the optimal settings for certain other parameters.

For example, one of the parameters deals with normalization of category word vec-

tors, which becomes more important when density estimation is not used since both

normalization and density estimation can account for skewed category sizes. For

the cross validation experiments using density estimation, I also try out multiple

possible values of k, which, as described in Section 4.1, is the number of training

documents used to predicted the label or labels of each test document.

In addition to measuring the effect of density estimation on the performance

of my system for each data set, I also compare the results to those of the competing

systems. For the first two experiments, I therefore compare against the Rainbow

systems, for which I have already reported results in Section 3.2. Since I was partic-

ularly interested in comparing results with those of a K-Nearest Neighbor system,

and that which is part of the Rainbow package seems to perform poorly, I have

also implemented my own version of a kNN system that uses the same word vec-
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tors for documents as does my Rocchio/TF*IDF system. For the third experiment,

which uses binary Reuters categories, I can not test the Rainbow systems or my

own version of a kNN system because these have been implemented to handle only

data sets with mutually exclusive categories. Instead, I compare results against all

systems tested by Yang and Liu (1999) (including a kNN system) in a controlled

study conducted using the same data set. These systems have been chosen because

they use well-known methods and achieve strong performance scores in previously

reported studies discussing similar experiments (Yang and Liu, 1999).

For the first two experiments, the main metric I consider is overall accuracy.

Each test document is assigned one category, and the overall accuracy of the sys-

tem is the percentage of such assignments that are correct. I also report the F1

measures, as described in Section 2.7, for each category. For the third experiment,

to allow for direct comparison with Yang and Liu (1999), I report micro-averaged

precision, micro-averaged recall, micro-averaged F1, macro-averaged F1, and over-

all error (which is 1 minus overall accuracy). All of these metrics have also been

defined in Section 2.7. I focus on the micro-averaged F1 score which has been more

widely used for comparing methods and systems than the macro-averaged alterna-

tive (Yang and Liu, 1999); as discussed in Section 2.7, this measure makes more

sense than overall accuracy for tasks involving binary categories.

4.3 Results and Evaluation of Density Estima-

tion Experiments

4.3.1 Results for the Indoor versus Outdoor Data Set

Using the chosen parameters based on the cross validation experiments discussed

in Section 4.2 (with and without density estimation), I have trained my system on
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Actual Actual
Precision

Indoor Outdoor
System
Indoor

100 61 62.1%

System
Outdoor

25 259 91.2%

Recall 80.0% 80.9%

Table 4.1: Results for the Indoor versus Outdoor data set before density estimation.

Actual Actual
Precision

Indoor Outdoor
System
Indoor

87 24 78.4%

System
Outdoor

38 296 88.6%

Recall 69.6% 92.5%

Table 4.2: Results for the Indoor versus Outdoor data set after density estimation.

the entire training set and tested on the previously unseen test set. The overall

accuracy of my system when density estimation is not used is 80.7%. Table 4.1

shows the precision and recall values achieved on the test set for each category.

The F1 measures for the Indoor and Outdoor categories are 69.9% and 85.7%

respectively. The overall accuracy of my system after density estimation is applied

rises to 86.1%.2 Table 4.2 shows the precision and recall values achieved on the test

set for each category. The F1 measures for the Indoor and Outdoor categories are

73.7% and 90.5% respectively. So density estimation not only has a statistically

very significant effect on the overall accuracy of the system (a one-sided χ2 test

indicates a p-value of 0.25%), but it also improves performance (based on the F1

2Whichever category has the highest probability according to density estimation is considered
to be the system’s prediction.
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measure) for both categories.

System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
My systems

Rocchio/TF*IDF 80.7 69.9 85.7
Density Estimation 86.1 73.7 90.5
K-Nearest Neighbor 82.7 65.8 88.4

Rainbow systems
Naive Bayes 85.4 73.5 89.9
Rocchio/TF*IDF 84.5 73.2 89.1
K-Nearest Neighbor 77.8 65.3 83.6
Probabilistic Indexing 86.3 78.1 90.0
Support Vector Machines 82.0 66.9 87.7
Maximum Entropy 84.5 70.9 89.4

Table 4.3: Density estimation leads to a significant increase in accuracy for the
Indoor versus Outdoor data set.

Table 4.3 shows the results of all systems tested on the first data set. As men-

tioned in the previous paragraph, density estimation leads to a significant increase

in accuracy for this experiment. In addition, my system with density estimation

performs better than all but one competing system, that being a Probabilistic

Indexing system that beats my system with density estimation by only one test

document. Of the seven systems that do not perform as well, the performance of

three falls within a 95% confidence interval. All systems beat a baseline of 71.2%

accuracy, which could be achieved by a system that chooses the largest category

every time. For this data set, I have also measured the performance of humans who

are asked to predict whether the images in the test set are Indoor or Outdoor by

looking only at the textual captions. The overall accuracy of humans is 87.6%, and

I consider this to be a reasonable upper bound for how well an automatic system

using only text might be expected to do. Note that the best systems, including my

system with density estimation, are within 2% of this result.
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4.3.2 Results for the Events Data Set

System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %

My systems

Rocchio/TF*IDF 87.1 85.0 88.4 98.8 79.2 60.0
Density Estimation 84.9 83.7 86.0 97.3 80.0 34.3
K-Nearest Neighbor 84.0 81.1 82.1 93.9 81.3 65.0

Rainbow systems

Naive Bayes 87.6 86.2 86.3 96.7 89.1 61.5
Rocchio/TF*IDF 87.4 81.1 85.3 97.7 88.4 68.3
K-Nearest Neighbor 81.9 80.0 79.7 95.6 75.6 63.2
Probabilistic Indexing 86.5 83.6 84.8 97.2 89.4 65.0
Support Vector Machines 88.7 88.1 89.2 96.2 87.0 57.9
Maximum Entropy 88.3 88.1 87.9 95.7 87.9 55.6

Table 4.4: Density estimation degrades performance for the Events data set.

On this particular data set, my Rocchio/TF*IDF system achieves better

performance without density estimation. Without density estimation, the overall

accuracy of the system is 87.1%. The F1 measures for the categories Struggle,

Politics, Disaster, Crime, and Other are 85.0%, 88.4%, 98.8%, 79.2%, and 60.0%

respectively. With density estimation, the overall accuracy is 84.9%. The F1 mea-

sures for the categories Struggle, Politics, Disaster, Crime, and Other are 83.7%,

86.0%, 97.3%, 80.0%, and 34.3% respectively. Therefore, density estimation de-

grades the overall accuracy for this data set by 2.2%, and performance is worse for

four of the five Events categories according to F1 measures.

This does not necessarily mean that a user would not want to use density

estimation. The difference in overall accuracy is not statistically significant (a one-

sided χ2 test indicates a p-value of 10.6%), and using density estimation assigns

confidence measures in terms of probability to all predictions, whereas with a stan-

dard approach, the best one can get is a ranked list of categories. Appendix H

provides an analysis of the validity of the confidence measures assigned by density
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estimation for the experiments involving the Indoor versus Outdoor data set and

the Events data set. Also, as discussed in Section G.3, it appears that density

estimation would improve the accuracy of this system when applied to the Events

data set if the other features of the system were not set just right.

For further comparison, I have tested all of the same systems used in the

previous experiment. Table 4.4 shows the results. In this experiment, several of

the competing systems have a higher overall accuracy than my own. All compet-

ing systems except the top two (SVMs and Maximum Entropy) and the bottom

one (Rainbow’s kNN) achieve a performance that falls within the 95% confidence

interval of the performance of the density estimation system. All systems far out-

perform the baseline of 30.5%, and my system with density estimation still beats

both versions of kNN systems tested.

4.3.3 Results for the Reuters Data Set

Method miR % miP % miF1 % maF1 % error %
My systems

Rocchio/TF*IDF (Pcut) 71.21 70.72 70.96 50.14 0.803
Density Estimation 78.93 87.48 82.98 40.52 0.446
Combo 80.48 83.90 82.15 51.18 0.482
Tested by Yang and Liu
Support Vector Machines 81.20 91.37 85.99 52.51 0.365
K-Nearest Neighbor 83.39 88.07 85.67 52.42 0.385
Linear Least-Squares Fit 85.07 84.89 84.98 50.08 0.414
Neural Network 78.42 87.85 82.87 37.65 0.447
Naive Bayes 76.88 82.45 79.56 38.86 0.544

Table 4.5: Density estimation leads to a tremendous improvement for the experi-
ment involving a Reuters data set.

Table 4.5 shows the results of all systems tested on the Reuters data set. The

five columns of results represent micro-averaged recall, micro-averaged precision,
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micro-averaged F1, macro-averaged F1, and overall error (equal to 1 minus overall

accuracy). The bottom five rows of the table are a reproduction of Table 1 from

(Yang and Liu, 1999), summarizing the results of all categorizers that Yang and Liu

tested. The five methods used are Support Vector Machines, K-Nearest Neighbor,

Linear Least-Squares Fit, Neural Network, and Naive Bayes. They are ranked from

top to bottom in the table based on micro-averaged F1, generally considered to be

the most important of these performance measures (Yang and Liu, 1999).

The top row of the table shows the results of my system without density

estimation. Without density estimation, some other technique is needed to convert

category similarity scores to YES/NO decisions for each category as described in

Section 4.1, since Reuters is a binary categorization corpus. I have tried all three of

the standard methods described in Section 4.1, and Pcut works by far the best, so

that is used for the result shown in the first line of the table. The micro-averaged

F1 measure, the one that I try to optimize, is only 70.96%, far lower than the five

methods tested by Yang and Liu. This is not surprising, as standard Rocchio does

not generally fare well against other methods for binary categorization. For exam-

ple, see Yang (1999) in which she includes Rocchio among the compared systems

tested on similar Reuters data sets. Interestingly, the macro-averaged F1 measure

is higher than three of the five systems tested by Yang and Liu. (This demon-

strates how results can be misleading if researchers choose an evaluation metric

after obtaining results.)

The second row of the table shows the results of my system after density

estimation is applied. As can be seen, the micro-averaged F1 goes up from 70.96%

to 82.98%, a major improvement. In addition, the overall error goes down from

0.803% to 0.446%. These scores are better than those for the Naive Bayes approach

and marginally better than those for the Neural Network approach examined by

Yang and Liu. Density estimation takes a system that is far under-performing top
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competing systems and improves its performance to such a degree that it is in the

pack.

Interestingly, density estimation actually lowers the macro-averaged F1 of my

system from 50.14% to 40.52%. This leads me to believe that density estimation

may perform better for large categories while the standard approach may perform

better for small categories (since macro-averaged F1 treats all categories equally). I

have therefore performed a final experiment combining the two approaches. For all

categories for which density estimation performs better according to F1 measures

based on cross validation experiments within the training set, I also use density

estimation for the test set, but for other categories, I use Pcut for the test set.

It turns out that Pcut is used for 52 of the 90 categories, but these categories

account for only 1,257 assignments in the training set, whereas density estimation

is used for only 38 categories, but these categories account for 8,626 assignments

in the training set. The results of this final experiment are summarized in row 3 of

Table 4.5. As can be seen, the micro-averaged F1 and overall error are slightly worse

than when density estimation is used for all categories, but still much better than

Pcut and better than the Naive Bayes approach examined by Yang and Liu. The

macro-averaged F1 of 51.18% is better than when either Pcut or density estimation

is used alone, beating three of the five methods tested by Yang and Liu.

4.4 Research Related to Density Estimation

Joachims (1997) has implemented a probabilistic version of a Rocchio-based text

categorization system that uses TF*IDF representations of documents and cate-

gories to compute probabilities of categories given a test document. The method

that system uses appears quite different from standard Rocchio, but Joachims shows

that the two are similar and that they would be equivalent under certain assump-

tions. My system applies standard Rocchio first, and then applies density estima-
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tion to convert similarity scores to probabilities. Joachims tests his system on two

representative categories of the Reuters corpus3, whereas I test my system on 90

Reuters categories representing the common benchmark mentioned in Section 4.2

and described in Section 2.8. Joachims compares his probabilistic TF*IDF system

to a standard version and Naive Bayes, whereas I compare my system against all

methods tested by Yang and Liu (1999) for Reuters categorization, and against

several systems that comprise the publicly available Rainbow package (results of

these systems have already been presented in Section 3.2) for categorization of the

data sets that comprise the corpus I have created (as described in Section 3.1).

The concept of converting category similarity scores to probabilities (or re-

calibrating category probabilities) is not new. Some recent research exploring this

potential is discussed in two recent papers by Bennett. Bennett (2000) provides

evidence that Naive Bayes systems typically produce probabilities close to 0 or

1, a problem that I have noticed in my own research experience but have never

formally analyzed, and he begins to discuss methods that could be used to recal-

ibrate the probabilities. In a later paper (Bennett, 2002), he introduces methods

of fitting asymmetric Gaussian and Laplace distributions to the output of a Naive

Bayes classifier and a linear SVM classifier. The methods described in these papers

are designed to work for binary categorization tasks involving separate YES/NO

decisions for all document/category pairs.

In (Sable and Hatzivassiloglou, 2000), my co-author and I have reported

detailed results of classifying images based on associated text as either Indoor or

Outdoor. Even then, my system, which relied on a combination of Rocchio/TF*IDF

and a much simpler version of density estimation, outperformed a competing image

based system (Szummer and Picard, 1998) that was optimized to perform the same

task. In another paper (Paek et al., 1999), we have reported the results of integrat-

3Joachims also tests his system on the 20 Newsgroups collection described in Section 2.8.
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ing my system at that time with an image based system. I have since improved my

system using the generalized method of density estimation described in this chapter

and in (Sable, McKeown, and Hatzivassiloglou, 2002). The previous method could

only be applied when there are exactly two mutually exclusive categories, but the

current version can be applied when dealing with any number of mutually exclu-

sive categories, or when dealing with a multi-label, binary categorization task. In

addition, the current method leads to significantly better results even for the task

involving exactly two mutually exclusive categories.

4.5 Concluding Discussion of Density Estimation

This chapter presents a novel application of an established mathematical technique,

density estimation, that significantly improves the performance of my Rocchio-

based text categorization system for two out of three experiments. This technique

can be applied to the results of any system that categorizes documents by computing

a similarity score for every category. The results of this chapter suggest that the

use of density estimation should be considered for categorization tasks; experiments

within the training set can be used to determine whether it is likely to improve the

performance of a system.

In addition to improving performance, density estimation provides proba-

bilistic confidence measures for a system’s predictions, whereas a standard Rocchio-

based system (and many other alternatives to which density estimation could be

applied) can only provide category rankings or YES/NO decisions. An analysis of

the validity of these confidence measures for the first two experiments discussed in

this chapter (those involving the Indoor versus Outdoor data set and the Events

data set) is provided in Appendix H. Future work involving density estimation

might involve using the confidence measures to combine results of various systems

for a task. If multiple systems applied to the same task suggest different outcomes,
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the probability estimates provided by the density estimation technique represent

levels of confidence of each prediction. Each individual prediction could be weighted

according to the estimate; this would be similar to the weighted linear combination

strategy for combining systems that is mentioned in Section 7.5. Alternatively,

the most confident prediction for each new document can be used; this would be

similar to the dynamic classifier selection strategy for combining systems that is

also mentioned in Section 7.5, although with density estimation, there is no direct

comparison of new documents to training set documents. In Chapter 7, I discuss

combining high-precision/low-recall rules with other systems, and in Section 7.6, I

mention the possibility of using density estimation as a means of combining these

rules in a potentially more helpful manner. In Chapter 8, I discuss one method

of combining image features and text for the categorization of images, and in Sec-

tion 8.3.3, I outline another procedure involving density estimation that might work

better. Although I have not yet carried out such lines of research, it is clear that

density estimation may be useful in ways other than simply improving the perfor-

mance of individual systems.
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Chapter 5

Bins

As I have explained in Section 2.4, bag of words approaches to text categorization

often represent documents as vectors of weighted words (or terms). Word weights

are usually computed by combining separate features in some fashion, for example,

by multiplying together the term frequency (TF) and inverse document frequency

(IDF), as described in Section 2.4.2. I have also explained that the Naive Bayes

method of text categorization (Lewis, 1998) empirically estimates term weights for

each individual word (or term) that appears in the training set based on estimated

probabilities of seeing each word in a document of each possible category. This

method is prone to inaccurate term weights for words that occur infrequently in

the training set. Words that have never been seen in the training set are ignored

since all of the estimated probabilities are zero, and words that appear in only one

category in the training set might appear to give that category infinite likelihood

if they appear in a document from the test set. These observations have led to

my next attempt to improve a popular text categorization approach, in this case

Naive Bayes. In this chapter I show that empirically estimating term weights for

bins, where each “bin” contains a group of “similar” words, instead of estimating

weights for individual words, avoids the pitfalls associated with scarce evidence.
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This particular use of bins can be thought of as a smoothing technique added to

Naive Bayes. In addition to avoiding inaccurate term weights, the use of bins pro-

vides evidence indicating which features of words are most important for indicating

categories.

Using bins, I have implemented a user-friendly text categorization system

called BINS, and it is shown in this chapter and throughout the rest of this

thesis that this system is extremely competitive with the state-of-the-art.1 The

BINS system is ready to be made publicly available for research purposes; once

this happens, I will post instructions describing how to obtain the system at

http://www.cs.columbia.edu/˜sable/bins.html. In addition to using bins for text

categorization, BINS also allows the user to combine the bin-based methodology

with standard Naive Bayes. The idea is that the term weight for an individual word

can be used when there is enough evidence, and otherwise we can fall back to the

term weight for the word’s bin. It is also possible to combine the two weights. I

show in this chapter that, for my data sets, bins alone performs better than Naive

Bayes alone, and a combination of the two performs better than either individually.

5.1 Research Related to Bins

The Speech Recognition literature has developed a number of methods for smooth-

ing term frequencies (e.g., Chapter 15 of (Jelinek, 1998)). These methods are im-

portant when the raw counts are small, and particularly important when the counts

are zero. Both the Good-Turing method and the Deleted Interpolation method es-

timate r∗, an adjusted value of r, where r is the frequency with which the term t

appears in one corpus, and r∗ is the frequency with which t is expected to appear

in another corpus of similar size and material.

1The creation of BINS and the research discussed in this chapter have been performed in
collaboration with Kenneth W. Church at AT&T.
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The Deleted Interpolation method assigns each term, t, to a bin, b, usually

based on the frequency r, but binning rules can also make use of other variables.

Section 15.6 of (Jelinek, 1998), for example, discusses so-called “enhanced” binning

rules where bigrams are assigned to bins not only based on their joint frequencies

but also the frequencies of their parts. In my work, terms are assigned to bins based

on statistics that are commonly used in the text categorization literature.

The Deleted Interpolation method splits the training collection into two

pieces. The first piece is used to assign terms to bins, and to compute the number

of terms that have been assigned to each bin, nb. The second piece is used for

calibrating bins. xb is the number of times that the terms in bin b are found in

the second piece. The final answer is then r∗ ≈ xb/nb. In general, r∗ tends to be

slightly smaller than r in most cases except when r = 0. The adjustments are

important when r is small, especially when r = 0. All of the terms in a bin receive

the same adjusted frequency, r∗.

(Umemura and Church, 2000) shows how the Deleted Interpolation approach

can be generalized to estimate likelihood ratios instead of frequencies in an informa-

tion retrieval application. In this chapter, I discuss a similar approach that I use for

text categorization. Text categorization is interestingly different from information

retrieval because there tends to be relatively more supervised training material.

5.2 Data Sets Used for Experiments with Bins

In general, my research has focused on news documents and their embedded images.

For my experiments with BINS, the bin-based system that I implemented, I have

used the same data sets as for the first two experiments with my density estimation

system, as discussed in Section 4.2. The first experiment involves the Indoor versus

Outdoor data set, first described in Section 3.1.2.2, and the second experiment

involves the Events data set, first described in section 3.1.2.3. I am not be reporting
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results of using bins for the Reuters data set, since the current version of BINS is

designed to work only for tasks involving mutually exclusive categories. You can see

results for an older version of my system applied to a Reuters data set as published

in (Sable and Church, 2001).

5.3 Bins and Features

The main principle behind a bin-based system is to group words with similar fea-

tures into a common bin. Features should be chosen such that words with the

same values of these features would be expected to have very similar values of the

term weights being estimated. When dealing with text categorization, once words

have been placed into bins, a bin-based system estimates the likelihood of a word

from a specific bin appearing in a document of a specific category with a specific

occurrence count. It is therefore important to group words together in such a way

that the words in a single bin are expected to occur with about equal probability

in a document of a specific category.

The current version of my BINS system creates a separate set of bins for each

category. The reason that there is a separate set of bins for each category deals

with the term weights being estimated; each term weight is an estimated probability

that a word from a bin will appear in a document of a specified category. This is

analogous to the probabilities estimated for individual words with a standard Naive

Bayes system. In order to create a single set of bins for all categories, we would have

to somehow group words together such that each set contained only words that had

the same likelihood as each other for all categories; that would be difficult, and the

bins would not necessarily be very meaningful.

BINS uses two features (by default) to group words together in bins. The

first such feature is what I call the “category count” for the category associated

with the given bin (remember from the previous paragraph that BINS creates a
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separate set of bins for each category). This is defined as the number of training

documents of the specified category in the first half of the training set that contain

the word. This should intuitively seem like a good feature to use. If, for example, a

group of words all appear in k out of n documents labeled as category c in the first

half of the training set, it seems likely that they will all occur with approximately

the same frequency as each other in later documents that also belong to category c.

(You might be tempted to further assume that this frequency should be estimated

as k/n, but the entire point of bins is that this is not necessarily a good estimate

when k is small, especially when k is 0. See the discussion of Deleted Interpola-

tion in Section 5.1, or the Scientific American article by Efron and Morris (1977)

explaining Stein’s Paradox, which dictates that this intuitive guess is often not the

best prediction.)

The second feature used to group words together in bins is the quantized IDF

of the word, based on the first half of the training set. IDF, or inverse document

frequency, is a very common statistic used in the text categorization and other

IR literature, as described in Section 2.4.2. BINS quantizes the value simply by

truncating it; if these values were not quantized, there would be too many possible

values, and the bins would be too small, defeating the purpose of binning in the first

place. The reason that the IDFs are based only on the first half of the training set

is that this is the portion of the training set that is used to place words into bins.

Calculating the IDF of a word based on the entire training set would be problematic,

since the IDF itself would then give an unfair hint as to how frequently the word

appears in the second half of the training set; I explain in Section 5.4.1 that the

second half of the training set is used to estimate the likelihood of seeing words

from each bin in a document of a specified category. Using IDF as a binning feature

may seem less intuitive than using category counts; however, it turns out that these

values are helpful, and this is discussed in more detail in Section 5.4.3.
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Another option for computing IDFs would be to base the values on a larger,

different corpus. On the one hand, there would be more data, but on the other

hand, the data would not be as representative of the test set. Some experiments

that I have conducted suggest that using a larger corpus to compute IDFs might be

beneficial for some tasks, but for other tasks it causes problems; In any case, I have

decided that I want my BINS system to be general-purpose, without needing to rely

on outside information. Still, I discuss this option in more detail in Appendix K.

In summary, the use of IDFs based on a much larger corpus slightly improves

performance for the Indoor versus Outdoor data set and the Events data set when

bin weights are always used, but when bin weights are used in conjunction with

Naive Bayes weights (as is discussed later in the chapter in Section 5.7), performance

stays the same or degrades. The appendix also describes why for certain tasks, such

as Reuters categorization, the use of weights computed based on another corpus is

dangerous.

Indoor Outdoor
Quantized

Intuition Word Category Category
IDF

Count Count

Clearly Indoor
conference 14 1 4
bed 1 0 8

Clearly Outdoor
plane 0 9 5
earthquake 0 4 6

Unclear
speech 2 2 6
ceremony 3 8 5

Table 5.1: Values of binning features are used to assign words to bins.

Table 5.1 shows the values of the features for six selected words when assign-

ing words to bins based on the first half of the training set for the Indoor versus

Outdoor data set. Based on these features, every word in the corpus is assigned to

a bin corresponding to each category. For example, the word “plane” is assigned
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to an Indoor bin consisting of all words with a quantized (truncated) IDF of 5

that appear in zero Indoor documents in the first half of the training set, and it

is assigned to an Outdoor bin consisting of all words with a quantized IDF of 5

that appear in nine Outdoor documents in the first half of the training set. In this

particular case, there may be enough evidence to predict the probability of seeing

the word “plane” in a future Outdoor document just based on the word alone, but

there is clearly not enough evidence to predict the probability of seeing the word

“plane” in a future Indoor document. However, even if the word “plane” never

occurs in an Indoor document in the entire training set (both halves), chances are

that at least one word in the same Indoor bin as “plane” occurs at least once in an

Indoor document in the second half of the training set; this then leads to a non-

zero probability which is likely a better estimate. In this way, binning can provide

credible term weights, even for words that never occur in a category.

BINS also allows other features to be used in order to group words into

BINS. One such feature is burstiness, as suggested by (Umemura and Church,

2000), which was used by default in the earlier version of the system described in

(Sable and Church, 2001) and is discussed in Appendix I. Another is an alternative

to IDF of my own invention that I call shared scaled category likelihoods, which is

described in Appendix J. In both of these cases, using these weights in addition

to (or instead of) IDF to bin words has inconclusive results when applied to the

data sets used in the experiments discussed in this chapter; in other words, some

results improve while others degrade, and in general, the changes are small. The

appendices explain my decisions not to use these features by default. Finally, BINS

also allows the user to provide any arbitrary weights for words that the user wishes

to specify (by providing a file that maps each word to a weight). However, the

experiments discussed in the remainder of this chapter all use only the default

features (category counts and quantized IDFs) to group words into bins.
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5.4 Calculating Term Weights

5.4.1 Methodology for Calculating Term Weights

Once bins have been determined based on the first half of the training set, the

second half of the training set is used to empirically estimate term weights for

all bins. Each bin is assigned multiple term weights corresponding to different

possible occurrence counts, or term frequencies, of words in documents (this will

be elaborated shortly). Given a bin related to a specific category, we estimate the

probability that a word belonging to the bin will appear in an article of the same

category with some specific count. The log of this probability is used as a term

weight for the bin.

BINS estimates separate term weights for various possible occurrence counts.

For each bin, the occurrence counts considered are, by default, zero, one, two,

three, or four or more. All occurrence counts above the maximum are truncated

to the maximum, and the user has the option of changing this maximum, but

the experiments discussed in this chapter all use the default of four (determined

empirically based on some initial experiments). For example, consider a word such

as “earthquake”, and its Disaster bin for the experiment with the Events categories;

separate term weights are estimated according the the probabilities of seeing the

word “earthquake” in a Disaster document one or more times, two or more times,

three or more times, and four or more times. It is expected that, other things being

equal, the more a word occurs in a document, the more indicative it is of a category.

More formally, let Wbin(c,w) represent the set of all words in the same bin

as word w corresponding to category c. This set of words is determined based on

the first half of the training set. Let Dc be the set of all documents belonging to

category c in the second half of the training set. For any document d and word

w, let I(d, w, i) be 1 if d contains the word w at least i times and 0 otherwise.
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Then, we can estimate the probability of observing a word w at least i times in a

document of category c as being:

P (w, i|c) =
1

|Wbin(c,w)|
×

∑

wj∈Wbin(c,w)

[

1

|Dc|
×

∑

dk∈Dc

I(dk, wj, i)

]

(5.1)

The part in brackets represents the estimated probability, based on the second

half of the training set, that a single word (wj) from a bin will show up at least

i times in a document of category c. The expression as a whole simply averages

the probabilities for all of the words in the same bin as w corresponding to the

specified category. The log of this averaged probability, i.e. log2 P (w, i|c), is the

term weight for the bin corresponding to the occurrence count of i and the category

c. Note that all term weights are zero or negative, since we are taking the logs of

probabilities, so values closest to zero represent the most likely scenarios.

5.4.2 An Example of Calculating Term Weights

The above steps are best illustrated by example. As shown in Table 5.1, for the

first experiment, the word “plane” appears in nine Outdoor documents in the first

half of the training set but no Indoor documents in the first half of the training

set. The quantized IDF of “plane”, according to the first half of the training set, is

5. Therefore, “plane” is placed in one bin representing all words with a truncated

IDF of 5 that appear in nine Outdoor documents, and I will refer to this as the

Outdoor bin of “plane”. The same word is placed in another bin representing all

words with a truncated IDF of 5 that appear in zero Indoor documents, and I will

refer to this as the Indoor bin of “plane”. When the second half of the training set

is examined, it is noted that the estimated probability that a word belonging to

the same Indoor bin as “plane” appears one or more times in an Indoor document

is 5.31× 10−3, and so the term weight for this bin corresponding to the occurrence
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count of 1 is:

λIndoor = log2(5.31 × 10−3) = −7.56 (5.2)

It is also noted that the estimated probability that a word belonging to the same

Outdoor bin as “plane” appears one or more times in an Outdoor document is

2.13 × 10−2, and so the term weight for this bin corresponding to the occurrence

count of 1 is:

λOutdoor = log2(2.13 × 10−2) = −5.55 (5.3)

The difference between the term weight associated with a word’s Indoor bin and the

term weight associated with a word’s Outdoor bin is a log likelihood ratio comparing

the likelihood of seeing the word (or one with the same features) in one category

versus the other. In this case, λIndoor − λOutdoor = −7.56− (−5.55) = −2.01, which

means that if a word with the same features as “plane” is seen in a document, it

is about 22.01 = 4.03 times more likely to be an Outdoor document than an Indoor

document.

This example should help to illustrate why the training set is divided into two

halves. The first half of the training set determines bins, and the second half is used

to calibrate bin probabilities. Let’s say that “plane” does not occur in any Indoor

documents in the entire training set. This does not mean that if the word is seen

in a test document, it is necessarily an Outdoor document. Since “plane” is placed

in an Indoor bin with other words that occur in no Indoor documents in the first

half of the training set, and some of these words appear in some Indoor documents

in the second half of the training set, we are able to estimate a probability for the

bin as a whole of seeing a word from the bin in an Indoor document.

Table 5.2 shows the results of subtracting the Outdoor term weights from

the Indoor term weights for the bins of the the same six words shown in Table 5.1.

As expected, words such as “conference” and “bed” are good Indoor indicators,

while words such as “plane” and “earthquake” are good Outdoor indicators. The
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Indoor Outdoor
Quantized

Intuition Word Category Category
IDF

λIndoor − λOutdoor

Count Count

Clearly Indoor
conference 14 1 4 4.84
bed 1 0 8 1.35

Clearly Outdoor
plane 0 9 5 -2.01
earthquake 0 4 6 -1.00

Unclear
speech 2 2 6 0.84
ceremony 3 8 5 -0.50

Table 5.2: Term weights for these words fit intuition as to which words indicate
which category; that is, the final column contains large positive values for clearly
Indoor words, large negative values for clearly Outdoor words, and values closer to
zero for words that are unclear.

words “speech” and “ceremony” each show a slight preference for one category over

the other, but according to term weights, each is less than twice as likely in the

favored category.

5.4.3 Justification of Using IDF as a Binning Feature

It was explained in Section 5.3 that category count should intuitively seem like a

good feature to use. The same, however, should not be said for IDF. Let’s say,

for instance, we are dealing with the Events categories, and we know the category

count of a word in a category; perhaps, for example, we are dealing with a word that

occurs zero times in the first half of the training set in the Disaster category. The

IDF, on the other hand, actually represents the frequency (or rarity) of the word

in the entire first half of the training set, and not just in the specified category (see

Section 2.4.2 for an explanation of IDF). In combination with the category count

for a specified category, then, the additional information provided by the IDF is

the word’s level of frequency in the rest of the first half of the training set; but,

is there any reason to believe that the frequency of a word in documents of other
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categories should have any influence in the prediction of the future frequency of

the word in the specified category? It turns out that, according to statistics, the

answer appears to be yes.

IDF
λDisaster λDisaster

(category count = 0) (category count = 1)
1 -5.70 -4.39
2 -5.49 -5.70
3 -6.70 -5.73
4 -7.26 -6.20
5 -7.74 -6.40
6 -8.17 -6.65
7 -8.85 -7.23
8 -10.05 -7.84

Table 5.3: The IDF significantly influences the predictions of the likelihood of seeing
a word in a future document of some specified category.

Table 5.3 shows the lambdas computed for various bins for the second ex-

periment (dealing with the Events categories) corresponding to occurrence counts

of one or more. The first column shows values computed for the Disaster bins of

words that did not occur in any Disaster documents in the first half of the training

set, and the second column shows values computed for the Disaster bins of words

that occurred in exactly one Disaster document in the first half of the training set.

(Remember that binning is most important for bins corresponding to low category

counts, since these represent cases with scarce evidence.) Each row shows the lamb-

das computed for a different IDF. Note that as IDF varies holding everything else

the same, the lambdas vary as well, perhaps more than you would expect. These

lambdas are logs of probabilities (using a base of two), and so this table shows, for

example, that a word that never occurs in a Disaster document in the first half of

the training set but is common (low IDF) in the rest of the first half of the training

set (in documents that belong to other categories) is about 20 times as likely to
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show up in a future Disaster document compared to a word that never occurs in a

Disaster document in the first half of the training set and is also rare in the rest of

the first half of the training set.

Figure 5.1: As IDF increases, holding category count constant, the likelihood of
seeing a word in a document of a specified category decreases.

Figure 5.1 shows the same information as Table 5.3 in graphical format.

The graph makes it clear that lambdas (which represent the estimated likelihood of

seeing a word in a document of the specified category) decrease as IDF increases,

even holding category count constant. It appears that, everything else being equal,

there is approximately an inverse, linear relationship between IDF and lambda.

Also, as is to be expected, when holding IDF constant, in almost all cases, the

estimated likelihood of seeing a word with a category count of 1 is higher than the

estimated likelihood of seeing a word with a category count of 0 for the category.

The only small anomaly in the graph is that the lambda for a category count of 0 and

an IDF of 2 seems slightly higher than it should be; however, the corresponding bin
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is very small (since there are very few words that occur so commonly in the corpus

as a whole to achieve such a low IDF but never appear in a Disaster document in

the first half of the training set), so this lambda is still based on scarce evidence

and may not be accurate. In any case, we are still likely better off using the bin

weight than that of individual words contributing to the bin.

It should be noted that just because IDF seems to be correlated, and there-

fore indicative, of the future probability that a word will show up in a future

document of a specific category, this does not necessarily mean that performance

improves when it is used as a binning feature. Every new binning feature makes

bins smaller, and therefore less accurate. There is a performance gain only if the

benefit of using an additional indicative feature outweighs the negative effect of

making the bins smaller. Appendix L compares the use category counts alone to

the use of category counts with IDF for the Indoor versus Outdoor data set and the

Events data set. It turns out that IDF does seem to improve performance for the

Events data set, but it leads to a small degradation in performance for the Indoor

versus Outdoor data set. Still, based on the justification presented in this section

and the vast use of this feature in the text categorization literature, I have decided

to have the system use the feature by default.

5.5 Overall Methodology of BINS

BINS provides simple tools that allow the user to divide the training set into two

halves. If the user wishes, he or she does not have to make the two “halves” actually

have equal size, but this is what I recommend. Once the training set is split, a single

script is provided that performs all training, testing, and even evaluation (if there

are known labels for the documents in the test set). If the user wishes, however, he

or she may do training and testing separately; then, once the system is trained, it

can be applied to various test sets without retraining.
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The methodology of training has been fully described in Sections 5.3 and 5.4.

The first half of the training set is used to place words into bins, and then the second

half of the training set is used to calculate term weights (estimated likelihoods)

for each bin. Once term weights for all bins have been calculated, BINS loops

through the test documents to predict categories. For each test document, BINS

iterates through its words, summing the appropriate term weights for each category.

For example, for the second experiment, five sums are generated, one for each

category. The first is the sum of the term weights for the Struggle bins associated

with all words in the document (taking into account the specific occurrence counts

of the words), the second is the sum of the term weights for the Politics bins,

etc. Whichever category has the highest sum is considered the most likely and is

therefore predicted. The likelihood of bins are assumed to be independent. This is

similar to the independence assumption of words in Naive Bayes, and in fact the

two methods are virtually identical if every word is assigned its own bin. The use

of bins in this fashion can be considered to be a smoothing technique applied to

Naive Bayes.

Figure 5.2 shows pseudo-code summarizing the algorithm. This pseudo code

assumes that everything is run in default mode, and some things are left out (for

instance, IDFs actually need to be computed for each word), but the main points

are here. In actuality, BINS consists of a collection of Perl scripts with a total of

approximately 3,500 lines of code. Much of this code, however, deals with options

that are not discussed in this chapter. Some of these options are discussed in Ap-

pendices I, J, K, L, M, and N. The first part of the algorithm (corresponding to

lines 1 through 16 of the pseudo-code) determines the features associated with all

words based on the first half of the training set, maps words to bins accordingly,

and computes the size of each bin. The next part of the algorithm (corresponding

to lines 17 through 44 of the pseudo-code), uses the second half of the training
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1 # Determine category counts of words in corpus.
2 for every document in first half of training set {
3 current_category <-- category[document];
4 for every word in document {
5 count[word, current_category] += 1;
6 }
7 }

8 # Determine bins for all known words.
9 for every known word {
10 for every category {
11 category_count <-- count[word, category];
12 current_bin <-- bin(IDF[word], category_count);
13 # Increment size of current bin.
14 size[current_bin] += 1;
15 }
16 }

17 # Determine count of every (bin, occurrence count) pair.
18 for every document in second half of training set {
19 current_category <-- category[document];
20 for every word in document {
21 category_count <-- count[word, current_category];
22 current_bin <-- bin(IDF[word], category_count);
23 occurrence_count <-- term_frequency[word, document];
24 # Increment count for this word’s (current_bin, occurrence count) pair.
25 count[current_bin, occurrence_count] += 1;
26 }
27 # Fix counts for occurrence counts of 0 (uses bin sizes) here.
28 }

29 # Estimate probability of every (bin, occurrence count) pair.
30 for every bin {
31 total = 0;
32 for every possible occurrence_count (0 to MAX) {
33 total += count[bin, occurrence_count];
34 }
35 for every possible occurrence_count (0 to MAX) {
36 probability[bin, occurrence_count] = count[bin, occurrence_count] / total;
37 }
38 }

39 # Calculate term weights.
40 for every bin {
41 for every possible occurrence_count (0 to MAX) {
42 lambda[bin, occurrence_count] = log (probability[bin, occurrence_count]);
43 }
44 }

45 # Loop through test set.
46 for every document in test set {
47 for every possible category {
48 score[category] = 0;
49 }
50 for every word in document {
51 occurrence_count <-- term_frequency[word, document];
52 for every possible category {
53 category_count <-- count[word, category];
54 current_bin <-- bin(IDF[word], category_count);
55 score[category] += lambda[current_bin, occurrence_count];
56 }
57 }
58 # Assign document to category with highest score here.
59 }

60 # Various results are computed and displayed here.

Figure 5.2: This pseudo-code represents the algorithm used to conduct an entire
experiment, including training (lines 1 - 44) and testing (lines 45 - 60).
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set to estimate probabilities of all possible (bin, occurrence count) pairs, and cor-

responding term weights are computed. Some extra code is needed to compute

counts for all instances of occurrence counts of 0 (see the comment at line 27 of

the pseudo-code), and there are also checks throughout the actual code to avoid

infinities. Finally (corresponding to lines 46 through 60 of the pseudo-code), the

test set is examined. For every test document, every word is mapped to its appro-

priate bins (one for each category), and the score for each category is incremented

by the appropriate term weight. Each test document is assigned to the category

with the highest score. On typical Unix systems, the actual system can complete

a full run including training and testing for the Indoor versus Outdoor data set in

a few seconds, and it can complete a full run for the Events data set in about one

minute. Both data sets consist of approximately 900 training documents and 450

test documents; the Indoor versus Outdoor experiments are quicker because only

first sentences of captions are used, whereas the Events experiments involve lengthy

news articles.

I have found that one way to generally improve results of my system is to

repeat training and testing twice, swapping the two halves of the training set in

between runs. So the second time around, the second half of the training set is used

for mapping words to bins, and the first half is used to determine term weights.

This way, if a word happens to occur in documents of a specific category more in

one half than the other, the term weights used for the word (based on the two bins

the word is mapped to in the two separate runs) should balance each other out.

Therefore, BINS also provides a script that can combine the results of two runs, and

a final script that does everything at once (training and testing twice swapping the

two halves of the training set in between, then combining and analyzing results).

The results discussed in the next section all are based on experiments that train

and test twice in this manner.
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5.6 Results and Evaluation of Experiments with

Bins

System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
My systems

BINS 85.8 75.1 90.1
Naive Bayes 84.5 70.9 89.4
Rocchio/TF*IDF 80.7 69.9 85.7
Density Estimation 86.1 73.7 90.5
K-Nearest Neighbor 82.7 65.8 88.4

Rainbow systems
Naive Bayes 85.4 73.5 89.9
Rocchio/TF*IDF 84.5 73.2 89.1
K-Nearest Neighbor 77.8 65.3 83.6
Probabilistic Indexing 86.3 78.1 90.0
Support Vector Machines 82.0 66.9 87.7
Maximum Entropy 84.5 70.9 89.4

Table 5.4: BINS performs better than Naive Bayes and most other systems tested
for the Indoor versus Outdoor data set.

Table 5.4 shows the results of BINS and several other systems tested for the

first experiment (involving the Indoor versus Outdoor categories). These include

all of the systems shown in Table 4.3 in the previous chapter, the BINS system

described here, and also my own implementation of a Naive Bayes system. The

most important comparison is that of my BINS system against my own Naive

Bayes system, which is identical to BINS except that term weights are computed

for individual words; this is the only comparison that demonstrates the effect of

using bins.2 BINS beats both versions of Naive Bayes, and also performs better than

2There are many reasons that my Naive Bayes system (or other systems I have developed)
would not achieve exactly the same result as a Rainbow (or other) system using the same general
methodology. Differences might include tokenization rules (i.e. what counts as a word - my
system simply uses all strings of alphabet letters in the text, converting all letters to lower case),
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most of the other systems tested (the exceptions being my own density estimation

system described in Chapter 4 and Rainbow’s Probabilistic Indexing system). At

this level, BINS is performing significantly better (according to a one-sided χ2

test) than the bottom four systems; the other systems fall within a 95% confidence

interval. Further improvement is demonstrated in Section 5.7, which discusses the

combination of bin weights and Naive Bayes weights, that pushes BINS performance

to a level above that of all other systems tested. As reported in the previous chapter

(see Section 4.3), a a baseline classifier that picks the larger category every time

(Outdoor) achieves a 71.2% overall accuracy, which is significantly lower than all

the automatic systems tested; humans who are asked to predict labels after being

shown only captions achieve an 87.6% overall accuracy, which I consider to be a

reasonable upper bound for how well a text categorization system might be expected

to do.

Table 5.5 shows the results of BINS and all other systems tested for the

second experiment (involving the Events categories), which are the same as those

listed in the previous table. Once again, BINS performs better than Naive Bayes

and most other systems tested. In both experiments, BINS not only improves upon

the overall accuracy of the similar Naive Bayes implementation, but also improves

performance for every category. Only two of the systems tested outperform BINS on

this data set, those being Rainbow’s SVM system and Rainbow’s Maximum Entropy

system. At this level, BINS is performing significantly better (according to a one-

sided χ2 test) than the bottom three systems; the other systems fall within a 95%

confidence interval. Further improvement is demonstrated in Section 5.7, which

discusses the combination of bin weights and Naive Bayes weights, that pushes

whether or not stop words are automatically removed (my system does not do this), how to handle
occurrence counts (I believe Rainbow simply multiplies the term weight for a single occurrence by
the occurrence count, whereas my technique has been described previously in the chapter), etc.
In this case, my own Naive Bayes system performs slightly worse for this particular data set than
that which is part of the Rainbow package; some of the differences probably help, but others hurt,
and the net effect happens to be negative for this case.
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System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %

My systems

BINS 88.0 87.5 88.3 97.2 83.1 60.0
Naive Bayes 86.0 85.4 87.2 96.7 81.4 27.6
Rocchio/TF*IDF 87.1 85.0 88.4 98.8 79.2 60.0
Density Estimation 84.9 83.7 86.0 97.3 80.0 34.3
K-Nearest Neighbor 84.0 81.1 82.1 93.9 81.3 65.0

Rainbow systems

Naive Bayes 87.6 86.2 86.3 96.7 89.1 61.5
Rocchio/TF*IDF 87.4 81.1 85.3 97.7 88.4 68.3
K-Nearest Neighbor 81.9 80.0 79.7 95.6 75.6 63.2
Probabilistic Indexing 86.5 83.6 84.8 97.2 89.4 65.0
Support Vector Machines 88.7 88.1 89.2 96.2 87.0 57.9
Maximum Entropy 88.3 88.1 87.9 95.7 87.9 55.6

Table 5.5: BINS performs better than Naive Bayes and most other systems tested
for the Events data set.

BINS overall accuracy for these categories above 90%, thus beating all of the other

systems tested. A baseline categorizer that picks the largest category every time

(which happens to be Struggle, based on the training set) would achieve only a

30.5% overall accuracy.

5.7 Combining Bins and Standard Naive Bayes

There is an interesting trade-off when using bins instead of standard Naive Bayes.

On the one hand, it is expected that term weights for bins are more accurate,

since they are based on multiple words and have additional evidence compared

to single words. On the other hand, half of the training set is “lost” (i.e. used

to group words into bins), and therefore only half is used to actually estimate

the term weights. Although the training/testing is repeated twice, as described

in Section 5.5, swapping the two halves of the training set in between, it is not
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necessarily the case that the two runs balance out in such a way that term weights

are as accurate for words with ample evidence as a single term weight based on

entire training set for such words. BINS therefore allows the user to combine the

binning-approach described in this chapter with standard Naive Bayes. The idea

here is to use the term weights for individual words when there is enough evidence,

and to back off to the term weight for the word’s bin otherwise. BINS also allows the

two weights to be combined with various proportions for various levels of evidence.

In order to determine what might be the best way to use the two weights

for various levels of evidence, I have divided the original training set into three

subsets. The first two subsets are used as a new training set to estimate term

weights, and the the third is used to assess the accuracy of these term weights.

When computing term weights for the binning approach, the first two subsets of

the training set are used separately, one to assign words to bins and the other

to estimate term weights, as described in the rest of this chapter. To estimate

Naive Bayes term weights, the first two subsets are used together. In addition

to assessing the accuracy of individual term weights, I also assess the accuracy of

various weighted combinations of the two term weights for various levels of evidence.

By “level of evidence”, I am referring to the number of documents of a specified

category in which a word appears in the training portion of the data. It is expected

that the higher this number, the more accurate a Naive Bayes estimate for the word

is likely to be, and the less necessary it is to back off to the bin. The BINS system

provides a very simple mechanism for the user to indicate how he or she wishes

weights to be combined for various levels of evidence.

I have used two methods to assess the accuracy of term weights. The first is

entropy, which, roughly speaking, refers to the number of bits needed to indicate

the documents that each word appears in. This is averaged for words with each

possible level of evidence. Such an entropy is computed for bin term weights, Naive
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Bayes term weights, and various combinations of the two term weights. I have

considered 101 possible combinations of term weights. For all integers n ranging

from 0 to 100, I have tested what happens if the Naive Bayes term weight is used

for n% of the combined weight and the bin term weight is used for (100 − n)%

of the term weight. For each level of evidence, I then record which n leads to the

best result (the lowest entropy). Results are extremely similar for both data sets.

For words that do not appear at all in a specified category in the training set (level

of evidence equals 0), the optimal n is 0, meaning that it is best to rely exclusively

on the bin term weight. For words that appear once in a specified category in the

training set (level of evidence equals 1), the optimal n is very close to 50, meaning

that it is best to average the bin weight and the Naive Bayes weight. For words

that appear in two or more documents of a specified category in the training set

(level of evidence greater than or equal to 2), n is always very close to 100, meaning

that it is best to rely exclusively on the Naive Bayes weight. I will refer to this

combination of weights as COMBO #1.

The second method I have used to assess the accuracy of term weights is

to determine what combination of weights (what value of n as described in the

previous paragraph) minimizes the squared errors for estimated word probabilities

at various levels of evidence. This time, the trend is more gradual, especially for

the Indoor versus Outdoor data set. This has led me to also try a second set of

weight combinations. For words that do not appear at all in a specified category

in the training set, I have BINS rely exclusively on the bin weight; for words that

appear in one document of a specified category in the training set, I have BINS use

25% of the Naive Bayes weight and 75% of the bin weight (n = 25); for words

that appear in two documents of a specified category in the training set, the two

weights are averaged equally (n = 50); for words that appear in three documents

of a specified category in the training set, I have BINS use 75% of the Naive Bayes
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weight and 25% of the bin weight (n = 75); and for words that appear in four or

more documents of a specified category, I have BINS rely exclusively on the Naive

Bayes weight. This combination of weights will be referred to as COMBO #2.

COMBO #2 is more in line with my original intuition of what would work the

best.

System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
My systems

BINS (COMBO #2) 87.2 78.0 91.0
BINS (COMBO #1) 86.1 76.2 90.2
BINS (always use bin) 85.8 75.1 90.1
Naive Bayes 84.5 70.9 89.4
Rocchio/TF*IDF 80.7 69.9 85.7
Density Estimation 86.1 73.7 90.5
K-Nearest Neighbor 82.7 65.8 88.4

Rainbow systems
Naive Bayes 85.4 73.5 89.9
Rocchio/TF*IDF 84.5 73.2 89.1
K-Nearest Neighbor 77.8 65.3 83.6
Probabilistic Indexing 86.3 78.1 90.0
Support Vector Machines 82.0 66.9 87.7
Maximum Entropy 84.5 70.9 89.4

Table 5.6: Combining the bin-based methodology with standard Naive Bayes leads
to the best results seen for the Indoor versus Outdoor data set.

Tables 5.6 and 5.7 add to the list of results those obtained using BINS with

the combinations of weights described in the previous two paragraphs. As can be

seen, both sets of weight combinations improve the performance of BINS, beating

both bin weights and Naive Bayes weights alone. For the Indoor versus Outdoor

data set, COMBO #1 is still marginally beat by Rainbow’s Probabilistic Indexing

system, but COMBO #2 has the best performance of any system tested. In terms

of statistical significance, only the four bottom systems show performance below
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System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %

My systems

BINS (COMBO #2) 90.3 89.5 90.4 98.9 89.1 63.8
BINS (COMBO #1) 90.3 89.7 90.8 98.3 89.4 62.5
BINS (always use bin) 88.0 87.5 88.3 97.2 83.1 60.0
Naive Bayes 86.0 85.4 87.2 96.7 81.4 27.6
Rocchio/TF*IDF 87.1 85.0 88.4 98.8 79.2 60.0
Density Estimation 84.9 83.7 86.0 97.3 80.0 34.3
K-Nearest Neighbor 84.0 81.1 82.1 93.9 81.3 65.0

Rainbow systems

Naive Bayes 87.6 86.2 86.3 96.7 89.1 61.5
Rocchio/TF*IDF 87.4 81.1 85.3 97.7 88.4 68.3
K-Nearest Neighbor 81.9 80.0 79.7 95.6 75.6 63.2
Probabilistic Indexing 86.5 83.6 84.8 97.2 89.4 65.0
Support Vector Machines 88.7 88.1 89.2 96.2 87.0 57.9
Maximum Entropy 88.3 88.1 87.9 95.7 87.9 55.6

Table 5.7: Combining the bin-based methodology with standard Naive Bayes leads
to the best results seen for the Events data set.

the 95% confidence interval (according to a one-sided χ2 test), but another three

systems (including the similar Naive Bayes system) are right near the borderline.

For the Events data set, COMBO #1 and COMBO #2 perform equally well as each

other (according to overall accuracy) and better than any other system tested; in

fact, using either combination of weights pushes the overall accuracy for this data

set to over 90% for the first time. With either combination, only the top two

competing systems show performance within the 95% confidence interval (according

to a one-sided χ2 test).

5.8 Concluding Discussion of BINS

This chapter describes the use of bins to compute more accurate term weights for

words with scarce evidence. The experiments discussed here indicate that a bin-
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based system is likely to perform better than one that estimates term weights for

individual words, and by combining the two approaches, the performance seems

to be extremely competitive with all methods I tested. The specific methodology

used by my bin-based BINS system can be thought of as the use of a smoothing

technique to generalize Naive Bayes.

I believe that there is a lot of future potential for bins and text categorization

beyond what is discussed in this chapter. There is likely enough potential in bins

that research in this area could constitute a thesis in and of itself. In addition to

improving performance by smoothing, bins can be used to determine what features

are important for a task. By testing various features, and examining estimated term

weights varying one feature while holding the others constant, one can determine

if the feature is likely to make a difference according to the training data. My

BINS system allows the use of certain additional features that are not used by

default; two of these are discussed in Appendices I and J. Many other features are

possible, and BINS also allows users to create their own features and specify them

for binning; for example, see Appendix K which explores the use of IDFs based on

a much larger, alternative corpus instead of the training set. Appendix L explores

the use of category counts alone to bin words. Appendix M summarizes the other

appendices mentioned in this paragraph.

The use of bins additionally provides a very interesting way to incorporate

unlabeled data into training. Because a large amount of unlabeled data is generally

easy to obtain, research in utilizing unlabeled data for training has generated a lot

of interest (e.g. (Yarowksy, 1995; Blum and Mitchell, 1998; Abney, 2002)). My

BINS implementation provides a way to use the data but to weight it less than

labeled data using a method described in Appendix N. Although I have not yet

seen positive results with this method, I believe it is very promising for reasons

explained in the appendix.
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Chapter 6

Using NLP

We have seen in Section 2.4 that almost all standard approaches to text catego-

rization rely on bag of words approaches; i.e. each text document is represented as

a vector of weighted words. Systems generally do not rely on syntax or semantics

when computing statistics and making decisions. The use of Natural Language

Processing (NLP) to aid text categorization and other IR applications has received

a lot of attention, and many believe that there is tremendous potential in this area,

but results have been mixed, at best (Strzalkowski, Lin, and Perez-Carballo, 1998;

Strzalkowski, 1999; Voorhees, 1993; Smeaton, 1999; Elworthy, 2000). Many of these

attempts have been applied to specific tasks involving lengthy textual documents

for which standard methods have been performing adequately. In this chapter, I

discuss a text categorization task that has come up naturally in the course of my

research for which deeper NLP techniques are necessary for optimal performance.

In this thesis, I have been focusing on the categorization of images based

on associated text. As has been explained throughout this thesis, the categories

applied to images can be quite different than categories applied to full-length text

documents such as articles, e-mails, or web pages. The experiments discussed

throughout most of this chapter involve the categorization of the images from the
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Disaster image data set; that is to say, it concerns the categorization of captioned

images that are embedded in news documents concerning disasters, and the possi-

ble categories for the images are Workers Responding, Affected People, Wreckage,

and Other, defined to be mutually exclusive. This data set was not set up with

NLP based techniques in mind; rather, I wanted to explore hierarchal categories,

which can present new challenges (as explained in Section 2.1). Only after dis-

covering that standard systems do not perform well for this task did I begin to

consider the use of NLP based techniques. At the end of the chapter, I also dis-

cuss experiments involving images from the Politics image data set, for which the

possible categories are Meeting, Announcement, Politician Photographed, Civilians,

Military, and Other.

Figure 6.1 shows a sample image from the data set along with the first

sentence of its caption. This caption contains words that a standard bag of words

approach would associate with at least two categories (e.g. “rescuers” → Workers

Responding and “victim” → Affected People). However, the predicate structure

of the sentence emphasizes the rescuers, and this particular image is labeled as a

member of the Workers Responding category, although you can also see wreckage

and a victim within the image. The wreckage and the victim are part of the

background, while the rescuers are the object of focus in the foreground. For these

categories, the mere mention of a concept in a caption, or the mere presence of an

object in an image, is not always enough to indicate a category.

On the other hand, consider an image with a different caption, reading “A fire

victim who perished in a blaze at a Manila disco is carried by Philippine rescuers.”

This caption suggests a focus on the victim as opposed to the rescuers, which

implies that the image would be more appropriate for the Affected People category.

However, the words in the caption are nearly identical. A typical bag of words

approach does not have the capacity to distinguish between this hypothetical image
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Philippine rescuers carry a fire victim March 19 who perished in a blaze
at a Manila disco.

Figure 6.1: The first sentence of this image’s caption contains words that a standard
bag of words approach would associate with multiple categories.
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and the example shown; each word is either present a certain number of times or

it is not, and there is no way to capture predicate structure. For certain tasks

involving categories such as the ones being discussed here, some linguistic analysis

is necessary.

I have shown in Section 3.2.3 that no pre-existing system that I tested is able

to perform well for these categories. I eventually became convinced that the main

subject and verb of the first sentence of the caption are particularly important in

determining the category of an image.1 These words typically correspond to the

object of focus in the image and to what that object is doing. For example, the

most helpful words in the caption of the image shown in Figure 6.1 are “rescuers”

and “carry”. The other words are not helpful, and some, such as “victim”, can

even be misleading.

This chapter first describes an experiment carried out with human volunteers

who viewed captions under varying conditions that supports my hypothesis that

consideration of syntax is necessary for optimal performance for this task. It then

describes a system I have developed that uses a shallow parser to extract subjects

and verbs automatically, together with a novel measure of word-to-word similarity,

to place images into these categories. I show that this system outperforms nine

competing systems that I have tested for this task.

6.1 Initial Experiments with the Disaster Image

Data Set

The creation of the data set discussed in this chapter has been described in Sec-

tion 3.1.2.4. As a reminder, the final data set consists of 248 images; 98 (39.5%) are

1As previously explained, captions typically contain two or three sentences with the first sen-
tence describing the image and the rest giving background information about the related story.
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classified as Workers Responding, 72 (29.0%) are classified as Affected People, 55

(22.2%) are classified as Wreckage, and 23 (9.3%) are classified as Other. The data

set has been randomly divided into a training set and a test set, each containing

124 images.

System
Overall

Accuracy %
My systems

BINS 56.5
Rocchio/TF*DF 57.3
Density Estimation 58.9

Rainbow systems
Naive Bayes 55.6
Rocchio/TF*IDF 54.0
K-Nearest Neighbor 54.0
Probabilistic Indexing 59.7
Support Vector Machines 54.8
Maximum Entropy 58.1

Table 6.1: The initial results are low for all systems.

My original plan was to use one of my own classifiers to place images into

these categories. However, as is the case with standard systems as discussed in

Section 3.2.3, it turns out that the performance is not adequate. Table 6.1 shows

the results of all systems tested. The performance of the systems ranges from 54.0%

to 59.7%. According to a one-sided χ2 test, the performance of every system falls

within the 95% confidence interval of the performance of the best system. Choosing

the largest category every time gives a baseline performance of 39.5%. Although

all systems are beating the baseline, I did not feel that they are doing as well as

possible.

In order to decide in which category to place an image, it is important to

determine what is in the image and what that thing is doing. In the sample image
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shown in Figure 6.1, for example, we see rescuers carrying, and that focus of the

image places it in the Workers Responding category. Words in the caption such

as “disco” and “victim” refer to items in the image that are indicative of other

categories such as Wreckage and Affected People, but they do not refer to the

focus of the image. I have formed the hypothesis that the main subject and verb

of the first sentence of the caption should play a pivotal role in determining an

image’s category; if this is correct, it is likely that a system relying on deeper NLP

techniques should be able to outperform typical systems for this task. Typical

systems relying on bag of words approaches can not account for the predicate

argument relationships in the captions.

6.2 Experiments with Humans Viewing the Dis-

aster Image Data Set

To test my hypothesis, I have randomly divided the data set of 248 images into four

equally sized subsets and I have recruited four volunteers to view text associated

with the images under four conditions. Each volunteer is a native speaker of English,

and none have any connection to this or any related research. The four conditions

are:

• Sent: The full first sentence of the caption.

• Rand: The words from the first sentence of the caption in random order.

• IDF: The top two words, not including proper nouns, from the first sentence of

the caption, according to TF*IDF weights (Salton and Buckley, 1988; Salton,

1989).

• S-V: The two words, manually extracted, best representing the main subject

and verb. If the subject is a proper noun, only the token “NAME” is provided.
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Condition Presented Text
Philippine rescuers carry a fire victim

Sent March 19 who perished in a blaze
at a Manila disco.
at perished disco who Manila a a in

Rand 19 carry Philippine blaze victim a
rescuers March fire

IDF disco rescuers
S-V subject = “rescuers”, verb = “carry”

Table 6.2: The subject and verb make it clear that the category for the sample
image is Workers Responding. Other words such as “disco” and “victim” are not
helpful and can be misleading.

Table 6.2 illustrates the four conditions for the sample image shown in Fig-

ure 6.1. As is the case with many images, the subject and verb alone (“rescuers

carry”) are enough to confidently predict the category of the image. The top two

TF*IDF words might be enough, since “rescuers” happens to be one of them, but

“disco” is not helpful. If “victim” were to show up instead of “rescuers”, this con-

dition would be misleading. Viewing all the words in random order is confusing;

there are mixed signals here, and unless volunteers take the time to unscramble the

words and regain some syntactic clues, they are forced to guess.

A web interface has been set up that allows volunteers to predict categories

of images. Each volunteer has been tested with a different condition for each of the

four subsets of the data, and each subset has been presented to the four volunteers

with the four different conditions. In this way, a prediction has been recorded for

every image under each condition once, every volunteer has been tested under all

conditions, and no volunteer has been presented with the same image twice.

Table 6.3 shows the performance of each volunteer under each condition as

well as the overall performance for each condition. All volunteers are reasonably

consistent. It seems that (1) more words (Sent, Rand) are better than fewer words
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Volunteer
Overall Accuracy %

with Specified Condition
Sent Rand IDF S-V

#1 95.2 83.9 50.0 64.5
#2 95.2 75.8 46.8 74.2
#3 83.9 62.9 56.5 64.5
#4 90.3 75.8 61.3 83.9

Avg 91.1 74.6 53.6 71.8

Table 6.3: Subject and verb alone perform almost as well as all words in random
order, and much better than the top two TF*IDF words.

(S-V, IDF), and (2) NLP helps (Sent is better than Rand and S-V is better than

IDF). The NLP effect is remarkably strong and almost compensates for the other

effect; i.e. Rand is only slightly better than S-V (for most volunteers). In summary,

Sent � Rand > S-V � IDF.

Condition Average Time
Rand 68.1
Sent 34.3
IDF 22.7
S-V 20.3

Table 6.4: Volunteers spend the most time making decisions when presented all
words in random order.

In addition to measuring performance, my interface also keeps track of how

long each decision takes. Table 6.4 shows the average time of decisions in seconds

under each of the four conditions. As can be seen, volunteers take the longest,

by far, to make decisions with the Rand condition. Comparatively, with the S-V

condition, they take less than one third of the time.

Examination of these results has led me to the conclusion that syntax clearly

matters for this task. All volunteers perform much better when shown the full first
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sentence with words in their original order than when the same words are shown

in random order, and the task takes approximately half the time. Therefore, any

bag of words approach is likely limited by a significantly lower upper bound than

one that uses NLP techniques. In particular, the main subject and verb from the

sentence are important. Given only these two words, volunteers perform almost

as well as when they are shown all the words in random order, and much better

than when they are given the top two words according to TF*IDF weights, a very

common measure of word importance in the IR literature.

6.3 Using Only Subjects and Verbs with Stan-

dard Systems

System
Overall Accuracy %

Sent S-V
My systems

BINS 56.5 53.2
Rocchio/TF*DF 57.3 53.2
Density Estimation 58.9 55.1

Rainbow systems
Naive Bayes 55.6 54.8
Rocchio/TF*IDF 54.0 54.0
K-Nearest Neighbor 54.0 54.8
Probabilistic Indexing 59.7 54.0
Support Vector Machines 54.8 54.0
Maximum Entropy 58.1 53.2

Table 6.5: Systems perform almost as well using single word subjects and verbs as
they do when provided with the entire first sentence.

I next decided to test how the standard text categorization systems I had

previously tested would fair if only subjects and verbs are provided. At this point,
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I was still using manually extracted words. Table 6.5 compares the results using

only subjects and verbs to the results using the entire first sentence of the caption

(the first column of results is the same as that from Table 6.1). As can be seen, the

performance is slightly worse for seven of the nine systems, slightly better for one,

and the same for another. As with humans, results are almost as high using just

two specifically chosen words as when all words in the sentence (not accounting for

syntax) are used. According to a one-sided χ2 test, none of the individual changes

are statistically significant; however, the fact that the average performance of the

nine systems decreases from 56.5% to 54.0% is marginally statistically significant

(the p-value is just under 5%).

6.4 NLP Based System

With the results of the experiment with humans in mind, I set out to create a fully

automatic text categorization system that takes advantage of my findings. The

training phase of my system consists of examining each image in the training set and

attempting to extract the single words best representing the main subject and verb

from the first sentence of its caption (as described in Section 6.4.1). These extracted

words are used to comprise lists of subjects and verbs that are representative of

the possible categories. The testing phase of my system consists of examining the

images in the test set. For each test image, the main subject and verb from the

first sentence of its caption are extracted using the same method applied to the

training set instances. The new subject and verb are then compared to those in

the lists generated from the training set; this is accomplished by using a measure of

word-to-word similarity (as described in Section 6.4.2). Finally, a score is generated

for every category based on these similarities, and the category with the highest

score is predicted (as described in Section 6.4.3).
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6.4.1 Extracting Subjects and Verbs

Subjects and verbs are automatically extracted using a three step process. First,

Church’s statistical part-of-speech tagger, POS (Church, 1988), assigns a grammat-

ical category to every word in each caption. (My own script is applied to the output

of POS to correct for common errors, determined by initial experiments within the

training set.) Second, the shallow parser CASS (Abney, 1997) parses each tagged

caption. Third, a final script operates on the output of CASS, extracting the heads

of the appropriate noun phrase and verb phrase to obtain the single words assumed

to best represent the subject and verb of the sentence. (If CASS considers the head

of the noun phrase to be a name, the token “NAME” is used instead). WordNet

is used to convert each extracted subject and verb to its morphological base-word.

This process is used to extract subjects and verbs for the training set documents (in

order to comprise lists of subjects and verbs that are indicative of each category)

and also for the test set documents (in order to predict a category for each image).

When applied to the training set, this process leads to an accuracy of 92.7% for

subjects and 86.3% for verbs, according to the manually extracted words. When

applied to the test set, this process leads to an accuracy of 83.9% for subjects

and 80.6% for verbs, according to the manually extracted words. The reason that

the accuracy is higher for the training set is that I allowed myself to examine the

training documents when implementing the script used to extract the heads of the

appropriate nouns and verb phrases. Clearly, the rules that I came up with worked

reasonably well for the test set as well.

6.4.2 Word Similarity

Since this system is limiting itself to only two words per document (those best rep-

resenting the main subject and verb from the first sentence of each image caption),

and the corpus is small relative to those used for most text categorization tasks, it
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is likely that words may occur that have never been seen before. For this reason,

direct comparison of words to each other, as is done by most bag of words ap-

proaches, is not appropriate. Some method of word-to-word similarity is necessary

to handle new words, or it would not be possible to make a prediction for many test

documents. In Section 6.7, I describe some of the research involving techniques for

computing word-to-word similarity, and also why these techniques are not appro-

priate for the task described in this chapter. Instead, I use the approach explained

in this section, which is somewhat novel to the best of my knowledge.

In order to compare subjects and verbs extracted from test captions to those

from the training set, the system examines a large “extended” corpus consisting

of thousands of news articles and embedded captions that are contained in my

corpus, including unlabeled documents (as described in Section 3.1.1). Using the

same method of extraction as discussed in Section 6.4.1, the single words best

representing the subjects and verbs are extracted from every sentence of every

article and caption in the extended corpus. When dealing with text categorization,

the creation of the corpus is generally one of the most time consuming tasks, since

documents usually need to be manually labeled for the training set; however, for

the purposes of word similarity as I am calculating it, the extended corpus does not

need to be labeled, and it is thus easily obtainable.

Based on these extracted subject/verb pairs, the similarity between two sub-

jects is defined to be the percentage of verbs they share in common, and the sim-

ilarity between two verbs is defined to be the percentage of subjects they share in

common. The idea is that two subjects should be considered similar if they often

partake in similar actions, and that two verbs should be considered similar if they

represent actions that are often executed by similar entities. This is not necessarily

a good measure of word similarity for other tasks, but I thought it might work well

for this domain. For example, let’s say that the word “fireman” never appears in
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the training set of the corpus, but words such as “policeman” and “volunteer” do, in

captions from images belonging to the category Workers Responding ; these subjects

likely share a higher percentage of verbs in common than most randomly selected

pairs of subjects, and would therefore have a relatively high similarity. In addition,

for the current domain, they are representative of the same category (Workers Re-

sponding). By my definitions, the similarity between any subject or verb and itself

comes out to be one, and the similarity between any two non-identical words is

generally much less.

I also defined the similarity between a subject and a verb to be twice the

number of times they appear together divided by the total number of times each

appears. Therefore, if the subject/verb pair always appears together, the similarity

between the two words is one, and otherwise it is less. The idea is that subjects

that are likely to perform actions seen as representative of a category should, in

and of themselves, be considered representative of the category. The same is true

for verbs that represent actions that are likely to be performed by subjects that are

representative of a category. For example, let’s say that the word “fireman” never

appears in the training set of the corpus, but verbs such as “help” and “rescue”

do, in captions from images belonging to the category Workers Responding. Since

a “fireman” is more likely to “help” and “rescue” than perform other activities, it

contributes more to the Workers Responding category than to others.

6.4.3 Choosing a Category

Once the single word subject and verb from the first sentence of an image’s caption

are extracted using the process described in Section 6.4.1, they must be used to

predict a category for the image. First, the extracted subject and verb are both

compared to every subject and verb extracted from the training set documents

(also obtained through the process described in Section 6.4.1). Each comparison
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involves computing a similarity between two words using the measure of word-to-

word similarity explained in Section 6.4.2. For each possibly category, all similarities

involving words extracted from training set documents belonging to the category

are summed together; this sum represents a score for the category, and the cate-

gory with the highest score is then predicted. (There is one additional step if the

extracted subject is a “NAME” token. This is explained later in the section.)

More formally, let C be the set of categories, and for some specific category

c, let Sc and Vc be the set of subjects and verbs extracted from training instances

of c, respectively. For a particular test image d, let sd and vd be the single word

subject and verb extracted, respectively. For any two words w1 and w2, regardless

of whether they are subjects or verbs, let Simw1,w2 be the similarity between the two

words as defined in the Section 6.4.2 (any similarity involving a “NAME” token is

defined to be 0). Let T (c|d) be the total score for a category c given a test document

d. Then:

T (c|d) =





∑

sc∈Sc
[Simsd,sc

+ Simvd,sc
]

+
∑

vc∈Vc
[Simsd,vc

+ Simvd,vc
]



 (6.1)

For a document d that does not have a “NAME” token extracted as the subject,

the chosen category is simply:

argmax
c∈C

[T (c|d)] (6.2)

In order to take “NAME” tokens into account when they are extracted (this

occurs in 16 of the 124 test cases), I decided to multiply the score for each category

by the a-priori probability of the category, based on the training set, given that

a “NAME” token is extracted. For example, in the training set, 56.0% of the

“NAME” tokens come from the Affected People category, whereas only 33.9% of

the training images belong to this category overall, so the final score for the Affect

People category is multiplied by 0.56 if a “NAME” token is extracted to account

for the new skew. More formally, let P (NAME|c) be the estimated probability of
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a “NAME” token given a category, based on the training set. Then the category

chosen for a document d that has a “NAME” token extracted is:

argmax
c∈C

[T (c|d) × P (NAME|c)] (6.3)

6.5 Results and Evaluation of NLP Based System

System
Overall Accuracy %

Sent S-V
My systems

NLP Based System — 65.3
BINS 56.5 53.2
Rocchio/TF*DF 57.3 54.0
Density Estimation 58.9 55.1

Rainbow systems
Naive Bayes 55.6 54.8
Rocchio/TF*IDF 54.0 54.0
K-Nearest Neighbor 54.0 54.8
Probabilistic Indexing 59.7 54.0
Support Vector Machines 54.8 54.0
Maximum Entropy 58.1 53.2

Table 6.6: The NLP based system outperforms nine standard systems by a consid-
erable margin.

The first line of Table 6.6, which is otherwise the same as Table 6.5, shows

the performance of my NLP based system described in the previous section. As

can be seen, the system’s overall accuracy of 65.3% is at least 10% higher than

the nine standard bag of words systems achieve when using only subjects and verbs

(manually extracted for the standard systems), and it is at least 5% higher than the

nine standard systems achieve when they are provided the entire first sentence of

each caption. According to a one-sided χ2 test, the gain over the standard systems

using only subjects and verbs is statistically very significant (the performance of
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the closest competitor leads to a p-value of about 1%), whereas only the top three

competitors relying on full sentences fall within a 95% confidence interval. The

use of deeper linguistic processing has thus led to a nice performance gain for this

particular task. Looking back at Section 6.2, we see that humans given only the

subject and verb of each sentence achieve, on average, a 71.8% accuracy. This

should be considered a reasonable upper bound for the accuracy that a system

such as mine might achieve.

6.6 Experiments with the Politics Image Data

Set

In order to test the generality of the approach discussed in this chapter, I have

applied all of the systems tested on the Disaster image data set to the Politics

image data set, first described in in Section 3.1.2.5. This data set consists of images

embedded in news documents that belong to the Events category Politics. As a

reminder, this data set consists of 299 images; 86 (28.8%) are classified as Meeting,

64 (21.4%) are classified as Announcement, 88 (29.4%) are classified as Politician

Photographed, 40 (13.4%) are classified as Civilians, 14 (4.7%) are classified as

Military, and 7 (2.3%) are classified as Other. The data set has been randomly

divided into a training set containing 149 images and a test set containing 150

images.

Based on some initial experiments within the training set, two minor changes

have been made to the NLP based system. First, the script I apply to the output

of POS to correct common errors (as mentioned in Section 6.4.1) has been ad-

justed. Second, the final phase of the system that recalculates probabilities when

a “NAME” token is extracted as the subject has been left out. Therefore, only

verbs are being used for these cases. Whereas this only occurs in about 13% of
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the test instances for the Disaster image data set, it occurs in about 60% of the

test instances for the Politics image data set. Although this actually means it is

important to account for “NAME” tokens in some manner, the particular method

used for the Disaster image data set is not appropriate. This is discussed further

later in the section.

System
Overall Accuracy %

Sent S-V
My systems

NLP Based System — 54.7
BINS 53.3 46.7
Rocchio/TF*DF 56.7 46.7
Density Estimation 64.7 49.3

Rainbow systems
Naive Bayes 53.3 53.3
Rocchio/TF*IDF 54.7 52.7
K-Nearest Neighbor 36.0 36.7
Probabilistic Indexing 64.0 56.0
Support Vector Machines 53.3 52.7
Maximum Entropy 56.7 51.3

Table 6.7: For the task involving the categorization of images in the Politics image
data set, the NLP based system outperforms eight out of nine standard systems
when the standard systems are provided only subject and verb, and it is in the
middle of the pack when the standard systems are provided full sentences.

Table 6.7 shows the results of all systems tested for the Politics image data

set. This time, the NLP based system outperforms eight out of nine standard bag of

words systems when the standard systems are provided only the main subject and

verb. When the standard systems are provided the entire first sentence, the NLP

based system beats four, loses to four, and ties one, so it is right in the middle of the

pack. It is interesting to note that the range of performance of standard systems for

the Politics image data set (kNN’s 36.0% to density estimation’s 64.7%) is much

larger than the range for the Disaster image data set (kNN’s and Rocchio/TF*IDF’s
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54.0% to Probabilistic Indexing’s 59.7%). Taking these results as a whole, it seems

as though the method of word-to-word similarity that the NLP based system is

using is helpful, since this system is beating the standards when they use the same

words (the main subject and verb). However, the benefit of linguistic processing is

not overcompensating for the drawback of less words; the two are approximately

cancelling each other out in this case. This is not to say that linguistic processing

can not overcompensate for these categories if it is done just right; rather, the

specific methodology set up with the Disaster image data set in mind is not as

appropriate for the Politics image data set.

The probable reason that the NLP based system is not as successful for the

Politics image data set as it is for the Disaster image data set is that the main sub-

jects of captions for the Politics images are much more likely to be proper nouns.

As mentioned earlier in the section, only 13% of the test instances in the Disaster

image data set have “NAME” tokens extracted, whereas 60% of test instances in

the Politics image data set have name tokens extracted. In addition, inspection

reveals that the proper name subjects associated with the Politics images seem to

be more complicated than those associated with the Disaster images, often consist-

ing of a list of multiple names. For the Disaster image data set, the system takes

“NAME” tokens into account by multiplying category scores by the a-priori prob-

abilities of the categories, based on the training set, given that a “NAME” token is

extracted; for that data set, it turns out that this leads to a small improvement in

overall accuracy (less than 1%). However, experiments within the training set have

indicated that this is not helpful for the Politics image data set. (Out of curiosity,

I did eventually run an experiment including this rule for this data set, and the

accuracy degrades slightly, from 54.7% to 52.7%.) So, for 60% of the Politics im-

age documents, only one word (the main verb) is being used to predict the correct

category. Given this fact, it is impressive that the system performs as well as half
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of the standard systems when they are provided the entire first sentence of each

caption. In order to have the NLP based system achieve a performance superior to

that of all the standard bag of words systems for the Politics image data set, it is

probably necessary to find a better way of handling proper name subjects for these

categories. I leave that for future work.

6.7 Research Related to NLP and Text Catego-

rization

There has long been a lot of interest in combining NLP and IR. Some of the re-

cent work by various researchers in this area is summarized in (Strzalkowski, Lin,

and Perez-Carballo, 1998) and (Strzalkowski, 1999), and as can be seen from these

sources, the results have been mixed, at best. Recently, there has been some success

using NLP to aid in the retrieval of images. Smeaton and Quigley (1996) show some

improvement using WordNet (Fellbaum, 1998) to compute noun-to-noun similari-

ties that are then used to compare queries with captions. Elworthy (2000) shows

improvement using an NLP technique he calls “phrase matching” which first con-

verts queries and captions to “dependency structures”. In both of these cases,

the researchers manually construct captions for their images, and in the case of

Smeaton and Quigley, they manually disambiguate all words.

Working on domain-specific text categorization tasks involving full-length

news articles, Riloff has created the system AutoSlog-TS (Riloff, 1996; Riloff and

Lorenzen, 1999) which relies on NLP techniques to automatically create dictionaries

of “augmented relevancy signatures” that can then be used to improve results for

binary text categorization tasks. She has found that her system, which labels

a document in a category if any augmented relevancy signature associated with

the category is found in the document, performs about as well with automatically
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constructed dictionaries as it does with hand constructed dictionaries and much

better than when no dictionary is used at all. Riloff does not compare her system

to other standard text categorization techniques.

With IR tasks such as query expansion and word sense disambiguation in

mind, there have been previous attempts at measuring word-to-word similarity. The

research discussed in (Sussna, 1993), (Resnik, 1999), and (Richardson, Smeaton,

and Murphy, 1994) concerns using WordNet link structure to determine semantic

similarity between nouns. My task additionally requires the system to compute

similarities between verbs with each other and verbs with nouns, so the techniques

discussed in these papers do not apply. My approach is simpler, and not necessarily

appropriate for general tasks, but it serves my intended purpose well and leads to

positive results in my experiments.

Other commonly used metrics to measure word-to-word similarity for use

with NLP applications include the Jaccard Coefficient and the Dice Coefficient

(Radecki, 1982; van Rijsbergen, 1979; Smadja, McKeown, and Hatzivassiloglou,

1996). These measures are related to the ratio of the frequency with which two

words appear together (i.e. near each other) in text to the frequencies of the two

words independently. While simple and general, they do not apply well to the

specific task and domain discussed in this chapter. For example, “rescuers” and

“victim” might often appear together in text, as they do in the caption of the

sample image in Figure 6.1, but for the current categorization task, as subjects

they would be indicative of two different categories (Workers Responding versus

Affected People), and they should not be considered similar. On the other hand,

words such as “firefighter” and “fireman” may hardly ever appear together, since

an author will likely use one or the other consistently, but for this task, they should

be considered very similar. My method of measuring word-to-word similarity takes

these problems into account.
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The work discussed in (Hatzivassiloglou and McKeown, 1993) and (Hatzi-

vassiloglou, 1998) concerns the identification of groups of related adjectives. One

criteria that the authors use to indicate whether or not two adjectives are related

is the tendency of the two words to modify the same nouns. In other words, adjec-

tive/noun pairs are extracted from a corpus (such that the adjective modifies the

noun), and two adjectives are considered related if they tend to co-occur with the

same nouns (determined using an estimate of Kendall’s τ based on the extracted

word pairs). This is very similar to the method I describe in Section 6.4.2 for

measuring the similarity between two subjects or two verbs. In my work, I am

extracting subject/verb pairs as opposed to adjective/noun pairs, and the metrics

I am using to evaluate similarity based on the obtained word pairs are simpler.

6.8 Concluding Discussion of NLP and Text Cat-

egorization

I have shown that NLP is important for a particular text categorization task in-

volving categories that distinguish objects of focus in the foreground of an image

from objects that may be present in the background of an image. I believe that the

importance of NLP depends on both the task and domain. NLP becomes helpful

when we are dealing with tasks that rely on focus, perspective, point of view, etc.

Admittedly, most of the standard IR test collections are not like this, and bag of

words approaches work well for them. However, I believe that tasks such as the one

described in this chapter, which arose naturally in the course of my research, will

continue to appear, and when they do, approaches similar to this will be useful. I

further believe that this is more likely to happen when dealing with images com-

pared to full-length text documents. A recurring theme of this dissertation is that

categories applied to images are often quite different than those applied to stan-
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dard text categorization documents. When dealing with images, it seems natural

that one might be interested in the object of focus and the action taking place;

words referring to background information are thus not as important, and syntax

therefore matters.

The Disaster image categories discussed in this chapter are not nominal cat-

egories determined by the presence or absence of any specific object in an image.

These categories deal with predicate argument relationships that can only be deter-

mined using linguistic analysis. Looking back, once again, at Figure 6.1, we see that

the subject and verb of the first sentence of the caption refer to the object of focus

in the image and the action taking place. The phrase “rescuers carry” is a clear in-

dication of the Workers Responding category, whereas other words that might have

high IDF weights, such as “disco” and “victims”, would not be helpful and may

even be misleading to any system using a bag of words approach. I have verified

the importance of NLP for the task by presenting evidence from experiments with

human subjects, and I have described a new NLP based system that considerably

outperforms nine standard systems. This is a positive result that shows promise

for combining NLP and IR in the future, at least for certain tasks.
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Chapter 7

High-Precision/Low-Recall Rules

I have shown in Chapter 6 that consideration of syntax is necessary for optimal

performance for the Disaster image data set. The results of the experiments with

human volunteers discussed in Section 6.2 make this clear. It is likely that the

same is true for the Politics image data set, although the analogous experiment

with humans has not been carried out. In Chapter 6, I have also described an

NLP based system that considerably outperforms all standard systems tested on

the Disaster image data set, and it is competitive when tested on the Politics

image data set. However, it is likely that this system is still not optimal, as the

performance for the Disaster image data set (overall accuracy is about 65%) is still

nowhere near the upper bound achieved by humans when they are shown the entire

first sentence of the caption (overall accuracy is over 90%), and it is still almost

10% under the performance of humans when they are shown all the words of the

first sentence in random order (overall accuracy is about 75%).

The work discussed in this chapter originated with the idea that while sub-

jects and verbs are clearly very important (demonstrated both by the results of

experiments with humans, and also by the results of systems), it is possible that

other words, while less important on average, might sometimes offer very good clues.
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It is possible that a system that generally uses the main subject and verb from each

caption to make its predictions may, at times, be better off changing the prediction

based on certain other words. For example, looking ahead to figure 7.1, the image

shown is a member of the Affected People category of the Disaster image data set.

The main subject and verb of the first sentence of the image’s caption are a proper

noun, which is slightly indicative of the Affected People category, and a form of the

verb “carry”, which is twice as indicative of the Workers Responding category as it

is of the Affected People category. The NLP based system described in Chapter 6

gets this example wrong. However, the rest of the first sentence makes it clear to a

human that the associated image belongs to the category Affected People category,

and it turns out that two words in this sentence - “family” and, surprisingly, “his”

- are statistically extremely indicative of this category as well.

In this chapter, I describe a semi-automated procedure by which such words

can be discovered. A list of such words is generated, and each word in the list

is associated with a corresponding category. In other words, the list is actually a

mapping of each selected word to a category that is heavily indicated by the word.

If any such word is found in a document, the category indicated by the word is

predicted; otherwise, the system falls back to its normal technique.

The idea here is that while most documents do not contain any word from the

list (therefore, use of the list alone would achieve low-recall for any given category),

when such a word is contained in a document, there is a very high probability

that the indicated category associated with it is correct (therefore, the list alone

would achieve high-precision for all categories based on the documents to which it

applies). As long as the accuracy using the list is greater than that of the fall back

technique when the list applies, the overall performance of the system is improved.

Although this idea was originally intended specifically to improve the NLP based

system described in Chapter 6, it turns out that adding such a first-pass technique
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to other systems also almost always seems to improve performance for the Disaster

image data set and the Politics image data set. These two data sets are discussed

in detail in Sections 3.1.2.4 and 3.1.2.5.

7.1 Choosing Indicative Words

In order to semi-automatically discover words, based on training data, that may

be highly indicative of a particular category, two things are important. One is that

the word appears mainly in the category of interest; i.e. there must be a statistical

bias towards a particular category given that the word appears in a document. The

other is that the word must appear enough times to make this trend noteworthy.

If a word only appears once in the training data, it doesn’t matter that the word

occurs only in one category.

The method I use to discover such words is similar to the method used by

Riloff (1996; 1999) to discover augmented relevancy signatures (I provide some

more detail about this in Section 7.5). I have written a script that examines all

training data and accepts two cutoffs from the user. One cutoff, which I will call X,

represents the minimum number of documents in which a word must occur, and the

other cutoff, which I will call P , represents the minimum proportion of occurrences

of the word that must appear in a single category. In other words, if a single

word appears x times with p × x of those occurrences in a single category, where

x >= X and p >= P , then this word qualifies as being appropriately indicative of

the category. The process as a whole is only semi-automated; I view the outputs

resulting from various values of X and P , choosing the words that seem appropriate

and pruning those that seem to appear mainly in one category by coincidence.

For these experiments, a “word” is defined to be anything recognized as such by

Church’s statistical part-of-speech tagger, POS (Church, 1988). All words other

than proper nouns are converted to lower case.
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Word Indicated Category
Total Count Proportion

(x) (p)
her Affected People 7 1.0
his Affected People 7 0.86
family Affected People 6 0.83
relatives Affected People 6 1.0
rescue Workers Responding 15 1.0
search Workers Responding 9 1.0
similar Other 2 1.0
soldiers Workers Responding 6 1.0
workers Workers Responding 12 1.0

Table 7.1: These words are highly indicative of the specified categories within the
Disaster image data set. Some, such as “her” and “his”, are not intuitively obvious.

Table 7.1 shows the words that I selected for the Disaster image data set. The

second column shows the category that seems to be indicated by the word in the first

column. The third column shows x, which is the total number of documents that

contain the word in the training set, and the fourth column shows p, the proportion

of these x documents that actually belong to the indicated category. (As always

with this data set, only the first sentences of captions are used, as described in

Section 3.1.3.) Note that there are no words in the list that indicate the Wreckage

category, and there is only one word that indicates the Other category (this word,

“similar”, is discussed more below). Most of the words in the list seem intuitive, but

there are some exceptions. The words “her” and “his”, for example, do not sound

like they should be indicative of any particular category, but the statistical evidence

is strong. Each word appears in seven documents in the training set (without any

overlap), and 13 of these 14 documents belong to the Affected People category.

Table 7.2 show all of the sentences in the training set of the Disaster image

data set that contain either of the words “his” or “her”. No sentence contains both

words. 13 of the 14 associated documents belong to the Affected People category,
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category sentence

Affected People
Dan Crull walks to his boat after giving his wife a ride to their
vehicle (L), parked on high ground near their home in the flooded
village of Rome, February 28.

Affected People
President Clinton hugs Judy Sligh March 4, whose restaurant
was destroyed by a tornado March 1, during his visit to Arkadel-
phia.

Affected People
A resident navigates through his flooded neighborhood in his

boat April 10 as the Red River continues to rise in the upper
Midwest.

Affected People
A father weeps, May 11, next to the body of his child killed
during a massive earthquake that struck northeast Iran May 9.

Affected People
An elderly man abandons the ruins of his house July 10 after
planting a national flag on the remains.

Other

Haitian President Rene Preval (center) observes body recovery
operations from the sunken ferry at Montrouis, September 9,
with members of his government, Health Minister Rudolphe
Malebranche (L) and Prime Minister Rosny Smarth (R) Preval
declared three days of national mourning for the tragedy, which
cost the lives of possibly more than 200 people.

Affected People
Higinio Guereca carries family photos he retrieved from his mo-
bile home which was destroyed as a tornado moved through the
Central Florida community, early December 27.

Affected People
Seven year-old Jessica Dubroff stands with her father, Lloyd,
prior to taking off from Half Moon Bay Airport near San Fran-
cisco April 10.

Affected People
Judy Lyncher Teller shows pictures of her nieces Shannon, 10,
and Katie, 8, who were killed in the ill-fated TWA flight 800, to
reporters outside a hotel at John Kennedy airport July 19.

Affected People
Jean Scupp sits in solitude in her beachfront home which had
been pushed several feet away from its footing and probably
destroyed by hurricane Fran September 7.

Affected People
Buffalo resident Noelle Silbak shovels out her car on Germain
Street January 12.

Affected People
A young girl walks through her flooded living room October 12
after hurricane Pauline devastated Mexico’s most famous tourist
resort.

Affected People
A Somali refugee walks with her two children, November 27,
through a flooded refugee camp located in north eastern Kenya.

Affected People
Lisa Nichols (L) and her sister-in-law Nancy Franklin (R) em-
brace April 11 amid the ruins of Nichols’ grandmothers’ Rock
Creek, Alabama residence.

Table 7.2: The sentences from the Disaster image training set containing either
“his” or “her” present strong evidence that these words are highly indicative of the
Affected People category.
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and in 12 out of these 13 cases, the word “his” or “her” refers directly to an affected

person who is likely the focus of the image. In the one remaining Affected People

image, the word “his” refers to President Clinton, and in the case of the document

belonging to the Other category, the word “his” also refers to a politician visiting

the scene. The fact that so many instances of these words appear in Affected People

training documents, that they refer to an actual affected person in most cases, and

that these words rarely occurs in training documents of other categories presents

strong evidence that the words should remain in the list. This is not something that

would have been predicted by someone who was comprising a similar list manually.

This final list is very similar to the one that is found automatically by the

script I have written when it is given the parameters X = 6 and P = 0.83

(just under 5/6). The only difference is that I have added the word “similar” as

indicative of the Other category. This word appears in the list when X = 2 and

P = 1, and I had previously noticed that the word “similar” is indicative of the

Other category in an interesting way.

category sentence

Other
(UNDATED FILE PHOTO) An Indonesian Airbus A-300 pas-
senger jet, similar to the one shown in this file photo, crashed in
northern Sumatra, killing all 234 passengers and crew according
to state television, September 26.

Other
(UNDATED FILE PHOTO) An Air Force T-38 Talon jet train-
ing plane, similar to the Northrop Grumman T-38’s shown,
crashed after colliding in mid-air with an F-16 Falcon fighter
jet over Edwards Air Force Base in California October 22, an
Air Force spokesman said.

Table 7.3: The sentences from the Disaster image training set containing the word
“similar” present evidence that this word is indicative of the Other category.

Table 7.3 shows all of the sentences in training set of the Disaster image

data set that contain the word “similar”. Both of the corresponding images are
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classified as belonging to the Other category, and in each case, the word “similar”

describes a relationship of the object of focus of the image to some other object

involved with the disaster that has taken place. The word “similar” does not occur

in any document of any other category. Perhaps some might claim that just two

instances is not enough to justify keeping the word in the list (I have not included

any other word that occurs with such a low frequency), but this is an interesting

case involving the toughest category, so I have kept it in the list. In any case, it

turns out that the word “similar” only occurs in one test document, so keeping

this word in the list does not have a significant effect on results (in this one case,

“similar” is indeed used in a manner like the two shown in the table, and the Other

category is the correct prediction).

Word Indicated Category
Total Count Proportion

(x) (p)
hands Meeting 10 0.90
journalists Announcement 4 1.0
local Civilians 4 1.0
media Announcement 3 1.0
presidential Politician Photographed 9 0.78
press Announcement 7 0.71
reporters Announcement 8 0.88
meeting Meeting 15 0.73
session Meeting 6 0.83
victory Politician Photographed 6 0.83
waves Politician Photographed 4 1.0
wife Politician Photographed 6 1.0

Table 7.4: These words are highly indicative of the specified categories within the
Politics image data set. Some, such as “hands” and “wife”, are not intuitively
obvious.

Table 7.4 shows the words that I selected for the Politics image data set. The

second column shows the category that seems to be indicated by the word in the first

column. The third column shows x, which is the total number of documents that
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contain the word in the training set, and the fourth column shows p, the proportion

of these x documents that actually belong to the indicated category. (Once again,

only the first sentences of captions are used, as described in Section 3.1.3.) Note

that there are no words in the list that indicate the Military category or the Other

category. As with the words chosen for the Disaster image data set, most of the

words in the list seem intuitive, but there are some exceptions, such as “hands” and

“wife”. It turns out that “hands” almost always occurs in the context of shaking

hands, and this is something that often happens at the start or end of a meeting;

apparently, journalists are likely to take a picture of it. The word “wife” almost

always occurs in the context of a politician being photographed with his wife.

This final list is somewhat similar to the one that is found automatically by

the script I written when it is given the parameters X = 4 and P = 0.83 (just

under 5/6). This means that words that occur four or five times must appear only

in one category to be included, words that appear six through 11 times may appear

once in another category, words that appear 12 through 17 times may appear twice

in another category, etc. I have added four words that do not meet this criteria.

One of these words is “media”, which only occurs three times in the training set

but the intuition behind it is clear. The other three are “presidential”, “press”, and

“meeting”, which all occur in a category other than the indicated category one or

two more times than allowed when P = 0.83, but these words show up in the list if

I lower the value of P , and, again, the intuition behind these words is strong. I have

also pruned a few words that show up automatically when X = 4 and P = 0.83,

such as “president” (which occurs six times, with five of the occurrences in the

Politician Photographed category) and “before” (which occurs six times, with five

of the occurrences in the Meeting category) for reasons explained further below.

Table 7.5 shows all of the sentences in training set of the Politics image

data set that contain the word “president”. Although five of the six corresponding
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category sentence

Politician Photographed
Monsignor Laurent Monsengwo (C), the Catholic Archbishop
who was elected to be leader of parliament and vice president

arrives in Kinshasa May 12, after crossing over the River Zaire
from Brazzaville.

Politician Photographed
Montenegro’s outgoing president Momir Bulatovic and his
wife Nada cast their votes October 19 in the presidential run-
off seen as crucial for the tiny Balkan republic and its ties with
neighbor and Yugoslav federation partner Serbia.

Meeting

Cheryl Carolus (L), acting general secretary of the ruling
African National Congress (ANC), ANC chairman Jacob
Zuma (C) and Thabo Mbeki, ANC deputy president, gaze at
delegates at the party’s 50th congress at Northwest Univer-
sity in Mmabato, northwest of Johannesburg, South Africa,
December 16.

Politician Photographed
South African President Nelson Mandela (R) congratulates
his deputy Thabo Mbeki on his election December 17 to suc-
ceed him as president of the ruling African National Congress.

Politician Photographed
Muhammad Rafiq Tarar, Pakistani premier Nawaz Sharif’s
party nominee for president, casts his vote in the presidential
elections December 31.

Politician Photographed
Former Indonesian president Suharto (C) is surrounded by
security guards as he is shown the way to the High Prosecu-
tor’s Office December 9.

Table 7.5: The sentences from the Politics image training set containing the word
“president” do not present convincing evidence that this word is indicative of the
Politician Photographed category.

images are members of the Politician Photographed category, the word is not used

in such a way that it, in itself, is indicative of the category, and it is used in

roughly the same manner in the example corresponding to an image in the Meeting

category. Therefore, this word does not seem to be highly indicative of the Politician

Photographed category, and instead seems to have only appeared mostly in this

category by coincidence. The other words I have pruned from the list that occurs

when X = 4 and P = 0.83 have been pruned for similar reasons.
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7.2 Using Indicative Words to Improve Catego-

rization

The lists of words selected as just described in Section 7.1 can be used as follows.

Given any document, first the list associated with the current data set is scanned

to see if any word from the list is contained in the document. If so, the category

associated with that word is predicted. Otherwise, some other text categorization

system is used to predict the category of the document. (If more than one word

from the list are contained in the document, and the words indicate contradicting

categories, my system uses only the first such word found. Another option would

be to ignore the words from the list and fall back to the other categorization system

when this happens. In any case, it is extremely rare, and, in fact, I do not believe

that this ever happens with either of the two data sets discussed in this chapter.)

Each word in the list associated with a data set can be thought of as con-

stituting a single rule. The rule for a word w associated with a category c would

simply be “if w exists in the document, predict category c”. These rules are similar

to the rules that comprise decision lists1, which is discussed in Section 7.5. Usually,

a decision list ends with a default category that is chosen when no other rule applies

(the category that is statistically most likely, according to the training data, in this

case); however, that is almost certainly not the best thing to do in cases such as

that which I am dealing with here, when most documents are not handled by the

rules. So instead, I am falling back to some other system, thereby combining an

approach reminiscent to a decision list approach with that of the fall back system.

Not all documents should be expected to contain a word from the list. In

fact, it is usually the case that no such word is found; therefore, the rules associated

with the list are “low-recall” rules. In and of themselves, they are not sufficient for

1Or decision trees, but since my system examines the words (rules) in a linear fashion, and
uses only the first that applies, a decision list makes for a better analogy.
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discovering most members of most categories. When no rules applies, the prediction

is made by some other system. The accuracy for these documents (those that do

not contain any word from the list) is exactly the same as the accuracy for the

backup system used. For the documents that do contain a word from the list, the

rule associated with that word, and that rule alone, determines the prediction of

the category. This leads to an overall improvement in accuracy over the backup

system if (and only if) these rules are better predictors than the backup system

only considering the cases for which a rule applies. If the selection of words (and

therefore rules) is done appropriately, each rule should typically be correct when

it applies; therefore the rules associated with the list are “high-precision” rules.

When a rule places a document into a category, it is likely correct.

7.3 Experiments with High-Precision/Low-Recall

Rules

Originally, I conceived of this two pass approach (first using the high-precision/low-

recall rules and backing off to some other system when no rule applies) specifically

to improve the NLP based system described in Chapter 6. The NLP based system

only uses two words in each document (the main subject and the main verb) to

make its prediction. While these two words have been shown to be particularly

important for the Disaster image data set (and they are likely important for the

Politics image data set), it is still possible, and even likely, that other words may

offer good clues in certain cases.

Figure 7.1 shows an image from the Affected People category of the Disaster

image data set and the first sentence of its caption. Although wreckage is also seen

in the image, the focus is on the victim whose home was destroyed. In this case,

the main subject of the sentence is a proper noun and the main verb is “carries”
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Higinio Guereca carries family photos he retrieved from his mobile home
which was destroyed as a tornado moved through the Central Florida
community, early December 27.

Figure 7.1: The subject and verb here do not offer good clues, but the words
“family” and “his” have corresponding rules which correctly predict the Affected
People category.
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(which WordNet maps to the baseword “carry”). Remember from Section 6.4.3

that proper names as subjects do turn out to be slightly indicative of the Affected

People category; however, the verb “carry” turns out to be twice as indicative of the

Workers Responding category as it is of the Affected People category (which makes

sense, since rescue workers sometimes carry victims from the scene of a disaster).

The NLP system gets this example wrong. However, the words “family” and “his”

both appear in the sentence, and either of the two rules associated with these words

correctly maps this image to the Affected People category.

Although this two-pass technique was originally intended to improve the

NLP based system, there was no reason not to test the approach using other fall

back systems as well. Therefore, I have tested adding these high-precision/low-

recall rules as a first-pass approach to each of the Rainbow systems (results of

these systems for the Disaster image data set and the Politics image data set are

first presented in Sections 3.2.3 and 3.2.4), to my BINS system (using bins combined

with Naive Bayes as described in Section 5.7), and also to my NLP based system.

The results, described in the next section, surprised me.

7.4 Results and Evaluation of the Two-Pass Ap-

proach

Table 7.6 shows the results the eight systems used for this experiment when applied

to the Disaster image data set. The first column of results shows the overall accu-

racy of each system on its own (i.e. the system is used for every test document),

while the second column of results shows the overall accuracy of each system com-

bined with the high-precision/low-recall rules (i.e. the system is a fall back used

when no rule applies, meaning that no highly indicative word from the appropri-

ate list is found in the document). As you can see, the addition of the first-pass
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System
Overall Accuracy %

Without Rules With Rules Change
My systems

NLP Based System 65.3 67.7 +2.4
BINS 56.5 63.7 +7.2

Rainbow systems
Naive Bayes 55.6 59.7 +4.1
Rocchio/TF*IDF 54.0 60.5 +6.5
K-Nearest Neighbor 54.0 59.7 +5.7
Probabilistic Indexing 59.7 66.1 +6.4
Support Vector Machines 54.8 59.7 +4.9
Maximum Entropy 58.1 61.3 +3.2

Table 7.6: The addition of a first-pass using high-precision/low-recall rules improves
the performance of all of the eight systems tested for the Disaster image data set.

improves the performance of every system tested for the Disaster image data set.

The system that improves the least (2.4%) is the NLP based system, perhaps be-

cause it does the best to begin with (and still does the best when combined with

the new rules). The system that improves the most (7.2%) is my BINS system.

Notice that of all the bag of words approaches, this is the only one that does not

compute weights of for individual words, and perhaps this is why there is room for

improvement when there are single words that are highly indicative of a category.

The average change in performance over all systems is an improvement in overall

accuracy of 5.1%.

As described in Section 3.1.2.4, the test set for the Disaster image data set

contains 124 images. It turns out that the rules corresponding to the words listed

in Table 7.1 apply to 39 (31.5%) of these 124 images. In other words, 39 of the 124

test images have one or more of the words from the list appear in the first sentence

of the caption. In 33 (84.6%) of these 39 cases, the category associated with the

word from the list is the correct prediction. The fact that every system in Table 7.6
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improves when the high-precision/low-recall rules are used as a first pass means

that none of these systems perform as well as the rules for these 39 documents.

According to a one-sided χ2 test, the p-values for the individual changes

in performance across the entire test set range from 1.2% to 31.7%. Most of the

individual changes are not statistically significant at the 95% confidence level, but

all are still unlikely to occur by chance. Testing the average improvement for

all systems (over all decisions being made) leads to a p-value of 0.07%, which is

extremely statistically significant. (Really, all of these p-values should probably be

computed only based on the examples to which the rules apply, in which case all

of the p-values would be lower, and the significance levels therefore higher, since

the same number of examples are changing from wrong to right based on a much

smaller set.)

System
Overall Accuracy %

Without Rules With Rules Change
My systems

NLP Based System 54.7 62.7 +8.0
BINS 53.3 59.3 +6.0

Rainbow systems
Naive Bayes 53.3 59.3 +6.0
Rocchio/TF*IDF 54.7 58.7 +4.0
K-Nearest Neighbor 36.0 51.3 +15.3
Probabilistic Indexing 64.0 62.7 -1.3
Support Vector Machines 56.7 60.0 +3.3
Maximum Entropy 53.3 60.0 +6.7

Table 7.7: The addition of a first-pass using high-precision/low-recall rules improves
the performance of seven of the eight systems tested for the Politics image data
set.

Table 7.7 shows the results of the eight systems used for this experiment when

applied to the Politics image data set. Once again, the first column of results shows

the overall accuracy of each system on its own, and the second column of results
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shows the overall accuracy of each system combined with the high-precision/low-

recall rules. This time, the addition of the first-pass improves the performance of

seven of the eight systems tested, and the performance of one system gets slightly

worse. The only system that has overall accuracy decrease (by 1.3%) is the Proba-

bilistic Indexing system, which, on its own, beats all the other systems for this data

set by a large margin. The system that improves the most (15.3%) is the K-Nearest

Neighbor system, which has the lowest overall accuracy by far, and still has the

lowest after the first pass is added, but by less of a margin. The average change in

performance over all systems is an improvement in overall accuracy of 6.0%.

As described in Section 3.1.2.5, the test set for the Politics image data set

contains 150 images. It turns out that the rules corresponding to the words listed

in Table 7.4 apply to 59 (39.3%) of these 150 images. In 53 (89.8%) of these 59

cases, the category associated with the word from the list is the correct prediction.

Although this sounds quite high, the fact that the Probabilistic Indexing system

has its overall accuracy decrease when the first pass is added means that this system

does even better for these cases (it can easily be computed that the Probabilistic

Indexing system must get 55 of these 59 cases correct). The other seven systems

have performance improve, and so these do not do as well as the rules for the 59

documents to which the rules apply.

According to a one-sided χ2 test, the p-value for the one system that has

performance degrade (Rainbow’s Probabilistic Indexing system) is 39.9%, which is

not statistically significant (i.e. there is about a 40% probability that two equal

systems would see a difference this large due to chance for a test set of this size).

The p-values for the individual changes in performance for the other systems (all

of which have overall accuracy improve) range from 0.01% to 23.2%. Most of these

changes are not statistically significant at the 95% confidence level, but all are

unlikely to occur by chance. Testing the average improvement for all systems (over



189

all decisions being made) leads to a p-value that is less than 0.01%; in other words,

it is extremely safe to say that this is not due to chance. (Again, all of these p-

values should probably be computed only based on the examples to which the rules

apply, in which case all of the p-values would be lower, and the significance levels

would be higher.)

7.5 Research Related to Learning Rules and Com-

bining Systems

The specific criteria used to determine whether or not words are appropriately

indicative of categories comes from Riloff (1996; 1999). In her work, she actually

uses “augmented relevancy signatures” which are actually phrases, as opposed to

individual words, but the two data sets I am using in this chapter are not large

enough to support this. Riloff is working with binary text categorization tasks that

require a separate YES/NO decision for every document/category pair; her system

classifies a document as belonging to a category if and only if one or more of the

relevancy signatures associated with the category are present in the document. She

is more interested in precision than recall, and her system does not fall back to

other techniques when no signature is present.

The idea of automatically creating a list of words that are indicative of par-

ticular categories dates back, at least, to the work by Mosteller and Wallace (1963),

in which the authors create lists of words indicative of authors for an authorship at-

tribution problem. Mosteller and Wallace only consider high frequency words such

as articles and prepositions, because unlike almost all other text categorization

tasks, these words make the most difference for authorship attribution. Frequen-

cies of more contextual words depend on content (i.e. the topic, or subject matter,

of the document), but frequencies of some very common words such as “an”, “of”,
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and “upon” tend to be consistent within the work of a single author. Mosteller

and Wallace use a training set to tune parameters for such common words to fit

a Poisson or negative binomial distribution, and then they choose words that are

more likely to occur with higher frequencies for one author compared to another.

This approach is not appropriate for tasks like the one discussed in this chapter,

since content words, which are important for most text categorization tasks, do

not occur in enough documents with high enough frequencies to allow for a similar

analysis.

The idea of examining a list of automatically generated words, classifying

a document as belonging to a particular category if one is found, and moving on

with the list otherwise, is reminiscent of approaches used by rule learning systems

such as Ripper (Cohen, 1995a), which implements a decision list. Similar rules also

appear in decision trees (Mitchell, 1997), and one popular system that uses decision

trees is C4.5 (Quinlan, 1986; Quinlan, 1993). Rules in these systems can be more

complex then the simple “if a particular word w exists in the document, place the

document in category c”, but you do sometimes see rules of this form. It is well

known that when using a decision list to classify a document, the rules tend to get

less accurate as you walk along the list. In other words, for cases in which a rule

near the top of the list applies, the prediction made using the decision list is very

likely to be correct, but for cases in which a rule near the end of the list is used,

the prediction is less likely to be correct.

The work I am presenting in this chapter can be viewed as combining a

decision list approach with other approaches (although in my case, there is no

particular order assigned to the rules in the list). My system starts with the learned

simple rules (if a given word is found, categorize the document as belonging to

the corresponding category), but instead of walking along a list until reaching a

terminal node, it stops at some point and falls back to some other system. This
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makes intuitive sense, given that the top of the decision list is usually the most

accurate part; if a system gets past this point, it is likely that some other system

is more accurate for the current document.

In his text categorization survey paper, Sebastiani (2002) refers to the com-

bination of classifiers as a classifier committee. He points out that a committee is

characterized by the methods it tries to combine and also by the means of combin-

ing them. Strategies that have been used to combine classifiers include majority

voting (use the outcome of the majority of categorizers), weighted linear combi-

nation (weight each categorizer based on its effectiveness on a tuning set), and

dynamic classifier selection (use the result of the categorizer that is most effective

on the examples in the tuning set that are most similar to the current document)

(Sebastiani, 2002). Research involving the combination of various categorizers in-

clude (Larkey and Croft, 1996) and (Li and Jain, 1998). Results have been mixed;

Larkey and Croft (1996) show that combining any two of three classifiers (Rocchio,

Naive Bayes, and kNN) beats the best individual classifier for their test set, and

combining all three does best of all. Li and Jain (1998), however, find that most of

their attempts to combine classifiers (Naive Bayes, kNN, decision trees, and their

own “subspace method”) do not beat the best individual classifiers for a much

larger data set.

One other topic related to combining systems is boosting (Schapire, Singer,

and Singhal, 1998; Schapire and Singer, 2000). Boosting is an approach that uses

a procedure called a weak learner to learn many weak hypotheses. Each weak

hypothesis is a simple and only moderately accurate categorization rule. Boosting

algorithms train the weak hypotheses sequentially (as opposed to in parallel) such

that each rule is likely to perform well on the examples which are the most difficult

to classify by the preceding rules. In this way, the weak hypotheses are combined

into a (hopefully) accurate system.
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7.6 Concluding Discussion of High-Precision/Low-

Recall Rules

The results reported in Section 7.4 surprised me. I was expecting the performance

of the NLP Based system to improve, but I was not expecting the performance

of the other systems to improve. My thought was that bag of words approaches

would already be using the highly indicative words, along with all of the other

words. I did not realize that the use of additional words would hurt the bag of

words approaches; however, as we saw in the previous chapter, when dealing with

these data sets, many of the words in the the first sentences of these captions do not

matter, and some are even misleading. The results reported here make it clear that

when there is a very indicative word that offers an excellent clue as to the correct

category for the image, this word alone performs better than all of the words in the

caption including the indicative one. The other words offer more noise than useful

information. This approach may therefore generalize and be useful for other text

categorization tasks as well. There is nothing about it that is intrinsically designed

to work specifically for tasks involving images.

I have not yet attempted to find lists of highly indicative words that would

have corresponding high-precision/low-recall rules for either the Indoor versus Out-

door data set, or for the Events data set. However, I do not believe that this ap-

proach would be useful for these categories. The systems I have discussed through-

out this thesis already do extremely well for these categories, with accuracy ap-

proaching 90% (my BINS system beats 90% for the Events data set when it com-

bines bin-based weights with Naive Bayes weights). Even if we limit ourselves to

lists of words that occur in a single category above 90% of the time in the training

set, chances are that for the test set, the accuracy of these rules will be something

below that, as is the case in this chapter. Meanwhile, the cases for which the rules
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apply tend to be easier than the average case because of the highly indicative word

(e.g. we saw in this chapter that the Probabilistic Indexing system, which achieves

a 64.0% overall accuracy for the Politics image data set, beats 89.8% for the cases

that contain indicative words). So, if we are dealing with categories for which sys-

tems already do quite well, it is unlikely that single, highly-indicative words would

lead to better performance than all words together.

With both the Disaster image data set and the Politics image data set,

however, the overall accuracy percentage of systems reaches the mid 60’s at best,

and there is much room for improvement. When dealing with with this kind of

performance, a high-precision/low-recall rule based on a single word can achieve

better performance for the cases when it applies than using all words. I therefore

hypothesize that the technique discussed in this chapter is useful when dealing

with difficult categories for which existing systems achieve low overall accuracies.

I furthermore have a hunch that this will occur more often when dealing with

the categorization of images than when dealing with the categorization of lengthy

text documents. The categorization of images is often hard due to less text and

categories that may involve determining the focus of an image. Whether or not my

hypothesis (or my hunch) is correct will have to be verified by testing the technique

with many different data sets.

Other future work involving high-precision/low-recall rules might involve

fully automating the process. As things exist today, I have written a script that

discovers potential words that are highly indicative of categories. Based on a combi-

nation of intuition and statistics, a user can decide which to use and which to prune.

Better would be to have this decision made automatically. Different combinations

of X and P , as discussed in Section 7.1, have various probabilities of occurring by

chance, and perhaps these probabilities, in conjunction with word statistics such

as IDF, can be used to keep words that are indicative of categories with very low
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probability of including words that appear mainly in one category by coincidence.

Finally, the work presented in this chapter fits into the general paradigm of

combining systems. In this case, a rule-based approach involving high-precision/low-

recall rules is being combined with other systems relying on bag of words ap-

proaches. The rules are used whenever they apply, since they are likely to do

better in these cases, and the fall back system is used otherwise. This is a bit

similar to the dynamic classifier selection strategy for combining system discussed

in Section 7.5, since that strategy involves using the classifier that is most likely

to do well for the current example; In that case, this is determined by choosing

the classifier that performs the best on the examples in the training set that are

most similar, whereas in the case of the methodology discussed in this chapter, it

is assumed that rules are better when they apply. Perhaps a better idea would be

to use a technique such as density estimation (discussed in Chapter 4) to estimate

the probability, or confidence level, that the fall back system is correct, and to use

the rule only if its expected accuracy is greater than that of the fall back system.



195

Chapter 8

Low-Level Image Features

Images present us with a type of information that is not available for typical text

categorization tasks; namely, low-level image features. In other words, the image

itself - or the pixels that form the image when it is stored in a digital format - can

be used to predict the appropriate category. This information is not helpful for all

categorization tasks. For example, while a human looking at an image may have a

very good idea if the picture is related to a Disaster or a story on Politics, image

processing is far from a point where objects can be recognized well enough to make

such a determination. However, for certain other tasks, such as the categorization

of an image as Indoor or Outdoor, information such as color and image texture

can provide good hints as to the appropriate prediction. This chapter describes my

research involving the use of low-level image features to categorize images.1

1This research has partially been conducted in collaboration with Seungyup Paek and Ana
Benitez from the Electrical Engineering Department. Both students have, at times, provided me
with information, code, and pointers to relevant material. Earlier efforts combining my text work
with Paek’s image feature work is discussed in (Paek et al., 1999). Related work of Benitez is
discussed in (Benitez and Chang, 2002b) and (Benitez and Chang, 2002a). The specific results
I describe in this chapter, however, are all based on my own code, some of which is a reimple-
mentation of code from Paek or Benitez. (I no longer have access to the code from Paek, and the
code from Benitez does not run on the specific system I typically use for research.) This chapter
is further from my main focus than the others, since I focus on text and not image features; for
this reason, the help provided by these students has been particularly valuable.
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Of the various data sets I have defined for my own corpus, first described in

Section 3.1, I believe that the only one for which low-level image features are useful

is the Indoor versus Outdoor data set. These are abstract categories dealing with

the general setting of an image. The other data sets deal with categories involving

more specific, semantic meaning, and to use image features for distinguishing be-

tween these categories would probably necessitate better object recognition than is

currently available. While categories such as Indoor and Outdoor might, at first,

seem somewhat trivial, I have explained in Section 3.1.2.2 some of the reasons that

these categories are actually important. Often, they are the first level of an image

taxonomy, and (Vailaya et al., 1999b; Vailaya et al., 1999a) present evidence that

this matches human intuition. In my own research experience, I have personally

noted that the Indoor versus Outdoor distinction often represents more than just

that; for example, in the terrorism domain (in which several researchers in the group

were working at the time), Outdoor images tended to be at the scene, whereas In-

door images tended to be meetings or press conferences. With incentives such as

these to motivate research, it is no wonder that I am able to cite several works in

Section 8.4 specifically dealing with these categories.

It might be asked why it is important to use image features for categoriza-

tion tasks involving this particular set of categories when we have already seen

throughout this thesis that text can do very well. The accuracy of the text-based

systems that have been applied to the Indoor versus Outdoor data set throughout

this thesis has ranged from about 77% to about 87%, and so the best of these

systems might serve quite well for applications that make use of these categories.

However, it is always nice to do better. I show in this chapter that image features

have not performed as well for this data set as text, but that a combination of

the two tends to perform better than either alone. Also, categorization based on

only image features, while not as accurate as that based on text captions for this
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particular data set, may be necessary for real world applications when text is not

available.

8.1 Color Histograms

Of the several low-level image features that I have come across in my research, the

one that I have decided to use for my own implementation of an image feature

categorizer is color histograms. There are a few reasons why I have chosen this

feature. First, color histograms are relatively simple to understand, and it seems

intuitive that they might be indicative of these categories. For example, seeing cer-

tain shades of blue at the top of an image might be indicative of sky and, therefore,

an Outdoor image. Second, I have seen in the literature that color histograms have

been successful for Indoor versus Outdoor categorization (Szummer and Picard,

1998; Paek et al., 1999) and also for similar tasks (Vailaya et al., 1999b; Vailaya et

al., 1999a). Finally, it is a relatively easy feature to implement, as is explained in

this section.

There are multiple ways to specify color. One is with the RGB (red, green,

blue) color space. In other words, each color is specified by its red, green, and blue

components. Another possibility is to use the HSV (hue, saturation, value) color

space. This space is generally considered more attractive because these components

correspond better to human perception of color (Paek et al., 1999; Kerminen and

Gabbouj, 1999).

It is possible to convert RGB values to HSV values. Assume that [r, g, b] is

defined such that r, g, b ∈ [0, 1], and you want to obtain the corresponding [h, s, v]

values such that h ∈ [0, 6], s ∈ [0, 1], and v ∈ [0, 1]. Then the conversion can

be performed using the following equations (Kerminen and Gabbouj, 1999; Smith
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and Chang, 1995; Smith and Chang, 1996b):

v = max(r, g, b), range = v − min(r, g, b), s = range/v (8.1)

r′ = (v − r)/range, g′ = (v − g)/range, b′ = (v − b)/range (8.2)
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5 + b′ if r = max(r, g, b) and g = min(r, g, b)

1 − g′ if r = max(r, g, b) and g 6= min(r, g, b)

1 + r′ if g = max(r, g, b) and b = min(r, g, b)

3 − b′ if g = max(r, g, b) and b 6= min(r, g, b)

3 + b′ if b = max(r, g, b) and r = min(r, g, b)

5 − r′ otherwise

(8.3)

Note that the equations break down when r, g, and b all have equal values; in this

case, the range of the values is zero, which means that the color is a shade of gray.

Once this special case is taken into account, these formulas provide a simple way

of converting from the RGB color space to the HSV color space.2

Figure 8.1: The quantized HSV color space, as shown here, allows for 18 hues, three
saturations, and 3 values (plus four grays not shown).

Once a color is represented by its hue, saturation, and value, it is, of course,

possible to quantize each value. I have followed the model described in several

2I have found this to be helpful, since the Perl module Imager, currently available at
http://www.eecs.umich.edu/˜addi/perl/Imager, provides a method to determine the RGB at-
tributes of a pixel, but does not provide a method to determine the HSV attributes of a pixel.
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papers (Smith and Chang, 1995; Kerminen and Gabbouj, 1999; Paek et al., 1999)

allowing for 18 possible hues, 3 possible saturations, and 3 possible values, and

also allowing for 4 possible grays (based on the shared magnitude of the h, s,

and v); the total number of possible quantized HSV representations for a color is

this 18 × 3 × 3 + 4 = 166. Figure 8.1, taken from (Smith and Chang, 1996b),

demonstrates the 162 possible combinations (not including the four grays). The

three circles represent the three quantizations of value; within each circle, the three

levels at three separate distances from the center represent the three quantizations

of saturation; and within each level of each circle, the 18 components separated at

20 degree increments around the circle represent the 18 quantized hues.

It is now possible to compute a color histogram for an image (or for a region

of an image). The pixels of the image are analyzed one at a time, and the HSV

attributes of all pixels are determined. All values are quantized, and each pixel is

assigned to one of 166 possible slots as explained above. The color histogram of

the image is a vector consisting of 166 values, each representing the percentage of

pixels that fall into a given slot. Therefore, the sum of the values in the vector for

a given image is exactly one. The order of the slots does not matter as long is it is

consistent for all images.

8.2 Using Color Histograms to Categorize Im-

ages

8.2.1 Input for Machine Learning Techniques

Once color histograms have been computed for images, several of the general, ma-

chine learning approaches discussed in Section 2.6 can potentially be applied to

train a system using a training set and then predict labels for the images in a test
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set or for images with unknown labels. Most of the machine learning methods dis-

cussed in that section, with the exception of the Rocchio/TF*IDF method, do not

need to assume that the features of the input vectors represent textual terms (and

even the Rocchio/TF*IDF method can be generalized by using a different weighting

scheme appropriate for the new domain). So, for example, a kNN method can be

used, in which case the color histogram of a test image is compared with the color

histograms of all training images, and the labels of the k nearest training images

are used to predict the label of the test image. Or, an SVM method can be used, in

which case the color histogram of the test image is mapped to some other feature

space, and depending on which side of a hyperplane (determined based on the color

histograms of training images) it falls, the test image either is or is not placed in

some given category.

While these machine learning methods are general, and do not only apply

to text categorization tasks, a specific implementation of any given approach may

not be general. For example, my own density estimation system (discussed in

Chapter 4), my own BINS system (discussed in Chapter 5), and the systems which

comprise the Rainbow package (discussed in Section 2.8) are all text categorization

systems that assume textual input. However, the SVMlight system, which is also

discussed in Section 2.8, is a more general categorization system, which accepts as

input any vectors of real values. Therefore, documents that are represented by color

histograms can be used as input to this system. In addition, I have implemented

a kNN system which also takes input in this general form, and so color histograms

can be used for this system as well.

8.2.2 Dividing an Image into Regions

An alternative to computing color histograms based on an entire images is to divide

each image into regions and to compute color histograms based on each region of
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each image (Paek et al., 1999). The final vector for any given image is then the

concatenation of the vectors of its individual regions. The reason this might be a

good idea is that the presence of some particular color may be more indicative of

a category when it appears in a certain region of the image. For example, seeing

certain shades of blue at the top of an image may be indicative of sky, and therefore

the Outdoor category, but the same shades of blue at the bottom of an image may

be less indicative of the same category. Vector representations of different images

can still fairly be compared to each other as long as each image is broken into

regions in the same, consistent manner.

I have performed experiments using my own kNN system and also SVMlight

under two conditions; Under the first condition, I compute color histograms based

on entire images. Under the second condition, I follow the model suggested by Paek

(1999) and divide all images into 8 x 8 rectangular regions of equal size. Under this

condition, the vector associated with each image therefore has 8×8×166 = 10, 624

values. This, of course, slows down the experiments dramatically. To perform

a complete run including training and testing on one of the department’s faster

machines, my kNN system takes minutes when histograms are computed based on

entire images, but hours when images are divided into regions. SVMlight takes

seconds when histograms are computed based on entire regions, and minutes when

images are divided into regions. Also, the division of images into regions itself has

been pre-computed for all images, and this process takes several hours.

Figure 8.2 shows a sample image broken down into 8 x 8 regions of equal

size. This is not an image from the Indoor versus Outdoor data set; rather, it is a

photograph of me and three colleagues at a nearby McDonald’s taken a few years

ago. I am the third person from the left. Imagine that a categorization system

that uses low-level image features has to predict whether this is an Indoor or an

Outdoor image. Note the shade of blue of my shirt; if this is seen at the top of
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Figure 8.2: This is an example of an image being divided into 8 x 8 rectangular
regions of equal size. It is possible that for specific categorization tasks, certain
colors matter more in some regions than in others.

an image, it might be indicative of sky, but at the bottom of the image, it is not;

therefore, it might be helpful to divide this image into regions. (It turns out that

the SVMlight system, which is the system that performs better for these categories

and is used for the experiments combining image features with text as discussed

in Section 8.3, gets this image wrong anyway. However, it is closer to making the

correct decision when the image is broken down into regions; in other words, the

confidence of the system’s incorrect Outdoor prediction is lower when the image’s

color histogram is based on regions than when the image’s color histogram is based

on the entire image.)
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8.2.3 Results for the Indoor versus Outdoor Data Set

System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
Image Features

K-Nearest Neighbor (whole images) 74.8 30.9 84.6
K-Nearest Neighbor (image regions) 71.7 10.0 83.2

SVMlight (whole images) 74.8 54.8 82.5

SVMlight (image regions) 78.0 58.1 85.1
My text systems

BINS (COMBO #2) 87.2 78.0 91.0
BINS (COMBO #1) 86.1 76.2 90.2
BINS (always use bin) 85.8 75.1 90.1
Naive Bayes 84.5 70.9 89.4
Rocchio/TF*IDF 80.7 69.9 85.7
Density Estimation 86.1 73.7 90.5
K-Nearest Neighbor 82.7 65.8 88.4

Rainbow systems
Naive Bayes 85.4 73.5 89.9
Rocchio/TF*IDF 84.5 73.2 89.1
K-Nearest Neighbor 77.8 65.3 83.6
Probabilistic Indexing 86.3 78.1 90.0
Support Vector Machines 82.0 66.9 87.7
Maximum Entropy 84.5 70.9 89.4

Table 8.1: SVMlight with image regions does the best of the systems using color
histograms, although still not as good as most of the text based systems.

Table 8.1 shows the results when systems use image features (i.e. color his-

tograms) to predict categories. With both SVMlight and my own kNN system, I

have repeated experiments using color histograms based on whole images, and also

using color histograms based on image regions. (When testing the kNN system, I

have also tried out multiple values of k and I am reporting only the best results.)

For comparison, I have also presented the results of the various text based systems

discussed throughout the thesis. The overall accuracy of text based systems ranges
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from 77.8% (for Rainbow’s kNN system) to 87.2% (for one variation of my BINS

system). For further comparison, a baseline system which chooses the larger cate-

gory (Outdoor) every time achieves a 71.2% overall accuracy while a system that

guesses randomly would achieve approximately a 50% overall accuracy.

When color histograms are based on whole images, both my kNN system

and SVMlight achieve an overall accuracy of 74.8%. When color histograms are

based on image regions, the overall accuracy of the kNN system falls to 71.7%, and

according to a one-sided χ2 test, the p-value for this change is 7.9%; the overall

accuracy of SVMlight , on the other hand, rises to 78.0%, and according to a one-

sided χ2 test, the p-value for this change is 6.0%. So neither of these changes

are significant at the 95% confidence level, but both are significant at the 90%

confidence level. Comparing the two systems directly when color histograms are

based on image regions (i.e. comparing SVM’s 78.0% overall accuracy to kNN’s

71.7% overall accuracy), a one-sided χ2 test indicates a p-value of 0.2%, which is

very statistically significant.

Note that the kNN system does not perform as well as any of the text based

systems and barely beats the baseline, especially when images are divided into

regions. This is likely due to a drawback of kNN systems, which is that they weight

all features equally in their standard form. For text categorization purposes, this is

often avoided by appropriately weighting terms. For example, if TF*IDF weights

are used, as explained in Section 2.4.2, words that are unimportant (at least, for

most categorization tasks) have very low weights due to the IDF component of the

weighting scheme, and whether such a word occurs no times, one time, or many

times will not make much of a difference when computing the distance between two

vectors. However, when using color histograms to represent documents, each weight

represents the percentage of time that a quantized color shows up in an image (or in

a region of an image); all values are weighted on an equal scale, even though many
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do not matter. Thus, there is a lot of noise, and this throws off results. The effect

for the particular task being considered in this chapter is that most of the nearest

neighbors of almost all test images are Outdoor images, simply because this is the

larger category. Very few images are thus predicted by the system to be Indoor

images, and while the precision for the Indoor category is quite high, the recall

for the Indoor category is very low, thus explaining the low F1 measures achieved

by the kNN system for this category. (These evaluation metrics are described in

Section 2.7.)

An SVM system does not suffer from this drawback. In other words, an SVM

system can distinguish important features (i.e. colors) from non-important features.

This helps explain why the SVM system performs better than the kNN system for

the task being considered, especially when images are divided into regions. The

regions greatly increase the number of features per document (there are 10,624

instead of 166, as explained in Section 8.2.2); for a kNN system, this means more

noise, but for an SVM system, it means more good and specific information to

use. Providing color histograms to SVMlight after dividing images into regions

leads to a performance of 78.0%, which is significantly better than the baseline,

and even beats one (but still not most) of the text based systems. Depending on

the application and the needs of users, this might be good enough to use for the

Indoor versus Outdoor task when text is not available.

Of course, it might be possible to achieve better results by using addi-

tional low-level image features, such as edge direction histograms and Daubechies’

wavelets, in addition to color histograms. Research involving these features is dis-

cussed is Section 8.4. However, this is not the focus of my own research. I am

primarily interested in text, and the purpose of my work with image features has

been to see if I could improve text based systems by combining results from an im-

age feature system. For this purpose, it turns out that the results using SVMlight
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with color histograms based on image regions is adequate, as is explained in the

next section.

8.3 Combining Text and Color Histograms to Cat-

egorize Images

The overall accuracy of text based systems that I have tested for categorization

involving the Indoor versus Outdoor data set ranges from 77.8% to 87.2%. In the

previous section, I have shown that using low-level image features, and in particular

color histograms, as input to a publicly available SVM system achieves an overall

accuracy of 78.0%. Clearly, this is enough to improve the performance of the lowest

text-based system (since replacing all predictions with the new predictions would

lead to a small improvement), but what is not clear is whether we can obtain an

improvement for most or all text based systems. Can the predictions of an image

based system that obtains an overall accuracy of 78.0% improve the accuracy of a

text based system that, on its own, does almost 10.0% better?

In Section 8.4, I discuss efforts of other researchers in the field to combine

results of multiple systems with the goal of improving accuracy. In the literature,

results of such endeavors have been mixed. However, almost all previous efforts

have involved combining results of multiple text based systems. Even though the

various systems are using different approaches to make their decisions, they are all

basing decisions on the same information. Therefore, there is reason to believe that

the various systems should find the same documents easy or hard to predict. On

the other hand, the research discussed in this section involves the combination of a

system that bases its predictions on image features (specifically color histograms)

with systems that base their predictions on text. There is no reason to believe that

an image which has clearly indicative text should also have clearly indicative colors,
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and vice versa. So, even though the system using image features does not do as

well as most of the systems using text, it is quite possible that there are certain

images for which the confidence of the image feature system is high enough such

that its prediction is more likely correct than that of any text based system. When

this occurs, it might be better to use the prediction of the image feature system,

and to fall back to a text based system otherwise.

8.3.1 Evaluating Various Levels of Confidence

As explained in Section 2.6.2.3, when an SVM system is given a vector representing

a document, that vector is mapped to some feature space, and in that feature space

the system checks on which side of a hyperplane the mapped vector falls. For

this particular task, if the vector falls on one side of the hyperplane, the system

predicts that the image is an Indoor image, and if the vector falls on the other

side of the hyperplane, the system predicts that the image is an Outdoor image.

In order to combine these predictions with that of other systems, it is helpful to

have some sort of confidence measure of each prediction. For this purpose, the

distance between each mapped vector and the deciding hyperplane can be used as

the level of confidence. This only works well if it is true that mapped vectors which

are further from the hyperplane actually do have a greater chance of leading to a

correct prediction.

Table 8.2 shows the performance for various levels of confidence of SVMlight

using color histograms based on image regions. The first column represents the

confidence cutoff being considered in steps of 0.5 (i.e. only images whose mapped

vectors fall at least this distance from the hyperplane are considered). The final

column shows the number of images that qualify. It turns out that no test images

in the Indoor versus Outdoor data set are predicted with a confidence greater than

or equal to 3.5. If we lower the cutoff to 3.0, two images qualify; both are Outdoor
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Distance Overall Indoor Outdoor % of Images
Cutoff Accuracy % F1 % F1 % Above Cutoff

3.5 — — — 0.0
3.0 100.0 — 100.0 0.4
2.5 87.5 0 93.3 1.8
2.0 92.3 50.0 95.8 5.8
1.5 94.4 77.8 96.8 16.0
1.0 91.0 69.6 94.7 34.1
0.5 84.6 60.7 90.4 70.1
0.0 78.0 58.1 85.1 100.0

Table 8.2: The further that an image’s mapped vector is from a hyperplane, the
greater the chance that the prediction of the system is correct.

images, and both are predicted correctly. As we continue to lower the cutoff, more

and more images qualify. Obviously, if we lower the cutoff all the way to zero, all

445 images in the test set qualify, and the overall accuracy for all these images is

78.0% as has already been reported in Section 8.2.3.

Typically, we would expect that the higher the confidence, the greater the

probability that the system’s prediction is correct, and therefore we expect to see the

overall accuracy of the system go down as the cutoff for the confidence is decreased.

In general, this holds true here. There are two exceptions at the top of the table;

the overall accuracy increases as the cutoff is lowered from 2.5 to 2.0 or from 2.0 to

1.5. However, the number of images with confidences above the 2.0 cutoff is still

small, and so these overall accuracies are probably not accurate.

One very promising result is that for certain cutoffs (all those 1.0 or greater),

the accuracy for the image based system is greater than the overall accuracy of any

text based system (when applied to the entire test set). While it is possible that one

or more of the text based systems may beat the image based system if only those

images that beat the cutoff are considered, this does not seem likely, since there is

no intuitive reason to believe that images with very indicative colors should also
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have associated text that is more indicative than average text. This observation

suggests as an approach similar to the one I describe in Chapter 7 to combine

high-precision/low-recall rules with other text based systems. The idea is to use

the prediction of the image based system only for those cases in which it is likely

to do better than a text based system (i.e. for images with appropriately high

confidence), and to fall back to one of the text based systems for all other cases.

In other words, a prediction is made using SVMlight and color histograms based

on image regions for all test images. For those images for which the prediction is

made with a confidence greater than a particular cutoff, the prediction stands; for

the rest of the images, a text based system is used instead.

To me, the most promising lines of the table are the lines representing the

cutoffs of 1.5 and 1.0. At these levels, the overall accuracy of the system is still

quite impressive (above 90.0%, and significantly better than any of the text based

systems achieve on the entire test set), while applying to enough images such that

we might expect to see a nice improvement to the text based system with which

the image based system is being combined. It might be pointed out that since

the overall accuracy decreases as the cutoff is dropped from 1.5 to 1.0, the higher

cutoff might be better, since it might be the case that the accuracy for the specific

images added (i.e. the ones with confidence between 1.0 and 1.5) might be below

the accuracy of text based systems. However, it can easily be calculated that if

we only consider the images with cutoffs in between 1.0 and 1.5, there are 84 such

images, and 88.1% of them are categorized correctly. This is still a better accuracy

than any text based system achieves for the entire test set, and so we are likely

to see additional improvement as we include these new images. However, several

of the text based systems achieve overall accuracies reasonably close to 88.1%, so

there is a reasonable chance that they may do this well for these specific images,

and the decision between these two cutoffs is not entirely clear.
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Interestingly, if we move one step further and look only at the 157 images

with confidence between 0.5 and 1.0, only 78.3% are categorized correctly. This

is below the overall accuracy of most of the text based systems. Finally, if we

only consider the 133 images for which the confidence is less than 0.5, the accuracy

for these images is only 62.4%. This falls way below the overall accuracy of any

text based system and even way below the baseline based on choosing the larger

category every time (although it is still better than random guessing).

8.3.2 New Results for the Indoor versus Outdoor Data Set

System
Overall Accuracy %
with Specified Cutoff

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
My systems

BINS 87.2 87.2 87.2 87.4 87.9 87.2 84.3 78.0
Rainbow systems

Naive Bayes 85.4 85.4 85.4 85.6 85.8 85.6 83.8 78.0
Rocchio/TF*IDF 84.5 84.5 84.5 84.5 84.7 84.5 83.6 78.0
K-Nearest Neighbor 77.8 78.0 78.0 78.9 80.9 82.3 83.2 78.0
Probabilistic Indexing 86.3 86.3 86.3 86.1 87.0 86.7 86.7 78.0
Support Vector Machines 82.0 82.0 82.0 82.9 82.9 82.9 82.0 78.0
Maximum Entropy 84.5 84.5 84.7 85.2 85.2 84.7 83.2 78.0

Table 8.3: With an appropriate confidence cutoff for using the predictions based
on image features, gains are likely for all text based systems.

Table 8.3 shows the results combining image features with text for the In-

door versus Outdoor data set. As described, the results of SVMlight using color

histograms based on image features are used if the confidence of the system’s pre-

diction is greater than the specified cutoff; otherwise, we fall back to a text based

system. As you can see, I have tried using confidence cutoffs from 0 to 3.5 with

steps of 0.5, and for the fall back systems, I have tried using BINS (with its best
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settings) and the Rainbow systems. As explained in Section 8.3.1, the confidence is

never greater than 3.5 for this data set, and so the first column of results represents

the results of the text based systems. The confidence is always non-negative (since

it is really just the distance of a mapped vector from a hyperplane), and so the final

column of results, using 0.0 as the cutoff, represents the results of using only image

features, and is not affected by the particular text based, fall back system used.

The first thing to note is that with a cutoff for confidence of 1.0 or better,

the combined result of text and image features is almost always at least as good

as the better of the two individual systems. (All text systems except Rainbow’s

K-Nearest Neighbor system beat the image feature system, and the kNN system

only loses by a very small margin.) The only time performance goes down with a

confidence of 1.0 or greater is when the fall back system is Rainbow’s Probabilistic

Indexing system and a cutoff of 2.0 is used; in this case, the combined performance

is marginally lower than the text based system’s performance.

Remember from Section 8.3.1 that the two most promising cutoffs are 1.5

and 1.0. Looking at the combined results using these two cutoffs, we see that

the combined result is always at least as good as the better of the two individual

systems. With a cutoff of 1.5, the combined result is always better than the two

individual systems, and with a cutoff of 1.0, the combined result is tied with the

text result for two cases (Rainbow’s Rocchio/TF*IDF system and my BINS system)

and better than the two individual systems for the other five cases. The average

performance of the seven individual text based systems (when used alone) is 84.0%.

The average performance when combined with image features (using a cutoff of

either 1.5 or 1.0) is 84.9%. According to a one-sided χ2 test, this change in the

average performance of all systems (over all decisions being made) leads to a p-

value of 8.6%. In other words, we can not say the change is statistically significant

at the 95% confidence level, but it is significant at the 90% confidence level. (If
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only documents for which predictions are based on image features were used to

determine significance, the p-values would be lower and the significance higher,

since the same number of examples change from wrong to right based on a smaller

set.)

For most text systems, the improvement gained by combining image fea-

tures is not large. Generally, the best improvement seen for an individual system is

slightly under 1%, and for Rainbow’s Rocchio/TF*IDF system, the best improve-

ment seen is only 0.2%. According to a one-sided χ2 test, these changes are not

statistically significant at the 95% confidence level. The best improvement seen is

for Rainbow’s K-Nearest Neighbor system, in which case the best improvement seen

occurs with a cutoff of 0.5, and the improvement is over 5%. The improvement for

this system is still 4.5% when a cutoff of 1.0 is used. Both of these improvements are

statistically significant (the p-values are 0.4% and 1.4%, respectively). The kNN

system has the lowest performance of all text based systems, and approximately

the same performance as using image features alone.

8.3.3 The Potential for Further Improvement

These results are promising. It seems that even when image features alone per-

form well under text alone, a small improvement can still be expected when the

appropriate confidence cutoff is used. When image features alone perform about

as well as text alone, on the other hand, a large improvement might be expected,

as is the case for Rainbow’s kNN system. As discussed at the end of Section 8.2,

using image features to categorize images has not been the focus of my research;

I have been primarily concerned with text. I have implemented code to divide

images into regions and to compute color histograms, and I took advantage of a

general, public categorization system (SVMlight) to get results using this feature.

However, my main purpose for doing this was to combine these results with text
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based results. It is quite possible that using additional image features such as edge

direction histograms and Daubechies’ wavelets would lead to better results based

on image features alone. (I discuss some research using features such as these in

Section 8.4.) If these results approach the results of other text based systems, it

is quite possible that combining results of image and text would achieve significant

gains, as is already the case for the kNN system.

In addition, there are probably better ways to combine predictions of image

based systems and text based systems. The method I have described in this section

only uses the confidence of the image based system to decide which prediction

to use. Ideally, the confidence of both systems should be used. In other words,

given the predictions of an image based system and a text based system, whichever

prediction has the higher confidence should be used. It is quite possible that for

certain images for which the image based prediction is currently being used due

to a high confidence, the text based confidence may be even higher; similarly, it is

possible that for certain images for which the image based confidence is low, the

prediction should still be used if the text based confidence is even lower. The reason

I have not already tested this method of combining systems is that different systems

do not compute confidence in the same way (if at all), and so confidence measures

are not directly comparable. However, density estimation, described in Chapter 4,

provides a way to compute confidence measures for all of these systems. By applying

density estimation to the output of all of these systems, results can be converted to

probabilistic confidence measures that are directly comparable. If these confidence

measures are accurate, this may lead to a method of combining results that works

better than the one described in this section, and if so, further gains might be

achieved. (Appendix H provides evidence that the confidence measures are accurate

for the experiments applying my density estimation to the Indoor versus Outdoor

data set and the Events data set.) I leave this for future work.
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8.4 Research Related to Image Features and Com-

bining Systems

There is actually a history of image processing research dealing specifically with

Indoor versus Outdoor distinction. The work of Szummer and Picard (1998) repre-

sents an attempt to categorize consumer photographs from vacations as Indoor or

Outdoor using low-level features such as color histograms. The research discussed

in (Paek et al., 1999) concerns a colleague’s efforts involving the use of low-level

image features including color histograms and edge direction histograms for cate-

gorization involving the same categories, in addition to my own work using text for

this task and also an early attempt to integrate the two two approaches together.

The work discussed in (Vailaya et al., 1999b) and (Vailaya et al., 1999a)

involves the use of similar low-level image features to divide Outdoor vacation

images into City images and Landscape images, and they further consider dividing

the Landscape images into the categories Sunset, Forest, or Mountain. At all levels

(Indoor versus Outdoor, City versus Landscape, and Sunset versus Forest versus

Mountain), the authors recognize the existence of an Other category, which has

also occurred throughout this thesis (although I have not considered the same sets

of categories as they do). In their work, all sets of categories were motivated by

experiments with human subjects who evaluated 171 vacation images and were

asked to group the images into meaningful categories. This helps provide support

that the Indoor versus Outdoor distinction is a pragmatic one.

The research described in (Wang et al., 1997) involves the use of low-level im-

age features such as Daubechies’ wavelets and color histograms to classify images as

objectionable or benign, where objectionable images are those that are pornographic.

The authors discuss the potential of using text in addition to image features, but

I have not found later work by them that actually attempts to do this. Earlier
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work described in (Fleck, Forsyth, and Bregler, 1996) involves the use of low-level

image features for the related task of detecting naked people in images. These

research endeavors have the obvious application of filtering objectionable images

from children in mind.

Many systems have been developed for image retrieval (as opposed to cate-

gorization) based on image features. Some of these that I have come across in my

research include QBIC (Niblack et al., 1993), Photobook (Pentland, Picard, and

Sclaroff, 1994), Foureyes (Picard and Minka, 1995), VisualSeek (Smith and Chang,

1996c), WebSEEk (Smith and Chang, 1997), and MARS (Hehrotra et al., 1997).

Of these, only WebSEEk also uses text. Benitez and Chang (2002b; 2002a) discuss

the use of both text and low-level image features to cluster images. The potential

for using these clusters to aid in categorization is discussed but not implemented.

Although it is not common in the literature, there have been some prior

efforts in the computer vision literature that involving matching pieces of text

associated with an image to regions of the image. Srihari (1995) has developed a

system called Piction, which matches names in image captions to faces in the image

for the purpose of retrieval. The work discussed in (Duygulu et al., 2002) involves

the use of the expectation maximization (EM) algorithm and a process analogous

to learning a lexicon from aligned bilingual text in order to automatically annotate

regions of images with provided keywords.

I have already discussed research related to the combination of systems in

Section 7.5, since the work in that chapter can be viewed as combining decision

rules with other systems. I reiterate that information here, since this work also

relates to the research discussed in this chapter. In his text categorization survey

paper, Sebastiani (2002) refers to the combination of classifiers as a classifier com-

mittee. He points out that a committee is characterized by the methods it tries

to combine and also by the means of combining them. Strategies that have been
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used to combine classifiers include majority voting (use the outcome of the majority

of categorizers), weighted linear combination (weight each categorizer based on its

effectiveness on a tuning set), and dynamic classifier selection (use the result of

the categorizer that is most effective on the examples in the tuning set that are

most similar to the current document) (Sebastiani, 2002). Research involving the

combination of various categorizers include (Larkey and Croft, 1996) and (Li and

Jain, 1998). Results have been mixed; Larkey and Croft (1996) show that com-

bining any two of three classifiers (Rocchio, Naive Bayes, and kNN) beats the best

individual classifier for their test set, and combining all three does best of all. Li

and Jain (1998), however, find that most of their attempts to combine classifiers

(Naive Bayes, kNN, decision trees, and their own “subspace method”) do not beat

the best individual classifiers for a much larger data set. Of course, the work de-

scribed in this chapter is different, in that I am combining the results of text based

systems with the results of a system that is basing its predictions on low-level im-

age features. The only previously published work of which I am aware discussing

this approach is (Paek et al., 1999), which I have already mentioned earlier in this

section.

8.5 Concluding Discussion of Image Features

The content of this chapter is uniquely applicable to images. The rest of the

thesis so far has been more general. The majority of this thesis has discussed

the categorization of images using associated text (primarily captions). At times,

standard text categorization techniques can be applied directly with good results.

For certain categories (e.g. those that deal with focus, perspective, or point of view),

more advanced NLP techniques are necessary to achieve optimal performance. I

have shown an example of this in Chapter 6, and I also explain in that chapter why

I believe that this is more likely to occur when categorizing images as opposed to
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full-length text documents; however, it is possible that similar categories involving

text-only documents might also require deeper linguistic processing. In this chapter,

on the contrary, I am specifically dealing with low-level image features that are

simply not available for most text categorization tasks. It turns out that they are

helpful for the categorization of images, at least when dealing with the categories

Indoor and Outdoor.

The first part of the chapter discusses a specific low-level image feature,

namely color. I have described how images can be represented by color histograms,

either based on an entire image at once, or based on the regions that comprise an

image. It turns out that computing color histograms after dividing images into 8 x 8

rectangular regions of equal size, and providing this input to an SVM system, leads

to reasonable performance for Indoor versus Outdoor categorization. Although

the performance is not as good as most text systems, it is still much better than

baseline performance, and thus this might be useful when text is not available.

Furthermore, if only images for which the confidence is above some appropriate

cutoff are considered, the accuracy for these images is above that of all text based

systems I have tested, and this has led to experiments that combine the results of

text and image based systems.

The Indoor versus Outdoor data set is interesting, because reasonable perfor-

mance can be achieved for this data set using either text or image features. This has

allowed me to experiment with the combination of results based on entirely separate

features. In the text categorization literature, research involving the combination

of systems has had mixed results, at best, but that is probably because researchers

have been combining systems that have based their decisions on the same features.

Even though different approaches are used by different systems, if they are basing

their decisions on the same features, it is likely that they do well on approximately

the same documents. On the other hand, there is no reason to believe that images
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for which text is particularly indicative of the correct category should also have

colors (or other low-level image features) that are particularly indicative, and vice

versa. In other words, it is quite possible that the images for which an image based

system is most confident (and therefore most likely to predict accurately) are not

the same images for which text based systems are the most confident. This shows

promise for combining the results of such systems.

I have discussed one method of combining results of an image based system

with results of text based systems. This method usually improves results (i.e. the

results of the combination are generally better than the results of either text or im-

age features alone), and rarely does it make results worse. For the one case in which

the image based system performs nearly as well as the text based system (Rain-

bow’s K-Nearest Neighbor system), the improvement is very significant. I believe

that by incorporating additional image features (e.g. edge direction histograms),

the results using image features would likely improve, and additional gains would be

achieved. Also, a better method of combining results that compares the confidence

of the image based system with the confidence of the text based system (perhaps

using density estimation) should lead to a better choice of which prediction to use,

and therefore improve performance further.
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Chapter 9

Newsblaster

The World Wide Web has inarguably changed the way that many people live day

to day. One of the many benefits of the web is that it provides many on-line news

sources that are updated whenever a new story is available. Such sites include

CNN, Reuters, Fox News, and many others. For some people, these sites have

replaced printed newspapers and television as their main source of news, and for

others, they provide an additional source of news. There are so many such news

sites and so many articles posted every day that it is impossible to read them all.

Newsblaster (McKeown et al., 2002) is a publicly accessible system that

has been developed at Columbia University to help users find and browse the

news that is of the most interest to them.1 Newsblaster also showcases the re-

search of many people in the Natural Language Processing (NLP) research group

at Columbia University. The system automatically collects, clusters, categorizes,

and summarizes news from several sites on the web, and it provides users with

a user-friendly interface to browse the results. Newsblaster utilizes my own re-

search in two ways; news stories are automatically categorized into sections sim-

ilar to those in newspapers and other news websites, and images are categorized

1For legal reasons, the name of Newsblaster will soon have to change; as of the time I am
writing this thesis, the new name has not yet been decided.
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with labels that help to provide users efficient browsing. This chapter describes

Newsblaster with a focus on my own contributions to the system. Newsblaster

can currently be accessed on the web at http://newsblaster.cs.columbia.edu or

http://www.cs.columbia.edu/nlp/newsblaster.

There are several pragmatic benefits of Newsblaster. Rather than traverse

many different news sites to find news of interest, a user can turn to Newsblaster,

which has already explored the various sites. Automatically generated summaries

can then help users determine which stories are important to them. If they want

to learn more, Newsblaster provides links to the original articles, so a user can

read all of the articles pertaining to a given story. For reasons such as these, the

Newsblaster system has already caught the attention of the press and public. A

recent analysis indicates that Newsblaster receives tens of thousands of hits every

day. News agencies that have written articles about Newsblaster include The New

York Times, USA Today, and Slashdot. A list of press articles about Newsblaster

can be found at http://www.cs.columbia.edu/nlp/newsblaster/press.html.

9.1 Description of the Newsblaster System

9.1.1 Crawling the Web and Gathering News

Newsblaster is a fully automatic system that currently updates itself once a day

(plans are currently underway to have Newsblaster increment itself incrementally

throughout the day whenever it encounters new news). The first phase of News-

blaster consists of crawling the web, starting at specific, popular news sites such as

CNN, Reuters, and Fox News. At the time I am writing this, there are 18 sites that

are explored, and the list of sites is displayed at the top of the main Newsblaster

page. As of now, all of the sites are in English, but there is work underway to also

explore sites in other languages. Links are followed up to a given depth (currently
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four), and a set of manually created rules is used to determine what, if anything, on

each page appears to be a news article.2 When a news article is found, additional

manually created rules are used to find images that relate to the article (as opposed

to other images such as advertisements), and if such images are found, more rules

are used to find captions for these images, if available. The precision and recall for

all these sets of rules appear to be very high.

9.1.2 Detecting Groups of Articles on the Same Story

Once crawling of the websites is complete, articles are clustered into groups of re-

lated articles. As mentioned in Section 2.3, clustering, unlike categorization, does

not have predetermined categories; rather, documents that are similar to each other

are grouped together. The clustering algorithm used is that described in (Hatzi-

vassiloglou, Gravano, and Maganti, 2000), and parameters are set such that each

cluster is likely to contain a group of articles describing the same news story. Only

clusters that contain at least some specified minimum number of articles (currently

four) are presented in the main Newsblaster interface. When the first stage of

clustering is complete, a second stage of clustering with different parameter set-

tings cluster the original clusters into “superclusters”, such that each supercluster

consists of a group of clusters on stories that are related to each other. Typically,

thousands of articles are discovered, but of these only hundreds make it into clusters.

Many of these clusters contain close to the minimum allowed number of articles,

but often there are some that contain as many as a few dozen. Most superclusters

contain exactly one cluster, but usually there are a few that contain more than one.

2These rules seem to work very well for the sites we are currently exploring, but I am aware
that work is currently underway to learn rules for each site so as to do better with multilingual
news sources.
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9.1.3 Categorizing News Stories into Useful Sections

Before superclusters are displayed to the user, they are categorized into sections

that are typical of newspapers and on-line news sites. These sections are currently

U.S. News, World News, Finance, Entertainment, Science/Technology, and Sports.

The training set consists of 2,869 articles from older Newsblaster runs. I personally

labeled the high majority of these articles, although some have come as suggestions

from other people as is described in Section 9.2. Appendix P discusses an attempt

that had been made to generate a training set for these categories automatically, but

the analysis in this appendix shows that the effort did not achieve results as good

as a manually created training set. The system that Newsblaster uses to categorize

superclusters is my BINS system (discussed in Chapter 5). Categorization is first

applied to individual articles, and each supercluster is then assigned to whichever

section contains the most articles in the supercluster (ties are broken by choosing

the category with the highest sum of scores over all articles in the supercluster).

Figure 9.1 shows a section of the main Newsblaster interface from September

10, 2002. The frame at the top of the page contains general information about

Newsblaster, links to pages including papers and articles written about Newsblaster,

and links to each of the categories for superclusters. There is also now a link to

an image browsing interface (discussed more later in this chapter). The bottom

frame of the page as shown has been scrolled down to the top of the World News

section. The top supercluster in this section on this day consists of three clusters,

the next supercluster consists of two clusters, and the rest each contain one cluster.

As you can see, a title is displayed for each cluster, as well as the number of articles

in the cluster and the range of dates of those articles.3 In addition, representative

3Titles of individual articles are found using regular expressions, and when that fails, the first
sentence of the article is used instead; Currently, the longest title of the articles in a cluster, not
including those that use first sentences, is used as the title of the cluster, but more advanced
methods are being considered.
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Figure 9.1: The main Newsblaster interface currently displays superclusters in six
different categories, including keywords for each supercluster and titles for each
cluster.

keywords are displayed for each supercluster, currently selected by a system called

Nominator (Wacholder, Ravin, and Choi, 1997).

9.1.4 Presenting Summaries and Appropriate Images

When a user clicks on the title of a cluster, an automatically generated summary of

the articles contributing to the cluster is displayed along with links to the original

articles and any appropriate images that have been found. Newsblaster uses two

separate summarizers for different clusters depending on the type of documents in

the cluster as determined by a Router (McKeown et al., 2001). One of the systems,

MultiGen (Barzilay, Elhadad, and McKeown, 2002; Hatzivassiloglou et al., 2001;
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Barzilay, McKeown, and Elhadad, 1999; McKeown et al., 1999), is used when there

is a high enough degree of similarity between the articles in a cluster. The other

system, DEMS (Schiffman, Nenkova, and McKeown, 2002; Schiffman, Mani, and

Concepcion, 2001) is used for sets of articles that are more loosely related and also

for biographical documents.

Figure 9.2: When a user clicks on a cluster, an automatically generated summary
is displayed, along with links to the original articles and appropriate images found.

Figure 9.2 shows the page with the automatic summary generated for the

cluster titled “U.S. Cites New Evidence Saddam Seeking Nuclear Bomb” on Septem-

ber 10, 2002 (you can see the link for this cluster in the Figure 9.1). As you can

see, this cluster consists of five articles, and these articles contribute to the auto-

matic summary.4 One appropriate image has been found in these articles, and it

4There is currently work underway to include links from the individual sentences in the sum-
mary to the articles that contribute to these sentences.
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is displayed at the top of the summary. Below the summary there are links to the

original articles that are contained in the cluster.

Appropriate images are found using a set of manually coded rules that I have

determined manually by examining many articles from various news sites. The

rules are designed to extract most of the appropriate images without also finding

inappropriate images such as advertisements. I weight precision higher than recall,

since users will not notice if an appropriate image is missing, but inappropriate

images that are present will be visible. Some patterns that I have noticed which

have led to the rules used to locate appropriate images are: (1) Images are almost

always in the same cell as the article or an embedded cell. (2) Images that are

jpeg’s tend to be appropriate, but other formats are more likely advertisements

or logos. (3) Images with a word such as “ad” or “advertisement” in the URL

are probably not appropriate. By combining such rules, Newsblaster seems to

achieve nearly perfect precision while still recalling the high majority of appropriate

images. The discovered images, unlike articles, are not actually downloaded to the

Newsblaster server (this would require huge amounts of space, since images are

large, and Newsblaster finds thousands a day). Instead, the links to the images are

recorded along with the articles in which they are contained.

Figure 9.3: When a user clicks on an image at the top of a summary, the full-size
image is presented along with its caption, if any, and a link to the original article
that it came from.



226

When a user clicks on an image, he is taken to a new page that displays

the full-size image and its caption, if any has been found. Image captions are

determined by another set of manually coded rules that I have created. The rules

to find appropriate images are relatively simple, but the rules to find captions turn

out to be much more complicated, consisting of a large chain of complex regular

expressions. Figure 9.3 shows the result of clicking on the image displayed at the

top of the summary presented in the Figure 9.2. In this case, you can see that an

appropriate caption has indeed been found for the image.

Figure 9.4: Clicking on the link below and image and caption brings the user to
the original source of the image/caption pair.

Clicking on the link below the image and caption brings the user to the

original article that the image and caption comes from. This image happens to

come from an article posted at NYPost.Com. Figure 9.4 shows the original article
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that contains the image and caption shown in the Figure 9.3. The user also could

have been taken to this page by clicking on the fourth link under the summary

(shown in Figure 9.2). You can see that many other images were also present on

the page, but none would have been appropriate to display with the summary. You

can also see that there is text in between the image and the caption, but the regular

expressions correctly realize that the longer text is the actual caption.

9.2 Improving Newsblaster Categorization

When we first added categorization into useful sections to the Newsblaster inter-

face, there was an attempt to automatically create a training set by using training

examples for each category from sources that are extremely likely to fit the cate-

gories (without the need of checking). It is explained in Appendix P why this does

not work as well as using a more representing training set consisting of manually

labeled articles. Ever since the manual training set was created, the high majority

of superclusters have been categorized correctly. Today, there as often as many as

50 superclusters in a given day, and usually at most two or three are incorrectly

classified.

Still, it happens, especially when a new topic occurs that is unlike anything

that has been seen before. One noteworthy example is the past Olympic games.

Many of the stories concerning the Olympics clearly belonged in the Sports section,

as all humans who I asked agreed. However, the sports that occur as part of the

Olympics are often sports that do not occur elsewhere, and all the talk of various

foreign countries fooled our classifier such that it often placed the stories in the

World News section instead. To allow categorization to improve over time, I have

therefore implemented an alternative version of Newsblaster, also built daily, which

allows users to suggest categories (sections) for individual articles that they believe

have been labeled incorrectly. If the Newsblaster team agrees with the suggested
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category, the article is added to the training set, so that similar mistakes are less

likely to happen in the future. (This alternative interface also allows users to suggest

adding correctly labeled articles to the training set, which is sometimes helpful if

similar articles are labeled wrong.) This alternative interface is currently available

at http://www.cs.columbia.edu/nlp/newsblaster/categories.

Looking back at Figure 9.1, you may notice that of the five superclusters (and

eight clusters) visible, all but the last clearly belong in the World News section;

however, the last of these superclusters has been classified incorrectly, as it concerns

a tropical storm heading towards North Carolina. The focus of all five articles in

the cluster is about the threat to this U.S. state; however, three of the articles

have been misclassified as belonging to the World News category. Why this has

happened is unclear; perhaps articles about tropical storms are more common in

this section, or perhaps the name “Gustav” has thrown off the system. In any case,

it might be helpful to add some of these examples to the training set as examples

of the U.S. News category so that mistakes like this are less likely to happen again.

The first page of the alternative interface is exactly like the regular interface,

so it would look just like what you see displayed in Figure 9.1 (except that the URL

would be different). However, when you click on a cluster to see the summary and

links to the original source articles, this version Newsblaster also tells you how

each article has been labeled, and drop-down boxes are provided that allow the

users to suggest alternatives. Figure 9.5 shows the sample summary page for the

incorrectly labeled cluster when using the alternative version of Newsblaster just

discussed. As you can see, next to each link to an original article, the automatic

label that was assigned to the article is specified, and a drop-down box allows the

user to make a new suggestion (or confirm the original one, if the user wants to add

a correctly classified article to the training set). In this case, two of the articles are

correctly classified as U.S. News, but three are misclassified as World News. The
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Figure 9.5: An alternative version of Newsblaster allows users to suggest categories
for articles they think have been labeled incorrectly so that similar mistakes are
less likely in the future.

state of the page as shown in the figure is such that the user has already suggested

a correction for one of the misclassified articles and is in the process of suggesting a

second correction. Once the user is finished specifying labels for whichever articles

he or she chooses, the user can click on the “Submit Query” button to submit the

suggestion.

Submitting suggestions does not automatically add the articles to the train-

ing set. Rather, articles are copied to a temporary location, and all suggestions

are recorded in a single file. Another script exists that implements a simple text

interface that allows anyone with access (currently, the NLP group at Columbia

University) to review the suggestions (by displaying each article with its suggested

category). This person can then either choose to add the article to the training set,
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delete the article without adding it to the training set, or postpone the decision

until later. Once all additions have been made, another script exists that takes care

of retraining BINS based on the new training set (and then the new trained model

needs to be checked in so it can propagate to the live version of Newsblaster).

9.3 Browsing Images

Note the link at the top of Figure 9.1 reading “New! Browse all of today’s images!”.

When a user clicks on this link, he or she is taken to Newsblaster’s image browsing

interface, one of my personal contributions to the system. This interface allows

users to access all of the news-related images found during Newsblaster’s crawling

phase. Many of these images do not show up in any summary, because only articles

that wind up in a cluster with at least some specified minimum number of articles

(currently four) make it to the main Newsblaster interface. There are typically

thousands of images found each day, whereas only hundreds are associated with a

summary. The image browser interface allows users to browse all images belonging

to a given category (or combination of categories), or to search for images with

specific properties.

Figure 9.6 shows the first page of Newsblaster’s image browsing interface

from October 22, 2002. Images are classified into the Newsblaster categories (de-

scribed in Section 9.1.3), and those images that fall into the U.S. News or World

News categories are subcategorized into the Events categories (first described in

Section 3.1.2.3). A single image is then randomly selected to represent each of the

categories or category combinations, and these images are displayed as shown in

Figure 9.6. Each time the page is refreshed, a new representative image is chosen

to fill each slot.

Figure 9.7 shows the screen that results if the user clicks on the image repre-

senting the U.S./Politics category combination as shown in Figure 9.6. This screen
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Figure 9.6: Newsblaster’s image browsing interface displays a randomly selected
representative image for each of the major categories (or category combinations).

displays thumbnails for the first set of all images that belong to the same category

combination. By default, the image thumbnails are displayed 20 at a time in rows

of 5 with each image placed in a square occupying a width and height of 70 pixels

(but the image keeps its original proportion, so there might be white space above

and below or to the sides of an image). The user can jump forward or backwards

one screen at a time, or he/she can decide to jump to any specific image. Assuming

the user arrived at this screen by clicking on an image from the grid presented at

the top of the browsing interface (an alternate means of getting to this screen is

discussed shortly), the image the user clicked on is also displayed at the top of the

new grid; this way, if the user is specifically interested in this image, he or she

does not have to search for it, which might be annoying if many images share the
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Figure 9.7: After a category is selected, Newsblaster allows the user to browse all
images with the same category (or category combination).

current category. (Originally, this functionality was not part of the image browsing

interface, and it was requested by multiple people.) If the user clicks on any image

thumbnail, he or she is taken to the page for that image, including a full-size version

of the image, the image’s caption (if one has been found), and a link to the original

article that the image comes from. These pages are the same as those that a user

is taken to when he or she clicks on an image at the top of a summary (as shown

in Figure 9.3).

The user is free to change the display properties; for example, Figure 9.8

shows what the screen from Figure 9.7 would look like if the user decides to display

100 images per screen in rows of 10 with each image placed in a square occupying a

width and height of 50 pixels. Users with quick Internet access and a large screen
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Figure 9.8: The image browsing interface allows a user to change the display prop-
erties while browsing images.

may choose to do this.

Notice at the top of Figure 9.6 that there is a link to an “advanced search

interface”. This interface exists below the grid of representative images, and it is

shown in Figure 9.9. This interface allows the user to specify the specific properties

he or she is interested in, and all such images that match these properties are found

and presented in the same manner is shown in Figure 9.7. I hope to make this

advanced search interface more useful by adding the ability of the user to enter

text that Newsblaster will search for in either captions or articles. By allowing the

user to search for images in specific categories that have specific associated text, a

user should be able to find images that suit his or her interest. I also hope to add the

Indoor versus Outdoor categories to the search interface. Since many (in fact, the
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Figure 9.9: Newsblaster also allows users to search for images with specific proper-
ties.

majority) of images found by Newsblaster do not have associated captions, and full

articles generally do not do a good job for this set of categories (see Appendix G),

low-level image features will probably have to be used to classify many of the

images, as described in Chapter 8. When a caption is present, a combination of

text and image features can be used.

9.4 Research Related to Newsblaster

The automatic tracking and summarization of news from the web is a recent en-

deavor, and Newsblaster is surely one of the first, if not the first, major efforts

in this area. The most similar research project of which I am currently aware is

the NewsInEssence project led by Dragomir Radev at the University of Michigan
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(Radev et al., 2001). Like Newsblaster, NewsInEssence locates news articles on the

web, clusters related articles, and summarizes each cluster. NewsInEssence does

not categorize clusters into sections, nor does it locate images contained in arti-

cles (my two main personal contributions to Newsblaster). NewsInEssence can be

accessed on the web at http://www.newsinessence.com.

Very recently, Google has created their own similar project which they call

Google News, and this can be accessed on the web at http://news.google.com. Cur-

rently testing a BETA version, Google News clusters and categorizes news, using,

in fact, the the same categories as Newsblaster with the addition of a Health cat-

egory. Presentations of clusters include links to the related articles and a single

picture extracted from one article of each cluster. The beginning of each article

is shown next to the link to the article, and there is no further attempt to sum-

marize. A FAQ about the system is available at http://news.google.com/help/

about news search.html, which presents information at a very non-technical level.

I have written to the staff requesting more information, but their response, which

took 17 days, was minimal and non-informative.

Newsblaster takes advantage of much of the research that has previously been

conducted by members of Columbia’s Natural Language Processing group. This in-

cludes research on clustering (Hatzivassiloglou, Gravano, and Maganti, 2000) and

topics related to multi-document summarization (Barzilay, Elhadad, and McK-

eown, 2002; Schiffman, Nenkova, and McKeown, 2002; Hatzivassiloglou et al.,

2001; McKeown et al., 2001; Schiffman, Mani, and Concepcion, 2001; McKeown

et al., 1999; Barzilay, McKeown, and Elhadad, 1999). The categorization per-

formed by the system uses my BINS system which has been described in Chap-

ter 5, and an older version of the system is also described in (Sable and Church,

2001). Links to these academic papers related to Newsblaster can be found at

http://www.cs.columbia.edu/nlp/newsblaster/papers.
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Work on image browsing interfaces includes Bederson’s PhotoMesa (Beder-

son, 2001), which displays user’s personal, digital photographs based on how they

are stored in directory structures. PhotoMesa can display many images from mul-

tiple directories on a single screen, and it zooms to regions of interest determined

by a user’s mouse movements. This is nice, and I personally know people who use

PhotoMesa to browse their own pictures, but it is beyond the scope of my research

which does not focus on user interfaces.

Work on image search interfaces includes the work led by Marti Hearst on

Flamenco (Hearst et al., 2002). Flamenco takes advantage of hierarchical-faceted

metadata to aid users to find images from a very large collection. The interface

uses the metadata in such a way as to allow users to go back and fourth between

following links and refining textual queries until they find what they are looking

for.

9.5 Concluding Discussion of Newsblaster

Newsblaster helps add credence (not that I think this is necessary) to the research

I’ve been working on for the past five years. It demonstrates how various achieve-

ments in the field of Natural Language Processing can come together to create a

useful and interesting system. In Section 2.2 of my thesis, I list some of the poten-

tial pragmatic uses of text categorization, and one of them is the classification of

news into topical sections for browsing purposes. The core of my thesis deals with

images, and I have repeatedly shown that text categorization techniques can be

applied to text associated with images to label the images in order to aid browsing

or search capabilities. Newsblaster takes advantage of my work, combining it with

the work of other researchers who have been working in the areas of clustering

and summarization. The result of this joint effort is a system that has already

caught the attention of the public and the press. Companies have expressed inter-
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est, as well, in applying the technology driving Newsblaster to their own data. The

fact that Newsblaster automatically updates itself every day (and will soon update

itself incrementally throughout the day) tests our work constantly; although we

can’t actually evaluate the results of these daily tests in a formal sense, a perusal

of Newsblaster on a typical day assures me that all components are working well.

I personally enjoy using Newsblaster as a major source of news.
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Chapter 10

Conclusions

10.1 A Recap of the Two Paradigms of Research

Research in the text categorization literature almost always fits into at least one

of two paradigms. The more common of these paradigms concerns the exploration

of new machine learning techniques to improve results. Some of the research dis-

cussed in this thesis fits into this paradigm, including the use of density estimation

discussed in Chapter 4, the use of bins discussed in Chapter 5, and the combination

of high-precision, low-recall rules with other systems discussed in Chapter 7. The

other paradigm concerns the use of novel representations of documents. My work

discussed in Chapter 6, involving the use of deeper linguistic processing to repre-

sent an image using only the main subject and verb of its caption - as opposed to a

typical bag of words approach used by almost all other text categorization systems

- fits into this paradigm. The work discussed in Chapter 8, involving the use of

low-level image features such as color histograms to represent documents, clearly

fits into this paradigm as well. Most of the text categorization literature involves

research that fits only into the first paradigm, as you can see from the survey of

the field I provide in Chapter 2 (exceptions are discussed in Section 2.4.3). Because
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I have been dealing with images, however, the properties of text and categories

have varied from the norm, leading to the NLP based work, while the availability

of image features has led to the image feature based work.

Machine learning techniques are general, and once a system relying on such

a technique has been developed, it is usually relatively simple to move to a new

task. For example, to apply an existing text categorization system to a new set of

categories, the most expensive step is usually to collect training examples for each

of the new categories. Research involving novel representations for documents is

often more specific. My work involving low-level image features, for example, clearly

only applies to images. In the literature, one of the most successful uses of novel

representation involves the use of hyperlinks for retrieval from the World Wide Web,

and this clearly only applies to web pages. Although it is certainly possible that

advanced NLP might eventually prove to useful for text categorization in general,

I make no claims that the specific approach I use is general; I have been successful

using deeper linguistic processing for a specific task involving the focus of images.

While research that fits into this paradigm tends to be more specific, such research

is often very interesting, and sometimes it can lead to substantial improvement over

standard approaches.

10.2 A Summary of My Main Contributions

Two of the contributions of this thesis are general, and do not clearly fall into just

one of the two paradigms just described in Section 10.1. These contributions are:

• The exploration of the use of text to categorize images. This represent the

core of my dissertation, and all of the other contributions relate to this one

in some way. The categorization of images is important for many of the same

reasons as text categorization in general. The increasing availability of free-
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floating images on the Web, the creation of large corpora of images, and the

commonality of personal collections of digital photographs (some of which

have annotations) all lead to the necessity of better ways to automatically

label images to aid tasks such as browsing, filtering, and searching. In or-

der to have the means of conducting the appropriate research, I have created

a multimedia corpus consisting of news documents with embedded captioned

images and multiple data sets representing various levels of abstraction. I

hope that this corpus becomes popular in the field so that researchers con-

ducting similar research can compare their results to mine. Almost all of the

existing text categorization literature involves the categorization of text-only

documents, and usually involves experimentation with one of a few publicly

available corpora (a list of such corpora is provided in Section 2.8). I believe

that my corpus can serve as an important resource, since the properties of the

text and the categories associated with images are often quite different from

those associated with typical full-length textual documents such as articles,

e-mails, and web pages, and these varying properties affect which approaches

perform best.

• The categorization of news and an image browsing interface for Newsblaster.

Newsblaster, which has already captured the attention of the public and press,

is a publicly accessible system that showcases my work and also the work of

many other students within the NLP group at Columbia. The Newsblaster

system extracts, clusters, categorizes, and summarizes news and related im-

ages, and it provide a user-friendly interface for anyone with access to the web

to browse and read the news or to browse and search for news related images.

Newsblaster is automatically updated every day, and soon will be updated

throughout each day. My personal contributions include the categorization of

stories into sections that are typical of a newspaper or manually created news
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site, the inclusion of images that are displayed with summaries, and a user-

friendly image browser that allows users to browse the current day’s images

or search for images that match various properties. This contribution does

not really involve new research; rather, it is an implementation contribution

involving the integration of research from many students that has culminated

in a pragmatic and popular system.

The remaining contributions of my thesis each fall into one of the two

paradigms described in Section 10.1. The contributions that fit into the first

paradigm, i.e. those concerning the use of novel machine learning techniques to

improve performance, are:

• The introduction of two novel machine learning approaches towards text cat-

egorization involving the use of density estimation and bins. Density esti-

mation is a statistical technique used to estimate a probabilistic confidence

measure for each of a system’s predictions, and it often also improves accu-

racy. As explained in Sections 8.3.3 and 10.3, I believe that the confidence

measures provided by density estimation can be used to intelligently combine

systems together, although I am leaving this for future work. The use of

bins provides a mechanism for empirically estimating accurate term weights

for words with scarce evidence, and for determining which statistical features

of a word are important. Both of these systems are competitive with other

advanced approaches, and my BINS system performs especially well for two

of the data sets of my own corpus. (With the appropriate settings combining

bin-based weights and Naive Bayes weights as explained in Section 5.7, BINS

beats all other systems tested for the Indoor versus Outdoor data set, first

described in Section 3.1.2.2, and the Events data set, first described in Sec-

tion 3.1.2.3.) The BINS system provides a user-friendly interface that allows

for the use of many optional features (some are discussed in Appendices I,
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J, K, L, and M), and it also allows for the use of unlabeled data (discussed

in Appendix N). I am ready to make the system public, and I hope that

researchers use it for their own data sets.

• The use of high-precision, low-recall rules to improve the results of other sys-

tems. I have shown that the use of high-precision, low-recall rules (i.e. rules

that are individually rarely applicable but very accurate when they apply)

can be used to improve the performance of standard systems for tough cat-

egorization tasks. I have demonstrated that by relying on such rules when

possible, and falling back to some standard system otherwise, the accuracy of

the standard system almost always increases, since the rules are more likely

to be correct for the cases to which they apply (at least for certain difficult

categorization tasks).

Although they are much less common in the text categorization literature,

my thesis also offers contributions that fall into the second paradigm discussed

in Section 10.1, i.e. research involving novel representation of documents. These

contributions are:

• The integration of NLP techniques and traditional IR techniques for catego-

rization. As I have explained in Section 6.7, the information retrieval litera-

ture shows a lot of interest in combining NLP and IR, but the results have

been mixed, at best. I have clearly shown, however, that for specific categories

referring to the focus of an image, deeper linguistic processing is necessary for

optimal performance. I have demonstrated this first with experiments involv-

ing human volunteers who have predicted categories for images after viewing

text under varying conditions, and then by implementing a system relying on

parsing and a novel measure of word-to-word similarity that outperforms all

standard systems tested for the same task by a considerable margin. Tasks
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such as these defy standard text categorization systems because not all words

associated with each document are important, and some are misleading. To

determine the important words, more advanced NLP techniques are therefore

required.

• Combining text and image features for the categorization of images. I have

demonstrated one technique to combine text and low-level image features for

the categorization of images. Clearly, this is only applicable when dealing

with images. The use of image features may be necessary when text is not

available, and when both are available, a combination of the two is likely

to outperform (although perhaps by a small margin) the better of the two

individual approaches. One reason that combining text and image features

may be more promising than combining two approaches that both use text is

that there is no reason to believe that techniques relying on entirely different

features will perform well for the same documents. By relying on confidence

measures for the predictions of the text based system and the image based

system, an approach combining the two can choose the prediction that is more

likely to be accurate. My work in this area so far has used only one low-level

image feature (color histograms) and a simple approach of combining text

and image together; even now, some improvement has been noticed for all

systems with one system experiencing substantial improvement.

10.3 Future Work and Limitations

There are many components of my research that could lead to future work, either

for myself or others who choose to explore this area. To start with, in the domain

of general text categorization, there is a lot more that can be done with bins. In

my concluding section of my chapter on BINS (Section 5.8), I state that there is
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likely enough potential in bins that research in this area could constitute a thesis

in itself, and I certainly still believe this. In addition to being a very competitive

approach towards text categorization, binning provides a mechanism for testing

which features of a word are important. By training a system on a training set

using a variety of features, and examining the resulting model, one can see which

features made a large difference for term weights. In other words, if the term weights

for a set of bins that differ only in one feature (i.e. every other feature is the same

for this particular set of bins) tend to be quite different from each other, than this

feature is likely important (i.e. it is indicative of the likelihood of a word showing

up in a document of a particular category). Therefore, one can test the importance

of features without even testing the system (using the trained model) on a test set.

Of course, even if a particular feature seems to be useful, it does not necessarily

mean that performance will improve by using the feature. As has been mentioned

in Chapter 5 and several of the appendices about optional binning features, adding

new features makes bins smaller, and therefore less accurate; performance will only

improve if the benefits of more indicative information outweighs the negative effect

of potentially less accurate bins.

In particular, I believe that bins might provide an excellent way to incor-

porate unlabeled data for use with text categorization tasks. Whereas most uses

of unlabeled data discussed in the text categorization and IR literature (e.g. see

(Yarowksy, 1995), (Blum and Mitchell, 1998), and (Abney, 2002)) involve proce-

dures which iteratively add unlabeled documents with confident predictions to a

training set and then treat these documents like any others, the use of bins allows

unlabeled documents to be used but weighted less than others by creating a new

binning feature. I have discussed my efforts in this area so far in Appendix N, and

unfortunately, I have not yet seen positive results. However, this might be because

I started with full training sets, and the results of Appendix O suggest that I may
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have already reached a level of diminishing returns for my own data sets. It is likely

that more improvement is certainly possible with enough new data, but unlabeled

data is probably never quite as good as manually labeled data, and so the task I set

out to accomplish might be difficult. A major question that still remains is whether

unlabeled data can be used for my data sets along with a much smaller training set

to achieve performance comparable to that resulting from a full training set.

The limitations of bin-based text categorization systems are the same as

those for all standard text based categorization systems. In other words, binning

is a very good bag of words approach, but it is still a bag of words approach.

Smoothing is helpful; I expect that my BINS system will usually beat a Naive Bayes

approach and rarely do worse. However, as we have seen in Chapter 6, there are

tasks for which linguistic processing in necessary to achieve optimal performance.

Even humans who are shown bag of words representations for the first sentences of

image captions can not achieve nearly the same performance as humans who see

the same words in their original order for the Disaster image data set. There is

no reason to believe that statistical bag of words systems can perform better than

humans, so when tasks such as this one arise, bin based approaches and all bag of

words approaches have an upper bound that is lower than an NLP based approach.

Even when dealing with tasks for which bag of word approaches perform well, there

is no reason to believe that the upper bound is perfect performance. Even for these

tasks, there may be some documents for which a bag of words is misleading such

that any standard system would not predict the correct category.

Another area that I’m sure leaves room for a lot of important future work

is the combination of text and image features for the categorization of images.

Although combining systems has had mixed results in the literature (see my dis-

cussions in Sections 7.5 and 8.4), these endeavors have involved the combination

of systems that all use text and bag of words approaches. Even though the tech-
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niques that have been combined are different, the features upon which predictions

are being made are the same, and so it is likely that the various systems do well on

the same documents. On the other hand, there is no reason to believe that images

with very indicative text (i.e. text that provides obvious clues as to the correct

category) also have very indicative low-level image features, and vice versa. So the

documents that are the hardest to predict for one type of system might not be so

difficult for the other type of system.

The combination of text and image features is one of the most recent areas

I have worked on, and it is further from my focus that most of research discussed

in this dissertation. In Chapter 8, I describe one technique to combine text and

image features, and I have implemented this for a particular set of categories. My

results so far are promising; one text based system improves substantially, and all

improve by at least a small margin. As I explain in Section 8.3.3, I believe that it

is possible to do much better. I am only using one low-level image feature, namely

color histograms; it is likely that the use of additional low level features will push

the image results and the combined results further ahead. Additionally, there are

better ways to actually combine the results. Rather than use only the confidence

of the image based system to decide which prediction to use, the confidence of

both types of system should be used and compared to each other. Density esti-

mation (explained in Chapter 4) can be used to convert predictions of systems to

the same scale (probabilities ranging from zero to one); the experiments described

in Appendix H provide evidence that these probability estimates are reasonably

accurate.

The limitations of an approach that combines text and image features is

related to the intersection of limitations of an approach using only text and an

approach using only image features. In other words, there are always certain doc-

uments for which the text is not enough to predict the correct category, and there
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are always certain documents for which image features are not enough to predict

the correct category. Limitations of text based approaches have already been dis-

cussed. Limitations of image-feature systems have been discussed to some extent

at the start of Chapter 8. For many tasks, image features are not appropriate for

categorization, since low-level image features such as color may not be indicative

of high-level topical categories, and the state-of-the-art in object recognition is still

not good enough for this purpose. When low-level image features are still useful for

a categorization task, there is still no reason to believe that they will be indicative

of the correct category for every case. Since text and image features represent two

entirely distinct feature sets, it is likely that a combination of the two can do better

than either individually; however, if there is any overlap between the sets of images

for which the two approaches lead to incorrect predictions, a combination of the

two will doubtfully achieve correct predictions for these images that are part of this

overlap.

Another area that clearly merits future work is the use of more advanced NLP

techniques to categorize images. I feel that the results of Chapter 6, which describes

the use of deeper linguistic processing to achieve a performance substantially better

than all tested standard systems for categories involving the focus of images, are

among the most impressive in the thesis. As recently stated in Section 10.1, research

such as this, involving a novel representation for documents (as opposed to a bag

of words representation) is usually less general than standard text categorization

research. As researchers explore more domains and categories related to images, I

believe that tasks such as the one described in Chapter 6, which arose naturally in

the course of my research, will continue to appear, and when they do, approaches

similar (but not identical) to the one used in that chapter will be useful.

Of course, it is likely that, at times, NLP based approaches may also be useful

for categories that do not involve images. However, I think that such approaches
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may be more feasible when dealing with images, since the text is often in the form

of a caption in which a single sentence describes the image, and single sentences

are clearly easier to parse and make sense of than full-length text documents. I

also believe that the categories associated with images are more likely to rely on

focus (involving, for instance, the determination of the primary object in the image

and what that thing is doing). When dealing with such categories, it is more likely

that not all of the words in the available text are important, and so linguistic

processing becomes helpful. As I have explained in Section 6.7, the information

retrieval literature has shown a lot of interest in combining NLP and IR, but the

results have been quite mixed, at best (Strzalkowski, Lin, and Perez-Carballo, 1998;

Strzalkowski, 1999). I do not think it is coincidental that two of the biggest previous

successes in this field (the works of Smeaton and Quigley (1996) and Elworthy

(2000), which are also discussed in Section 6.7) both pertain to the retrieval of

images.

NLP based approaches towards text categorization are limited by the state-

of-the-art in other areas of NLP such as parsing and, more generally, natural lan-

guage understanding. I would like to think that it is technically possible for NLP

based systems to perform as well as humans for text categorization tasks. (There

is little reason to believe that automated systems will ever do much better than

that.) However, this would require near perfect tools, and perhaps better NLP re-

sources as well. For now, what makes it so hard to produce an effective NLP based

system is that mistakes are introduced at every level. For example, my system

described in Chapter 6 relies first on a tagger, then on a parser, and later on a

measure of word-to-word similarity. All of these represent very tough problems for

which there are no perfect solutions. The system is still beating standard bag of

words approaches for the specific task examined in that chapter because syntax is

especially important for that task. However, advanced NLP approaches have rarely
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led to improvement for text categorization tasks in the literature, and the reason

is that they are limited by the tools and resources upon which they rely.

10.4 A Final Word

This thesis has turned out to be longer than I originally imagined, especially when

all of the appendices are considered. Rather than end the main body of the dis-

sertation with the previous section, which, when you think about it, is a summary

of things left undone and things that can never happen, I would like to reiterate

the positive aspects of the work once more. I believe that a lot of ground has

been covered: a survey of the text categorization field; the focus on images and the

creation of a corpus; novel and competitive approaches that fall into the standard

text categorization framework; the use of more advanced NLP techniques to handle

tough categories; the combination of highly accurate but rarely applicable rules

with fall back systems; the use of image features, alone or in combination with

text, to categorize images; the Newsblaster system that demonstrates the benefits

of the work; and many additional topics discussed throughout the chapters and

appendices. Everything is related in some way to the general topic of categorizing

images based on associated text. I hope that this thesis, which I feel provides an

in-depth exploration of this important topic, serves as a useful reference for many

future researchers.
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Appendix A

Sample Document

The following is a document from my corpus. The document has been manually

labeled as a Disaster document, and the image has been labeled with the categories

Outdoor and Workers Responding. I am showing the full article followed by the

image and corresponding caption as they appear in the corpus. For my actual

experiments, however, all header information, such as locations and dates appearing

at the start of articles or captions, are automatically stripped and not used.

BRASILIA, Brazil (Reuters) - Dry winds fanned fires deeper into the

rainforests of Brazil’s northern Amazon Monday as authorities deployed

more equipment and manpower in a bid to tackle the blazes.

About 30 Brazilian army jungle communications specialists were

sent to remote Roraima state on the border with Venezuela as two

more Argentine water-carrying helicopters were preparing to join the

firefighting effort, bringing the total number of helicopters to four.

But Roraima governor Neudo Campos said the firefighting operation

– which also involves Venezuela – was still too small and warned that

the situation might deteriorate.

“The situation is extremely serious and it has all the elements to
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turn into a new Indonesia,” Roraima state governor Neudo Campos

said.

Fires ravaged large areas of forest in Indonesia last year, casting

choking smog over much of southeast Asia. New outbreaks have been

reported this week.

The Brazilian forest fire – the worst in recent memory – began in

January when subsistence farmers ignored government warnings not to

use ’slash and burn’ tactics to clear their land and watched helplessly

as the flames spread quickly over the savannas.

Amid one of the region’s worst droughts, blamed on the El Nino

weather phenomenon, the fires are now eating into rainforests normally

too humid to burn.

Campos said 39,000 people in Roraima had been affected either

directly or indirectly because of the fires which continued to spread

through the region.

“The focal points of fire are increasing and the number of men are out

there is insufficient,” Campos said. “The federal government’s structure

for fighting fires of this magnitude needs to be more flexible.”

Brazil launched a long-awaited aerial attack on the fires on Sunday,

sending two Argentine helicopters armed with huge water buckets to the

region of Apiau where fires burning through forest and pastures were

threatening homes.

Rain, considered the only effective solution to the crisis, was due to

fall in scattered areas in the south of Roraima on Monday but would

miss the areas affected by the fires, a forecaster at the National Institute

of Meteorology (INMET) said.

More widespread showers would follow on Thursday, but would still
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not be enough to put out the fires. “It will be very little. It should

start raining properly there by April,” said INMET’s Francisco de Assis

Diniz.

A thick smoke haze hung over the state capital Boa Vista Monday,

reducing visibility to 1.8 miles and forcing aircraft to land with instru-

ments, a spokesman for the city’s international airport said.

A hospital this weekend reported the first fatality from the fires: a

three-month-old girl who died after her respiratory illness was aggra-

vated by the smoke.

Some 400 men were combating the fires but the extent of the blazes

meant they could not prevent flames from eating ever deeper into the

Portugal-sized jungle reservation of the primitive Yanomami Indians.

Reporters and photographers flying over the area last week saw fires

advancing into the area and rivers dotted with rocks, indicating water

levels were sharply depleted by the drought.

Firefighting experts said the blazes were particularly hard to fight as

they were scattered all over Roraima, a state roughly the size of Britain,

often creeping through undergrowth in thick jungle difficult to reach by

land.

Environmental group Friends of the Earth (FoE) slammed govern-

ment firefighting efforts on Monday, saying they were ”virtually nonex-

istent”.

“Without a doubt (government efforts) are insufficient in the sense

that they haven’t even properly started,” said Roberto Smeraldi, FoE’s

Amazon program coordinator in Brazil. ”There has been no operational

response from the authorities.”
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APIAU, BRAZIL, 24-MAR-1998: Cordoba, Argentina, firefighters wait for

a helicopter to drop water on a forest fire March 24 near Apiau, 120kms (74 miles)

south of Boa Vista, capital of Roraima state. Some 120 Argentine firefighters and

four helicopters are helping Brazilian counterparts battle the fires which began at

the start of March and have been fed by the worst drought since 1926, which has

been attributed to the El Nino weather phenomena. [Photo by Marie Hippenmeyer,

AFP]
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Appendix B

Snapshot of Manual

Categorization Tool
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Appendix C

Instructions for Manually

Labeling Documents

For each set of categories that I have defined for my corpus, I have carefully written

definitions and guidelines for volunteers who have agreed to manually label images

or entire documents. These have been provided along with instructions on how to

use the web interface that I have created which allows the volunteers to easily label

the images or documents over the web. This interface is described in Section 3.1.2.1,

and a snapshot of the interface is shown in Appendix B. In this appendix, I present

the instructions for all sets of categories that apply to my corpus.1

C.1 Indoor versus Outdoor and Number of Peo-

ple

The research project called CLASS involves automatic categorization of images

based on both corresponding text and image features. We need people to manually

1I am showing the instructions exactly as they have been provided to volunteers, including
spelling errors, grammatical mistakes, and all. Hopefully, there are not too many.
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categorize images for two reasons. The first is that we need training sets and testing

sets so that we can experiment with our system; Your categorizations help us to

define our categories. The second is that we want to evaluate human performance

so that we have something to which we can compare our system.

Images are categorized according to one of four features. The four possible

features are the image caption, the first sentence of the image caption, the image

itself, or the combination of the image with its caption. We ask that you cate-

gorize each image using only one of these four features, since we believe that if a

single categorizer tries to categorize based on more than one feature, the second

categorization might be biased by the first.

We have developed a tool making it easy for you to categorize images for us.

The tool is password protected; Send e-mail to sable@cs.columbia.edu to obtain

the password if you would like to help us by categorizing images. Then click on

the link at the bottom of the page to start the tool. You will be asked to enter

your e-mail address, the method you will use to categorize, and the starting image

number (from 1 to 1675) that you will categorize. Then, view the appropriate

feature for one image at a time, categorize as you see fit, and click ”Record” to

store your results and move on to the next image. If you make a mistake, you can

move back to a previous page (for instance, by using your browsers ”Back” button)

and categorize an image again. We will only use the last result for each image. You

can stop at any time by clicking on ”Quit”, exiting your web browser, or moving

to some other web page. You can use the tool again later if you wish to categorize

more images.

Right now, we are dealing with two separate sets of categories. The first is

indoor vs. outdoor. With respect to this category set, we are giving you five choices

when you see an image feature. They are:

• Indoor
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• Likely Indoor

• Ambiguous

• Likely Outdoor

• Outdoor

Here are some guidelines:

1. If you are categorizing based on the image, and the image is partly indoor,

partly outdoor, categorize based on what you consider to be the primary

focus of the image. For example, if you are shown the image of an interesting

room shot from directly outside a window, you can categorize this image as

an indoor image.

2. If you are categorizing based on the image, and the image is a close-up of

an object and there is no background, you should categorize this image as

ambiguous unless you are able to make a logical inference which allows you

to choose a category. For instance, a close-up of a wall with graffiti can safely

be classified as outdoors, but a close-up of a person’s hand would probably

be ambiguous.

3. In general, you are allowed to make logical inferences based on the information

you are given, and you are allowed to rely on world knowledge, in order to

decide your categories. This is why people might beat the machine!

The second category set concerns the number of people in the image. With

respect to this set, we are giving you six choices when you see an image feature.

The are:

• No people
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• One person

• Two people

• Three or more people

• Crowd

• Ambiguous

Here are some guidelines:

1. The ”Crowd” category is meant to signify a lage group of people, whereas

the ”Three or more people” category is for smaller groups. Use your own

judgement when deciding between them.

2. The ”Ambiguous” category is primarily for those of you who are categorizing

based on text. Sometimes, a caption will not give any indication of how many

people will be present in an image.

3. When judging based on the image, count a person if most of his body appears

in the image, if a small part of his body appears but it takes up a large portion

of the image, or if his entire head appears in the image.

4. When judging based only on text, if the description of the image mentions one

or two names, then the picture likely contains one or two people respectively.

If plurals are used, it is likely a picture of three or more people or a crowd.

If the description of the image indicates that it is a picture of an object,

there are likely no people. Use your own judgement to determine whether

you have enough information to take a guess instead of considering the case

to be ambiguous.

5. Count dead bodies the same as live people.

Click here to use the manual categorization tool, and thanks for helping us!
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C.2 The Events Categories

How can you help us?

With the rapid expansion of the World Wide Web and the ever-increasing

amount of multimedia available, automatic classification of images is a subject

of much importance. We are currently dealing with a corpus of news documents

containing images with corresponding captions and articles, and we are exploring

methods to categorize the documents into one of a few general news categories and

then to ask the question of how the image relates to the story.

In order to automatically categorize news documents, we need to show our

system sample documents for each category. In order to evaluate our system, we

need to test it with labeled documents. For both of these reasons, we need people

to manually categorize some of our documents.

We have developed a tool allowing volunteers to categorize news documents

over the web. If you would like to help us, please send email to sable@cs.columbia.edu.

We will then provide you with a few final details and assign you a starting document

number so that people won’t all end up categorizing the same documents! You will

then be ready to click at a link at the bottom of this page to start using the tool.

You will be asked to enter a start index (document number of the first document

to be categorized), the method used to categorize documents (either article only or

article plus image and caption), and your e-mail address.

After you verify that the information you have entered is correct, you will

then be presented with one news document at a time. Since the articles are large,

they are not displayed in the html forms themselves; rather, a link to the article for

each document is displayed. The articles contain most of the documents’ content,

so please click on each article link to view each article. You don’t have to read

the entire article, but please read the start of each and skim the rest; whatever
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you feel is necessary to get a good idea of what the article is about. Then click

on the ”Back” button of your browser to view the document’s image and caption

and choose your categorization. Click ”Record” to store your categorization for

each document and move on to the next document. If you make a mistake, you

can move back to a previous page (for instance, by using your browsers ”Back”

button) and categorize a document again. We will only use your last categorization

for each individual document. Each document will also contain a link to this page

in case you wish to review the instructions or guidelines. After reviewing, move

back to the page with the document to choose and record your categorization. You

can stop at any time by clicking on ”Quit”, exiting your web browser, or moving

to some other web page. You can use the tool again later if you wish to categorize

more images.

What are the categories?

We are asking you to categorize each news document into one of five cate-

gories: Struggle, Politics, Crime, Disaster, or Other. We are defining these cate-

gories as follows:

• Struggle - News documents to be placed in this category include those con-

cerning international wars, civil wars, civil unrest such as protests and demon-

strations, acts of political terrorism that are part of an ongoing conflict in a

particular area, plights of refugees, etc. These documents focus on events or

conditions which are intrinsic to struggle.

• Politics - News documents to be placed in this category include those about

campaigns, elections, political meetings or debates, political press conferences,

personal affairs of politicians, obituaries of politicians, political crimes, etc.

These documents focus on political activity or politicians.
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• Crime - News documents to be placed in this category include those concern-

ing violent crimes, non-violent crimes, individual acts of terrorism that are

not part of an ongoing struggle, acts of mindless violence, etc. These docu-

ments may focus on the act itself or possibly investigations, trials, or other

consequences of the crime.

• Disaster - News documents to be placed in this category include those about

natural disasters and accidents. These documents generally focus on devas-

tation.

• Other - Any document that does not fit well into one of the other four cate-

gories should be placed here.

Below are some guidelines to help you get a feel for these categories. It is very

important that you read them carefully before beginning to categorize documents:

• Some articles may seem to fit into multiple categories. In cases where the

categorization of a document seems ambiguous, we ask you to determine the

main focus of the document, and choose the category that gives the best fit.

• If deciding between one of the first four categories and the Other category,

again ask yourself what is the main focus of the document, and try to de-

termine if it fits in well with the other documents in the major category and

with our definitions above. If not, place it in Other.

• We understand that these categories are not entirely distinct in their natures.

For instance, most struggles are political, and a Struggle category could al-

most be considered a subcategory of a Politics category. This is fine; we have

chosen the above categories for reasons that will be discussed further below.
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• Documents that focus on political meetings, political debates, or political

statements about struggles should be placed in the Politics category. Docu-

ments that focus on a struggle but mention related political aspects or issues

should be placed in the Struggle category. Again, you need to ask yourself

what is the focus of the document.

• It may seem a bit unusual that the definitions above do not place all docu-

ments concerning terrorism into the same category. We have found through

examination of many documents that stories about political terrorism which

is part of an ongoing struggle, including topics such as bombings by the PLO

or HAMAS, have more in common with other documents in the Struggle cat-

egory, while stories concerning individual acts of terrorism, including topics

such as the Oklahoma City bombing or The Unabomer, have more in common

with other documents in the Crime category (e.g. such events are often fol-

lowed by investigations and trials). In addition, the images contained within

these documents fit better into the corresponding categories, and, once again,

we have chosen these categories for reasons discussed below.

• The magnitude of an event on which a document focuses should not generally

affect the document’s categorization. For example, a document about the

effects of a storm should be placed in the Disaster category even if there were

no deaths or injuries.

• We fully expect that you will often need to rely on your intuition when cat-

egorizing a document. If you find that the definitions and guidelines above

seem to indicate one category but you strongly feel that a document should be

placed in another, just use your own judgement, and make what you consider

to be the best choice. This is why we have multiple human volunteers, and

in the end, one of the things we wish to measure is level of agreement be-
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tween different people. In the end, only documents with agreement between

multiple categorizers will be used to define categories.

Why have we chosen these categories?

We hope to gain two things from the automatic categorization of news doc-

uments. First, we want the categorizations to be useful in and of themselves.

Therefore, the categories must be understandable and intuitive, and of a nature

such that there might be some interest in narrowing searches or browsings of docu-

ments to one or more of these categories. Second, we want the categorization of a

document to help us in answering the question of how a document’s image is related

to the story. For example, if we know that a document is categorized in the Disaster

category, we might expect that the image will be one of wreckage, rescue workers,

victims, or mourners. Some of our guidelines above were based on this desire; for

instance, we could have asked for documents concerning political meetings about

struggles to be placed in the Struggle category, but instead, we ask for them to be

placed in the Politics category. This is because we have made the observation that

the majority of such documents contain images of politicians! Two other things to

consider are that we need categories such that our system is likely to achieve high

accuracy. We believe that with a few categories containing documents with similar

content, this will be the case. Finally, we need each category to be sizeable enough

such that we will have enough training documents to represent it well, without

being so large that it will be uninteresting to specify it. Perusal of a few hundred

images leads us to believe that the four major categories above will contain between

90% and 95% of the documents in our corpus, and that each individual category

will fit all of the requirements mentioned here.

Are you ready to categorize?

Click here to use the manual categorization tool, and thank you for helping
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us!

C.3 The Disaster Image Categories

Why do we need volunteers?

With the rapid expansion of the World Wide Web and the ever-increasing

amount of multimedia available, automatic classification of images is a subject

of much importance. We are currently dealing with a corpus of news documents

containing images with corresponding captions and articles. We have previously

explored methods to categorize each document into one of a few general news

categories. We are now exploring methods to categorize the images these documents

contain based on their depicted content.

In order to automatically categorize images, we need to show our system

sample images for each category. In order to evaluate our system, we need to test

it with labeled images. For both of these reasons, we need people to manually

categorize some of our images.

What are the categories?

We have previously trained our system to categorize news documents into

five categories which we have called Struggle, Politics, Crime, Disaster, and Other.

We defined these categories to be mutually exclusive. We are now focusing on the

images contained in those documents which were labeled as Disaster documents

(based upon agreement between multiple humans). The documents in that category

concerned natural disasters and accidents, and commonly focused on devastation.

We are asking you to examine the images contained in these documents and

to place each image into one of the following four categories:

• Affected People - Images showing one or more people who were in some way
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affected by the disaster. These include direct victims (dead or alive) as well

as friends or relatives of victims (e.g. mourners).

• Workers Responding - Images showing people responding to a disaster, per-

haps to aid victims. Such people include rescue workers, fire fighters, police,

etc. The people do not necessarily need to be ”professional” workers.

• Wreckage - Images showing some or all of the damage caused by the disaster.

• Other - Any image which does not fit well into the preceeding three categories.

Below are some important guidelines to keep in mind when categorizing

images. Please read them carefully before you begin.

• Although you are categorizing images, it is fine for you to use the captions to

aid your decisions, and this may often be necessary. For example, if an image

contains a person, you may need to read the caption (if it isn’t obvious from

the image itself) to determine who the person is, and whether it is someone

affected by the disaster or a worker responding to it.

• Some articles may seem to fit into multiple categories. In cases where the

categorization of an image seems ambiguous, we ask you to determine the

main focus of the image, and choose the category that gives the best fit. For

example, many images contain both affected people or workers responding

and also wreckage. If the focus of the image is on the person or people, and

they happen to be pictured in the setting of wreckage, place the image in the

one of the first two categories. If the focus of the image is the wreckage, and

there happens to be affected people or workers responding in the background,

place the image in the third category. At times, you may want to use the

caption to help determine the focus of an image.
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• We fully expect that you will often need to rely on your intuition when catego-

rizing an image. If you find that the definitions and guidelines above seem to

indicate one category but you strongly feel that an image should be placed in

another, just use your own judgment, and make what you consider to be the

best choice. This is why we have multiple human volunteers, and in the end,

one of the things we wish to measure is level of agreement between different

people. In the end, only images with agreement between multiple categorizers

will be used to define the categories.

How do you categorize?

We have developed a tool allowing volunteers to categorize images over the

web. If you would like to help us, please send email to sable@cs.columbia.edu.

We will then provide you with a few final details and assign you a starting image

number so that people won’t all end up categorizing the same images! You will

then be ready to click at a link at the bottom of this page to start using the tool.

You will be asked to enter a start index (image number of the first image to be

categorized), the method used to categorize images (either viewing everything or

only the caption - most volunteers will select the first of these two options), and

your e-mail address.

After you verify that the information you have entered is correct, you will

then be presented with one image at a time along with its caption. If you wish, you

can click on an image to view a (usually) larger version, then click on the ”Back”

button of your browser to return to the previous page. (Since the articles are large

and generally will not be necessary for you to choose your categorizations, they are

not displayed in the html forms themselves; however, a link to the article associated

with each image is provided. If you want to view an article, click on this link. When

you are finished with the article, click on the ”Back” button of your browser return

to the image.) Once you have made your decision, select the chosen category in



284

the provided drop-down, and then click ”Record” to store your categorization of

the image and move on to the next image. If you make a mistake, you can move

back to a previous page (for instance, by using your browser’s ”Back” button)

and categorize an image again. We will only use your last categorization for each

individual image. With each image, you will also be provided a link to this page in

case you wish to review the instructions or guidelines. After reviewing, move back

to the page with the image to choose and record your categorization. You can stop

at any time by clicking on ”Quit”, exiting your web browser, or moving to some

other web page. You can use the tool again later if you wish to categorize more

images.

Are you ready to categorize?

Click here to use the manual categorization tool, and thank you for helping

us!

C.4 The Politics Image Categories

Why do we need volunteers?

With the rapid expansion of the World Wide Web and the ever-increasing

amount of multimedia available, automatic classification of images is a subject

of much importance. We are currently dealing with a corpus of news documents

containing images with corresponding captions and articles. We have previously

explored methods to categorize each document into one of a few general news

categories. We are now exploring methods to categorize the images these documents

contain based on their depicted content.

In order to automatically categorize images, we need to show our system

sample images for each category. In order to evaluate our system, we need to test



285

it with labeled images. For both of these reasons, we need people to manually

categorize some of our images.

What are the categories?

We have previously trained our system to categorize news documents into

five categories which we have called Struggle, Politics, Crime, Disaster, and Other.

We defined these categories to be mutually exclusive. We are now focusing on

the images contained in those documents which were labeled as Politics documents

(based upon agreement between multiple humans). The documents in this category

concern campaigns, elections, political meetings or debates, political press confer-

ences, personal affairs of politicians, obituaries of politicians, political crimes, etc.

These documents usually focus on political activity or politicians.

We are asking you to examine the images contained in these documents and

to place each image into one of the following six categories:

• Meeting - Images to be placed in this category include those that depict meet-

ings taking place or getting started, as well as images which show politicians

arriving to or leaving from a meeting or talking together during a break. The

meetings will often be official, for example summits or congressional gath-

erings, but they can be casual or informal. Images which show politicians

making an announcement about the outcome of a meeting belong to the next

category.

• Announcement - Images to be placed in this category include those depicting

dispersal of any type of political information, perhaps in the form of a press

conference, speech, ceremony, or interview. These announcements may also

be informal, for example if a politician starts talking to the press outside his

or her house.
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• Politician Photographed - Images which show a politician in daily life, either

on the job or performing personal activities. If, however, the politician has

started talking to the press and answering questions, the image might be

placed in the previous category instead.

• Civilians - These images show individuals or groups of civilians in some coun-

try related to the political story. These include pictures of protests and

demonstrations. This does not include workers related to the story; for exam-

ple, images showing soldiers or police would be included in the next category.

• Military - Images to be placed in this category include pictures of military

personnel, police, and peace-keeping forces. They can be in action or prepar-

ing for action. This category can also include pictures of vehicles, such as

military tanks or aircrafts. It is OK if a politician is also in the photograph.

• Other - Any image which does not fit well into the preceeding five categories.

Below are some important guidelines to keep in mind when categorizing

images. Please read them carefully before you begin.

Although you are categorizing images, it is fine for you to use the captions

to aid your decisions, and this may often be necessary. For example, if an image

contains a person, you may need to read the caption (if it isn’t obvious from the

image itself) to determine who the person is and what the person is doing.

• Some articles may seem to fit into multiple categories. In cases where the

categorization of an image seems ambiguous, we ask you to determine the

main focus of the image, and choose the category that gives the best fit.

• We fully expect that you will often need to rely on your intuition when catego-

rizing an image. If you find that the definitions and guidelines above seem to

indicate one category but you strongly feel that an image should be placed in
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another, just use your own judgment, and make what you consider to be the

best choice. This is why we have multiple human volunteers, and in the end,

one of the things we wish to measure is level of agreement between different

people. In the end, only images with agreement between multiple categorizers

will be used to define the categories.

How do you categorize?

We have developed a tool allowing volunteers to categorize images over the

Web. If you would like to help us, please send email to sable@cs.columbia.edu.

We will then provide you with a few final details and assign you a starting image

number so that people won’t all end up categorizing the same images! You will

then be ready to click at a link at the bottom of this page to start using the tool.

You will be asked to enter a start index (image number of the first image to be

categorized), the method used to categorize images (either viewing everything or

only the caption - most volunteers will select the first of these two options), and

your e-mail address.

After you verify that the information you have entered is correct, you will

then be presented with one image at a time along with its caption. If you wish,

you can click on an image to view a (usually) larger version, then click on the

”Back” button of your browser to return to the previous page. (Since the articles

are large and generally will not be necessary for you to choose your categorizations,

they are not displayed in the html forms themselves; however, a link to the article

associated with each image is provided. If you want to view an article, click on this

link. When you are finished with the article, click on the ”Back” button of your

browser to return to the image.) Once you have made your decision, select the

chosen category in the provided drop-down, and then click ”Record” to store your

categorization of the image and move on to the next image. If you make a mistake,

you can move back to a previous page (for instance, by using your browser’s ”Back”
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button) and categorize an image again. We will only use your last categorization

for each individual image. With each image, you will also be provided a link to

this page in case you wish to review the instructions or guidelines. After reviewing,

move back to the page with the image to choose and record your categorization.

You can stop at any time by clicking on ”Quit”, exiting your web browser, or

moving to some other web page. You can use the tool again later if you wish to

categorize more images.

Are you ready to categorize?

Click here to use the manual categorization tool, and thank you for helping

us!
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Appendix D

Labels for the Indoor versus

Outdoor Data Set

As described in Section 3.1.2.2, for the Indoor versus Outdoor data set, a total

of three volunteers have labeled 1,675 images, and I have labeled the same 1,675

images. All labelers have been shown the image along with its caption in order

to make their decisions. Five choices exist for each image: Indoor, Likely Indoor,

Ambiguous, Likely Outdoor, and Outdoor. The instructions that have been pro-

vided for these categories are presented in Appendix C.1 and can also be found at

http://www.cs.columbia.edu/˜sable/research/readme.html. 1,339 (79.9%) of the

1,675 images have been assigned a definite decision in the same direction by both

me and the volunteer, and these 1,339 images comprise the primary data set used

for the experiments with the Indoor and Outdoor categories discussed in this thesis.

401 (29.9%) of these images are classified as Indoor and 938 (70.1%) are classified

as Outdoor. Although researchers who want to compare results directly with mine

would have to use the same data set, I am providing all of the labels assigned by

volunteers with the public release of my corpus, so researchers who want to use less

strict definitions of categories or experiment with ambiguous images can do so.
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Other Evaluation
My Evaluation

Indoor
Likely

Ambiguous
Likely

Outdoor
Indoor Outdoor

Indoor 401 15 7 4 4
Likely Indoor 47 12 3 5 3
Ambiguous 21 9 14 9 7
Likely Outdoor 13 10 2 12 10
Outdoor 35 14 14 66 938

Table D.1: This table shows how 1,675 images have been labeled by me and by
volunteers for the Indoor versus Outdoor data set.

Table D.1 shows how labels for the 1,675 images have been assigned by the

volunteers and by me. The columns represent my own labels and the rows represent

labels chosen by volunteers. The numbers in the upper left cell of the table and

the lower right cell of the table represent the 1,339 images that have been assigned

definite decisions in the same direction by both me and the volunteer. The other

images had varying levels of disagreement, or some had agreement but not about

absolute category decisions.

You can see that 14 of the images have been labeled as Ambiguous by both me

and a volunteer, and another 23 have been labeled as Ambiguous by one person with

the second person showing a non-absolute preference in one direction or the other.

All 37 of these images can be seen at http://www.cs.columbia.edu/˜sable/research/

io ambiguous.html. There are several reasons for ambiguity for this data set. Some

images show scenes that are partially inside and partially outside; some images have

lighting that makes it impossible to tell (for some but not all of these cases, the

text might make it obvious); some images show action taking place under the roof

of a structure without walls, or in between the walls of a building with a collapsed

roof; some images are of icons, maps, or text that do not seem to fit in this domain

all together. One such image that has been labeled as Ambiguous by both me and
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NASHVILLE, TENNESSEE, 17-APR-98: Vice President Al Gore
climbs through a broken window April 17 to view the tornado dam-
age done to Joe’s Diner in Nashville. Two tornadoes hit Nashville on
April 16, injuring over 100 people and damaging at least 500 buildings.
[Pool Photo by Mark Humphrey, Reuters]

Figure D.1: This image is partially Indoor and partially Outdoor, not to mention
the fact that the ceiling of this shop appears to be missing, making this image hard
to label (as agreed by me a volunteer).
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a volunteer is shown in Figure D.1.

You can also see that for several images, there is serious disagreement be-

tween me and a volunteer. There are 137 images that differ by two or more steps

on the scale from Indoor to Outdoor, and 39 of these are cases for which one of

us said Indoor with certainty and the other person said Outdoor with certainty.

These 137 images can be seen at http://www.cs.columbia.edu/˜sable/research/

io disagreement.html. An analysis of these cases has revealed that some of these

differences are due to obvious mistakes by either me or the volunteer.1 Other dif-

ferences, however, are due to honest disagreements concerning the definitions of

the categories. Images that have led to such philosophical disagreements include

drawings (as opposed to photographs) of scenes that are clearly Indoor or Outdoor ;

close-ups of individuals inside vehicles such as cars, planes, or trains; and images

taking place in unusual settings, e.g. underwater. One image that I have labeled

as clearly Indoor but a volunteer has labeled as clearly Outdoor is shown in Fig-

ure D.2. Interestingly, you can see from Table D.1 that extreme disagreement in

this direction has happened far more often (35 times) than the other way around

(4 times).

This appendix shows that labeling images can be confusing. I would have

expected that these particular categories (Indoor and Outdoor) would be relatively

intuitive and simple. In creating my corpus, however, I have discovered that no

matter how much time is spent defining and providing guidelines for categories,

1The first version of the manual categorization tool, which has been used for these categories,
provides a radio button for each category. The buttons are mutually exclusive, so only one
category can be selected at a time. When a user would move from one document to the next,
the initially selected category would be the category selected for the previous document. If a user
would click on a new label and then submit the decision quickly, it is possible that the original
click would be missed by the interface without the user noticing, in which case the label from the
previous document would be mistakenly used. I estimate that this has occurred for somewhere
between 1% and 2% of the labels for this data set. For future data sets, I have replaced the
radio buttons with drop-down boxes, and the initially selected category is always the generic No

Selection. Since implementing this change, I have not noticed any obvious mistakes by any human
labeler.
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WASHINGTON, USA, 18-JUN-97: Saudi dissident Hani al-Sayegh sits
in the back of the car (R) after leaving the U.S. Federal District Court-
house June 18, where he was charged with conspiracy to commit mur-
der and ”international terrorism” in connection with the deadly truck
bombing against U.S. troops in Saudi Arabia. Sayegh was deported
from Canada and has agreed to cooperate with the U.S. investigation of
last June’s bombing that killed 19 U.S. airmen. An unidentified driver
is at left. [Photo by Mark Wilson, Reuters]

Figure D.2: This image clearly takes place in an enclosed space (a car), and I
consider it to be an Indoor image, but the car (and probably the camera) are
outside, so the volunteer who has labeled it considers it to be an Outdoor image.
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there are always cases that are confusing, and cases for which there is honest dis-

agreement. Appendix E shows that the same thing is true for the Events data set.

You can see in Section 3.1 that for every data set in my corpus, the portion of

images that are assigned definite labels in the same direction is under 85% for all

four data sets, and under 80% for three of the four data sets. This is one of the

reasons that it is difficult to create a new text categorization corpus.
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Appendix E

Labels for the Events Data Set

As described in Section 3.1.2.3, for the data set involving the Events categories,

28 volunteers have labeled 1,750 documents, and I have labeled the same 1,750

documents. This time, evaluators have been asked to categorize entire documents,

each consisting of an image, caption, and article. The choices are the categories

themselves: Struggle, Politics, Disaster, Crime, and Other. The instructions that

have been provided for these categories are presented in Appendix C.2 and can

also be found at http://www.cs.columbia.edu/˜sable/research/instr.html. A total

of 1,328 (75.9%) of the 1,750 documents have been assigned identical labels by both

me and the volunteer, and these 1,328 documents comprise the data set used for

the Events categories. 417 (31.4%) of these documents are classified as Struggle,

387 (29.1%) are classified as Politics, 296 (22.3%) are classified as Disaster, 150

(11.3%) are classified as Crime, and 78 (5.9%) are classified as Other.

Table E.1 shows how labels for the 1,750 documents have been assigned by

the volunteers and by me. The columns represent my own labels and the rows

represent labels chosen by volunteers. The numbers along the diagonal running

from the top left to the bottom right of the table represent the 1,328 documents

that have been assigned identical labels by both me and the volunteer; the other
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Other Evaluation
My Evaluation

Struggle Politics Disaster Crime Other
Struggle 417 77 2 24 35
Politics 84 387 4 18 65
Disaster 8 0 296 2 7
Crime 33 7 2 150 9
Other 7 12 18 8 78

Table E.1: This table shows how 1,750 documents have been labeled by me and by
volunteers for the Events data set.

documents have been assigned two distinct labels. Note that most of the table is

approximately symmetric, but there is a large exception. There are 100 documents

that I have classified as Other but a volunteer has classified as either Struggle or

Politics, whereas the opposite disagreements have occurred a total of only 19 times.

This indicates that I have probably been more willing to label a document as Other

than most of the volunteers.

category
Agreement
for category

Struggle 60.7%
Politics 59.2%
Disaster 87.3%
Crime 59.3%
Other 32.6%

Table E.2: Humans tend to agree the most for the Disaster category and the least
for the Other category.

One interesting statistic which can be calculated based on the information

provided in Table E.1 is the probability that a document is assigned to a category

given that at least one label for that document indicates the category. In other

words, for each category, given that a document is assigned at least one label
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indicating the category, it is possible to calculate the probability that both labels

indicate the category. This can be achieved by dividing the number of documents

assigned two labels indicating the category by the number of documents assigned at

least one label indicating the category. These probabilities can serve as a measure of

the level of human agreement for each category. Table E.2 shows the level of human

agreement computed using this metric for each of the five Events categories. The

Disaster category has the highest level of agreement by far and the Other category

has the lowest level of agreement by far; the other three categories have very similar

levels of agreement.

System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %

My systems

BINS 88.0 87.5 88.3 97.2 83.1 60.0
Naive Bayes 86.0 85.4 87.2 96.7 81.4 27.6
Rocchio/TF*IDF 87.1 85.0 88.4 98.8 79.2 60.0
Density Estimation 84.9 83.7 86.0 97.3 80.0 34.3
K-Nearest Neighbor 84.0 81.1 82.1 93.9 81.3 65.0

Rainbow systems

Naive Bayes 87.6 86.2 86.3 96.7 89.1 61.5
Rocchio/TF*IDF 87.4 81.1 85.3 97.7 88.4 68.3
K-Nearest Neighbor 81.9 80.0 79.7 95.6 75.6 63.2
Probabilistic Indexing 86.5 83.6 84.8 97.2 89.4 65.0
Support Vector Machines 88.7 88.1 89.2 96.2 87.0 57.9
Maximum Entropy 88.3 88.1 87.9 95.7 87.9 55.6

Table E.3: Text based systems perform the best for the Disaster category and the
worst for the Other category.

Table E.3, which is identical to Table 5.5, shows the results of many text

based systems that have been tested for the Events data set. For the purposes of

this appendix, the first column of results (displaying the overall accuracy of each

system) is not important. The remaining columns show the performance of each

system for individual categories using the F1 measure, first explained in Section 2.7.
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Note that every system, without exception, performs the best by far for the Disaster

category and the worst by far for the Other category. The ranking of performance

for the other three categories (Struggle, Politics, and Crime) varies, with systems

generally achieving similar performance for all three.

I have shown that, for the Events categories, text based systems do the

best (or worst) for the same category that humans have the highest (or lowest)

level of agreement. While this may seem intuitive, there are at least two reasons

why it does not have to turn out this way. First, only documents with agreement

are included in the final training and test sets, so it is not clear that documents

ultimately placed in a category that has a low level of human agreement must be

relatively ambiguous. Second, the methods that statistical systems use to perform

automatic categorization are presumably very different from the methods humans

are using when they label documents. Humans are understanding the “gist” of the

document, and they are relying on intuition and a lot of real world knowledge to

make their decisions, while the systems are all using purely statistical techniques

involving bag of words approaches.

It might be interesting to carry out a study to see if a similar result holds for

other data sets (both in my own corpus and otherwise). Furthermore, for the Events

data set (and perhaps others), one might try to estimate the level of correlation

between system performance for a category and the level of human agreement for

the category; one might also try to determine if there is a correlation between the

types of errors that systems tend to make and the types of human disagreements

that tend to occur. I leave such a study for future work.
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Appendix F

The Number of People Data Set

This set of categories has been defined largely because the researchers at Columbia

who were working with image features wanted them. People detectors and face

detectors have received significant attention in that literature (e.g. see (Srihari,

1995)). In my own research, this set of categories has not been used as much as the

others that I have defined because it is very difficult to determine this automatically

with text categorization (at least not with standard approaches - it is possible that

a deeper NLP based approach can be successful). However, there is one interesting

experiment in which I utilize these categories, which I mention at the end of this

appendix.

The same three volunteers that have labeled images for the Indoor versus

Outdoor data set defined in Section 3.1.2.2 have also labeled the same 1,675 images

according to the number of people present in the image, and I have done this as

well. The choices given are the categories themselves, which are: No People, One

Person, Two People, Three or More People, Crowd, and Ambiguous. The distinction

between the Crowd category and the Three or More People category is left vague,

and this is largely left to the opinion of the labeler. The instructions that have been

provided for these categories are presented in Appendix C.1 and can also be found
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at http://www.cs.columbia.edu/˜sable/research/readme.html. 1,346 (80.4%) of the

1,675 images have been assigned identical, non-ambiguous judgments from both me

and the volunteer, and these comprise the data set used for these categories. 88

(6.5%) of these images are classified as having no people, 304 (22.6%) have one

person, 213 (15.8%) have two people, 609 (45.2%) have three or more people, and

132 (9.8%) depict a crowd.

Although this data set has been defined for researchers working with image

features, I have used it for one experiment that I and a co-author discuss in Section 9

of (Sable and Hatzivassiloglou, 2000) involving the integration of separate sets of

categories. It turns out that there is a high correlation between the number of people

in an image and the Indoor versus Outdoor setting. For example, images with no

people or with crowds are almost always Outdoor, whereas images with exactly

one or two people are about equally likely to be Indoor or Outdoor. (Remember,

Outdoor images account for about 70% of the Indoor versus Outdoor data set.)

The experiment involves updating predictions for the Indoor versus Outdoor data

set using information about the number of people in each image. It turns out

that we only achieve a minor improvement in overall accuracy. However, using an

alternate evaluation metric that gives partial credit for right or wrong answers based

on confidence, we see a more significant improvement. In other words, while few

categorizations change from right to wrong or vice versa, correct decisions are, on

average, given higher confidence, while the reverse happens for incorrect decisions.

I will not discuss this experiment further here, but the paper cited earlier in this

paragraph describes it in detail.
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Appendix G

Testing Features with Cross

Validation

The first text categorization system that I implemented was an augmented Roc-

chio/TF*IDF system (this methodology is described in Section 2.6.1.1). I have

experimented with several features, some of which are novel (e.g. the inclusion of

parts of speech as part of word tokens, or the use of various spans of text). By

testing these features, I have stayed within a bag of word paradigm with the goal

of examining the effects that various features have on performance. In order to

determine which features are the most significant for achieving good performance,

I have relied on cross validation experiments within the training set using all pos-

sible combinations of feature values (cross validation is explained in Section 2.5).

The results of such cross validation experiments when applied to an older version

of the Indoor versus Outdoor data set are reported in detail in (Sable and Hatzi-

vassiloglou, 2000); in this appendix, I summarize the results of the cross validation

experiments using the training set of the current version of the Indoor versus Out-

door data set (described in Section 3.1.2.2) as well as the training set of the Events

data set (described in Section 3.1.2.3).
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G.1 The Features

My Rocchio/TF*IDF system allows the user to vary the values of seven optional

parameters. I have set up an automatic script that applies three-fold cross valida-

tion within the training set, and this is repeated for every possible combination of

values of parameters. Based on the results of these cross validation experiments, the

best values of parameters can be selected, and training can be repeated with these

settings using the entire training set. Five of the optional parameters discussed

in this appendix relate to the definition of a word, one deals with normalization

(optional for the Rocchio technique), and the last is density estimation (discussed

in Chapter 4). More specifically, the parameters varied in the cross validation ex-

periments for the Indoor versus Outdoor data set and the Events data set are as

follows:

• Text span considered. What text should be considered when predicting a

category for each image? I have experimented with using the entire article and

image caption concatenated, the article without the caption, just the caption,

and only the first sentence of the caption. While the articles are longer and

provide more information about the related story than the caption, they are

less related to the specific image, and therefore may contain too much noise

to be helpful for the certain types of categorization. Similarly, in our corpus,

the first sentence of the caption tends to be more descriptive of the image

than the rest, which often provides background information. What type of

information is appropriate may depend on the specific categories with which

we are dealing.

• Restriction to specific grammatical categories. Should all the words

in the selected text span be included in the TF*IDF computations? Open-

class words (i.e., adjectives, nouns, verbs, and adverbs) tend to carry most of
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the content information, while words such as numbers and pronouns do not

usually affect an image’s classification. I used Church’s statistical part-of-

speech tagger (POS) (Church, 1988) to automatically assign a grammatical

category tag to each word. For the cross validation experiments applied to the

Indoor versus Outdoor training set, I experimented with using all words, only

open-class words, and open-class words excluding proper nouns. For the cross

validation experiments applied to the Events training set, I also tested using

just nouns and nouns excluding proper nouns, since it has been suggested

that nouns might be particularly important for these categories.

• Disambiguation of words. A word’s sense is frequently ambiguous, and

sometimes knowing its grammatical part-of-speech can help disambiguate it.

For example, the word “can” is most often an auxiliary verb, but sometimes

a noun with a different meaning. I have experimented with including the

POS tag as part of the word (thus distinguishing between the two senses of

“can” - can/modal versus can/noun - in this example), versus ignoring this

information.

• Case sensitivity. Should capitalization matter for treating words as differ-

ent? Capitalization may indicate a proper noun, but may also be the result of

sentence-initial placement. I experimented with collapsing words that differ

only in capitalization to the same token versus treating words as different if

they differ in case.

• Thresholds for TF*IDF values. I have experimented with optionally ig-

noring words whose TF*IDF values within a document fall below a given

constant, for several alternative values of that constant. This eliminates rel-

atively insignificant words, which have minimal (or negative) impact on the

classification, and is similar to using a stop-word list, as discussed in Sec-
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tion 2.4.1. For my cross validation experiments, I test three thresholds, which

I call low, medium, and high, and I also test not using any threshold.

• Normalization of category vectors. The number of documents in vari-

ous categories can differ substantially, as is the case with the Indoor versus

Outdoor data set and the Events data set. It is natural to expect that the a

priori most frequent category would have higher TF values in category vec-

tors, simply because it contains more documents. This is a concern for these

experiments, since, for example, the Outdoor category contains more than

two thirds of the images in my collection; however, it is not always bad to

give an “advantage” to the larger category. I have therefore repeated the cross

validation experiments both with and without normalization of the category

vectors.

• Density estimation. The standard approach for assigning a document to

a category is to select the category for which the similarity is the largest.

This, however, implicitly assumes that the similarity scores are on the same

scale for all categories, and makes it hard to tell when a difference between

the similarity scores for the two categories is large enough for the system to

be confident in its decision. I have experimented with an alternative method

of choosing a category based on similarity scores. Density estimation is an

established statistical technique (Silverman, 1986) for estimating a probability

density for the distribution assumed to generate a set of empirically obtained

data points. I describe my approach to using density estimation for text

categorization in detail in Chapter 4 (and also in (Sable, McKeown, and

Hatzivassiloglou, 2002)), and I do not go in to any more detail here. For my

cross validation experiments, I test three possible window sizes, which I refer

to as small, medium, and large, and I also test not using density estimation

at all (i.e. choosing the category with the highest similarity score instead).
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G.2 Cross Validation Results for the Indoor ver-

sus Outdoor Data Set

There are 1,536 possible combinations of the 7 optional parameters as described

above for the Indoor versus Outdoor data set. Every one of these combinations

has been tested using three-fold cross validation on the training set of this data

set. The settings of certain parameters turn out to be significantly more important

than the settings of others.

Table G.1 shows the settings used for the optional parameters for the best 11

cross validation results for the training set of the Indoor versus Outdoor data set.

These cross validation experiments all achieve an overall accuracy of approximately

83% or greater, with the single best cross validation experiment obtaining an over-

all accuracy of approximately 83.8%. Table G.2 shows the average overall accuracy

of all cross validation experiments for each possible value of all these parameters.

Usually, the settings that lead to the highest average over all experiments in which

they are used also tend to show up in the majority of the best experiments, but this

is not always the case (exceptions are noted below). Sometimes, settings of vari-

ous parameters do well when used together but not alone, and certain parameters

may be more important with specific settings of other parameters. For example,

normalization and density estimation can both account for skewed category sizes,

and it is possible that one might be more important if the other is not used. In any

case, when choosing parameter settings for training based on the entire training

set (to train the system for the test set, or for future documents), it is probably

more important to use settings from the best experiments, as this is the perfor-

mance we want to emulate. The effects of each of the various parameters varied in

the cross validation experiments using the Indoor versus Outdoor data set can be

summarized as follows:
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Rank
Text Span
Used

Part-of-
Speech Used

Include
Tag

Case
Sensitive

Thresholds Normalize
Density
Estimation

1
first
sentences

open-class
words except
proper nouns

yes no medium no
small
window

2
first
sentences

open-class
words except
proper nouns

yes yes medium no
small
window

3
first
sentences

open-class
words except
proper nouns

yes no medium yes
small
window

3
first
sentences

open-class
words except
proper nouns

yes yes medium no
large
window

5
first
sentences

open-class
words except
proper nouns

yes yes medium yes
small
window

5
first
sentences

open-class
words except
proper nouns

yes yes medium no
medium
window

7
first
sentences

all words yes yes medium no
medium
window

7
first
sentences

open-class
words except
proper nouns

yes no medium no
medium
window

9
first
sentences

open-class
words except
proper nouns

yes yes low yes
medium
window

9
first
sentences

open-class
words except
proper nouns

no yes low yes
medium
window

9
first
sentences

open-class
words except
proper nouns

no yes medium no
small
window

Table G.1: Some parameters have specific settings dominate the top cross validation
experiments applied to the Indoor versus Outdoor data set, while other parameters
matter less.
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Parameter Value
Average

Accuracy %

Text Span

first sentences of captions 81.83
captions 78.13
articles (including captions) 73.10
articles (excluding captions) 71.44

Part-of-Speech
all words 76.41
open-class words 76.35
open-class words except proper nouns 75.62

Include Tag
yes 76.35
no 75.90

Case Sensitive
no 76.13
yes 76.12

Thresholds

none 77.04
low 77.02
medium 76.48
high 73.97

Normalize
no 76.55
yes 75.70

Density Estimation

small window 77.48
medium window 77.23
large window 77.15
none 72.64

Table G.2: For some parameters, specific settings do much better than others over
all cross validation experiments applied to the Indoor versus Outdoor data set;
other parameters matter less.
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• Text Span. Restricting analysis to the first sentences of captions accounts

for the 67 top scoring experiments. First sentences clearly outperform full

captions (based on the average overall accuracy of all cross validation exper-

iments in which those settings are used), while text spans that include the

entire article (with or without the caption) are far behind. So convincing is

this result that in later experiments involving the Indoor versus Outdoor data

set, discussed throughout this thesis, I assume from the beginning that this

is the appropriate text span to use.

• Restriction to specific grammatical categories. Using only open-class

words excluding proper nouns accounts for all of the top six, ten of the top 11,

and 24 of the top 27 cross validation experiments. Interestingly, though, the

average overall accuracy of all cross validation experiments using this setting

is slightly lower than when either of the other two settings is used. In a

case like this, using open-class words excluding proper nouns is probably the

setting that should be chosen for this feature when training the system for

this data set, but it is very important to use this setting with other settings

that have led to the best cross validation experiments.

• Disambiguation of words. Disambiguation of words based on part-of-

speech (i.e. including the part-of-speech tag as part of the word) is used in the

top eight cross validation experiments, and the average overall accuracy of all

cross validation experiments using disambiguation of words is slightly higher

than that of the cross validation experiments that do not use disambiguation

of words.

• Case sensitivity. The average overall accuracy of all cross validation ex-

periments using versus not using case sensitivity are virtually identical, and

both settings are used in some of the top cross validation experiments.
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• Thresholds for TF*IDF values. Some threshold is used in each of the top

11 cross validation experiments, with medium thresholds being used in the

top eight. Looking at average overall accuracy over all cross validation exper-

iments with each setting, however, lack of thresholds does the best, followed

very closely by low thresholds. Medium thresholds are not far behind, but

high thresholds do considerably worse. Using medium thresholds is probably

the setting that should be chosen for this feature when training the system for

this data set, but it is very important to use this setting with other settings

that have led to the best cross validation experiments.

• Normalization of category vectors. The average overall accuracy of all

cross validation experiments that do not use normalization is slightly higher

than that of those that do use normalization, and normalization is not used

in the top two cross validation experiments, although both settings are used

in some of the top cross validation experiments.

• Density estimation. Using density estimation accounts for the top 147 cross

validation experiments. With almost every combination of the other param-

eters, adding density estimation seems to improve performance for this data

set. The size of the window matters less, as all three sizes are used in some

of the top experiments (although three of the top four use a small window,

and this window size also slightly beats the other two over all cross validation

experiments). Looking at the average overall accuracies of all cross valida-

tion experiments with each setting, all three window sizes do about the same

(small windows do slightly better than medium windows which do slightly

better than large windows), and experiments without density estimation are

far behind. I show in Chapter 4 that density estimation does indeed have a

very positive effect on the performance achieved by the system when applied

to the test set of this data set.
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G.3 Cross Validation Results for the Events Data

Set

There are 2,560 possible combinations of the 7 optional parameters as described

above for the Events data set (because of the two extra allowable settings tested

for the part-of-speech parameter). Every one of these combinations has been tested

using three-fold cross validation on the training set of this data set. As with the

Indoor versus Outdoor data set, the settings of certain parameters turn out to be

significantly more important than the settings of others.

Table G.3 shows the settings used for the optional parameters for the best

ten cross validation results for the training set of the Events data set. These

cross validation experiments all achieve an overall accuracy of approximately 84%

or greater, with the single best cross validation experiment obtaining an overall

accuracy of approximately 85.4%. Table G.4 shows the average overall accuracy of

all cross validation experiments for each possible value of all these parameters. The

effects of each of the various parameters varied in the cross validation experiments

using the Events data set can be summarized as follows:

• Text Span. For the Events data set, using a concatenation of articles and

captions accounts for the 24 top scoring experiments, and either articles alone

or concatenations of articles with captions account for the top 142 experi-

ments. Judging by the average overall accuracy of all cross validation ex-

periments using each setting, concatenation of articles and captions clearly

comes in first, with articles alone clearly beating full captions, and full cap-

tions clearly beating first sentences. This is almost the opposite of the result

seen for the Indoor versus Outdoor data set, but it is not surprising due to the

nature of the categories. The Indoor and Outdoor categories apply strictly to

the image, and a description of the image (as provided by the first sentence
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Rank
Text Span
Used

Part-of-
Speech Used

Include
Tag

Case
Sensitive

Thresholds Normalize
Density
Estimation

1
articles
including
captions

open-class
words except
proper nouns

yes no none yes none

2
articles
including
captions

open-class
words except
proper nouns

yes yes none yes none

3
articles
including
captions

open-class
words except
proper nouns

yes yes none no
small
window

4
articles
including
captions

open-class
words except
proper nouns

yes yes none no
medium
window

4
articles
including
captions

open-class
words except
proper nouns

yes no none no
small
window

4
articles
including
captions

open-class
words except
proper nouns

yes no none no
medium
window

7
articles
including
captions

nouns except
proper nouns

yes yes none yes none

8
articles
including
captions

nouns except
proper nouns

yes no no yes none

8
articles
including
captions

nouns except
proper nouns

no yes none yes none

8
articles
including
captions

open-class
words except
proper nouns

yes no low yes none

Table G.3: Some parameters have specific settings dominate the top cross validation
experiments applied to the Events data set, while other parameters matter less.
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Parameter Value
Average

Accuracy %

Text Span

articles (including captions) 78.77
articles (excluding captions) 76.59
captions 74.45
first sentences of captions 70.84

Part-of-Speech
open-class words 77.09
nouns 76.31
all words 76.02
open-class words except proper nouns 74.12
nouns except proper nouns 72.27

Include Tag
yes 75.26
no 75.07

Case Sensitive
no 75.24
yes 75.08

Thresholds

low 77.60
none 77.46
medium 76.64
high 68.96

Normalize
yes 75.28
no 75.05

Density Estimation

small window 76.11
medium window 75.94
large window 75.55
none 73.05

Table G.4: For some parameters, specific settings do much better than others over
all cross validation experiments applied to the Events data set; other parameters
matter less.
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of the caption) is clearly the most helpful text. The Events categories apply

to the document as a whole, and define high-level, topical notions of what the

entire story is about.

• Restriction to specific grammatical categories. Using only open-class

words excluding proper nouns accounts for all of the top six and seven of

the top ten cross validation experiments (with the other three using nouns

except proper nouns). As with the Indoor versus Outdoor cross validation

experiments, though, we see a different outcome when we look at the average

overall accuracy of all cross validation experiments using each setting. The

two settings that appear in the top experiments do the worst when averaged

over all experiments in which they are used. Over all cross validation ex-

periments, using open-class words does the best, followed by all words, and

then followed by nouns; open-class words except proper nouns does better

than nouns except proper nouns. This result is unusual, and can lead to

confusion when choosing settings for the final training of the system; as with

the Indoor versus Outdoor data set, I believe that choosing open-class words

except proper nouns is the appropriate setting to choose, but it is extremely

important to choose it along with other settings that lead to one of the best

cross validation experiments.

• Disambiguation of words. Disambiguation of words based on part-of-

speech (i.e. including the part-of-speech tag as part of the word) is used in the

top seven cross validation experiments, and as with the Indoor versus Outdoor

data set, the average overall accuracy of all cross validation experiments using

disambiguation of words is slightly higher than that of the cross validation

experiments that do not use disambiguation of words.

• Case sensitivity. The average overall accuracy of all cross validation ex-
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periments without case sensitivity is slightly higher than that of those with

case sensitivity, and both settings are used in some of the top cross validation

experiments.

• Thresholds for TF*IDF values. Unlike the results for the Indoor versus

Outdoor data set, no threshold is used in the top seven and nine of the top

10 cross validation experiments. Looking at average overall accuracy over all

cross validation experiments with each setting, however, low thresholds do

the best, followed very closely by no thresholds. Medium thresholds are not

far behind, but high thresholds do considerably worse.

• Normalization of category vectors. The average overall accuracy of all

cross validation experiments that do use normalization is slightly higher than

that of those that do not use normalization (the opposite of the result for

the Indoor versus Outdoor cross validation experiments), and normalization

is used in the top two cross validation experiments, although both settings

are used in some of the top cross validation experiments.

• Density estimation. For me, the most surprising result of these cross val-

idation experiments is that density estimation is not clearly helpful for this

data set. Density estimation is not used in the top two and six out of the

top ten cross validation experiments. This is quite different than the cross

validation results for the Indoor versus Outdoor data set, for which density

estimation accounts for the top 147 experiments. Interestingly, however, if

we look at the average overall accuracies of all cross validation experiments

using each setting, we see that density estimation with all three window sizes

does better than lack of density estimation. Still, as explained previously,

when choosing settings for the final training, it is best to choose those that

lead to the best cross validation experiments. It is confirmed in Chapter 4
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that using density estimation (with the parameters for which it does the best

in cross validation experiments) leads to a slight degradation for the Events

data set (a very different result than found for the other data sets examined

in that chapter). It appears, then, that density estimation is helpful for the

Events data set when used in conjunction with most other combinations of

parameter settings, but when the other settings are just right, lack of density

estimation does better.

G.4 Concluding Discussion of Cross Validation

and Features

This appendix has demonstrated how cross validation can be used to test the im-

portance of features and choose appropriate settings that are likely to achieve good

performance. It is important to test all combinations of possible settings, as op-

posed to testing each feature on its own, because sometimes specific combinations

do well together even though the individual settings might not do well on their

own. The settings for parameters should be chosen based on their appearance in

the top cross validation experiments. When the setting for a specific parameter

seems ambiguous, it can also be helpful to look at average accuracies over all ex-

periments using each setting for the parameter. The final combination of settings

chosen should be one that leads to one of the top cross validation experiments.

In this appendix, I have examined seven features for my own Rocchio/TF*IDF

system. Interestingly, the three of them that are probably the most common in the

text categorization literature - case sensitivity, normalization, and thresholds to

cutoff words with low weights - do not prove to be particularly important. Two

other features involve tagging all words using a part-of-speech tagger, and both

seem to be somewhat useful. Limiting text to words of particular grammatical
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categories proves to be important, although choosing the correct setting is tricky

(the setting that is used in the top cross validation experiments is not the the one

that gives the best accuracy over all cross validation experiments); using part-of-

speech tags to disambiguate words also seems to help for both data sets. Another

feature involves choosing the correct span of text to use for the experiments, and

this proves to be especially crucial, although the appropriate setting clearly differs

between data sets based on the nature of the categories. Finally, density estimation

is extremely useful for one of the two data sets discussed in this appendix, but does

not seem to be particularly useful for the other. Chapter 4 verifies this finding con-

cerning density estimation; I show density estimation greatly improves the accuracy

of the system when applied to the test set of the Indoor versus Outdoor data set,

but mildly degrades the accuracy of the system when applied to the test set of the

Events data set.



317

Appendix H

Density Estimation Probabilities

The density estimation approach towards text categorization has two main advan-

tages. One is that the application of density estimation to the output of another

system often improves the results of the system, as demonstrated in Chapter 4.

The second main benefit is that predictions are assigned probabilistic confidence

measures. These measures can potentially be used to combine the results of various

systems. Although I have not yet used density estimation confidence measures for

this purpose, I discuss a means of doing so in Section 8.3.3 and in Section 10.3.

In Chapter 4, I describe, in detail, the way in which density estimation

estimates probability likelihoods that documents belong to categories. I will not

reiterate that here. I also show, in that chapter, that density estimation often

improves the overall accuracy of the system to which it is applied. However, I

do not actually check to see if the probabilities are reasonably accurate. If these

probabilities are to be used for other purposes, such as combining predictions of

different systems, it must at least be true that higher probabilities are more likely to

be correct, on average. This appendix tests that assumption for the Indoor versus

Outdoor data set and for the Events data set.

We have seen in Chapter 4 that density estimation improves the overall accu-
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racy of a state-of-the-art Rocchio/TF*IDF system (that I have also implemented)

for the Indoor versus Outdoor data set from 80.7% to 86.1%, a significant gain.

The overall accuracy of the system for the Events category, on the other hand, de-

creases from 87.1% to 84.9%, which is not significant according to a standard test.

The question this appendix explores, however, is whether or not the probability

estimates assigned by density estimation to its individual predictions are somewhat

accurate and, therefore, potentially useful.

For the Indoor versus Outdoor data set, since there are only two categories,

and density estimation selects the one with the highest probability assigned, the

chosen category always has a probability of at least 50%. For this data set, I have

defined three levels of confidence. High confidence refers to predictions for which

the probability estimate for the chosen category is over (or equal to) 90%. Medium

confidence refers to predictions for which the probability estimate is less than 90%

but greater than (or equal to) 70%. Low confidence applies to the remaining pre-

dictions, which necessarily have a probability estimate of less than 70% but at least

50%.

Confidence Number Number Overall
Level Correct Incorrect Accuracy %
High 264 21 92.6

Medium 74 24 75.5
Low 45 17 72.6
Total 383 62 86.1

Table H.1: The density estimation probabilities assigned to predictions for the In-
door versus Outdoor data set seem to be indicative of the likelihood of the prediction
being correct.

Table H.1 shows the results at various levels of confidence for the Indoor

versus Outdoor data set. Sure enough, higher levels of confidence lead to higher

overall accuracies. Most notably, the high confidence interval accounts for 285
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(64.0%) of the 445 images in the test set, and for this subset of images, the system

categorizes 92.6% of them correctly.

For the Events data set, since there are five categories, it is possible that

the selected category (the one assigned the highest probability estimate) has a

probability under 0.5. (The highest probability for this data set is necessarily

greater than 0.2, since the probabilities must add up to 1.) For this data set, I have

therefore defined four levels of confidence; The first three are the same as those

used for the Indoor versus Outdoor data set, and the fourth is very low confidence,

which refers to predictions for which the estimated probability is under 50%.

Confidence Number Number Overall
Level Correct Incorrect Accuracy %
High 284 17 94.4

Medium 54 14 79.4
Low 32 28 53.3

Very Low 6 8 42.9
Total 376 67 84.9

Table H.2: The density estimation probabilities assigned to predictions for the
Events data set seem to be indicative of the likelihood of the prediction being
correct.

Table H.2 shows the results at various levels of confidence for the Events

data set. Once again, higher levels of confidence lead to higher overall accuracies;

this time, the trend is even more noticeable than demonstrated in the previous

table. In particular, the high confidence interval accounts for 301 (67.9%) of the

443 documents in the test set, and for this subset of documents, the system cate-

gorizes 94.4% of them correctly. Only 14 (3.2%) of the predictions are given very

low confidence (probabilities under 50%), and only 42.9% of these predictions are

correct.

This appendix clearly shows that the probability estimates assigned by den-
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sity estimation do seem to indicate the likelihood that the predictions are, in fact,

correct. As to the actual accuracy of the probabilities themselves (i.e. do they tend

to be too high or too low, on average), this requires further testing. Based on Tables

H.1 and H.2, the probabilities seem, at least, to be reasonably accurate; with only

one exception (that being the low confidence interval for the Indoor versus Out-

door data set), the overall accuracy for each interval does fall into the range of the

estimated probabilities covered by the interval. If these estimates are reasonably

accurate in general, then the confidence measures provided by density estimation

should be useful for combining predictions of various systems.



321

Appendix I

Burstiness

The BINS system described in Chapter 5 optionally allows additional features to

be used as weights (in addition to or instead of IDF values). One such feature

is burstiness, an idea introduced by Katz (Katz, 1996) and used by default in an

earlier version of BINS described in (Sable and Church, 2001). Burstiness takes into

account that some words are likely to appear many times in a document if they

appear at all. The burstiness of a word, the way we define it, is either one or zero,

depending on whether or not its average term frequency is greater than a specific

cutoff. More formally, letting Burstiness(w) be the burstiness of a word w, TF (w)

be the term frequency of the word (the number of occurrences of the word in a

training corpus), DF (w) be the document frequency of of the word (the number

of documents in which the word occurs at least once in a corpus), and IDF (w) be

the inverse document frequency of the word as is first discussed in Section 2.4.2,

we have:

Burstiness(word) =







1 if TF (w)/DF (w) > 1.83 − 0.048 × IDF (w)

0 otherwise
(I.1)

All other things being equal, it is expected that bursty words (words with a bursti-

ness of 1) are more meaningful (indicative of categories) than words that are not
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bursty.

Burstiness is intended to be used in conjunction with IDF; however, BINS

also allows it to be used standalone if the user desires. (Category counts, as de-

scribed in Section 5.3, are also automatically used as a binning feature in all exper-

iments; this is required by the BINS system, as there is no reason to expect good

performance without them.) Even if a feature such as burstiness is indicative, to

some degree, of the probability that a word will appear in a future document of a

category, this does not necessary mean that one should expect a performance gain

by using it as an additional binning feature. Every new feature that bins uses to

bin words makes each individual bin smaller (i.e. each bin consists of less words),

and therefore the weights computed for each bin potentially might be less accurate.

There is a performance gain only if the benefit of using an additional indicative

feature outweighs the negative effect of making the bins smaller.

Tables I.1 and I.2 show the results of using burstiness as a feature for the

Indoor versus Outdoor data set and the Events data set, respectively. For each

data set, I have tried using burstiness by itself and also in conjunction with IDF.

In addition to using this new feature when BINS always relies on bin weights, I

have also measured the effect of the feature with both of the combinations of bin

weights and Naive Bayes weights discussed in Section 5.7.

The result for both data sets seem inconclusive. For the Indoor versus Out-

door data set, using a combination of burstiness and IDF performs marginally

better than IDF alone in two cases and equally in one case. Surprisingly, burstiness

alone performs better than IDF alone in two cases (and equally in one case). This is

surprising, since burstiness is always zero or one, and so there are much fewer bins

using burstiness compared to IDF. Perhaps because the documents in the Indoor

versus Outdoor data set are small (first sentences of captions), and therefore there

are less total words in the training set of the corpus, using smaller bins is generally
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System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
BINS (always use bin)

BINS (IDF weights) 85.8 75.1 90.1
BINS (burstiness) 87.6 77.7 91.4
BINS (IDF and burstiness) 86.1 75.4 90.3

BINS (COMBO #1)

BINS (IDF weights) 86.1 76.2 90.2
BINS (burstiness) 86.5 76.4 90.6
BINS (IDF and burstiness) 86.3 76.6 90.3

BINS (COMBO #2)

BINS (IDF weights) 87.2 78.0 91.0
BINS (burstiness) 87.2 77.3 91.1
BINS (IDF and burstiness) 87.2 78.0 91.0

Table I.1: The use of burstiness as a binning feature does not have a large effect
on results for the Indoor versus Outdoor data set.

System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %
BINS (always use bin)

BINS (IDF weights) 88.0 87.5 88.3 97.2 83.1 60.0
BINS (burstiness) 87.4 87.0 87.3 97.2 85.4 42.4
BINS (IDF and burstiness) 87.8 87.1 87.7 97.8 85.4 52.6

BINS (COMBO #1)

BINS (IDF weights) 90.3 89.7 90.8 98.3 89.4 62.5
BINS (burstiness) 89.6 88.8 89.8 98.3 89.1 57.1
BINS (IDF and burstiness) 90.7 90.1 91.1 98.9 90.3 62.5

BINS (COMBO #2)

BINS (IDF weights) 90.3 89.5 90.4 98.9 89.1 63.8
BINS (burstiness) 88.9 87.9 89.2 97.2 89.1 56.4
BINS (IDF and burstiness) 90.5 89.8 90.8 98.9 89.1 63.8

Table I.2: The use of burstiness as a binning feature does not have a large effect
on results for the Events data set.
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helpful. For the Events data set, using burstiness alone does not perform as well

is IDF alone, as is generally expected, although the degradation of performance is

never large. Using burstiness in addition to IDF leads to a marginal performance

gain in two cases and a marginal degradation of performance in one case.

Results such as the ones described in this Appendix do not make it clear

whether or not burstiness is generally be a good feature to use for binning. For

these data sets, the effect is minimal. In (Umemura and Church, 2000), however,

burstiness does improve performance for an information retrieval system that relies

on bins, and their analysis shows that the feature can be helpful. In any case, my

BINS system does not use the feature by default, but it does allow users to compute

and use the feature if they so specify.
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Appendix J

Shared Scaled Category

Likelihoods

The BINS system described in Chapter 5 optionally allows additional features to

be used as weights (in addition to or instead of IDF values). One such feature,

burstiness, has been discussed in Appendix J. In this chapter, I describe an addi-

tional optional feature that can be used to bin words. The feature is, to the best of

my knowledge, a novel mathematical measure, which I call the shared scaled cate-

gory likelihood (SSCL) of a word. This measure estimates the likelihood that two

documents sharing a word in common also belong to the same category. The mea-

sure is meant as an alternative to IDF, one that specifically takes the task of text

categorization into consideration; my BINS system also allows the two measures to

be used in combination.

J.1 Description of SSCL

The method used to estimate SSCLs assumes that the category distribution in the

training set is somewhat indicative of what the category distribution will be in fu-
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ture documents. This assumption is being made for the corpus as a whole and also

for individual words. So, if a particular category c occurs with frequency f1 in the

training set, it is assumed that the same category will occur with approximately

frequency f1 in future documents. Furthermore, considering only the documents

in that training set that contain a particular word w, if a particular category c

occurs with frequency f2 within this set of documents, I am assuming that in all

future documents containing w, the same category will occur with approximately

frequency f2. Clearly, this may not truly be a good estimate for words that occur

infrequently or just once, for instance, and perhaps these estimates could be im-

proved by using concepts such as binning and deleted interpolation, but these are

the assumptions for now.

The method also assumes that categories are mutually exclusive and that

every document is assigned exactly one category. A corpus allowing multiple (or

zero) categories per document can be converted to a corpus with one category

per document by replacing every possible set of categories with a single category

representing that set (i.e. use each possible power set of the original categories as

a single category). Of course, this increases the number of possible categories from

n to 2n, but in practice far fewer than 2n actually occur, and only those categories

that occur at least once in the training set need to be considered.

Along the way to estimating the SSCL for every possible word w, I first

estimate the probability that two future documents that both contain a word w

do, in fact, share the same category. To do this, I compute the probability that

two documents selected with replacement from the set of training documents that

contain the word belong to the same category. The reason for assuming selection

with replacement, as opposed to without replacement, when calculating the prob-

abilities can be made apparent by considering a simple example. Suppose that a

particular word w occurs in exactly two documents in the training set, and that
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these documents have categories c1 and c2. The assumptions above thus lead us

to assume that approximately half of the future documents with word w are likely

to belong to category c1 and approximately half are likely to belong to category

c2. (Expressed more formally, P (c1|w) = 0.5 and P (c2|w) = 0.5.) We are not

making any assumptions about the number of total future documents that we will

see, and there is no reason to conclude that seeing one future document with word

w belonging to category c1 makes it less likely that the next document with word w

belongs to category c1. So, it is fair to conclude that if two future documents both

contain the word w, there is approximately a 1/4 probability that both documents

belong to category c1, a 1/4 probability that both documents belong to category

c2, and a 1/2 probability that one document belongs to c1 and the other belongs

to c2. More specific to the point, there is approximately a 1/2 probability that the

two documents share the same category and a 1/2 probability that they do not.

This matches the probabilities that are calculated based on the training set if selec-

tion with replacement is considered. However, if selection without replacement is

considered, the method would calculate that there is 0 probability that two future

documents both containing the word w share the same category (and a probability

of 1 that they do not), since, in the training set, there is only one pair of documents

that both contain w and they do not share the same category. This, clearly, would

not be a wise estimate if the category distribution of documents containing the

word w is assumed to be similar to that already observed in the training set.

A first pass through the training set computes the following statistics:

• N - the number of training documents.

• size(c) - the number of documents belonging to category c.

• DF (w) - the number of documents with word w.

• count(c, w) - the number of documents with word w belonging to category c.
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Then, the estimated probability that two documents share the same category

given that they share the word w becomes:

P (same|w) =

∑

c∈C count(c, w)2

DF (w)2
(J.1)

At this point, I could simply use the logs of these values as word weights.

Of course, since probabilities are all less than or equal to one, all weights would

then be negative or zero. Instead, I first take the ratio of each probability to the

global probability, based on the entire training corpus, that two randomly selected

documents (with replacement) belong to the same category:

P (same) =

∑

c∈C size(c)2

N2
(J.2)

I then compute word weights as follows:

λ(w) = log2

P (same|w)

P (same)
(J.3)

Dividing by the global probability of two documents sharing the same cat-

egory offsets all word weights by the same magnitude (since the weight is a log of

the ratio). The advantage is that term weights are positive for words that increase

the probability of two documents sharing the same category, while term weights

are negative for words that decrease the probability of two documents sharing the

same category. A system that uses these weights might decide to ignore negative

term weights (if it is decided that it is unfair to penalize two documents for sharing

any words in common).

Although it might seem odd that any word should ever indicate that doc-

uments sharing the word are significantly less likely to share the same category

than two documents that don’t contain the word, this can be the case for certain

corpora. In fact, with an older version of BINS that could also handle binary cat-

egories, I have tried using this approach to compute word weights for the Reuters
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corpus (first described in Section 2.8), and I have seen that many common words

have negative term weights. The term weight for “the”, for example, comes out

to approximately -0.723. This can be explained by noting that the presence of the

word “the” in two documents makes both documents less likely to be in the Reuters

earn category, the largest category containing mostly numerical documents.

J.2 Partial Justification of SSCL

As a partial justification of this approach, it can easily be shown that if the training

set contains exactly one sample document of every category, this approach for esti-

mating term weights for words is equivalent to using inverse document frequencies

(IDFs) for all words based on the same training set:

λ(w) = log2
P (same|w)

P (same)

= log2

∑
c∈C count(c,w)2

DF (w)2
∑

c∈C size(c)2

N2

= log2

12∗DF (w)
DF (w)2

12∗N
N2

= log2

1/DF (w)

1/N

= log2

N

DF (w)
= IDF (w)

This does not hold true if the category distribution in the training set is dif-

ferent, and it is easy to see that different words with the same document frequencies

(and thus the same IDFs) have different term weights depending on the category

distribution of the documents they belong to. For example, consider two words, w1

and w2 that each occur in ten documents in the training set. If w1 occurs in ten

documents of the same category but w2 occurs in ten documents with ten different
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categories, it can easily be seen from the formulas above that the estimated prob-

ability that two documents containing w1 belong to the same category is ten times

higher than that for w2, and therefore the final term weight for the w1 is higher by

a magnitude of log210. This seems to fit intuition; that is to say, for the purposes of

text categorization, it seems intuitive that w1 should be considered more indicative

than w2.

One problem with the method as it is currently implemented is that if two

words occur in the training set with the same category distributions, they are

assigned identical term weights regardless of how common each word is. This is

clearly not ideal for words that occur very infrequently. For example, right now,

a word that occurs only one time in the training set (and, therefore, in only one

category) is assigned the maximum possible weight, the same as that of a word that

occurs many times in the training set but still in only one category. However, IDF

weights have a similar problem; the highest weights are being assigned to the words

with the least evidence. This problem with SSCL can potentially be countered by

using concepts such as binning and deleted interpolation, but that is not something

I have yet tried. For now, the method seems to provide reasonable weights for

individual words.

J.3 Results and Evaluation of SSCL as a Binning

Feature

SSCL weights are intended to be used instead of IDF weights, as I have designed

the measure to be an improved but similar measure specifically for the purpose

of text categorization; however, BINS also allows the two weights to be used in

combination if the user desires. (Category counts, as described in Section 5.3, are

also automatically used as a binning feature in all experiments; this is required
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by the BINS system, as there is no reason to expect good performance without

them.) Using a combination of features is not always a good idea even if all the

features are indicative, to some degree, of the probability that a word will appear

in the future document of a category. Every new feature that BINS uses to bin

words makes each individual bin smaller (i.e. each bin consists of less words), and

therefore the weights computed for each bin potentially might be less accurate.

There is a performance gain only if the benefit of using an additional indicative

feature outweighs the negative effect of making the bins smaller.

Tables J.1 and J.2 show the results of using SSCLs as a feature for the Indoor

versus Outdoor data set and the Events data set, respectively. For each data set, I

have tried using SSCL by itself (as intended) and also in conjunction with IDF. In

addition to using this new feature when BINS always relies on bin weights, I have

also measured the effect of the feature with both of the combinations of bin weights

and Naive Bayes weights discussed in Section 5.7.

The results based on these experiments are inconclusive. For the Indoor

versus Outdoor data set, using SSCL alone does as well as using IDF alone for two

cases, and slightly worse for a third case. Using the two features together performs

worse than IDF alone in all three cases; perhaps because the documents for this

data set are small (only first sentences of captions are used), there may not be

enough data to support the smaller bins. For the Events data set, SSCL alone

does marginally worse than IDF in two cases and equally well for a third case.

This time, however, the combination of IDF and SSCL performs better than either

weight alone in all three cases. Although I have designed SSCL to be used as a

replacement for IDF as opposed to being used in conjunction with it, it is possible

that the two weights express complementary information, and perhaps they should

be combined when there is enough data to support it.
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System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
BINS (always use bin)

BINS (IDF weights) 85.8 75.1 90.1
BINS (SSCL weights) 85.8 74.5 90.2
BINS (IDF and SSCL) 84.0 71.4 88.9
BINS (COMBO #1)

BINS (IDF weights) 86.1 76.2 90.2
BINS (SSCL weights) 86.1 75.4 90.3
BINS (IDF and SSCL) 85.4 74.9 89.7
BINS (COMBO #2)

BINS (IDF weights) 87.2 78.0 91.0
BINS (SSCL weights) 86.3 75.7 90.5
BINS (IDF and SSCL) 86.3 75.9 90.4

Table J.1: The use of SSCL as a binning feature does not have a large effect on
results for the Indoor versus Outdoor data set.

System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %

BINS (always use bin)

BINS (IDF weights) 88.0 87.5 88.3 97.2 83.1 60.0
BINS (SSCL weights) 87.6 87.3 87.6 97.2 85.4 45.7
BINS (IDF and SSCL) 88.5 88.0 88.6 97.8 85.4 54.1

BINS (COMBO #1)

BINS (IDF weights) 90.3 89.7 90.8 98.3 89.4 62.5
BINS (SSCL weights) 90.1 89.4 89.8 98.9 89.1 63.8
BINS (IDF and SSCL) 90.7 89.9 90.8 98.9 89.1 66.7

BINS (COMBO #2)

BINS (IDF weights) 90.3 89.5 90.4 98.9 89.1 63.8
BINS (SSCL weights) 90.3 89.5 89.8 98.8 89.1 66.7
BINS (IDF and SSCL) 90.5 89.9 91.1 98.3 89.1 60.5

Table J.2: The use of SSCL and IDF in combination may be helpful for the Events
data set.
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J.4 Concluding Discussion of SSCL

The results of the experiments so far do not make it clear whether or not shared

scale category likelihoods would generally perform as well as inverse document

frequencies when used for text categorization tasks. For both of the data sets used

in this appendix, the two weights perform about equally as well as each other when

either is used alone. For one of the two data sets, there is a small improvement

when the two weights are used together, but for the other data set, there is a small

degradation in performance. I feel that these results do not merit using SSCL by

default for my BINS system, as opposed to IDF, which is vastly used in the text

categorization literature; however, the system does allow a user to specify that these

weights should be computed and used, either alone or in combination with IDF.
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Appendix K

IDF: More Data versus Better

Data

When computing IDFs (inverse document frequencies, as defined in Section 2.4.2),

it is customary to compute these values based on the training set, but another pos-

sibility is to compute the values based on some other, much larger set of documents.

On the one hand, using the training set ensures that the documents have a similar

style and format to documents that appear in the test set (or will appear later);

in other words, training data tends to be representative of the data that will be

seen in the future. On the other hand, sometimes more data is better data. See,

for example, recent papers by Banko and Brill (Banko and Brill, 2001b; Banko and

Brill, 2001a) which argue that much larger training sets may be more important

than better algorithms for certain natural language tasks (they provide evidence

that this is so for a task they call confusion set disambiguation).

In this appendix, I compare using the training set to compute IDFs to using

approximately one million AP News documents. (Category counts, as described in

Section 5.3, are also automatically used as a binning feature in all experiments; this

is required by the BINS system, as there is no reason to expect good performance
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without them.) This comparison is made for the Indoor versus Outdoor data set

(first described in Section 3.1.2.2) and also for the Events data set (first described

in Section 3.1.2.3). Each of these data sets contains close to, but less than, 1,000

training examples. AP articles are approximately the same size, on average, as

articles in my data set, so using the values based on the AP corpus is basing

the values on at least 1,000 times the evidence, and the ratio is even larger for

the Indoor versus Outdoor data set, since that corpus uses only first sentences

of captions. BINS can not compute IDFs based on the AP corpus by itself, but

in addition to allowing the user to compute and use certain optional features for

binning (see Appendices I and J for two examples), BINS also allows a user to

provide his or her own weights by providing a file that maps each word to a weight.

I have created such a file specifying IDF weights computed using the AP corpus.

Tables K.1 and K.2 compare the results using each type of IDF value as a

binning feature for the Indoor versus Outdoor data set and the Events data set,

respectively. In addition to examining the effect on performance when BINS always

relies on bin weights, I have also measured the effect with both of the combinations

of bin weights and Naive Bayes weights discussed in Section 5.7. The results are

inconclusive. In each case, when bin weights are always used, the use of AP IDFs

leads to improved performance, although not by a huge margin. (This matched

the results we saw for an older version of BINS, as reported in (Sable and Church,

2001), which did not allow bin weights to be combined with Naive Bayes weights.)

When bins are used in conjunction with Naive Bayes weights, the use of AP IDFs

leads to a clear degradation in performance for the Indoor versus Outdoor data

set, but the effect on performance for the Events data set is marginal (with the

direction depending on the combination of weights used).

It is possible that the approach of BINS for using user-provided weights (such

as the AP weights in this case) is not optimal. The way BINS is set up, if a user
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System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
BINS (always use bin)

BINS (IDF weights) 85.8 75.1 90.1
BINS (IDF from AP corpus) 86.5 76.2 90.6

BINS (COMBO #1)

BINS (IDF weights) 86.1 76.2 90.2
BINS (IDF from AP corpus) 85.2 74.8 89.5

BINS (COMBO #2)

BINS (IDF weights) 87.2 78.0 91.0
BINS (IDF from AP corpus) 85.8 75.7 90.0

Table K.1: Using IDFs based on the AP corpus instead of those computed based on
the training data of the Indoor versus Outdoor data set improves performance when
bins are always used, but degrades performance when bins are used in combination
with Naive Bayes.

System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %
BINS (always use bin)

BINS (IDF weights) 88.0 87.5 88.3 97.2 83.1 60.0
BINS (IDF from AP corpus) 88.5 86.8 88.4 97.8 87.9 63.6

BINS (COMBO #1)

BINS (IDF weights) 90.3 89.7 90.8 98.3 89.4 62.5
BINS (IDF from AP corpus) 90.5 89.7 91.4 98.9 89.1 62.7

BINS (COMBO #2)

BINS (IDF weights) 90.3 89.5 90.4 98.9 89.1 63.8
BINS (IDF from AP corpus) 90.1 89.7 91.1 97.8 89.1 65.3

Table K.2: Using IDFs based on the AP corpus instead of those computed based on
the training data of the Events data set does not have a large effect on performance.
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provides his or her own weights, any word that is not assigned a weight is ignored.

For the Indoor versus Outdoor data set, there are 4,656 distinct words in the

training set, and 4,524 (97.2%) of them have AP weights (i.e. these words appeared

at least once in the corpus of approximately one million AP news documents used

to compute the AP IDFs). This means that 132 (2.8%) of the distinct words in

the training set are ignored for this data set. For the Events data set, there are

21,912 distinct words in the training set, and 21,099 (96.3%) of them have AP

weights. This means that 813 (3.7%) of the distinct words in the training set are

ignored for this corpus. It is uncertain if these words would play an important role

in predicting categories if they were somehow used. Potential methods of using

these words would be to assign all of the unknown words the same weight (and

therefore bin this set of words separately using only category counts), or by using

IDFs computed based on the training set (the default) for these words. I have not

explored these possibilities.

The BINS system, by default, computes IDF weights based on the training

set, which is standard for text categorization systems. The results in this appendix

are certainly not decisive enough to merit otherwise. Even if there were a clear

gain from using the AP IDFs, this would not necessarily be a good choice. Loading

the AP weights is slower than computing the weights based on the training corpus.

More importantly, I do not want users of BINS to be required to have access

to outside information for training purposes, and it is unclear if I would have

permission to provide, along with the system, IDFs that I have computed using the

AP corpus. Additionally, there are cases where the use of AP IDFs leads to serious

degradation in performance. For example, see the discussion in (Sable and Church,

2001) concerning the use of an alternate (and older) version of BINS applied to the

Reuters data set (this alternate version of BINS can handle binary categories). The

AP IDFs cause a problem because of certain eccentricities with the Reuters data
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set. For example, the use of the abbreviations “mln” for “million” and “pct” for

“percentage” are both very common in Reuters, and while these words have been

assigned AP IDFs (i.e. they each occur at least once in a million documents), they

are quite rare in the AP corpus and are assigned IDF values that are much higher

than appropriate for Reuters; this throws off results.
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Appendix L

Using Only Category Counts to

Bin Words

As described in Section 5.3, my BINS system uses two features by default to group

words into bins; namely, the “category count” and the quantized (truncated) in-

verse document frequency (IDF) of each word is used. (The IDF measure is first

described in Section 2.4.2.) In other words, if two words share the same category

count in a category and the same IDF, they are placed into the same bin for that

category. (BINS also allows other optional binning features, two of which have been

described in Appendix I and Appendix J.) Section 5.4.3 justifies the use of IDF

as a binning feature by presenting statistical evidence that IDF is indicative of the

future probability of seeing a word in a category, even when the category count

of the word in the category is held constant. The end of that section, however,

explains that this does not necessarily mean that performance improves by using

this binning feature. Every new binning feature makes bins smaller, and there-

fore potentially less accurate; performance only improves if the benefit of using an

additional indicative feature outweighs the negative effect of smaller bins. BINS

therefore allows a user to specify that only category counts should be used to bin
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words, and this appendix explores the effect of that option for the Indoor versus

Outdoor data set and for the Events data set.

Tables L.1 and L.2 compare the results using only category counts as a

binning feature against the results using category counts in combination with IDF

for the Indoor versus Outdoor data set and the Events data set, respectively. In

addition to examining the effect on performance when BINS always relies on bin

weights, I have also compared the two options using both of the combinations of

bin weights and Naive Bayes weights discussed in Section 5.7. The results are

inconclusive. For the Events data set, the use of IDF as an additional binning

feature improves results in all three cases, although not by a huge margin. For the

Indoor versus Outdoor data set, the results go down in two cases and stay the same

in the third case. The results go down the most in the case when only bin weights

are used. This could be because the training set of the Indoor versus Outdoor data

set contains much fewer words (since only first sentences of captions are used), and

so the negative effect of making bins smaller by the introduction of the additional

feature is more prominent. Still, based on the justification of IDF as a binning

feature presented in Section 5.4.3, and also the vast use of the feature in the text

categorization literature, I have decided that BINS will use the feature to bin words

by default.
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System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
BINS (always use bin)

BINS (IDF weights) 85.8 75.1 90.1
BINS (only category counts) 87.6 77.7 91.4

BINS (COMBO #1)

BINS (IDF weights) 86.1 76.2 90.2
BINS (only category counts) 86.5 76.4 90.6

BINS (COMBO #2)

BINS (IDF weights) 87.2 78.0 91.0
BINS (only category counts) 87.2 77.3 91.1

Table L.1: Using IDF in addition to category counts actually degrades performance
for the Indoor versus Outdoor data set in two out of three cases.

System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %
BINS (always use bin)

BINS (IDF weights) 88.0 87.5 88.3 97.2 83.1 60.0
BINS (only category counts) 87.4 87.0 87.7 97.2 84.1 42.4

BINS (COMBO #1)

BINS (IDF weights) 90.3 89.7 90.8 98.3 89.4 62.5
BINS (only category counts) 89.6 88.8 89.8 98.3 89.1 57.1

BINS (COMBO #2)

BINS (IDF weights) 90.3 89.5 90.4 98.9 89.1 63.8
BINS (only category counts) 88.9 87.6 89.1 97.2 89.1 57.9

Table L.2: Using IDF in addition to category counts improves performance for the
Events data set.
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Appendix M

Summary of Optional Binning

Features

Tables M.1 and M.2 summarize the results of the experiments discussed in Appen-

dices I, J, K, and L for the Indoor versus Outdoor data set and the Events data

set, respectively. The first line of each chart shows the results when only category

counts are used to bin words. This feature, explained in Section 5.3, is always re-

quired, and there is no reason to expect that decent results can be achieved without

it. The remaining lines of the charts show the results when other features are used

in addition to category counts.

The second line of each chart represents the default configuration of BINS;

in this case, the IDFs of words, calculated based on the first half of the training set,

are also used for binning. This feature is described in Section 2.4.2. As explained

in Appendix L, the addition of this binning feature improves results for the Events

data set but seems to lead to a slight degradation in performance for the Indoor

versus Outdoor data set. Although these results are inconclusive, I have decided

that BINS will use the feature to bin words by default; this decision has been based

on the justification of IDF as a binning feature presented in Section 5.4.3, and also
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System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
BINS (always use bin)

BINS (only category counts) 87.6 77.7 91.4
BINS (default IDF weights) 85.8 75.1 90.1
BINS (IDF from AP corpus) 86.5 76.2 90.6
BINS (SSCL weights) 85.8 74.5 90.2
BINS (IDF and SSCL) 84.0 71.4 88.9
BINS (burstiness) 87.6 77.7 91.4
BINS (IDF and burstiness) 86.1 75.4 90.3

BINS (COMBO #1)

BINS (only category counts) 86.5 76.4 90.6
BINS (default IDF weights) 86.1 76.2 90.2
BINS (IDF from AP corpus) 85.2 74.8 89.5
BINS (SSCL weights) 86.1 75.4 90.3
BINS (IDF and SSCL) 85.4 74.9 89.7
BINS (burstiness) 86.5 76.4 90.6
BINS (IDF and burstiness) 86.3 76.6 90.3

BINS (COMBO #2)

BINS (only category counts) 87.2 77.3 91.1
BINS (default IDF weights) 87.2 78.0 91.0
BINS (IDF from AP corpus) 85.8 75.7 90.0
BINS (SSCL weights) 86.3 75.7 90.5
BINS (IDF and SSCL) 86.3 75.9 90.4
BINS (burstiness) 87.2 77.3 91.1
BINS (IDF and burstiness) 87.2 78.0 91.0

Table M.1: This table summarizes the results for the Indoor versus Outdoor data
set of the optional features examined in the previous four appendices.
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System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %
BINS (always use bin)

BINS (only category counts) 87.4 87.0 87.7 97.2 84.1 42.4
BINS (default IDF weights) 88.0 87.5 88.3 97.2 83.1 60.0
BINS (IDF from AP corpus) 88.5 86.8 88.4 97.8 87.9 63.6
BINS (SSCL weights) 87.6 87.3 87.6 97.2 85.4 45.7
BINS (IDF and SSCL) 88.5 88.0 88.6 97.8 85.4 54.1
BINS (burstiness) 87.4 87.0 87.3 97.2 85.4 42.4
BINS (IDF and burstiness) 87.8 87.1 87.7 97.8 85.4 52.6

BINS (COMBO #1)

BINS (only category counts) 89.6 88.8 89.8 98.3 89.1 57.1
BINS (default IDF weights) 90.3 89.7 90.8 98.3 89.4 62.5
BINS (IDF from AP corpus) 90.5 89.7 91.4 98.9 89.1 62.7
BINS (SSCL weights) 90.1 89.4 89.8 98.9 89.1 63.8
BINS (IDF and SSCL) 90.7 89.9 90.8 98.9 89.1 66.7
BINS (burstiness) 89.6 88.8 89.8 98.3 89.1 57.1
BINS (IDF and burstiness) 90.7 90.1 91.1 98.9 90.3 62.5

BINS (COMBO #2)

BINS (only category counts) 88.9 87.6 89.1 97.2 89.1 57.9
BINS (default IDF weights) 90.3 89.5 90.4 98.9 89.1 63.8
BINS (IDF from AP corpus) 90.1 89.7 91.1 97.8 89.1 65.3
BINS (SSCL weights) 90.3 89.5 89.8 98.8 89.1 66.7
BINS (IDF and SSCL) 90.5 89.9 91.1 98.3 89.1 60.5
BINS (burstiness) 88.9 87.9 89.2 97.2 89.1 56.4
BINS (IDF and burstiness) 90.5 89.8 90.8 98.9 89.1 63.8

Table M.2: This table summarizes the results for the Events data set of the optional
features examined in the previous four appendices.
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the vast use of the feature in the text categorization literature. The third line of

each chart presents results when an alternative version of IDF, based on the analysis

of approximately one million AP News documents, is used instead of the default

IDF. Although this is significantly more data than available in the training set of

my own corpus, the data is less representative. A comparison of the results using

the two types of IDF is inconclusive; at the end of Appendix K, I explain why I

have decided to use IDFs based on the training set by default.

The remaining lines of each chart present the results using optional binning

features, either in addition to IDF or instead of IDF. One of these binning features

is burstiness, described in Appendix I, and the other is a measure I call shared

scaled category likelihood (SSCL), described in Appendix J. Once again, results

are inconclusive. At the end of Appendices I and J, I explain why I have decided

that BINS will not use these features by default.
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Appendix N

Using Unlabeled Data with BINS

N.1 Why Use Unlabeled Data?

As described in Section 2.5, in order to train a text categorization system, manually

labeled examples of the various categories need to be provided. This usually entails

obtaining human volunteers who agree to examine various documents and label

them accordingly. Once a text categorization system is implemented, this manual

collection process is often the most time consuming (and the most annoying) phase

of moving to a new set of categories.

If unlabeled data could somehow be used to improve categorization, on the

other hand, that is much simpler to obtain. Generally, vast amounts of unlabeled

documents are available. This has inspired two methods of using just a small

handful of seeds (i.e. labeled examples) along with a large amount of unlabeled

examples. One of these methods is bootstrapping (Yarowksy, 1995) and the other is

co-training (Blum and Mitchell, 1998) (which is actually a type of bootstrapping).

A recent paper by Abney (2002) compares the two algorithms.

It may some unintuitive that unlabeled data should be useful at all. Why

would any training document be helpful in making predictions for future documents
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if you don’t know the training document’s category? One way to think of it is like

this: If a system is trained on only the labeled examples, and then it is tested on

the unlabeled data, there will be certain documents that are part of the unlabeled

data for which the system might be very confident in its prediction. If we consider

only those unlabeled documents for which the confidence is above some very high

cutoff, a very high majority of the predictions for these documents should be accu-

rate. Adding these specific unlabeled documents to the training set (as examples of

their predicted categories) might be beneficial. The reason is that these confident

decisions may have been made based on certain evidence in these documents, and

the documents may contain additional indicative evidence of categories that is not

obvious from the original training data. This procedure (training based on labeled

examples, testing the unlabeled data, and adding documents with confident pre-

dictions to the training set) could potentially be repeated iteratively until things

converge or until some other stopping criteria is met. The hope is that the final

training set is better than the original training set. (This algorithm is similar to

although not exactly the same as what bootstrapping and co-training are doing. I

do not explain those algorithms in detail here, but the papers I have cited are good

sources.)

This appendix describes experiments with BINS using unlabeled data in

addition to labeled data for the Indoor versus Outdoor data set (first described in

Section 3.1.2.2) and the Events data set (first described in Section 3.1.2.3). I will

first explain how unlabeled documents are used to create a new binning feature for

words indicating the number of unlabeled documents containing a word that are

confidently predicted in each possible category. It turns out that the addition of

this binning feature has not improved performance for these data sets. At the end

of the appendix, I will discuss possible reasons for this, and I will explain why I

still believe there is promise in the approach.
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N.2 Using Unlabeled Category Counts as a Fea-

ture for BINS

The algorithms mentioned in the previous section allow documents that are origi-

nally not labeled to be added to a training set as examples of categories for which

they are confidently predicted. One potential problem, however, is that the labels

of these documents are likely not quite as accurate as those of manually labeled

documents. It might therefore be better to weight these added documents less in

some way, but most systems do not provide a way to do this (or they provide a

method that is ad-hoc). It turns out that a bin-based system, on the other hand,

provides a very natural way to weight documents that are originally unlabeled less

than manually labeled documents.

Remember that BINS creates a separate set of bins for each category, as

described in Section 5.3. One of the features used to group words into bins, de-

scribed in that same section, is the category count of each word; i.e. the number of

documents of the specified category in the first half of the training set that contain

the word. In fact, the category count of a word for a category is the only feature

that BINS requires for binning (and one of two features used be default). Now, in

addition to manually labeled training documents, let’s say we also have unlabeled

documents, some of which have very confident predictions from BINS (after it is

trained on the labeled data). For each word/category pair, we can now define a

second count, which is the number of unlabeled documents that have been confi-

dently predicted to belong to the category. We will call this the word’s unlabeled

category count for the specified category.

Let’s say we are dealing with the Events data set (originally defined in Sec-

tion 3.1.2.3). Further, some given word w1 with an IDF of x does not occur in

any Disaster documents in the first half of the training set, nor does it occur in
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any unlabeled documents that have been confidently predicted to belong to the

Disaster category. Another word w2 that also has an IDF of x does not occur in

any Disaster documents in the first half of the training set, but it does occur in ten

unlabeled documents that have been confidently predicted to belong to the Disaster

category. It is arguable, at the very least, that the Disaster term weight for w2

should be higher than the Disaster term weight for w1. This can be accomplished

be using unlabeled category counts as an additional binning feature, so that w1 and

w2 will be placed in different bins. The beauty of this is that the method used by

BINS to calculate term weights for bins (described in Section 5.4.1) will empirically

estimate weights for each bin, thereby providing a natural way of determining the

importance of this new binning feature. If it turns out that unlabeled category

counts are not really important (i.e. they are not indicative of categories), then it

is expected that bins corresponding to different values of this feature but sharing

other features in common will be assigned very similar weights. If, on the other

hand, this new feature does turn out to be important, then it is expected that

bins corresponding to different values of this feature, all else being equal, will be

assigned different weights, most likely with a progression towards higher weights as

the unlabeled category count for a specified category increases.

N.3 Determining High Confidence Predictions

As explained in Section 5.5, BINS generates a sum for every category. These sums

represent log likelihoods of a document similar to the one being examined occurring

in each possible category (under certain assumptions such as the independence

assumption). The category with the highest sum is the one that is predicted.

One possible way to measure the confidence of this prediction is to take note of

the difference between the sum generated for the chosen category and the sum

generated for the category that comes in second place.
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In order to determine whether or not a prediction meets some particular

standard of confidence, a cutoff must be chosen such that any difference above this

cutoff is considered good enough. This cutoff can be selected once for all categories,

or a separate cutoff can be selected for each category (i.e. when a specific category

is predicted, the difference between the sum for this category and the sum for the

second place category will be compared to the cutoff that corresponds to the chosen

category). I have used the later approach, since it is not clear that the sums for all

categories are on an equal scale.

Of course, it is not valid to consider the labels of the test set when determin-

ing cutoffs for each category. These cutoffs must be based on the training set. One

solution is to perform cross validation experiments within the training set, and to

choose cutoffs that maximize the F1 measure for each category. Remember, though,

as described in Section 2.7, the F1 measure weights precision and recall equally. In

this particular case, it might be better to weight precision more than recall, since

having an inaccurately labeled document in the training set is possibly worse than

leaving out an accurately labeled document. As described in Section 2.7, the more

general form of the F1 measure is the Fβ measure, and lower values of β weight

precision higher than recall. By lowering the value of β, we are therefore weight-

ing precision higher as compared to recall, which will cause cutoffs for categories

to increase; in other words, less of the unlabeled documents will be added to the

training set, but it is expected that a higher percentage of those documents that

are added will have accurate labels. In my experiments using unlabeled data for

both the Indoor versus Outdoor data set and the Events data set, I have tried using

β values of 1.0, 0.5, 0.33333, and 0.1 (therefore weighting precision equal to recall,

twice as high as recall, approximately three times as high as recall, and ten times

as high as recall). The next two sections demonstrate how the value of β affects

the number of unlabeled documents used to compute unlabeled category counts.
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N.4 Adding Unlabeled Data to the Indoor versus

Outdoor Data Set

Remember that the training set for the Indoor versus Outdoor data set, first de-

scribed in Section 3.1.2.2, consists of 894 documents (captioned images) including

621 Outdoor documents and 273 Indoor documents. In addition, I also have avail-

able 2,684 unlabeled captioned images. If BINS is trained on its original training

set, and then applied to these unlabeled documents, it predicts that 2,042 of the

documents are Outdoor documents and that 642 of the documents are Indoor doc-

uments. It is possible to use all of these predictions to obtain unlabeled category

counts for BINS. Or, a cutoff can be determined for each category based on cross

validation experiments within the training set, as explained in Section N.3. I have

computed cutoffs that maximize Fβ values, using values of 1.0, 0.5, 0.33333, and

0.1 for β.

β
# of Additions

to Each Category
Indoor Outdoor

none 642 2042
1.0 618 2042
0.5 539 1964
0.33333 355 1568
0.1 71 1479

Table N.1: The number of unlabeled documents used to obtain unlabeled category
counts for the Indoor and Outdoor categories depends on the value of β that is
used to determine cutoffs for each category.

Table N.1 shows the number of unlabeled documents confidently predicted

for each category, where a confident prediction is one that surpasses the cutoff

chosen to maximize the specified Fβ measure. If β is set to 1.0 or 0.5, almost all of
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the unlabeled documents are used. If β is set to 0.33333, the number of confident

Indoor predictions is cut almost in half, while the number of confident Outdoor

predictions is cut by about 25%. If β is set to 0.1, the number of confident Indoor

predictions is cut be almost 90%, while the number of confident Outdoor predictions

does not fall much from the 0.33333 cutoff.

N.5 Adding Unlabeled Data to the Events Data

Set

The training set for the Events data set, first described in Section 3.1.2.3, consists of

885 documents (including full news articles) including 282 Struggle documents, 243

Politics documents, 207 Disaster documents, 100 Crime documents, and 53 Other

documents. In addition, I also have available 8,156 unlabeled articles. If BINS is

trained on its original training set, and then applied to these unlabeled documents,

it predicts that 2,070 are Struggle documents, 4,393 are Politics documents, 993

are Disaster documents, 468 are Crime documents, and 232 are Other documents.

To determine cutoffs for confident predictions, I have performed three-fold cross

validation experiments within the training set and computed cutoffs that maximize

the same Fβ values used for the Indoor versus Outdoor data set.

Table N.2 shows the number of unlabeled documents confidently predicted

for each category in the Events data set, where a confident prediction is one that

surpasses the cutoff chosen to maximize the specified Fβ measure. It should not

be too surprising that the affect is quite different for different categories. Note

that most of the predictions for the Disaster category are very confident, as few are

filtered even when β is set to 0.1 (thus weighting precision ten times as important as

recall). This makes sense, as we have seen throughout the thesis that all text based

systems tested perform extremely well for this category. Few predictions for the
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β
# of Additions to Each Category

Struggle Politics Disaster Crime Other
none 2070 4393 993 468 232
1.0 2070 3285 934 468 232
0.5 955 2288 840 468 144
0.33333 955 2288 840 468 65
0.1 283 300 840 326 17

Table N.2: The number of unlabeled documents used to obtain unlabeled category
counts for each category of the Events data set depends on the value of β that is
used to determine cutoffs for each category.

Other category, on the other hand can withstand such a strict confidence cutoff,

and this also makes sense because we have seen throughout this thesis that all

systems perform poorly for this category. Somewhat surprising is that the Politics

category dominates the predictions (over half of the unlabeled data is predicted to

belong to this category), but less than 7% of these predictions are confident enough

to withstand the strictest cutoff (over half withstand the cutoff one level up).

Figures N.1 and N.2 both show how precision, recall, F1 and F1/3 vary with

different confident cutoffs for the Struggle category based on three-fold cross valida-

tion experiments on the training data of the Events data set. The cutoff indicates

the score that needs to be beat for a prediction (or non-prediction, if the score is

negative) of the Struggle category to stand. Not surprisingly, as we raise this cutoff,

precision for the category increases (since we are being more discriminating), but

recall falls (since we are placing fewer documents in the category). The first figure

shows the entire range of confidences achieved; in other words, the most confident

prediction for the Struggle category scores it just under 300 above the second place

category, whereas the furthest that Struggle ever placed behind the first place cate-

gory is nearly 600. The second figure highlights the key range of confidence cutoffs

from zero to 100.
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Figure N.1: As the confidence cutoff increases, precision increases but recall falls;
depending the value of β, the Fβ measure is maximized at different locations.

Figure N.2: The F1 measure is maximized at a cutoff of approximately zero, whereas
the F1/3 measure is maximized at a cutoff of approximately 60.
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Note that the F1 measures maximizes at a cutoff of almost exactly zero,

at which point the precision is slightly under 85% and the recall is a bit over

90%. In other words, to maximize the F1 measure for this category, it makes

sense to consider all predictions for this category to be confident. This matches the

information from Table N.2, which shows that with a β of 1.0, all predictions for the

Struggle category are considered confident. You can also see from that table that

this is not true for every category. On the other hand, the F1/3 measure, which

weights precision three times as important as recall, is maximized at a cutoff of

approximately 60. Using this cutoff, the precision for the Struggle category based

on the cross validation experiments is a perfect 100%, but the recall has fallen to

slightly over 60%. You can see from Table N.2 that with this cutoff, less than half

of the Struggle predictions on the unlabeled data are considered confident.

N.6 Are Unlabeled Category Counts Indicative?

Once we decide cutoffs for categories and use them to obtain confident predictions

for certain unlabeled documents, we can use these confident predictions to obtain

unlabeled category counts for words, as defined in Section N.2. BINS provides

mechanisms for computing per category confidence cutoffs that maximize a specified

Fβ, for determining which unlabeled documents have predictions that exceed this

confidence, and for using these unlabeled documents to produce unlabeled category

counts that are used as an additional feature. Once the BINS system has been

trained, the trained model produced based on the training data and the unlabeled

data can be examined to check if the term weights seem to suggest that unlabeled

category counts are helpful. In other words, all other things being equal, do term

weights for bins that differ only in the unlabeled category count feature seem to vary

in a somewhat predictable manner? If unlabeled category counts are indicative, it is

expected that higher values of this feature, when all else is constant, would lead to
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greater term weights and therefore increased likelihood of a word from a particular

bin appearing in a document of a particular category.

Figures N.3 and N.4 both show the influence of the unlabeled category count

on the lambda of a bin (which is the term weight for the bin, corresponding to the

likelihood of seeing a word from the bin show up in a document of some specific

category). The first figure examines a trained model using unlabeled data with

confident predictions based on a β of 0.5. It looks only at bins corresponding to

normal category counts of zero and an IDF of eight. A line is plotted for each

of the four major categories in the Events data set. For each of these categories,

values of lambdas have been calculated holding everything constant but varying the

unlabeled category count from zero through nine (there is no bin for at least one

category with an unlabeled category count of ten). The second figure examines a

trained model using unlabeled data with confident predictions based on a β of 1.0.

It looks only at bins corresponding to normal category counts of zero, but this time

separate plots are made for IDFs ranging from five through eight, and the category

is held constant as the Disaster category. For each of the IDFs examined, values

of lambdas have been calculated holding everything else constant but varying the

unlabeled category count from zero through ten.

It is easy to see that there is a definite trend, and this trend is the expected

one if unlabeled category counts are indicative of the likelihood of a word showing

up in a document of some specified category. Remember from Section 5.4.1 that

these term weights are log likelihoods using a base of two. Judging from these

plots, it looks like words that never show up in the first half of the training set

in a particular category but do show up in several unlabeled documents that are

confidently predicted to belong to the same category are eight to 16 times as likely

to appear in a new document of this category compared to words that never show

up in the category in the first half of the training set and also only show up in very
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Figure N.3: The trend of seeing lambdas increase with increasing unlabeled category
counts holds for all categories, but the lines are somewhat jagged.

Figure N.4: As the unlabeled category count increases, holding everything else
constant, the likelihood of seeing a word in a document of a specified category
tends to increase.
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few or no documents that are confidently predicted to belong to the category. This

provides a justification for using this binning feature similar to that provided for

IDF in Section 5.4.3.

However, notice that none of the lines are consistently increasing. Every plot

has at least one instance of falling as the unlabeled category count increases. Some

of the lines are actually quite jagged. This brings up the negative effect of adding

an additional binning feature. Every added feature may provide more indicative

information about words, but it also makes the bins smaller. Every bin that exists

with the default configuration of BINS is divided into potentially many smaller bins

based on the various possible unlabeled category counts. Thus, bins may become

less accurate, especially those that have scarce evidence. This could explain the

jaggedness of these plots, and it might be responsible for the negative results that

will now be discussed.

N.7 Results and Evaluation of Experiments with

Unlabeled Data

System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
BINS with unlabeled data
BINS (only labeled data) 85.8 75.1 90.1
BINS (maximize F1) 84.5 72.5 89.2
BINS (maximize F1/2) 84.5 72.5 89.2
BINS (maximize F1/3) 84.0 71.7 88.9
BINS (maximize F1/10) 83.6 72.2 88.4

Table N.3: The use of unlabeled category counts based on unlabeled data as an
additional binning feature degrades performance for the Indoor versus Outdoor
data set.
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System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %
BINS with unlabeled data
BINS (only labeled data) 88.0 87.5 88.3 97.2 83.1 60.0
BINS (maximize F1) 86.9 85.8 87.7 96.6 84.4 48.6
BINS (maximize F1/2) 87.4 86.2 88.3 96.7 84.4 52.6
BINS (maximize F1/3) 87.4 85.4 89.3 96.7 84.1 57.8
BINS (maximize F1/10) 87.1 86.1 88.4 97.2 81.4 53.7

Table N.4: The use of unlabeled category counts based on unlabeled data as an
additional binning feature degrades performance for the Events data set.

Tables N.3 and N.4 show the performance of BINS using unlabeled data

for the Indoor versus Outdoor data set and the Events data set, respectively. For

both data sets, the unlabeled data is used to compute unlabeled category counts

for words as an additional binning feature. Confident predictions are those that

surpasses cutoffs computed to maximize a specific Fβ measure based on three-fold

cross validation experiments using the labeled training data. As you can see, the

overall accuracy for each experiment using unlabeled data is less than that when

BINS uses only labeled data (although only by one or two percent). Although

unlabeled category counts do seem to be indicative of categories, as explained in

Section N.6, this increased information apparently does not compensate for the loss

of accuracy due to smaller bins.

N.8 Concluding Discussion of Unlabeled Data

The use of unlabeled data to improve performance of systems has received a lot

of attention lately due to the vast amount of unlabeled data available and the

difficulty of obtaining labeled data. Most methods of using unlabeled data involve

iteratively adding unlabeled documents with confident predictions to the training

set until some stopping point is reached, starting with just a few seed examples.
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The goal is usually to achieve performance that is on par with performance that

can be achieved by a manually labeled training set.

The experiments described in this chapter are different. Starting with a

full training set achieving good performance for two tasks, I have attempted to

improve performance further by incorporating unlabeled data. I have pointed out

that most other methods using unlabeled data treat the unlabeled documents as

equal to the labeled documents once it is decided that they will be used. BINS

provides a mechanism of using the unlabeled documents but weighting them less

than normal documents. By computing unlabeled category counts as an additional

binning feature, term weights can be empirically estimated that take unlabeled

documents into account without giving them too much weight. As shown in this

appendix, these unlabeled category counts do seem to be indicative of the likelihood

of a word from a particular bin appearing in a document of some specific category.

Unfortunately, this extra information does not compensate for the loss of accuracy

due to smaller bins, and the performance of BINS slightly degrades when unlabeled

data is used for the Indoor versus Outdoor data set or the Events data set.

One question that arises is whether or not the size of the training sets used

for these experiments without unlabeled data are already large enough such that

more data is not particularly helpful. There is no reason to expect that additional

unlabeled data will be as good as the same amount of additional labeled data,

and it certainly won’t be any better. Of course, if I had additional labeled data, I

would have already been using it, so this is not really testable. What is testable,

though, is using less training data. Appendix O tests what happens when I start

with only one tenth of the available training data for each of the data sets used in

this appendix, and add training data until the entire training set is used. I show

that performance still seems to be increasing with training set size, although I may

have reached a level of diminishing returns. It is not clear whether or not significant
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improvement can be achieved by increasing the training set size further. Since the

benefit of additional unlabeled data is not expected to be as high as the benefit

of additional labeled data, perhaps the task I have discussed in this appendix is

too difficult. Maybe a more achievable goal would be to show that unlabeled data

can be used in additional to a much smaller training set to achieve performance

comparable to that achieved with a full training set. This would be more in line

with other research involving unlabeled data. I leave this for future work.
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Appendix O

The Effect of Training Set Size on

Performance

Section 2.5 first describes the general machine learning paradigm for text catego-

rization. Systems learn how to make predictions for future documents based on

provided examples. These examples are usually in the form of manually labeled

documents, and obtaining these examples can be the most expensive part of mov-

ing on to a new set of categories. Typically, the more training data is obtained,

the better machine learning systems will perform, assuming that all of the data

is equally accurate. In fact, recent papers by Banko and Brill (Banko and Brill,

2001b; Banko and Brill, 2001a) argue that much larger training sets may be more

important than better algorithms for certain natural language tasks (they provide

evidence that this is so for a task they call confusion set disambiguation).

This appendix studies the effect of training set size on the performance of

my BINS system for the Indoor versus Outdoor data set (first described in Sec-

tion 3.1.2.2) and the Events data set (first described in Section 3.1.2.3). I can not

perform this study by adding to the training set that I usually use for these data

sets; if I had more labeled data, I would have been using it the whole time. However,
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it is easy to use less training data. Therefore, the approach I have taken for each

data set is to arbitrarily divide the training set into ten pieces of approximately

equal size, and then to add one piece at a time to the training set to see how the

system performs after each piece. The experiments discussed in this appendix run

BINS with all of its default settings.

There are at least two reasons that this study is interesting. For one, in its

own right, it is interesting to see how much of an effect the size of the training

set has on performance. Since obtaining manual labels is often the most expensive

part of moving to a new set of categories, it is helpful to know how many labels

it pays to collect. In addition, these experiments have partially been conducted to

help explain the results of Appendix N. In that appendix, I show that the use of

unlabeled data, using a methodology explained in that appendix, does not help,

and event slightly degrades, the performance of BINS for the same two data sets

used in this appendix. There is no reason to believe, however, that unlabeled data

should be as helpful as manually labeled data, and so if it turns out that a point

of diminishing returns has already been reached (i.e. the training set has already

reached a size such that more data is not particularly helpful), this could mean that

I have attempted something quite difficult in Appendix N.

Table O.1 shows the results adding each new piece of the training set for both

the Indoor versus Outdoor data set and the Events data set. Figure O.1 graphically

depicts the same information. Not surprisingly, the performance of BINS improves

as the size of the training set is increases, although there are a few small anomalies.

It does appear, though, that the rate of improvement is diminishing, as the lines

appear near flat by the time that the entire training set is being used. It is probable

that more improvement can be achieved by increasing the size of the training set

further, but the level of such improvement is hard to guess.

I would expect that the improvement adding another 10% or 20% to either
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% of Overall Accuracy %
Training Indoor

Data versus Events
Used Outdoor
10 72.8 59.8
20 75.5 75.4
30 74.6 80.4
40 80.9 83.3
50 83.4 85.8
60 82.7 86.9
70 84.3 86.2
80 84.7 86.2
90 85.2 88.7
100 85.8 88.0

Table O.1: Not surprisingly, the performance of BINS improves as the size of the
training set increases, although the rate of improvement is diminishing.

Figure O.1: The performance of BINS improves as the training set size increases,
but the lines seem to be flattening by the time the entire training set is used.
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training set would be small. Perhaps if one could increase the size of the training set

by 100% of 1000%, the improvement might be much greater. Another possibility,

however, is that each performance is asymptotically approaching a level to which

it is already close; this especially makes sense for the Indoor versus Outdoor data

set, which likely has an upper bound of approximately 87.6% (as explained in

Section 3.1.2.2, this is the accuracy of humans who predict a category after viewing

only the captions of the images), and the system is already achieving close to this. In

fact, there has to be some upper bound, which the system eventually asymptotically

approaches; at best, this can be 100%, but it is likely something less (I see no reason

to believe that a system will achieve perfect performance given infinite data).
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Appendix P

An Automatic Training Set for

Newsblaster

When it first came time to apply text categorization to Newsblaster clusters, as

described in Section 9.1.3, it was speculated by others working on the project that

it may be possible to create a training set for the system automatically. At the

time, there were five categories for news stories; they were the same as the six

categories that exist now except that the Science/Technology category did not yet

exist. The idea was that by copying articles from specific directories of sources

that would almost surely belong to certain categories (e.g. directories containing

articles placed in the World News or Sports section of other sites), we could find

many training documents for each of our categories without having to manually

label anything. Having already been aware of the importance of accurate and

representative training sets (see the discussion in Section 2.5), I was skeptical, and

it turns out that my skepticism was correct. This appendix describes the attempt

to create an automatic training set for Newsblaster and compares results to those

obtained from a manually labeled training set.

The automatic training set for Newsblaster has been created not by me, but
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by Sergey Sigelman, a member of our research group and the Newsblaster team.

Sergey has collected articles from various news sites that, as previously described,

are very likely to belong to specific Newsblaster categories. All together, Sergey’s

training set contains 7,326 documents including 1,269 U.S. News articles, 604 World

News articles, 1,604 Finance articles, 693 Entertainment articles, and 3,156 Sports

articles. Already, you may see a problem; these numbers are not really indicative

of how frequently each category occurs on a normal day, they are simply indicative

of how easy it is to find articles that are likely to belong to each category without

reading them. That being said, I do not believe that this problem accounts for the

results of this appendix; in my personal research experiences, I have noticed that

most approaches are not affected very heavily by a-priori probabilities of categories.

In order to compare the automatic training set to a manually created training

set, I have personally examined 2,000 articles from old Newsblaster runs and I have

manually labeled them according to my own opinions. I have allowed myself to

label an article as ambiguous (and therefore not include it in the training set) if I

could not decide on the appropriate category, although I have tried to keep this to

a minimum; this is how I have labeled 108 of the articles. My manually created

training set thus consists of the remaining 1,892 documents, including 668 U.S.

News articles, 811 World News articles, 223 Finance articles, 65 Entertainment

articles, and 125 Sports articles. Note that this is a much smaller training set

than Sergey’s automatically created training set, but I will show that this is one

instance in which the quality of the training data matters more than the quantity

of the training data.

In order to compare the use of the two training sets, it would not have been

fair to simply take a random portion of my manually labeled data and use it as

a test set. This would have given my training set an advantage, as the training

data would have clearly been more similar to the test data (since each set would
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have contained articles about the same stories). Therefore, I waited several weeks,

and then manually labeled a single days worth of Newsblaster articles. At that

time, Newsblaster did not download as many articles per day as it does now; there

were 371 articles on that particular day. I have labeled these articles, once again

allowing myself to prune ambiguous articles but trying to keep this to a minimum;

I have therefore pruned only 15 ambiguous articles. The test set thus consists of

the remaining 356 documents, including 83 U.S. News articles, 142 World News

articles, 42 Finance articles, 13 Entertainment articles, and 76 Sports articles.

System
Overall Accuracy %

Automatic Manual
Difference

Training Set Training Set
My systems

BINS 49.2 93.3 +44.1
Rainbow systems

Naive Bayes 68.8 96.6 +27.8
Rocchio/TF*IDF 80.6 97.5 +16.9
K-Nearest Neighbor 50.6 87.1 +36.5
Probabilistic Indexing 91.3 94.4 +3.1
Support Vector Machines 71.1 96.1 +25.0
Maximum Entropy 67.7 94.7 +27.0

Table P.1: All tested systems perform better with the manual training set than
they do with the automatic training set, and for all but one of the systems it makes
a huge difference.

Table P.1 shows the results when systems are trained using either the auto-

matic training set or the manual training set, and tested on a single days worth of

Newsblaster articles. As you can see, all systems perform better using the manual

training set even though it is much smaller. All but one of the systems are affected

to an extreme degree. My BINS system is affected the most; performance degrades

a whopping 44.1% when the automatic training set is used. Rainbow’s Probabilis-

tic Indexing system is affected the least by far, with performance degrading only
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3.1%. The average performance difference is a change of 25.8% in overall accuracy.

The fact that all of the systems do better (most of them by a huge margin) using

the manual training set does not surprise me; this is what I expected. What does

surprise me is that the level to which systems are affected varies so highly from one

system to another. If you look throughout this thesis, for most text categorization

tasks, all of the text based systems perform relatively close to one another; they

are all, after all, using bag of words approaches and the same features to make

their decisions. This task, however, when using the automatically created training

set, has by far the largest performance range I have seen, spanning from 49.2% to

91.3%.

The degradation of performance using the automatically created training set

is probably not caused by inaccurate labels for these documents. I have inspected

the training set, and it seems to me that the overwhelming majority of them are cor-

rectly labeled; in fact, I have seen no document in that training set that is obviously

in the wrong category. The problem is that this training set is not representative of

future data, and the reason is subtle. Each category has representative articles in

the training set from certain sources but not others. For example, The automatic

training set for the World News category contains articles from only ABCNews,

CNN, and Reuters; this is because these are the only sites for which Sergey has

found directories containing articles that clearly belong in this category. Other

categories contain representative articles in the training set from other sources.

There happen to be 319 articles in the training set, for example, taken from

the Washington Post news site. 317 of these 319 articles are in the training set for

the U.S. News category, only two belong to the training set for the Finance category,

and the other three categories have no representative articles from this source at all.

This is an example of a major problem, because the Washington Post often refers

to itself (or to a “Washington Post reporter”) in its articles, and systems might
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therefore learn that the word “post” is very indicative of the U.S. News category

(unless this word happens to also turn up commonly in other categories for some

other reason). However, in the test set, 120 of the 356 test articles happen to come

from the Washington Post, and only 28 of these 120 articles actually belong to

the U.S. News category. Of course, there may be other words in these articles that

overcompensate for the misinformation from the word “post”, and different systems

using different approaches will weight the evidence differently; but if errors like this

one occur commonly (and I believe they do), then this is likely what accounts for

(at least part of) the degradation in performance using the automatic training set.

One might point out that for this particular data set, BINS seems to under-

perform most of the Rainbow systems, and thus one might question the decision

to use it for Newsblaster categorization. However, I am confident with that deci-

sion for several reasons. First of all, the performance of BINS with the automatic

training set is irrelevant. Newsblaster is using a manually constructed training set;

after starting with a combination of the manual training set and test set described

in this appendix, the training set has improved over time (as explained in Sec-

tion 9.2). Second, the performance using the manual training set, as described in

this appendix, is on par with the performance of the other systems, all of which

do well. According to Table P.1, several of the Rainbow systems still seem to beat

BINS by a few percentage points, even when using the manual training set. How-

ever, there happen to be several articles in the test set about the about Senate

hearings involving the Enron scandal. At the time, I personally considered these to

belong to the Finance category, although I realized they could arguable be placed

in the U.S. News category as well; now, looking back, I even feel this might be

more appropriate. It turns out that BINS does place these articles in the U.S.

News category, and therefore gets penalized, whereas most of the other systems

(all those with a higher overall accuracy) place them in Finance; this is responsible
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for the entire difference. In addition, as I have shown throughout the thesis, BINS

tends to do well for tasks similar to this one (e.g. it has the best performance

of all systems tested for the Events categories). Finally, I often check the daily

categorization results of the Newsblaster system, and it is clearly performing very

well. Generally, mistakes only occur when an unusual story appears, the likes of

which has not been seen before; this would cause trouble for any system, and I

have already implemented a means to correct such errors over time (as explained

in Section 9.2).


