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ABSTRACT
Layout refers to the process of determining the sizes and positions
of the visual objects that are part of an information presentation.
Automated layout refers to the use of a computer program to au-
tomate either all or part of the layout process. This field of re-
search lies at the crossroads between artificial intelligence and hu-
man computer interaction. Automated layout of presentations is be-
coming increasingly important as the amount of data that we need
to present rapidly overtakes our ability to present it manually. We
survey and analyze the techniques used by research systems that
have automated layout components and suggest possible areas of
future work.

Categories and Subject Descriptors
H.5.2 [HCI]: User Interfaces—Screen Design; I.2.1 [AI]: Applica-
tions and Expert Systems; I.3.6 [Computer Graphics]: Methodol-
ogy and Techniques

Keywords
Automated Layout, Intelligent User Interfaces, Knowledge-Based
Graphics, Information Visualization, Artificial Intelligence, Human
Computer Interaction

1. INTRODUCTION
Effective layout is one of the most important aspects of creating an
information presentation. By layout, we mean both the process of
determining the position and size of each visual object that is dis-
played in a presentation, and the result of that process. We use the
term presentation to refer to material that is intended to be viewed
and manipulated by people; for example, graphical or textual user
interfaces (UIs), World Wide Web documents, and even conven-
tional newspapers and magazines. Layout is one component of a
presentation’s design, and must complement other decisions that
determine the number and nature of the visual objects that are laid
out: the information to be communicated and its format. By format,
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we mean how the visual objects are realized (e.g., as text, graphics,
or UI widgets), and their attributes (e.g., color, texture, or font).

A presentation’s layout can have a significant impact on how well
it communicates information to and obtains information from those
who interact with it. For example, the importance of individual
objects can be emphasized or deemphasized, and the relationships
between objects can be made more or less clear. In the case of
UIs, layout determines in part the time, effort, and accuracy with
which tasks can be accomplished. A well laid out presentation can
visually guide the viewer to infer correct relationships about its ob-
jects (e.g., to view a linear presentation from beginning to end) and
to accomplish tasks quickly and correctly (e.g., by minimizing the
distance between objects to be manipulated sequentially), increas-
ing the presentation’s effectiveness.

The vast majority of layouts created today are done “by hand”: a
human graphic designer or “layout expert” makes most, if not all,
of the decisions about the position and size of the objects to be
presented. Designers typically spend years learning how to create
effective layouts, and may take hours or days to create even a sin-
gle screen of a presentation. Designing presentations by hand is too
expensive and too slow to address situations in which time-critical
information must be communicated. Recognizing this problem has
given rise to work in automated generation of graphical presenta-
tions and UIs [12]. This research has addressed the creation of ob-
jects to be presented and the determination of their attributes (what
we have referred to before as format), and the layout of these ob-
jects.

In this paper we provide a survey of work on automated layout for
presentations, recognizing that the objects to be laid out may be
derived wholly or in part from automated generation either before
or after layout. To focus on the general problem, we restrict our
study to not address the very active field of graph layout [1]. Not
only has this field been extensively studied, with its own annual
conference [13], but many of the issues with which it is concerned
are specific to problems caused by the explicit visual representa-
tion of graph edges (e.g., minimizing edge crossing [10, 54]). We
also note that “automated layout” is a term that is commonly used
to refer to automated circuit layout for VLSI chip fabrication [17,
29] and to automated placement of pieces to be cut from a bolt of
cloth used to produce clothing [39]. Unlike presentation layouts
(including graph layouts), these layouts are designed to meet the
requirements of a fabrication process (e.g., to minimize chip area
and interconnect length in VLSI [3]), rather than to make them un-



derstandable to humans. While we cover neither of these areas,
we note that they employ some techniques that may contribute to
automated layout of presentations (e.g., general constraint solvers)
and other that may not (e.g., bin-packing techniques [15] that re-
sult in minimal area layouts at the expense of maintaining visually
obvious relationships among objects).

In the remainder of this paper, we first discuss some of the simple
approaches to presentation layout used in current commercial soft-
ware in Section 2. Next, we focus on the two methods that have
been adopted by research systems that address automated presen-
tation layout: constraints and learning. As described in Section
3, most research layout systems assume that a layout can be de-
scribed by a set of constraints. Much of this work addresses ap-
plying constraint solvers and developing new ones. In addition,
many researchers have focused on how to determine or extract the
right constraints as well as how to to express them to a computer
program. Systems that are not constraint-based generally fall into
the category of learning systems, which we discuss in Section 4.
These systems are sometimes trained by experts and other times by
the user as the system assists in the layout process. In Section 5,
we introduce some of the issues involved in evaluating presentation
layouts. Finally, Section 6 presents our conclusions and ideas for
future work.

2. SIMPLE TECHNIQUES
Almost all contemporary user interfaces are built with a UI toolkit
(e.g., Sun JFC/Swing [23], Microsoft Foundation Classes [38], and
their ancestors, such as Xtk [37] or Tk [44]) that provides basic
functionality, such as creating buttons and windows. Toolkits in-
clude layout managers (also known as geometry managers) to as-
sist the UI designer (programmer) in designing the layout of ob-
jects in a managed container, without having to specify the absolute
position and size of each object. Layout managers allow the pro-
grammer to say, in effect, “add button” or “add button to this part of
the window,” and optionally specify additional numeric constraints.
This makes it possible to create layouts that adapt to changes in the
container’s size.

A layout manager chooses positions and sizes at run time for the
objects that it controls, governed by a set of constraints imposed
by a simple layout policy built into the manager and parameters
specified by the programmer. Typical layout policies include strict
horizontal (row) or vertical (column) layout; row-major or column-
major layout in which objects wrap to the next row or column to
avoid exceeding the managed container’s bounds; border layout in
which objects can be specified to reside in the north, south, east,
west, or center of the managed container; and grid layout in which
objects are specified to reside at one position (or straddle multi-
ple positions) in a programmer-specified 2D grid. Programmer-
specified parameters indicate preferred, minimum, and maximum
widths and heights of objects; and spacing, both between objects
and between objects and the container’s edges. Managed contain-
ers can be nested inside of other managed containers, and treated
just like any other objects.

A programmer designs a parameterized layout as a hierarchy of
managed containers, chosen for their layout policies, and further
constrained by programmer-specified parameters. Thus, a layout
manager does not actually design a layout, but rather instantiates a
layout at run time from the structure and parameters specified by
the programmer. Designing a simple layout (e.g., four buttons dis-
played in row-major order) is easy for a programmer, but designing

a complex hierarchical layout, while possible, is tedious and dif-
ficult, especially if it needs to behave robustly when resized. The
popularity of the layout-manager approach stems primarily from
the ease of implementing the managers themselves and the relative
ease with which they can be used by programmers to define simple
parameterized layouts. In addition, because the final layout is de-
termined at run time, the presentation can work well under a wide
range of possible window sizes, with lower bounds on usability im-
posed by the minimum effective sizes of the objects being laid out.

Commercial word-processing and presentation systems intended
primarily for sequential presentations (e.g., Microsoft Word, Pub-
lisher, and PowerPoint, Quark Express, and LaTeX), provide a set
of preauthored style “templates” (and the ability to create new ones)
that can be applied to existing material; for example, by matching
“markup” tags present in the material to be processed with corre-
sponding tags in the template. In comparison with the parameter-
ized layouts of UI toolkit layout managers, most of these template-
based systems are simpler. They emphasize the format of the mate-
rial to be presented, relying on the order in which objects are spec-
ified as input to directly determine the order in which formatted
objects appear in the presentation, with the exception of their han-
dling of floating objects. Floating objects, such as tables or figures,
can move relative to surrounding objects (typically text). Typically,
a set of rules is used to determine the final position of the floating
object; for example, “If the height of the object is more than 60%
of the height of the page, then put the object on a separate page;
otherwise, put the object at the nearest paragraph break.” However,
users of these systems often move floating objects around by hand
to guide or overrule simplistic placement policies.

In the following sections, we discuss the two techniques that have
been explored in automated layout systems: constraint satisfaction
and learning.

3. CONSTRAINT SATISFACTION
The vast majority of research in automated layout to date focuses
on constraint-based methods (e.g., [59, 4, 14, 20, 26, 19, 61, 42]).
The idea that layouts can be represented as a set of constraints is
very intuitive. For instance, consider the constraint relationships
depicted in Figure 1. The goal of a constraint-based automated lay-
out system is to take such a constraint network and generate a set of
positions and sizes for each of the components in the network. Any
constraint-based automated layout system can be characterized by
the kinds of constraints it uses; how they are described, obtained,
and resolved; and how the system addresses constraint inconsisten-
cies, loops and other hazards that might prevent the solution from
converging. In the rest of this section, we explore these issues.

3.1 Types of Constraints
In a constraint-based automated layout system, most constraints
can be classified as either abstract or spatial. By abstract, we mean
that the constraint describes a high-level relationship between two
components that are to be included in the layout (e.g., “TEXT1
REFERENCES PIC1”). In contrast, spatial constraints enforce po-
sition or size restrictions on the components (e.g., “CAPTION1
BELOW PIC1”). Spatial constraints can be fed directly into a con-
straint solver for resolution, whereas abstract constraints must be
processed and reduced to spatial constraints before the layout can
be realized. The process of generating spatial constraints from the
abstract constraints is often the most challenging part of creating
an automated layout system.
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TITLE ABOVE TEXT1
TITLE FULL PAGE WIDTH
TEXT1 LEFT OF PIC1
CAPTION1 BELOW PIC1
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TITLE DESCRIBES TEXT1
TITLE IS IMPORTANT
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CAPTION1 DESCRIBES PIC1
TEXT2 FOLLOWS TEXT1

(b) (c)

Figure 1: (a) A network of constraints that might be used in an
automated layout system. (b) A set of spatial constraints that
express the constraint network. (c) A set of abstract constraints
that express the same relationships.

The choice of employing abstract or spatial constraints depends on
the nature of the layout that the system is designed to generate.
Many research systems employ both abstract and spatial constraints
because they are general multimedia presentation tools [11, 61, 14].
Other research initiatives are embodied in the form of libraries such
as subArctic [20, 18] and the Garnet toolkit [42] that include exten-
sions of “layout manager” type functionality with simple spatial
constraints. Although automated layout systems for more limited
environments can create effective layouts using only spatial con-
straints [27], the same can not be said for attempting to employ ab-
stract constraints without spatial constraints. Figure 2 depicts what
the difference in output might be between a system that considers
only abstract constraints versus a system that takes into account
both abstract and and spatial constraints. This issue is discussed
further in Section 3.1.2.

3.1.1 Abstract Constraints
Abstract constraints are descriptions of high-level relationships be-
tween the various components that are to be placed into the layout.
Abstract constraints such as “TEXT1 REFERENCES PIC1” and
“TITLE IS IMPORTANT” are sufficiently high-level that content
authors can easily specify them and are particularly effective for
use in interactive systems because the author of the content needs
no additional technical or artistic skill to specify them.

Although one might think that “TEXT1 REFERENCES PIC1” im-
plies that B and C are relatively close to each other in the gener-
ated layout, abstract constraints in and of themselves do not spec-
ify the position and size of the components of a layout. This is
because the mapping between abstract constraints and spatial con-
straints is performed by a translation component before spatial con-
straints are passed to the numeric constraint solver. The abstract–
spatial constraint translator can choose to map the abstract con-
straint “TEXT1 REFERENCES PIC1” into any set of spatial con-
straints. This might mean that the PIC1 is placed right next to text
TEXT1, or that PIC1 is placed on a different page and some visual
cue is left to guide the end user to it from TEXT1.

3.1.2 Spatial Constraints
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(a) (b)

Figure 2: (a) A simple layout that can be generated by a sys-
tem that only considers abstract relationships between compo-
nents. (b) A layout of the same components where additional
spatial constraints are enforced so that each component com-
pletely fills a regular grid and leave margins between the ele-
ments.

Spatial constraints are relations that directly express the geometric
structure of the presentation. For instance, we may wish to force
a certain block of text to appear beneath another block of text that
the user is assumed to have read first. Another instance of spatial
constraints would be to force all objects to occupy a space that is
of a certain size or an integral multiple of that size.

There are a number of reasons why we would want to impose spa-
tial constraints. Perhaps the most prevalent reason is to improve
upon the visual quality and aesthetics of the presentation. Many
early automated layout systems are created from the perspective of
computer science and mathematics alone [2]. Such systems tend to
treat the problem as a purely theoretical question of tiling and use
optimization techniques to find a solution [31]. These kinds of sys-
tems will often not take into account simple legibility rules (e.g.,
text should be placed into columns that run down the entire page
rather than having blocks of random size packed onto the screen)
and style guidelines (e.g., all captions go beneath their associated
figures and spacing between a figure and surrounding text block
should be the same everywhere). Figure 2 exemplifies what might
happen in a system that employs abstract constraints without spa-
tial constraints. A system that considers only abstract constraints
will not be able to generate layouts with the same aesthetic appeal
as systems that consider both because the system has no visual re-
strictions on where components of the layout are placed.

The method by which the components are represented may place
some kind of limitation on what kinds of spatial constraints may be
used. One such issue that may arise is sometimes referred to as the
“Cousins Problem,” an example of which is shown in Figure 3. This
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Figure 3: (a) A layout generated by a system that does not en-
force spatial relationships between “cousins.” (b) A layout of
the same components where spatial constraints force all of the
children to be aligned.

problem may arise if the data structure in which the components are
being stored does not allow referencing one component’s children
from a different component’s child.

It seems intuitive that we would want to use concepts from graphic
design to create legible and pleasing output. Some systems enforce
the presentation to conform to a grid system, similar to those used
to lay out newspapers [40, 21]. In a grid system, every screen or
page of the presentation is divided into an array of upright rect-
angles. Each object must occupy one or more complete rectan-
gles. Figure 4 is an example of output from Feiner’s GRIDS sys-
tem [11] which designs layout grids that enforce a consistency be-
tween screens or pages of a presentation. One complication with
employing grid systems is that a graphical component may need to
be cropped, padded with a border or have its aspect ratio changed
This is because uniform scaling of the object may not be sufficient
to make the object occupy an integral number of grid rectangles.

Automated layout systems for well-defined environments, such as
network diagrams or label placement, often employ spatial con-
straints exclusively [27, 7]. These systems consider issues such
as the proximity of the components being placed, the distance be-
tween a label and its target, and the possibility of confusing the end
user by placing multiple labels that are sufficiently near the same
target that the end user doesn’t know which label is associated with
it. Abstract constraints are often used for formatting labels (larger
cities have bigger names), but are generally not used for layout di-
rectly.

Some systems allow the user to specify abstract data constraints
separately from spatial constraints. This allows for a logical single
presentation to have many different “skins,” opening the door for a
single presentation to be displayed using different media [61]. This
is particularly effective for interactive layout systems that might
want to maintain a separation between content authors and “layout
experts.” A similar approach that leverages this concept is to build
the spatial constraints into the system, thereby eliminating the need

(a) (b)

Figure 4: (a) A layout generated by Feiner’s GRIDS with the
grid showing. (b) The same layout as presented to the user.

Figure 5: Two layouts generated by Weitzman’s system using
the same content and abstract constraints with different visual
constraints

for human intervention to specify spatial constraints for each layout
to be generated. Feiner’s GRIDS is an example of a such system
[11].

Spatial constraints are sometimes used to increase the efficiency of
the constraint solver. For instance, a constraint might be placed
on all objects of a certain type that permits them to be resized in
only one direction [30]. Similarly, imposing the constraint of a
quantized display permits the use of fast fixed point and integer
programming techniques when resolving the set of constraints.

3.2 Expressing Constraints
Intuitively it would seem best to define a formal grammar to de-
scribe the method by which the constraints are expressed. This
approach benefits from being able to leverage a rich body of ex-
isting research for manipulating and parsing constraints. A rich
grammar might be very flexible and expressive and translate into
better layouts [60]. An example of a grammar for use in a layout
system is shown in Figure 6. However, powerful and expressive
grammars may also be difficult to use. This is especially true of
grammars or ontologies that attempt to be extremely general and
all-encompassing. In addition, a very complex solver may be nec-
essary to process the information present in such a system. As one
might imagine, it is extremely difficult to create a system that de-



(Defrule (Make-Article The-Grammar)
Article -> Text Text Text Number Image

0 1 2 3 4 5
(Author-Of 2 1)
(Description-Of 4 1)
(Page-Of 4 1)
(Image-Of 5 1)
(article-name 0) = r
(article-image 0) = 5
:OUT
(right-of 1 5)
(top-aligned 1 5)
(top-aligned 5 4)
(spaced-below 2 1)
(spaced-below 3 2)

)

Figure 6: A fragment of a rule definition from Weitzman and
Wittenburg’s system [61].

scribes the set of all possible high-level relationships between com-
ponents of a presentation, although this has been explored for the
use of automatic graphics generation [62].

Another extremely powerful approach is to express the constraints
in terms of Boolean predicates [14]. This approach alleviates some
of the concerns that arise from the more expressive grammar and
relational grammar approaches by limiting the space of what can
be expressed. The use of Boolean predicates also eases the pro-
cess of solving the set of constraints as the input needs little or no
translation before being passed to the solver.

3.3 Obtaining Constraints
One of the most important practical issues in implementing a constraint-
based automated layout system is determining where to obtain the
constraints. Approaches that have been tried range from fully auto-
mated to the computer making suggestions.

Many automated layout systems implement abstract constraints by
gathering them from structured input data [33, 6, 4, 2]. These
systems take tables of numeric data and automatically create pre-
sentations. The structure of the data provides all the relationships
that are needed to generate the layout. Other systems that are de-
signed for multimedia layout have languages to explicitly specify
the abstract constraints to describe relationships such as “author-
of,” “description-of” and “precedes” between the components [61,
14]. The assumption that input data is readily available in a struc-
tured form is becoming increasingly valid because the information
that we create is beginning to be stored in more structured formats
[57]. Such work is prevalent in the layout modules of automated
graphics generation systems [63].

3.3.1 Interactive Specification
Interactive constraint specification systems are also extremely pop-
ular, but suffer from the obvious limitation that they require user
input. Some systems are designed to help graphically naive con-
tent authors create professional quality layouts. Others are meant
to reduce the amount of time a graphic designer needs to spend on
a layout.

Most systems that take interactive input do so for spatial constraints
[56, 19, 4]. This is because it is easy to create graphical user inter-
faces that allow the user to interactively place or adjust components
on the screen. Although providing a graphical user interface to

specify abstract constraints is not unheard of, abstract constraints
tend not to need adjustment. Roth’s SAGE system [47] allows a
user to associate database records with visual elements.

Some of the interactive systems require the user to specify the high-
level design of the document and then automatically generate the
final result [25]. This approach is very useful in situations where
the goal is to enable a content author to create layouts without the
need for intervention by a “layout expert.” Some other systems
take the opposite approach where the system produces the initial
layout and allows the user to refine it [55]. These systems are more
applicable in situations where the goal is to save the amount of time
that a graphic designer needs to spend to create the layout.

3.3.2 Automated Extraction
Fully automated constraint extraction is the least explored method
of obtaining constraints. Some work has been done in integrating
natural language techniques with automated layout [48]. This is
particularly effective if natural language generation is being em-
ployed to create the content. Since the content generators are com-
puter programs, it is much easier to have the generator send abstract
that describes relationships between components as well as markup
the text with flags denoting which parts are particularly important.

Another method that has been explored is to extract abstract con-
straints from the entity relationships found in SQL databases [46].
Unlike the natural language generation system that passes addi-
tional information to the layout system, in this approach abstract
constraints are derived from data structures that were originally in-
tended for use elsewhere.

3.4 Constraint Solvers
A constraint-based automatic layout system must have some way to
resolve the constraints with which it is presented. Formally, auto-
mated layout techniques all solve a form of the constraint satisfac-
tion problem (CSP) [35, 34]. Both randomized and deterministic
algorithms have been applied to solve the problems in this field.
In general, the constraint solvers employed can be categorized as
applying either a local or a global methodology.

3.4.1 Local Techniques
Local constraint solvers attack the constraint satisfaction problem
bottom-up. This might be compared to inductive reasoning, where
a small subset of the universe is first solved. Two routes can be
taken to solv the rest of the constraints and create the final presen-
tation. The first approach is to solve many small subsets of the
constraints independently and then run a second resolution phase
to combine the results. An alternative approach is to iteratively
resolve constraints at the border between the constraints that have
already been solved and those that have yet to be considered [43].

Using a local-resolution technique can be problematic if the solver
encounters local minima [5]. By resolving small subsets first, the
solver may make decisions that bring the system to a suboptimal fi-
nal solution. The advantage, however, is that local-resolution tech-
niques usually execute much faster than global techniques.

3.4.2 Global Techniques
Global constraint solvers attack the constraint satisfaction prob-
lem from the top down. Unlike local techniques, global techniques
generally do not suffer from the problem of local minima, but re-
quire more computation time. To address the issue of additional



computation time, numeric solvers that use iterative approximation
techniques have been applied [28]. Randomized computation tech-
niques (e.g., genetic algorithms and simulated annealing) have also
been applied for label placement [8].

3.5 Inconsistency Policies
If the set of constraints is sufficiently large, there is a strong like-
lihood that there will be some problems. In particular, some con-
straints may contradict others and possibly make the system of con-
straints unsolvable. A resolution policy must be specified to gener-
ate a layout in these cases.

Some systems take a very simple approach to inconsistency by
avoiding it. Rather than bogging the system down with inconsis-
tency handling, the grammar used to articulate the constraints is
designed in such a way that cycles cannot occur [61].

Another popular method for handling inconsistency is to apply pri-
orities to the constraints [14]. By permitting each constraint to
have an inherent priority, the system can make intelligent decisions
about which constraints to drop should a contradiction be encoun-
tered. A problem can still occur here if two conflicting constraints
have the same priority. In this case, the system can use the AI
technique of applying a tie-breaking strategy (e.g., first-come first-
served or pick one randomly) so that the layout can be generated
[43]. Priorities are critical for generating effective layouts in sys-
tems where there are complex networks of both abstract and spatial
constraints. For example, the enforcement of the grid in a system
that employs design grids must take precedence over all other con-
straints.

4. LEARNING TECHNIQUES
Machine learning has been applied to many automated multimedia
authoring systems, including speech synthesis [45] and natural lan-
guage generation [24], as well as to graph layout [36]. However,
most automated layout systems do not leverage the large body of
existing work by the AI community in machine learning.

Automated layout systems that do have some form of learning tend
to use it during the interactive specification of constraints [41, 4].
These systems do not implement full machine learning systems.
Rather, they try to “learn” based on interacting with the user. The
Marquise system [41] allows a user to set the system into a training
mode where the relative locations of components are demonstrated
to the system. Spatial constraints that will be used to generate the
layout are then extracted from this interaction with the user. If the
constraints cannot be extracted, the system falls back to having the
user specify the position explicitly as a LISP function. Borning’s
[4] ThingLab is similar in that it allows for demonstration of con-
straints, but also adds the ability to demonstrate animation.

Some recent work in automated graphics generation has also ex-
plored the use of learning techniques [64]. Zhou divides the space
of rules that need to be acquired for presentation generation into
three categories: information learning space, visual learning space
and rule learning space. Visual learning space is directly related
to spatial constraints, and thus is similar to Myer’s and Borning’s
work. Unlike Marquise and ThingLab however, Zhou’s system em-
ploys full-strength machine learning that can be fully automated by
providing the system with a large dataset of presentations designed
by a “layout expert” in addition to the interactive methods seen in
other work that employs learning techniques.

(a) (b)

Figure 7: (a) A user interface designed without metric-based
evaluation. The lines track mouse movements made by the hu-
man user while operating the user interface. (b) A user inter-
face designed with Sears’ metric based evaluation methodology.
The shorter mouse tracks show that the user does not need to
move the mouse as much in order to get the same work done.

5. EVALUATION TECHNIQUES
Whenever a piece of software is used to perform a task that is tra-
ditionally believed to be reserved for human “experts,” the ques-
tion that will always be asked is whether or not the computer is
as “good” as the human. In the field of layout, “good” may re-
fer to the usability (e.g., whether tasks can be accomplished more
quickly, with fewer errors, with greater user satisfaction), as well as
the aesthetics of the presentation (e.g., whether end users or graphic
designers think that the results look as good as ones produced by
humans).

In some sense, all interactive layout generation systems have a
module that handles the evaluation of how “good” the layout is: the
human user. By using a computer-based evaluation mechanism, we
could evaluate the layout automatically without relying (as much)
on the user, ideally feeding back the results to redesign a layout that
is not deemed good enough.

Evaluation of user interfaces, independent of who or what designs
them, has been explored by a number of researchers [58, 51, 53, 9,
22]. The focus of this research has primarily been divided between
creating heuristic inferences and quantitative metrics. Heuristics
are of course more flexible, whereas metrics are easier to incorpo-
rate into computer systems and hence more common in automated
evaluation mechanisms.

Sears has explored the application of metrics to automated layout
systems [52]. He employed metrics to evaluate how usable an in-
terface is based on the amount of mouse movement that is needed
between button clicks. Figure 7 shows screen shots from Sears’s
system. The additional information provided by these metrics are
embodied in the form of spatial constraints. Fitts’ Law [32] implies
that buttons that are often clicked sequentially should be placed
close to each other spatially, since this reduces the time needed to
move between them.

Other research has addressed adding evaluation to the automated
layout process in the context of user modeling [50]. This work pro-
poses that the interface not only include or exclude certain elements
based on the type of user, but that it also change the layout. This in-
formation may be gathered at run time—as the frequency of use of
different parts of the system change, the layout could be modified
to reflect this. An appropriate user model could make it possible
to adapt the output for the user. Note, however, the potential for
change to create a less, rather than more, effective UI by clashing



with the user’s mental map of the user interface.

6. CONCLUSIONS AND FUTURE WORK
We have illustrated the range of research that has been accom-
plished in the field of automated layout, from simple techniques
to research systems. As data presentation needs rapidly increase,
the field of automated layout will become increasingly important.
In time, we feel it is inevitable that the more powerful techniques
found in the research systems will make their way into popular soft-
ware packages. Reviewing current research, we see a number of
rich possibilities for future work.

Integration of natural language techniques with automated layout
systems has been explored to some extent, particularly with natural
language generation. However, similar work has not been pursued
with image and video understanding or speech recognition. It may
be possible to extract abstract or spatial constraints for automated
layout by applying well known vision or speech recognition tech-
niques to multimedia components of a layout.

Another interesting possibility is considering how to handle con-
straints that are “wrong.” Most systems have a user specifying the
constraints in some manner at some point in the layout pipeline.
The problem is that the user might simply make a mistake and
not really mean what what he or she specified. In a system that
has support for ranking constraints by priority, the user might also
assign incorrect priorities. Constraints that are automatically ex-
tracted opens up even more doors for feeding incorrect information
to the system. The use of natural language understanding, image
understanding or speech recognition to extract constraints by defi-
nition means that there will be some probability of error in the con-
straints. Enabling an automated layout system that would be capa-
ble of handling these kinds of problems might involve applying AI
techniques from adversarial game playing [43]. Algorithms from
computational biology and genomics may also be applicable be-
cause this kind of problem is encountered during gene sequencing
[49]. Constraints extracted by an automated process can be verified
by running multiple extraction algorithms and having them “vote.”
A similar approach is employed by an object-recognition technique
called the Hough transform [16]. By applying algorithms to defend
against constraint error, a system might be made robust enough that
errors in the constraints could cause little or no loss of effectiveness
in the presentation.

There are other kinds of constraints that might be worthwhile to
consider, some of which be obtained through hardware capture of
information for user models. For example, real-time systems that
automatically generate a user interface would benefit from knowing
the user’s distance from the display medium (information that was
taken into account at the beginning of the layout design process of
[11], but not computed automatically). This could be determined
from any of a variety of head-tracking technologies. Eye tracking
could also be used to extract additional constraints based on where
the user is looking. What parts of the display the user has actually
seen would be useful information to pass to the automated layout
system.
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