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Abstract The goal of multimodality neuromonitoring is to
provide continuous, real-time assessment of brain physiology
to prevent, detect, and attenuate secondary brain injury.
Clinical informatics deals with biomedical data, information,
and knowledge including their acquisition, storage, retrieval,
and optimal use for clinical decision-making. An electronic
literature search was conducted for English language articles
describing the use of informatics in the intensive care unit
setting from January 1990 to August 2013. A total of 64
studies were included in this review. Clinical informatics
infrastructure should be adopted that enables a wide range of
linear and nonlinear analytical methods be applied to patient
data. Specific time epochs of clinical interest should be
reviewable. Analysis strategies of monitor alarms may help
address alarm fatigue. Ergonomic data display that present
results from analyses with clinical information in a sensible
uncomplicated manner improve clinical decision-making.
Collecting and archiving the highest resolution physiologic
and phenotypic data in a comprehensive open format data
warehouse is a crucial first step toward information manage-
ment and two-way translational research for multimodality
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monitoring. The infrastructure required is largely the same as
that needed for telemedicine intensive care applications,
which under the right circumstances improves care quality
while reducing cost.
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Introduction

The goal of multimodality neuromonitoring is to provide
continuous, real-time assessment of brain physiology to help
prevent, detect, and attenuate secondary brain injury. Clin-
ical informatics deals with biomedical data, information,
and knowledge including their acquisition, storage, retrie-
val, and optimal use for -clinical decision-making.
Multimodality neuromonitoring and clinical informatics
have evolved in parallel and are reshaping not only how we
view physiological data, but also potentially our entire
approach toward scientific discovery. We are on the verge of
the data-intensive science era in which hypotheses will be
generated automatically among the enormous amount of
data available using computational science with inductive
reasoning [1]. In this new era, an integrated clinical infor-
matics infrastructure will be essential not only to facilitate
adherence to current clinical and intensive care recom-
mendations, but also to provide the framework for two-way
translational research to develop future recommendations.

Methods

This systematic review was performed according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement [2].
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Search Criteria

Studies were considered to be eligible based on the PICO
approach. Using the PubMed database, we conducted a
systematic review from January 1990 up to the 15th of
August 2013. The search strategy included the following
terms: medical informatics applications, medical infor-
matics, and medical informatics computing. This produced
29,313 articles. We combined these terms with intensive
care unit (ICU) to narrow the search down to 976 articles.
We restricted articles to those published in the English.
Unpublished data or congress presentations/abstracts were
not considered.

Study Selection and Data Collection

One author independently reviewed all citations, abstracts,
and full-text articles to select eligible studies. Excluded
were: (a) case reports or case-series with <5 patients; (b)
experimental animal studies. Data were abstracted using a
predefined abstraction spreadsheet, according to the PICO
system. No attempt was made to re-analyze the data, and
no meta-analysis was performed since there are insufficient
randomized (RCT) or case—control studies. Furthermore,
since clinical informatics is a dynamic and rapidly evolving
field and at present rigorous evidence on how clinical
informatics impacts multimodality monitoring as a field is
still being elucidated we included review articles and
studies conducted in any critical care population as can-
didate studies. Sixty-four studies were included in the final
review. The second author checked data extraction
accuracy.

Review End-Points

1. What clinical informatics infrastructure is required to
collect bedside physiologic monitoring data?

2. Is it essential to analyze multimodality data to extract
clinically relevant information?

3. What are effective ways to present multimodal mon-
itoring data to clinicians to best enable fast and
accurate treatment decisions?

4. Is there benefit to investing in telemedicine intensive
care technologies?

Literature Summary
The informatics infrastructure necessary for clinical mul-

timodality neuromonitoring and two-way translational
research includes three interdependent elements that
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together compose a clinical translational research platform:
(1) Acquisition, synchronization, integration, and storage
of all relevant patient data into a single, searchable data-
base, data repository, or enterprise-level clinical data
warehouse; (2) Data processing and analysis to extract
clinically relevant features from raw data and translate
them into actionable clinical information; (3) Data visual-
ization of actionable information at the bedside in a manner
that provides clinicians with situational awareness of
patient state or changes in patient state [3], along with
integration of clinical information into clinical practice and
workflow.

Data Acquisition

Collecting and archiving data is the crucial first step toward
information management. A typical patient in a Neurocritical
Care Unit (NCCU) may undergo frequent or continuous
monitoring of many physiological parameters (e.g., blood
pressure, heart rate) along with neuromonitoring of intracra-
nial pressure (ICP), continuous EEG, brain tissue oxygen
tension, cerebral blood flow, and microdialysis parameters.
An enormous amount of data is generated reflecting dynamic
and complex physiology. Dynamic systems are based on
relationships that can only be understood by data integration.
Most parameters are generated from stand-alone medical
devices that do not easily integrate with one another. For
years, data acquisition and integration have been confounded
by incompatibilities among monitoring equipment, proprie-
tary limitations from industry, and the absence of standard
data formatting. More than 90 % of hospitals recently sur-
veyed by the Healthcare Information and Management
Systems Society (HIMSS) use six or more types of medical
devices and only about a third integrate them with one another
or with their EHRs [4].

Currently, there are two basic approaches to acquire and
store high-resolution data: kiosk-type portable cart-based
systems that can be moved from room to room and dis-
tributed systems in which data from bedside monitors are
sent continuously to a remote server. The kiosk-type sys-
tems provide a limited set of patient-specific clinical
analyses that can be performed one patient at a time and
presented to clinicians in real-time at the bedside. They
tend to be easy to use by clinical staff and easy to maintain.
Purchasing a portable cart-based system is akin to pur-
chasing a medical device. However, data may not be stored
in an open database format limiting its use to the way it is
analyzed and presented on the device screen.

The second approach is to simultaneously collect all
data from the bedside monitor and the devices, and store it
on an enterprise-level central server [5, 6] with large
computational and storage capacities necessary to manage,
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store, and retrieve patient data [7]. Operation of a central
server will require a support budget and information
technology staff to maintain it. A key benefit is that data
are more accessible, although analysis and bedside pre-
sentation of information are still required. Barriers related
to data security and systems architecture have also made
implementation of distributed systems challenging. EEG
data need to be acquired separately and there are currently
no standard practices to accomplish this. Kull and Emerson
[8] review general considerations related to EEG moni-
toring in the intensive care unit.

There are no specific guidelines regarding the optimal
sampling frequency, and the most prudent course is to
acquire data at the highest possible sampling frequency.
Data are essentially meaningless unless annotated so that
providers can search for “epochs of interest.” The value of
annotated high-resolution physiological data cannot be
overstated [9]. Common terminologies, data models, and
annotation standards are needed so that the same tools can
be used across healthcare. Once a comprehensive database
of integrated, precisely time-stamped physiologic signals is
created and complemented by relevant clinical observa-
tions, laboratory results, and imaging data, clinicians can
then begin to formulate and test hypotheses about the
underlying dynamic physiological systems in patients.

Data Processing and Analysis

Neurocritical care has evolved to become a very data-
intensive field. The promise of clinical informatics lies in
the potential to use a wide array of advanced and novel
analytical techniques on high-resolution, multidimensional,
multimodal physiological data in order to develop a better
understanding of the complex relationships among various
physiological parameters, enhance the ability to predict
future events, and improve outcome.

Simple indices may be calculated using informatics that
adds information to patient assessment. For instance, cal-
culating the area under the curve (AUC) above a specific
cut point of temperature (such as >38.5 °C) provides a
more robust measure of “dose” of fever that can be used to
track the effectiveness of interventions such as fever con-
trol or hypothermia therapy [10]. The moving correlation
coefficient between MAP and ICP is used to generate the
pressure reactivity index which provides information about
whether cerebral pressure autoregulation is intact. The PRx
has been used to determine the optimal CPP for patient
management after traumatic brain injury (TBI) and intra-
cerebral hemorrhage [11, 12].

Techniques for the analysis of nonlinear systems (com-
plex systems analysis) have emerged from the mathematical

and engineering sciences [13]. Time series analysis, for
example, measures variation over time. This has been most
often applied to the heart rate by evaluating intervals between
consecutive QRS complexes. Decreased variability is
thought to reflect system isolation and a reduced ability to
respond to perturbations. Decreased heart rate variability is
associated with poor outcome in patients with myocardial
infarction [14] and heart failure [15]. Similarly, reduced ICP
variability may be a better predictor of outcome than the
measure usually displayed at the bedside, mean ICP [16].
Frequency domain (spectral) analysis displays the contribu-
tions of each sine wave as a function of its frequency (using
Fourier transformation). Changes in spectral heart rate vari-
ability have been demonstrated in hypovolemia [17],
hypertension [18], coronary artery disease [19], renal failure
[20], depth of anesthesia [21], and more. Approximate
entropy (ApEn) provides a measure of the degree of ran-
domness within a series of data. Heart rate ApEn decreases
with age [22] and is predictive of atrial fibrillation [23].
Hornero and colleagues showed that ICP ApEn decreases as
elevated ICP develops [24]. Papaioannou et al. [25] also
demonstrated that, among critically ill patients, nonsurvivors
had lower ApEn compared to survivors. Detrended fluctua-
tion analysis is a technique for describing “fractal” scaling
behavior of variability in physiological signals (similar pat-
terns of variation across multiple time scales). Altered
“fractal scaling” of the ICP signal is associated with poor
outcome [26]. The study of normal and pathologic dynamics
using an array of these complex systems analysis methods
may give us fresh insights into normal physiologic relation-
ships and the pathobiology of critical illness leading to new
mathematical models that are more accurate and realistic
[27].

Conceptualizing patients as existing in physiologic and
pathophysiologic “states” has led to the idea that therapies
may need to be redirected toward facilitating transitions
toward favorable physiologic states as opposed to “fixing”
particular physiologic variables [3, 28]. These states and
the transitions among them are invisible to clinicians using
spreadsheet-based ICU patient records, but may be asses-
sed using model-based analytic methods borrowed from
other scientific disciplines. Dynamical system models
describe how systems evolve over time based on classical
mechanics such as pressure—volume-flow relationships.
The nonlinear nature of these systems requires a more
holistic approach to data analysis that incorporates all the
interconnections and coupling between organ systems and
may be conceptually better suited to the complex envi-
ronment of neurocritical care [29-31]. Given the
complexity of all this critical care data, a systematic real-
time classification process for understanding a patient’s
condition is needed.
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Data Visualization and Workflow

Clinicians may be confronted with more than 200 variables
[32, 33] during rounds of critically ill patients each
morning yet most people cannot judge the degree of
relatedness between more than two variables [34]. While
experienced clinicians are very good at sifting through and
disregarding information to find meaning in data, [35] our
ability to acquire data has outstripped our ability to
understand it [36] and this greatly contributes to “infor-
mation overload” that can lead to preventable medical
errors [34, 37]. In the Neurocritical Care Unit, patient
records are typically presented as text. Woods [38] found,
however, that a text display alone increases the probability
of error because users must collect, maintain, and integrate
all the data mentally. The goal of data visualization is to
provide clinical decision support that enhances clinician
situational awareness about the patient state. The way
information is represented significantly affects problem
solving [39-44]. and impacts the conclusions likely to be
drawn from the display [45]. Data visualization develop-
ment should, therefore, follow an iterative, human-centered
design methodology to effectively arrange information to
support the cognitive process of clinicians [41, 43] while
avoiding adversely affecting clinical decision-making [46].
Such an approach also limits the prospect of project failure
due to non-technology and human factors [47], or insuffi-
cient training [48].

Graphical displays and patient summaries enhanced or
outperformed traditional text displays in numerous studies.
Koch et al. [49] showed that nurses were able to answer
questions about the patient’s status and treatment signifi-
cantly faster and more accurately simply by providing an
integrated display that contained all the information on a
single screen. Pulling out the critical information from the
health record and presenting it as a summary reduced the
time required for making decisions and improved the
quality of decisions [50, 51]. Displaying a representation of
a patient’s history in a timeline led to up to a 50 %
reduction in response time in finding connections among
events [52], and recall has been found to improve with
graphical displays [53], User satisfaction can be enhanced
using an ecological display even without performance
benefits [54].

There are several challenges to representing multivariate
patient data in a single visual display. Physiological data
have a dense structure due to its volume and high dimen-
sionality making it challenging for users to explore
relationships intuitively and interactively while still main-
taining the intrinsic physiologic meaning of specific
measurements [55]. Graphic attributes that make up ICU
visualizations must be chosen carefully to avoid inducing
cognitive overload—the problem it is meant to solve—by
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combining too many elements into a single display [56],
which has been found to actually worsen clinician detec-
tion of critical events [54]. Indeed, under conditions
requiring processing of multiple data streams computa-
tional algorithms have been shown to outperform clinicians
using an ecological display [57, 58] supporting the tre-
mendous need for automated decision support systems in
medicine [48].

Telemedicine Intensive Care

The Committee on Manpower for Pulmonary and Critical
Care Societies released a workforce study detailing a pro-
jected shortfall of critical care healthcare providers over the
next 30 years [59]. Many hospitals also lack the patient
volume or financial resources to hire dedicated intensivists
and staff. It has been suggested that a telemedicine inten-
sive care (tele-ICU) model could help close this gap [60]
when a well-supported intensivist may staff approximately
50-100 remote beds [61]. Telemedicine intensive care
leverages videoconferencing technology, telemetry, and
the electronic medical record to provide and support health
care when distance separates the patient and the caregiver
[62, 63]. A recent telemedicine consensus statement rec-
ommended that the use of on-site full-time or part-time
intensivists is the most efficient first step toward improving
critical care quality [61].

The aims of ‘‘Patient-Focused Critical Care Enhance-
ment Act’” (H.R. 1581) is to “optimize the delivery of
critical care medicine and expand the critical care work-
force” by focusing on “standardization of critical care
protocols, intensive care unit layout, equipment interoper-
ability, and medical informatics,” mainly with the goal of
improving telemedicine services [64]. At its core, tele-
medicine is about the re-engineering of the systems we use
to deliver care. Whether these systems are used to monitor
a patient located 3,000 miles away or 3 feet away, the
underlying principles—equipment interoperability, data
acquisition, synchronization, medical informatics—are
equally applicable. Investment in this basic information
technology architecture is absolutely necessary. This is
what will drive the next generation of Tele-ICU care.

Conclusion

Multimodality neuromonitoring is now routinely used in
neurocritical care for detection and management of sec-
ondary brain injury. The success of advanced informatics in
other areas of medicine such as epidemiology, genetics, and
pharmacology has led to interest in the development of
clinical informatics as a way to provide new insight into the
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complex physiological relationships in patients with acute
brain injury. We are now entering the data-intensive science
era. Through advances in technology and a coordinated
effort involving clinicians, engineers, computer scientists,
and experts in informatics we are beginning to make the
goal of an integrated clinical informatics infrastructure to
support multimodality monitoring achievable by combining
modern signal processing, computational modeling, com-
plex systems analysis, knowledge-based clinical reasoning,
and clear, clinician-centric visualization tools. We believe
that such an integrated clinical informatics infrastructure
will play an increasingly important in neurocritical care and
will provide the framework for two-way translational
research to develop future recommendations.

Recommendations (and see Summary Statement)

1. We recommend utilizing ergonomic data displays that
present clinical information in a sensible uncompli-
cated manner to reduce cognitive load and improve
judgments of clinicians (Strong recommendation,
Moderate quality of evidence).

2. We suggest using clinical decision support tools such
as algorithms that automatically process multiple data
streams with the results presented on a simple,
uncomplicated display (Weak recommendation, Mod-
erate quality of evidence).

3. We recommend adopting a database infrastructure that
enables the integration of high-resolution physiologic
data (including EEG recordings) with lower resolution
data from laboratory and electronic health care systems
(Strong recommendation, Low quality of evidence).

4. We recommend following an iterative, human-centered
design methodology for complex visualization displays
to avoid adversely affecting clinical decision-making
(Strong recommendation, Moderate quality of evidence).

5. We recommend device manufacturers utilize data
communication standards including time synchroniza-
tion on all devices to improve usability of its data
(Strong recommendation, Low quality of evidence).

6. We recommend adopting ‘“smart” alarms in the
intensive care unit to help address alarm fatigue
(Strong recommendation, Low quality of evidence).

Additional Conclusions
Should data from specific time epochs of clinical interest be
reviewable to improve clinician understanding of patient status?

e Data from specific time epochs of clinical interest
should be reviewable by the clinician. The clinician is

advised to work with data collection vendors to enable
this feature (Low quality of evidence).

Should classical statistical methods (e.g., mean, variance,
correlation) and/or advanced analytic methods (e.g., signal
processing, complex systems analysis) methods be applied
to physiological data to improve clinician understanding of
patient status?

e A wide range of linear and nonlinear analytical
methods should be applied to examine physiological
data (Moderate quality of evidence).

What type of data should be collected?

e Collecting and archiving physiologic data (waveform
signals and numeric data) and phenotypic data (lab
results, imaging, nursing notes) in a comprehensive
data warehouse is the crucial first step toward infor-
mation management (Low quality of evidence).

In what format should data be stored?

e All high-resolution physiological data should be stored
in a non-relational open database format (Low quality
of evidence).

Is a distributed data whole ICU collection system or kiosk-
type cart that moves room to room better for data
acquisition?

e There are advantages and disadvantages to each
approach and what is used will depend on the
specifications and needs of the intensive care unit.
(Low quality of evidence).

Should data monitoring be centralized using telemedicine
technology such that one or two dedicated clinicians
monitor multiple patients to detect problems?

e The infrastructure required for telemedicine is similar
to what is needed in general and so ICUs should invest
in an informatics infrastructure that supports care
delivery whether the clinician are 3000 miles away or
3 feet away from the patient. (Low quality of evidence).

What parameters should devices transmit?

e Device manufacturers should enable devices to
transmit all parameters that the device generates
including non-proprietary device status parameters to
improve clinical usability of its data (Low quality of
evidence).

At what frequency should devices transmit data?

e Device manufacturers should provide data at the
highest frequency generated by the device (Low quality
of evidence).
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Should devices output summary measurements (e.g.,
average values) of its measurements?

e Device manufacturers should provide raw measure-
ments first and foremost, but also provide summary
measurements as needed (Low quality of evidence).
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