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Multimodal monitoring and neurocritical

care bioinformatics

J. Claude Hemphill, Peter Andrews and Michael De Georgia

Abstract | Neurocritical care bioinformatics is a new field that focuses on the acquisition, storage and analysis
of physiological and other data relevant to the bedside care of patients with acute neurological conditions
such as traumatic brain injury or stroke. The main focus of neurocritical care for these conditions relates

to prevention, detection and management of secondary brain injury, which relies heavily on monitoring

of systemic and cerebral parameters (such as blood-pressure level and intracranial pressure). Advanced
neuromonitoring tools also exist that enable measurement of brain tissue oxygen tension, cerebral oxygen
utilization, and aerobic metabolism. The ability to analyze these advanced data for real-time clinical care,
however, remains intuitive and primitive. Advanced statistical and mathematical tools are now being applied
to the large volume of clinical physiological data routinely monitored in neurocritical care with the goal of
identifying better markers of brain injury and providing clinicians with improved ability to target specific goals
in the management of these patients. This Review provides an introduction to the concepts of multimodal
monitoring for secondary brain injury in neurocritical care and outlines initial and future approaches using
informatics tools for understanding and applying these data to clinical care.

Hemphill, J. C. et al. Nat. Rev. Neurol. 7, 451-460 (2011); published online 12 July 2011; doi:10.1038/nrneurol.2011.101

Medscape Continuing Medical Education online

EDUCATION

This activity has been planned and implemented in accordance
with the Essential Areas and policies of the Accreditation Council
for Continuing Medical Education through the joint sponsorship of
Medscape, LLC and Nature Publishing Group. Medscape, LLC is
accredited by the ACCME to provide continuing medical education
for physicians.

Medscape, LLC designates this Journal-based CME activity for
a maximum of 1 AMA PRA Category 1 Credit(s)™. Physicians
should claim only the credit commensurate with the extent of
their participation in the activity.

All other clinicians completing this activity will be issued a
certificate of participation. To participate in this journal CME
activity: (1) review the learning objectives and author disclosures;
(2) study the education content; (3) take the post-test with a 70%
minimum passing score and complete the evaluation at http://
www.medscape.org/journal/nrneuro; (4) view/ print certificate.

Released: 12 July 2011; Expires: 12 July 2012

Learning objectives

Upon completion of this activity, participants should be able to:

1 Describe the importance to neurocritical care of monitoring
for secondary brain injury.

2 Describe neuromonitoring technologies used in patients
with acute brain injury.

3 Describe the role of neurocritical care bioinformatics
in managing patients with acute brain injury.

Competing interests

J. C. Hemphill declares an association with the following
company: Ornim. M. De Georgia declares an association with
the following company: Orsan Medical Technologies. See the
article online for full details of the relationships. P Andrews,
the journal Chief Editor H. Wood and the CME questions author
L. Barclay declare no competing interests.

Introduction
Intensive care medicine has been described as “the art
of managing extreme complexity”.! In neurocritical
care, this complexity is magnified by limitations in the
clinical assessment of patients with brain injury and dif-
ferent primary and secondary brain injury pathways.?
Prevention, detection and management of secondary
brain injury are the main purposes of neurocritical
care.>* These goals are accomplished through neuro-
logical examination, neuroimaging studies (such as CT
or MRI), and monitoring of a wide range of systemic
and neurophysiological parameters (called multimodal
monitoring).>”” Not surprisingly, the neurocritical
care unit is a data-intensive environment (Figure 1).
Utilization of these data in real-time decision-making
for patient care represents the art of neurocritical care
practice. Several questions arise regarding multimodal
monitoring. For instance, the parameters that should be
measured and how often these measurements should
be taken are unclear. Furthermore, is every piece of
information valuable or can some be discarded and, if
so, which and when? As we develop new ways of moni-
toring, how can multiple parameters be integrated into a
coherent picture of the patient’s condition?
Neurocritical care bioinformatics is an emerging field
that attempts to bring order to this chaos and provide
insight into disease processes and treatment paradigms.®’
In this Review, we describe the current state of multi-
modal monitoring, initial forays into the use of neuro-
critical care bioinformatics, and the potential for this
discipline to shape the future of neurocritical care.
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Key points

= Monitoring for secondary brain injury is a fundamental aspect of neurocritical care

= Advances in neuromonitoring technologies have been profound and now include
the ability to directly monitor brain oxygenation, cerebral blood flow, and cerebral
metabolism in, essentially, real time

= Despite these advances, data from bedside monitors in neurocritical care are
evaluated by clinicians in much the same way as 40 years ago

= Informatics has fundamentally changed many fields in medicine including
epidemiology, genetics and pharmacology

= New data-acquisition, storage and analytical tools are now being applied to
neurocritical care data to harness the large volume of data now available
to clinicians

= Neurocritical care bioinformatics is an emerging field that will require collaboration
between clinicians, computer scientists, engineers, and informatics experts to
bring user-friendly, real-time advances to the patient bedside

T
Figure 1 | The neurocritical care environment. The image shows a neurocritical
care bed at San Francisco General Hospital, CA, USA. The neurocritical care unit is
a data-intensive and clinically complex environment, as indicated by the presence
of the patient, two nurses, a respiratory therapist, and multiple bedside devices
and monitors including a mechanical ventilator, multiple pumps for intravenous
medications, and separate computerized devices for measuring levels of
intracranial pressure, brain tissue oxygen tension, jugular venous oxygen
saturation, and cerebral blood flow. An overhead monitor displays these data
continuously (background in green), and a computerized bedside charting system
(foreground) is used to automatically and manually record this and other
information into the medical record. Despite the volume of information, charts and
monitors display and record raw data generally without advanced analysis.
Permission obtained from the American Academy of Neurology © Hemphill, J. C. &
De Georgia, M. American Academy of Neurology [online], http://www.aan.com
news/?event=read&article id=6972 (2008).

Secondary brain injury

When patients have an acute neurological catastrophe
such as traumatic brain injury (TBI) or stroke, damage
to the brain can occur at the time of the initial event. This
damage is termed primary brain injury, and the under-
lying mechanisms include: intraparenchymal or extra-
axial traumatic or spontaneous hemorrhage; diffuse
axonal injury (in TBI); and focal or global ischemia from
acute ischemic stroke or global cerebral ischemia during
cardiac arrest. Although interventions (such as surgi-
cal hematoma evacuation) can be undertaken to limit

or reverse primary brain injury, much of the primary
damage may be irreversible. In most acute neurocritical
care conditions, however, this primary brain injury initi-
ates a cascade of biochemical events that are, at least at
onset, reversible. This process is termed secondary brain
injury and its management is of fundamental importance
to the treatment of patients with TBI, ischemic and
hemorrhagic stroke, and global cerebral ischemia.'

Secondary brain injury can generally be considered
as two related concepts: cellular injury cascades and
secondary brain insults (SBIs). An example of the cel-
lular injury cascade is the ischemic cascade in which
events such as excitotoxicity, intracellular calcium influx,
and free radical membrane damage are ongoing. Hence,
ultra-early ischemic stroke treatment via revasculariza-
tion of an occluded intracranial artery with thrombolytic
agents is intended to restore perfusion before permanent
cell death, thereby reversing this secondary brain injury.
In addition to initiating ischemic and apoptotic cell
injury cascades, primary brain injuries make injured,
but salvageable, brain tissue vulnerable to SBIs. These
insults are usually well-tolerated but, when occurring in
an injured brain, can lead to further cell death and wor-
sened patient outcome. Hypotension, hypoxia and hypo-
glycemia are all examples of SBIs in which decreased
substrate delivery to an injured brain further worsens
injury.* On the other hand, fever, seizures and hyper-
glycemia are examples of SBIs in which increased meta-
bolic demand may outstrip compensatory mechanisms
and result in further injury.'>2

Current management paradigms for TBI, stroke,
status epilepticus and, essentially, all acute brain dis-
orders encountered in neurocritical care, center around
the goal of limiting secondary brain injury. For example,
surgical evacuation of a subdural hematoma is intended
to limit tissue damage from brain herniation or ische-
mic damage from low cerebral perfusion. In patients
with subarachnoid-hemorrhage-related vasospasm, the
use of pressors to increase the systemic blood-pressure
level is intended to increase blood flow and, therefore,
oxygen delivery to vulnerable brain tissue. However,
effective management of secondary brain injury relies on
the ability to detect its occurrence, monitor its progress,
and avoid overtreatment with interventions that often
have their own risks. Previous approaches have involved
monitoring of systemic parameters, such as blood-
pressure level and peripheral oxygen saturation, with the
hope of adequately protecting the brain from secondary
injury, whereas current and future approaches in neuro-
critical care emphasize the ability to directly monitor
the brain and to develop better tools to integrate these
sometimes complex measures.

Multimodal monitoring

Intracranial pressure

Intracranial pressure (ICP) is the most commonly moni-
tored brain-specific physiological parameter in the neuro-
critical care unit (Box 1). Vast experience exists with ICP
monitoring in TBI, aneurysmal subarachnoid hemor-
rhage, ischemic stroke, and intracerebral hemorrhage."
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Although no prospective randomized trials have con-
firmed a benefit from ICP monitoring (or, indeed, from the
use of any patient monitor), ICP monitoring and manage-
ment is, nevertheless, generally considered standard, and
guidelines exist for both TBI and stroke.!*!¢

The gold standard device for monitoring ICP is a ven-
tricular catheter attached to an external micro-strain
gauge. The device can be re-zeroed at any time and can
also be used to drain cerebrospinal fluid to treat elevated
ICP. Ventricular catheters are usually set in a position to
display ICP, with drainage performed intermittently
to maintain ICP, usually <20 mmHg. These devices can
be inserted at the time of surgery or in the intensive care
unit (ICU). The zero point for the ICP transducer is the
tragus of the ear. Potential complications associated with
this device are bleeding and infection.'”*®

An intraparenchymal fiberoptic device, inserted at the
bedside via a cranial bolt, is an alternative way to monitor
ICP. The device is connected to a separate bedside monitor to
continuously display the ICP waveform. Several types are
available and most have only modest measurement drift,
independent of the duration of monitoring. The risk of
infection and bleeding are lower than for ventricular
catheters, but the inability to re-zero intraparenchymal
fiberoptic ICP monitors after placement or drain the
cerebrospinal fluid are disadvantages.'**

Cerebral perfusion pressure

Current Brain Trauma Foundation (BTF) guidelines for
management of severe TBI recommend maintaining ICP
<20 mmHg. Guidelines for other disorders such as intra-
cerebral hemorrhage have generally followed this thres-
hold despite fewer disease-specific data.'®*' The cerebral
perfusion pressure (CPP) is the difference between sys-
temic mean arterial pressure and ICP (ideally using the
same zero reference point for ICP and arterial pressure).
The CPP is the driving pressure for cerebral blood flow
across the microvascular capillary bed.!”** Since 1995,
treatment approaches have emphasized ensuring an
adequate CPP level to avoid secondary cerebral ischemia
and as a treatment for elevated ICP. With intact cerebral
autoregulation, increasing the CPP can result in com-
pensatory vasoconstriction, thereby reducing cerebral
blood volume and ICP.** This approach has been called
‘CPP therapy’. Despite its physiological appeal, the sole
randomized controlled trial comparing CPP therapy
(CPP >70 mmHg) and ICP therapy (ICP <20 mmHg)
found no difference in outcomes, probably because of
increased pulmonary complications in the CPP therapy
group.”” However, existing studies have moved beyond
this ‘one size fits all' CPP target and have emphasized that
individual patients may have different CPP thresholds
depending on the degree of autoregulation and intra-
cranial compliance.?? > For example, Howells found that if
autoregulation was impaired, treatment targeting a higher
CPP (>70 mmHg) resulted in worse functional outcomes
in patients with TBI than did treatment targeting a lower
CPP (50-60 mmHg). If autoregulation was intact, high
CPP levels resulted in improved outcomes.” BTF guide-
lines now recommend avoidance of a CPP <50 mmHg and
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Box 1 | Neurocritical care physiological parameters

Parameters are given as the normal reference ranges
or values.

General parameters

= Systolic blood-pressure level: >90 mmHg

= Mean arterial blood-pressure level: >80 mmHg

= Systemic arterial oxygen saturation: >94%

= End-tidal carbon dioxide concentration: 35-40 mmHg
= Heart rate: 80-100bpm

= Respiratory rate: 12-16 breaths per min

Brain parameters

= Intracranial pressure: <20 mmHg

= Brain tissue oxygen tension: >15mmHg

= Jugular venous oxygen saturation: 55-75%

= Cerebral blood flow: 55ml/100g/min (global);
~25ml/100g/min (white matter)

= Lactate:pyruvate concentration ratio: <40

to consider cerebral autoregulation status when selecting
a CPP target in a specific patient.”! Unfortunately, current
standard methods of viewing, recording and analyzing
ICP and CPP data do not allow bedside clinicians to easily
assess cerebral autoregulation.

Brain tissue oxygen tension

New methods of advanced neuromonitoring allow
more-direct measurement of cerebral oxygenation and
metabolism. Monitoring of brain tissue oxygen tension
(P,,0,) involves placement of a micro Clark electrode
(closed polarographic oxygen probe with reversible
electromagnetic actions and semipermeable membrane)
into the brain parenchyma using a method similar to
that for placement of an intraparenchymal fiberoptic
ICP monitor.** P, O, values <15 mmHg are associated
with worsened outcome in patients with TBI, although
prospective trials of improving P, O, have not yet been
performed.?”-? Brain temperature is also measured con-
currently, although the specific effect of brain tempera-
ture (as opposed to body temperature) in fever-related
secondary brain injury has not been well-studied.?**

Cerebral blood flow

Continuous monitoring of cerebral blood flow (CBF) is
intuitively appealing, although, up until the past few years,
this approach was not practical at the bedside. A currently
available method of continuous quantitative CBF moni-
toring uses the principle of thermal diffusion and involves
inserting a probe with two small thermistors—a proximal
one set at tissue temperature and a distal one that is heated
by 2°C above this tissue temperature—into the brain. The
distal thermistor measures the tissue’s ability to dissipate
heat: the greater the blood flow, the greater the dissipa-
tion of heat. A microprocessor then converts this infor-
mation into a measure of CBF in ml/100 g/min.*! CBF
monitoring has been used in patients with head trauma*®
or subarachnoid hemorrhage,” and during neurosurgical
procedures.** Because many interventions in neurocritical
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care are based on the principle of augmenting arterial
blood flow, information provided by CBF monitoring can
be helpful in guiding clinical management.*

Jugular venous oxygen saturation

By placing a small fiberoptic catheter in the internal jugu-
lar vein and advancing the tip to the jugular bulb, jugular
venous oxygen saturation (S, O,) can be measured.* S, O,
represents a measure of global cerebral oxygen extrac-
tion. Values <50% represent ‘ischemic desaturations’
and are associated with worsened outcome in patients
with TBI. Values >75% represent luxury perfusion, in
which blood flow substantially exceeds that necessary
for tissue metabolic demand, and are similarly associ-
ated with poor outcome in patients with TBL.***7 As a
global measure, S, O, monitoring is complementary to
focal monitoring of P, O,.

Cerebral microdialysis

Cerebral microdialysis involves placement of a small
catheter into the brain parenchyma, either during surgery
or through a burr hole and secured by a cranial bolt.*
Extracellular concentrations of ischemic metabolites,
such as lactate and pyruvate, can then be measured. The
lactate:pyruvate ratio is currently the best marker of
the brain redox state and an early biomarker of secon-
dary ischemic injury; lactate:pyruvate ratio >40 is indica-
tive of cerebral metabolic crisis.* Glycerol, a marker of
cell membrane damage, and glutamate, an excitatory
amino acid, provide additional evidence of developing
brain injury.* It is important to remember that ischemic
hypoxia is just one of the many types of brain hypoxia
that can be detected in the injured brain.*!

A limitation to microdialysis is that fluid transports
slowly through the catheter, and measured values rep-
resent cerebral events that occurred 20-60 min earlier,
depending on the collection interval. Microdialysis offers
the potential for measurement of multiple new para-
meters, but pattern recognition is difficult and clinical
studies are limited. The use of new, larger-pore membranes
provides the possibility of measuring the broader neuro-
inflammatory cascades elicited by TBL.* Microdialysis
might also be used for profiling of new neuroprotective
drugs. Presence of any drug in the extracellular fluid does
not guarantee a neuroprotective effect: if a drug cannot
cross the blood-brain barrier, the brain will not be tar-
geted. A better understanding of the concentrations of
any drug found in the brain tissue is an important step in
considering new therapeutic pharmacological candidates
for neuroprotection. At present, microdialysis is generally
considered only a research tool, despite being increasingly
used in the clinic to guide management.**

Summary

In addition to the above parameters, many other tools may
be used for monitoring in neurocritical care. Continuous
EEG monitoring using either surface or intracortical
electrodes is increasingly used for the detection of sub-
clinical seizures or evolving ischemia.**** Near-infrared
spectroscopy for brain oxygenation, brain compliance

monitoring, and quantitative pupillometry are being con-
sidered as emerging tools.***~* Despite the availability of
many tools for monitoring relevant biological processes
in neurocritical care, important questions remain regard-
ing what they measure, how they relate to the familiar
parameters such as ICP and CPP, and how they should
be integrated into bedside clinical care. In fact, it was pre-
cisely these questions about how to integrate advanced
neuromonitoring methods that clearly illustrated the need
for newer bioinformatics approaches, including improved
acquisition and recording of data, more in-depth analysis,
and translation of data for patient care.”

Neurocritical care bioinformatics

Acquisition, integration and synchronization
Although the ability to monitor the body and the brain
in critical care has advanced tremendously over the
past few decades, methods of recording these data for
bedside use, archiving it for future review, and analyzing
it remain primitive and underutilized.*® In fact, paper
charts are still the most commonly used data record in
the ICU and have some advantages: familiarity with the
format, the ability to visualize data in a predictable way
(usually one 2 ft by 3 ft sheet for a 24 h period), and the
inherent validation that occurs when transcribing data.
Electronic medical records (EMRs) have the potential to
reduce medical errors, increase ease of record keeping,
and provide more-reliable documentation for regulatory
oversight than traditional paper charts.”"*> Nevertheless,
most commercial bedside EMRs merely recapitulate the
format of paper charts, albeit in electronic form, without
providing additional analytical power. Data logging is
still done laboriously and intermittently, often hourly.

Although this data logging can provide some general
trend information, it necessarily obscures the underlying
data structure, especially information about waveform
morphology. If data is sampled too infrequently or for
too short a duration then information can be missed.
Physiological signals can have information content in
frequencies exceeding 0.2 kHz, but information can be
lost when data below 0.5-1kHz is sampled over a short
time (1-2 ms).>* Moreover, even if the individual devices
are capable of recording higher-time-resolution data,
without some way to store and review this data, it is basi-
cally useless; the information scrolls across the screen
and disappears forever. Thus, in most neurocritical care
units, clinicians can view monitored physiological data
continuously by watching the bedside monitor but,
once away from the bedside, they only have access to
intermittently-recorded values. This disconnect empha-
sizes that collecting and archiving data is the crucial first
step to information management.**

Integration of data is the next step in neurocritical
care bioinformatics. In any ICU, finding a comprehen-
sive set of all available physiological data (as well as
data from patient records, laboratory studies, imaging
findings and so on) for a patient in one place is virtu-
ally impossible. For the most part, individual monitors
are self-contained, stand-alone units. This inability to
integrate physiological signal data simultaneously into

454 | AUGUST 2011 | VOLUME 7

www.nature.com/nrneurol

© 2011 Macmillan Publishers Limited. All rights reserved



one searchable data set has been a major limiting factor
in the ability to use intensive care monitoring data for
more-advanced real-time analysis. Many reasons exist
for this poor data integration, but the lack of inter-
operability (for example, the inability of different infor-
mation technology systems and software applications
to exchange data accurately and consistently) has been
the main problem. Unlike the interoperable ‘plug and
play’ environment of modern computers and consumer
electronics, most acute-care medical devices are not
designed to interoperate. In 2009, the concept of an
‘integrated clinical environment’ was adopted by the
American Society for Testing and Materials and now
serves as the basic template for future development of
medical devices and systems.*

Two other fundamental aspects of high-resolution data
acquisition relate to data integrity with regard to timing
and artifact detection. Integration of physiological data
is only meaningful when combined with high-resolution
time synchronization. Without a ‘master clock’ ensuring
that all the values and waveforms acquired at the same
time ‘line up’ exactly in synchronization, interpreting the
information and understanding the inter-relationships is
difficult, if not impossible.

Finally, when all data produced by a monitor are
recorded, some values are likely to be artifacts. In fact, that
artifactual data occurs frequently in the ICU is taken for
granted: a transducer is moved from a patient’s bedside,
a stopcock is opened to drain cerebrospinal fluid thereby
rendering the recorded value inaccurate, a monitor is
turned off and on in the context of patient transport.
Ironically, when using a paper chart these values are
‘cleaned’ by bedside nurses who never enter them because
of their obvious artifactual nature. However, when using
a high-resolution data-acquisition system that might
record values 60 times a second or more, automated
data-cleaning algorithms are needed to avoid interpret-
ing artifactual data as real. Thus, while data acquisition
may seem straightforward to clinicians whose interests
lie in interpreting patient data for prognosis and treat-
ment, many fundamental barriers must still be overcome
to ensure that these data are accurate, real and integrated
before advanced analysis can even be considered.>

Once a comprehensive database of integrated, precisely
time-stamped physiological signals is created (without
artifact), complemented by relevant clinical observa-
tions, laboratory results, and imaging data, clinicians can
then begin to formulate and test hypotheses about the
underlying dynamic physiological processes in patients.
Systems are being designed specifically for this purpose,
and some commercially available software and hardware
solutions are emerging.*’

Most systems used for early studies have, however,
been ‘home-grown, one-off systems that are built within
an institution to serve the needs of researchers with a
specific interest in physiological informatics.>***** These
systems are generally in one of two forms: a kiosk-type
system in which a computerized data-acquisition unit is
brought to the patient’s bedside (Figure 2) and connected
to the output ports of various monitors, or a distributed

© FOCUS ON NEUROINFORMATICS

Figure 2 | Kiosk-type critical care data acquisition system.
A mobile system is moved to the bedside and attached to
various monitoring devices. Built-in software may provide
advanced analysis for real-time decision support.
Disadvantages of these systems are that usually only one
patient can be monitored at a time, and data are not
acquired unless the device is manually connected. Image
courtesy of Richard Moberg, CNS Technology, Moberg
Research, Philadelphia, PA, USA.

system in which data from bedside monitors are sent
continuously to a remote server.” A kiosk system is less
expensive than a distributed system, but only allows data
acquisition from one patient at a time and then only
when the system is connected and turned on. Distributed
systems are costlier because they require set-up in mul-
tiple ICU beds and a remote server for storage, but they
are better for large-scale neurocritical care bioinformatics
work than are kiosk systems. Barriers related to data
security and systems architecture, however, have made
implementation, especially across multiple hospitals,
challenging. Certain groups, such as the BrainIT (Brain
monitoring with Information Technology) consortium,
have overcome this barrier in the short term by allowing
investigators from various sites to add data to a group
database voluntarily.**¢!

Translating data into clinical information

Ultimately, neurocritical care bioinformatics is intended
to bring practical patient-based information to the bed-
side to be used in clinical decision-making. Some of
the initial uses have tackled relatively modest questions
compared with potential future uses such as predictive
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Box 2 | Neurocritical care bioinformatics parameters

= Arithmetic (simple): cerebral perfusion pressure (mean
arterial pressure minus the intracranial pressure)

= Index (calculation): fever burden (area under the curve)

= Index (analytical): pressure reactivity index (PRX,
moving correlation coefficient)

= Data-driven methods (unsupervised): hierarchical
cluster analysis (for example, heat map)

= Data-driven methods (supervised): decision trees,
neural networks

= Model-based methods: dynamical systems models,
dynamic Bayesian networks

modeling of patient disease states. However, this pre-
liminary work does demonstrate that analysis of patient
physiological data, rather than just the usual display of
raw data in a bedside chart, can bring unique insights
that are clinically useful and can be implemented with
current technology. For example, rather than just display-
ing the maximum daily temperature as the measure of
fever, calculating the area under the curve (AUC) above a
specific cut-off (such as >38.5°C) provides a more-robust
measure of ‘dose’ of fever, which can be used to track the
effectiveness of interventions such as fever control or
hypothermia therapy.*?

Although cerebral autoregulation may be an important
factor in determining optimal cerebral perfusion after
acute brain injury, this process is difficult to determine
from raw data at the bedside. The pressure reactivity index
(PRx) is a moving correlation coefficient between mean
arterial pressure and ICP that provides information about
whether cerebral pressure autoregulation is intact, and
has been used to determine the optimal CPP for patient
management after TBI and intracranial hemorrhage.**¢*

AUC ‘dose’ and PRx are both examples of indices cal-
culated using informatics that add information to patient
assessment. Neither uses sophisticated analytical tools to
tackle complex multivariable modeling. However, to even
use these simple informatics applications, digital data
acquisition and real-time data analysis are required.

Advanced bioinformatics

The promise of neurocritical care bioinformatics lies
in the potential to use advanced analytical techniques on
high-resolution multimodal physiological data to improve
patient outcome. The hope is that these more-advanced
analytical tools will lead to better understanding of the
complex relationships between various physiological
parameters, improve the ability to predict future events
(not only outcome, but also short-term events such as
elevated ICP or low P, O,), and thereby provide targets
for individualized treatment in real time.®> Advanced
analysis of physiological critical care data can be divided
into two general approaches: data-driven methods and
model-based methods (Box 2).

Data-driven methods
Data-driven methods can be thought of as using exist-
ing data to learn to predict an outcome of interest on the

basis of previously unseen data. Analysis is trained on
existing data sets in which outcomes are known (super-
vised learning) or analyzed in an exploratory manner
(unsupervised learning) to find unexpected relationships
between parameters through ‘data mining’ Examples of
supervised learning methods include regression analy-
sis, decision trees, and neural networks. An example of
unsupervised learning is cluster analysis.

Regression analysis

Regression is a familiar tool that attempts to fit a linear
model to parameters on the basis of a provided outcome,
with the nature of this outcome determining the specific
type of regression analysis to be performed. Continuous
outcomes use linear regression, while binary outcomes
use logistic regression and categorical ordinal outcomes
can be analyzed using ordinal regression. Multivariable
regression analysis is routinely used in epidemiological
studies of disease prediction and can also be applied to
physiological data. Hemphill et al.?” used lagged regres-
sion analysis on time-series physiological data to identify
an association between changes in the fraction of inspired
oxygen (F,0,) or mean arterial pressure and subsequent
changes in P, O, in patients with intracerebral hemor-
rhage. Although the concept of multivariable analysis
on physiological parameters is appealing, problems
are associated with this approach. Regression analysis
assumes that all data are of value, presents challenges for
the inclusion of time-series data, and generally assumes
alinear relationship between parameters (or their trans-
formations) and outcome. Consequently, other analytical
methods may ultimately be of more use in neurocritical
care bioinformatics.

Decision tree analysis

Decision trees are useful to analyze multivariate data, par-
ticularly those with discrete inputs (sex, injury type, drug
dosage), and have been implemented to refine estimates
of prognosis.® For example, a set of patients might be
grouped together at the ‘top’ of a tree. At each branch,
the set can be divided into two (for example, whether a
patient is female or male) or more (for example, did they
receive 5mg, 10mg or 15 mg of drug? The nature of the
rules can be optimized according to various algorithms.
The final subsets are evaluated on the basis of an end point
(for example, females who received 5mg of drug showed
70% improvement, females who received 10 mg showed
80% improvement, and so on). Andrews and co-workers®
used this technique to identify subgroups of patients with
head injury who had a poor prognosis. Figure 3 demon-
strates how decision trees can be visually informative for
clinicians for the prediction of TBI outcome. In particular,
decision trees show how an individual patient sits within
a well-developed predictive model.

Neural networks

Artificial neural networks are powerful tools for multi-
factorial classification and multivariate nonlinear analy-
sis. Modeled after neurophysiological learning, neural
networks have the ability, through iterative training, to
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One or both do not react to light

Road traffic
acciden

Yes
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One or both

Admission
pupils
react to light to light
Glasgow Poor
oma Scale 7.4/0.3
Good Poor
2.3 5.6/0.5

>54 years Neither react

Poor
4

>5

Figure 3 | Decision tree analysis for prediction of outcome after traumatic brain injury. The structure of the decision tree is
determined from analyzed parameters rather than the usual clinical factors and cut-offs, which explains why admission
pupils (that is, the size and reactivity of a patient’s pupils on admission to the clinic) comes before age, Glasgow Coma
Scale score, or grade of injury. Patients ‘enter’ the tree via the top node (admission pupils) and then are subsequently
parsed into tree ‘branches’ on the basis of successive parameters until they reach a final terminus and an associated
outcome prediction. Numbers in the outcome boxes reflect the total number of cases for that outcome (n) and the number
of misclassified cases (m); decimals appear due to pruning of the tree (n/m). Permission obtained from the American
Association of Neurosurgeons © Andrews, R J. et al. J. Neurosurg. 97, 326-336 (2002).

model complex data relationships and to discern pat-
terns. With neural networks, Vath and co-workers could
accurately predict outcomes after TBI for different com-
binations of clinical and neuromonitoring parameters.*
Hidden patterns can be uncovered and displayed using
Kohonen self-organizing maps. Using this technique with
microdialysis data, Nelson and co-workers® showed that
highly individualistic and complex patterns or ‘states’
exist. Similarly, using a dimension reduction technique
called hierarchical clustering (which was developed for
genomics to simplify data sets), Cohen and co-workers™
identified specific clusters of physiological data in trauma
patients from which distinct patient states—described
as at risk of infection, multiorgan failure, or death
—could be defined. Prognostic patterns too complex to
visualize could then be recognized and displayed using
dendrograms and heat maps. Figure 4 shows an example
of cluster analysis in which a self-organizing map—a
tool widely used in genetics and genomics—is used to
identify unexpected associations between physiological
parameters across patients with TBI.

Complex systems analysis

Techniques for the analysis of nonlinear systems
(complex systems analysis) have emerged from the
mathematical and engineering sciences.”” Time series
analysis, for example, measures variation over time and
has been most often applied to monitoring of heart rate
by evaluating intervals between consecutive QRS com-
plexes. Decreased variability is thought to reflect system
isolation and a reduced ability to respond to perturba-
tions. Decreased heart rate variability is associated with
poor outcome in patients with myocardial infarction
or heart fajlure.” Similarly, reduced ICP variability may
be a better predictor of outcome than is the measure
usually displayed at the bedside; namely, mean ICP.”*
Frequency domain analysis displays the contributions

of each sine wave as a function of its frequency (using
Fourier transformation). The result is termed spectral
analysis. Changes in spectral heart rate variability have
been demonstrated in hypovolemia,”® hypertension,”®
coronary artery disease,”” renal failure,”® and depth of
anesthesia, among others.”

Approximate entropy (ApEn) provides a measure of
the degree of randomness within a series of data. Heart
rate ApEn decreases with age®® and is predictive of atrial
fibrillation.*’ Hornero and co-workers® showed that
ICP ApEn decreases with ICP elevations >25 mmHg.
Papaioannou and co-workers® also demonstrated that
among critically ill patients, nonsurvivors had lower
heart rate ApEn than survivors. As ApEn calculations can
be sensitive to the length of the data series (especially
with ‘short and noisy’ data sets), a modification, termed
sample entropy (SampEn), was introduced.®* Using this
approach, Lake and co-workers® showed that heart
rate entropy falls before clinical signs of neonatal sepsis
become apparent.

Detrended fluctuation analysis is a technique for des-
cribing fractal scaling behavior of variability in physio-
logical signals (similar patterns of variation across
multiple timescales). Altered fractal scaling of the ICP
signal is associated with poor outcome.*® Hopefully, the
study of normal and pathological dynamics using an array
of these complex systems analysis methods will provide
unique insights into normal physiological relationships
and the pathobiology of critical illness, which could lead
to new mathematical models of disease prediction that are
more accurate and realistic than existing models.*”

Model-based methods

Conceptualization of patients as existing in physio-
logical and pathophysiological states has led to the idea
that therapies may need to be redirected toward facilitat-
ing transitions toward favorable physiological states, as
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Figure 4 | Self-organizing heat map of physiological variables for neurocritical care.
Heat maps in which genes are displayed across the top row and related genes
cluster together have been commonly used in genetics. In this neurocritical care
heat map, genes are replaced by physiological variables that cluster on the basis
of association within and across patients such that they become hierarchically
clustered into three groups of patients. As expected, MAP and ABP cluster
together. In this specific case, ICP and inspiratory oxygen (or fraction of inspired
oxygen, F.O,) were unexpectedly clustered, leading to the identification of
previously unrecognized ICP elevations during bedside suctioning in this set of
patients with TBI who were mechanically ventilated.® Abbreviations: ABP, arterial
blood pressure, CPP, cerebral perfusion pressure; ETCOZ, end tidal carbon dioxide;
ICR, intracranial pressure; MAR, mean arterial blood pressure; O,, oxygen; P, O,,
brain tissue oxygen tension; PEER positive end-expiratory pressure; Sp0,,, systemic
oxygen saturation; TBI, traumatic brain injury. With kind permission from Springer
Science+Business Media © Sorani, M.D. et al. Neurocrit. Care 7, 45-52 (2007).

opposed to fixing’ particular physiological variables.®*%
These states and the transitions between them are invisi-
ble to clinicians using current paper or spreadsheet-
based ICU patient records, but may be assessed using
model-based analytical methods borrowed from other
scientific disciplines.

Dynamical system models

Dynamical system models describe, on the basis of classic
mechanics such as pressure-volume-flow relationships,
how systems evolve over time. For example, Ursino and
co-workers® modeled the interaction between cere-
bral vascular reserve, cerebral hemodynamics during
arterial pressure changes, and relationships between
CPP and autoregulation. Although dynamical system
modeling is useful, the drawback is that most, if not all,
biological systems behave in a nonlinear rather than a

linear manner. In nonlinear systems, small changes can
cause disproportionately large responses because the
response is not simply the sum of individual response to
each stimuli. Biological systems require data analysis that
incorporates all interconnections and coupling between
organ systems, and this approach may be conceptually
better suited to the complex environment of neurocritical
care.”’”* A degree of intrinsic complex and chaotic
behavior also exists. While this behavior can be captured
to some extent with dynamical system models, the deter-
ministic nature of these systems raises concerns about
accounting for all relevant biological interactions.

Dynamic Bayesian networks

Given the complexity of critical care data, a systematic
real-time classification process for understanding
a patient’s condition is needed. One approach uses
Bayesian inference, in which uncertainty is described
by probabilities. To identify a diagnostic state, each
possible state is assigned a probability that reflects the
relative belief of it being the patient’s actual state. These
beliefs are then updated with empirical data and the
relative likelihoods of the observations are weighed via
Bayes rule. Posterior probabilities of a patient’s state
membership are systematically generated and embody
our best guess as to the patient’s current diagnostic
state. Transitions between states can be predicted using
dynamic Bayesian networks.* Classification models, the
collection of diagnostic states, can also take on structure
that indicates relationships between states, such as partial
orderings.” Further techniques have been developed to
tackle the ill-posed inverse problem, which arises when
two diagnostic states cannot be distinguished from the
information provided by the observable data.”

A clinically relevant use of Bayesian neural networks to
predict a change in patient state is the Avert-IT project,”
which is being undertaken by the BrainIT European
neurocritical care informatics consortium. Avert-IT
seeks to use physiological, demographic and clinical
data from patients with TBI across multiple centers to
create a prediction index for the subsequent occurrence
of hypotension. Rather than using a single parameter,
this concept might be considered as analogous to clini-
cal intuition, in which a patient is identified as at risk
for transition from one state (stable) to another state
(hypotensive and at risk of secondary brain injury).

Conclusions

Multimodal monitoring of physiological parameters
related to pressure, flow and metabolism is now routinely
used in neurocritical care for detection and management
of secondary brain injury. Despite major advances over
the past decades in the ability to monitor the brain, clini-
cians archive and analyze this data in much the same way
as in the 1960s. The availability of high-resolution data-
acquisition tools and the success of advanced informatics
in other areas of medicine, such as epidemiology, genetics
and pharmacology, have led to interest in the development
of neurocritical care bioinformatics as a way to provide
new insights into the complex physiological relationships
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in patients with acute brain injury. This emerging field
will require a coordinated effort involving clinicians, engi-
neers, computer scientists, and experts in informatics and
complex systems analysis, as well as industry to develop
tools that can be used to improve data visualization and
provide real-time, user-friendly advanced data analysis
that can be applied clinically at the bedside of patients in

the neurocritical care unit.
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