COMS E6898: FINAL PRESENTATION
SUBMITTED BY:
NEHA GUPTA
(NG2565)

TOPIC: REAL-TIME TRAFFIC MONITORING

- Current Real-time Traffic Monitoring and Guidance Systems:
 - Use Cellular Network
 - Radio Signals
- Commercial applications use Satellite Data or a combination of above

Novelty of approach

- This is a novel approach in the way it uses the real time street-cam data (collected from various locations in the New York City) and the tweets from twitter to generate real-time navigation and supervision features.
- In [7], the cameras are sending tweets on twitter which is different from this approach.

Motivation

The paper "Tweeting Cameras for Event Detection" [7] inspired me to take up this project.


Besides, the thrill to work on a real life dataset!

Real Time Traffic Information

Main Map Mobile Cameras List Midtown Map Traffic Speed Glossary Help

Search Camera By Name:

GO

PROPOSAL

We will be undertaking the following tasks for this project:

- 1. Start with a waze report, find relevant waze reports that are talking about the same event, then correlate this filtered data with tweets from twitter and find common occurrences of the same event in both waze and twitter.
- 2. Start with Twitter data, process the tweets on Twitter to find relevant new events. These may not be present in waze.
- 3. Design an interactive annotation tool that will serve as a user-interface to link waze events with the images. This task has been de-scoped after submission of the project proposal so it will be not be analyzed here.

PROPOSED DATA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Next > Last >>

Ac	tions	tweetid	time	long	lat	addr	content	userid
Edit	Delete	1	2015-12-10 00:00:04	-76.33805556	42.12361111		Wind 3.7 mph S. Barometer 29.972 in Steady. Temp	19719569
Edit	Delete	2	2015-12-10 00:00:06	-74.0007613	40.7207559	Peterborough	NEW BLOG POST: A Morning in Cobourg https://t.co	362587078
Edit	Delete	3	2015-12-10 00:00:06	-74.0007613	40.7207559	East Sussex	Lily Pads https://t.co/cey4lQ2e5f	19446802
Edit	Delete	4	2015-12-10 00:00:11	-73.9803314	40.7744598		Joanne Trattoria Fam #joannetrattoria #family #ho	14955733
Edit	Delete	5	2015-12-10 00:00:13	-74.0059731	40.7143528	Charlotte	#Hospitality #Job alert: CAFE MANAGER SENIOR Co	126371773
Edit	Delete	6	2015-12-10 00:00:14	-73.98757295	40.74559825	New York	Pin it together for the holidays. Shop a piece of	131743957
Edit	Delete	7	2015-12-10 00:00:18	-73.98342497	40.72632363		Had the distinct pleasure of seeing shaunbarker12	465963214
Edit	Delete	8	2015-12-10 00:00:28	-73.9746896	40.78376511		Celebration! (at @TheMillingRoom in New York NY)	15997164
Edit	Delete	9	2015-12-10 00:00:28	-73.93162786	40.66841131		I'm at Eastern Parkway & Dica Avenue in Broo	16532821
Edit	Delete	10	2015-12-10 00:00:37	-74.0007613	40.7207559	New York City	Comic Book Emotions. https://t.co/z4WHuo6yfc	35484447

Tweets Table in Database

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Next > Last >>

Actions	name	location_lat	location_long
Edit Delete	1_Ave_@_110_St	40.79142678	-73.93807411
Edit Delete	1_Ave_@_124_St	40.80042614	-73.93155098
Edit Delete	1_Ave_@_23_St	40.73597417	-73.97828579
Edit Delete	1_Ave_@_42_St	40.74803726	-73.96948814
Edit Delete	1_Ave_@_79_St	40.77144187	-73.95249367
Edit Delete	1_Ave_@_86_St	40.7760243	-73.94931793
Edit Delete	1_Ave_@_96_St	40.783304	-73.944662
Edit Delete	1_Ave_@_E_14_St	40.731331	-73.982561
Edit Delete	1_Ave_and_34_St	40.74296517	-73.97330761
Edit Delete	11_Ave_@_34_ST	40.75492947	-74.0018034
Edit Delete	11_Ave_@_42_St	40.75990312	-73.99815559
Edit Delete	12_Ave_@_14_St	40.74182715	-74.0087986
Edit Delete	12_Ave_@_22_St	40.74771214	-74.00789738
Edit Delete	12_Ave_@_34_St	40.75629482	-74.00450706
Edit Delete	12_Ave_@_42_St	40.76126838	-74.00090218
Edit Delete	12_Ave_@_57_St	40.77072685	-73.99420738
Edit Delete	2_Ave_@_110_St	40.792531	-73.9402627
Edit Delete	2_Ave_@_125_St	40.80195299	-73.93339634

Camera Table in Database

PROPOSED DATA

- The dataset has been collected from various sources (waze, new york city data from http://dotsignals.org, twitter data all collected over a period of one month) and organized in a database that can be queried for different analyses.
- Further, the waze table has 417990 records (number of reports), the images table has 27927 records (images) and the twitter data has 763890 records (tweets).

APPROACH FOR TWEETS DATA

- For each 'user id', we can run one of the following steps and store the tweets category for each user. This will be any one of the following {ACCIDENT, CHIT_CHAT, HAZARD, JAM, MISC, POLICE, ROAD_CLOSED}.
- Topic modeling using LDA: As pointed out in [3], Topic Modeling with Latent
 Dirichlet Allocation (LDA) [2] is a popular unsupervised method for discovering
 latent semantic properties of a document collection.
 - document classification
 - clustering
 - information extraction.
 - However, LDA is sensitive to noise
 - NLTK:
 - removing the stop words
 - language detection especially when there are short words in the message.
 - From [3], topic modeling with LDA works best when there is little or no redundancy in the training data. So, as the tweets are limited to 140 characters and the number of topics to be modeled are K=7, this approach should give good results.

APPROACH FOR TWEETS DATA

- Backup-plan: method suggested in [5], i.e. 'Short text language detection using infinity-gram'. Can detect 19 languages with 99% accuracy.
- Third party APIs e.g. MonkeyLearn API [6], that can categorize the tweets based on the events of interest.
 - higher accuracy among its peers (AlchemyAPI, Datumbox, Metamind etc).
 - Sample output:

APPROACH FOR CAMERA DATA

- Common parameter in the 'camera' and 'tweets' data is latitude and longitude (location) of the camera and the user, so:
 - select all entries that pertain to a certain area i.e. (lat. + r, long. + r). Radius 'r' is tunable by the program.
 - Python geocoder library geopy can be used to manipulate the [longitude, latitude] data. No Twitter APIs needed here.
- Select from the tweets database all tweets that are pertaining to above location diameter.
- Now, in this set of tweets check if the tweets are talking about any of these events of
 interest {ACCIDENT, CHIT_CHAT, HAZARD, JAM, MISC, POLICE, ROAD_CLOSED}. If
 so, we form clusters of tweets belonging to each of these categories in the selected
 longitude and latitude zone.

FINAL DESIGN

- So, From step 1:
 - tweet and tweet-category of all the users.
- From step 2,
 - tweets pertaining to all the geographical areas of interest to us (this is tunable by the program).

This information can be further used by the program to create a visualization of the tweets and camera data in real-time as per the goal of the project.

DATA/EQUIPMENT NEEDED

A workstation or laptop installed with all the required python libraries and connection to the database that stores the dataset.

Depending on the actual implementation, the python libraries that need to be installed will differ.

RESULT EVALUATION

- As this is a non-classic, non-trivial problem, it is difficult to measure or find the ground truth for such a large dataset. However, the predictions of any machine learning algorithm can have errors:
 - Miss-detection (for e.g. there were some accidents which the algorithm could not detect)
 - False alarms (for e.g. the algorithm predicted there was an accident when there was none). Miss-detections are hard to find manually for this large dataset. One alternative is to consider some sub-samples for some of the predictions and check the number of false alarms.
- Performance measures can be the detection latency of events by the program as compared to those actually reported (DOT can serve as the ground-truth provider in this case).

FUTURE WORK

- Multiple Tweets by the same user in different geo locations.
- Tweet representation on the map APIs, what if too many tweets.
- Load testing the program.
- Not real-time, what does it take to go live?

REFERENCES

- 1. https://geopy.readthedocs.io/en/1.10.0/
- 2. Blei D, Ng A, Jordan M, n.d., Latent Dirichlet allocation. Journal of Machine Learning Research 3: 993–1022
- 3. Cohen et al., "Redundancy-Aware Topic Modeling for Patient Record Notes."
- 4. Blog post: http://alexperrier.github.io/jekyll/update/2015/09/04/topic-modeling-of-twitter-followers.html
- 5. Blog post: https://shuyo.wordpress.com/2012/02/21/language-detection-for-twitter-with-99-1-accuracy/
- 6. http://docs.monkeylearn.com/article/api-reference/
- 7. Wang and Kankanhalli, "Tweeting Cameras for Event Detection."
- 8. Kam-Yiu Lam et al., "RETINA: A REal-time TraffIc NAvigation System."